- CraftMesh: High-Fidelity Generative Mesh Manipulation via Poisson Seamless Fusion Controllable, high-fidelity mesh editing remains a significant challenge in 3D content creation. Existing generative methods often struggle with complex geometries and fail to produce detailed results. We propose CraftMesh, a novel framework for high-fidelity generative mesh manipulation via Poisson Seamless Fusion. Our key insight is to decompose mesh editing into a pipeline that leverages the strengths of 2D and 3D generative models: we edit a 2D reference image, then generate a region-specific 3D mesh, and seamlessly fuse it into the original model. We introduce two core techniques: Poisson Geometric Fusion, which utilizes a hybrid SDF/Mesh representation with normal blending to achieve harmonious geometric integration, and Poisson Texture Harmonization for visually consistent texture blending. Experimental results demonstrate that CraftMesh outperforms state-of-the-art methods, delivering superior global consistency and local detail in complex editing tasks. 3 authors · Sep 17
- PoNQ: a Neural QEM-based Mesh Representation Although polygon meshes have been a standard representation in geometry processing, their irregular and combinatorial nature hinders their suitability for learning-based applications. In this work, we introduce a novel learnable mesh representation through a set of local 3D sample Points and their associated Normals and Quadric error metrics (QEM) w.r.t. the underlying shape, which we denote PoNQ. A global mesh is directly derived from PoNQ by efficiently leveraging the knowledge of the local quadric errors. Besides marking the first use of QEM within a neural shape representation, our contribution guarantees both topological and geometrical properties by ensuring that a PoNQ mesh does not self-intersect and is always the boundary of a volume. Notably, our representation does not rely on a regular grid, is supervised directly by the target surface alone, and also handles open surfaces with boundaries and/or sharp features. We demonstrate the efficacy of PoNQ through a learning-based mesh prediction from SDF grids and show that our method surpasses recent state-of-the-art techniques in terms of both surface and edge-based metrics. 4 authors · Mar 19, 2024
8 MagicClay: Sculpting Meshes With Generative Neural Fields The recent developments in neural fields have brought phenomenal capabilities to the field of shape generation, but they lack crucial properties, such as incremental control - a fundamental requirement for artistic work. Triangular meshes, on the other hand, are the representation of choice for most geometry related tasks, offering efficiency and intuitive control, but do not lend themselves to neural optimization. To support downstream tasks, previous art typically proposes a two-step approach, where first a shape is generated using neural fields, and then a mesh is extracted for further processing. Instead, in this paper we introduce a hybrid approach that maintains both a mesh and a Signed Distance Field (SDF) representations consistently. Using this representation, we introduce MagicClay - an artist friendly tool for sculpting regions of a mesh according to textual prompts while keeping other regions untouched. Our framework carefully and efficiently balances consistency between the representations and regularizations in every step of the shape optimization; Relying on the mesh representation, we show how to render the SDF at higher resolutions and faster. In addition, we employ recent work in differentiable mesh reconstruction to adaptively allocate triangles in the mesh where required, as indicated by the SDF. Using an implemented prototype, we demonstrate superior generated geometry compared to the state-of-the-art, and novel consistent control, allowing sequential prompt-based edits to the same mesh for the first time. 5 authors · Mar 4, 2024 1
- LDM: Large Tensorial SDF Model for Textured Mesh Generation Previous efforts have managed to generate production-ready 3D assets from text or images. However, these methods primarily employ NeRF or 3D Gaussian representations, which are not adept at producing smooth, high-quality geometries required by modern rendering pipelines. In this paper, we propose LDM, a novel feed-forward framework capable of generating high-fidelity, illumination-decoupled textured mesh from a single image or text prompts. We firstly utilize a multi-view diffusion model to generate sparse multi-view inputs from single images or text prompts, and then a transformer-based model is trained to predict a tensorial SDF field from these sparse multi-view image inputs. Finally, we employ a gradient-based mesh optimization layer to refine this model, enabling it to produce an SDF field from which high-quality textured meshes can be extracted. Extensive experiments demonstrate that our method can generate diverse, high-quality 3D mesh assets with corresponding decomposed RGB textures within seconds. 8 authors · May 23, 2024