Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeAttention is All You Need in Speech Separation
Recurrent Neural Networks (RNNs) have long been the dominant architecture in sequence-to-sequence learning. RNNs, however, are inherently sequential models that do not allow parallelization of their computations. Transformers are emerging as a natural alternative to standard RNNs, replacing recurrent computations with a multi-head attention mechanism. In this paper, we propose the SepFormer, a novel RNN-free Transformer-based neural network for speech separation. The SepFormer learns short and long-term dependencies with a multi-scale approach that employs transformers. The proposed model achieves state-of-the-art (SOTA) performance on the standard WSJ0-2/3mix datasets. It reaches an SI-SNRi of 22.3 dB on WSJ0-2mix and an SI-SNRi of 19.5 dB on WSJ0-3mix. The SepFormer inherits the parallelization advantages of Transformers and achieves a competitive performance even when downsampling the encoded representation by a factor of 8. It is thus significantly faster and it is less memory-demanding than the latest speech separation systems with comparable performance.
TinyViT: Fast Pretraining Distillation for Small Vision Transformers
Vision transformer (ViT) recently has drawn great attention in computer vision due to its remarkable model capability. However, most prevailing ViT models suffer from huge number of parameters, restricting their applicability on devices with limited resources. To alleviate this issue, we propose TinyViT, a new family of tiny and efficient small vision transformers pretrained on large-scale datasets with our proposed fast distillation framework. The central idea is to transfer knowledge from large pretrained models to small ones, while enabling small models to get the dividends of massive pretraining data. More specifically, we apply distillation during pretraining for knowledge transfer. The logits of large teacher models are sparsified and stored in disk in advance to save the memory cost and computation overheads. The tiny student transformers are automatically scaled down from a large pretrained model with computation and parameter constraints. Comprehensive experiments demonstrate the efficacy of TinyViT. It achieves a top-1 accuracy of 84.8% on ImageNet-1k with only 21M parameters, being comparable to Swin-B pretrained on ImageNet-21k while using 4.2 times fewer parameters. Moreover, increasing image resolutions, TinyViT can reach 86.5% accuracy, being slightly better than Swin-L while using only 11% parameters. Last but not the least, we demonstrate a good transfer ability of TinyViT on various downstream tasks. Code and models are available at https://github.com/microsoft/Cream/tree/main/TinyViT.
On-device Online Learning and Semantic Management of TinyML Systems
Recent advances in Tiny Machine Learning (TinyML) empower low-footprint embedded devices for real-time on-device Machine Learning. While many acknowledge the potential benefits of TinyML, its practical implementation presents unique challenges. This study aims to bridge the gap between prototyping single TinyML models and developing reliable TinyML systems in production: (1) Embedded devices operate in dynamically changing conditions. Existing TinyML solutions primarily focus on inference, with models trained offline on powerful machines and deployed as static objects. However, static models may underperform in the real world due to evolving input data distributions. We propose online learning to enable training on constrained devices, adapting local models towards the latest field conditions. (2) Nevertheless, current on-device learning methods struggle with heterogeneous deployment conditions and the scarcity of labeled data when applied across numerous devices. We introduce federated meta-learning incorporating online learning to enhance model generalization, facilitating rapid learning. This approach ensures optimal performance among distributed devices by knowledge sharing. (3) Moreover, TinyML's pivotal advantage is widespread adoption. Embedded devices and TinyML models prioritize extreme efficiency, leading to diverse characteristics ranging from memory and sensors to model architectures. Given their diversity and non-standardized representations, managing these resources becomes challenging as TinyML systems scale up. We present semantic management for the joint management of models and devices at scale. We demonstrate our methods through a basic regression example and then assess them in three real-world TinyML applications: handwritten character image classification, keyword audio classification, and smart building presence detection, confirming our approaches' effectiveness.
Escaping the Big Data Paradigm with Compact Transformers
With the rise of Transformers as the standard for language processing, and their advancements in computer vision, there has been a corresponding growth in parameter size and amounts of training data. Many have come to believe that because of this, transformers are not suitable for small sets of data. This trend leads to concerns such as: limited availability of data in certain scientific domains and the exclusion of those with limited resource from research in the field. In this paper, we aim to present an approach for small-scale learning by introducing Compact Transformers. We show for the first time that with the right size, convolutional tokenization, transformers can avoid overfitting and outperform state-of-the-art CNNs on small datasets. Our models are flexible in terms of model size, and can have as little as 0.28M parameters while achieving competitive results. Our best model can reach 98% accuracy when training from scratch on CIFAR-10 with only 3.7M parameters, which is a significant improvement in data-efficiency over previous Transformer based models being over 10x smaller than other transformers and is 15% the size of ResNet50 while achieving similar performance. CCT also outperforms many modern CNN based approaches, and even some recent NAS-based approaches. Additionally, we obtain a new SOTA result on Flowers-102 with 99.76% top-1 accuracy, and improve upon the existing baseline on ImageNet (82.71% accuracy with 29% as many parameters as ViT), as well as NLP tasks. Our simple and compact design for transformers makes them more feasible to study for those with limited computing resources and/or dealing with small datasets, while extending existing research efforts in data efficient transformers. Our code and pre-trained models are publicly available at https://github.com/SHI-Labs/Compact-Transformers.
Resource-Efficient Separation Transformer
Transformers have recently achieved state-of-the-art performance in speech separation. These models, however, are computationally-demanding and require a lot of learnable parameters. This paper explores Transformer-based speech separation with a reduced computational cost. Our main contribution is the development of the Resource-Efficient Separation Transformer (RE-SepFormer), a self-attention-based architecture that reduces the computational burden in two ways. First, it uses non-overlapping blocks in the latent space. Second, it operates on compact latent summaries calculated from each chunk. The RE-SepFormer reaches a competitive performance on the popular WSJ0-2Mix and WHAM! datasets in both causal and non-causal settings. Remarkably, it scales significantly better than the previous Transformer and RNN-based architectures in terms of memory and inference-time, making it more suitable for processing long mixtures.
QuaLA-MiniLM: a Quantized Length Adaptive MiniLM
Limited computational budgets often prevent transformers from being used in production and from having their high accuracy utilized. A knowledge distillation approach addresses the computational efficiency by self-distilling BERT into a smaller transformer representation having fewer layers and smaller internal embedding. However, the performance of these models drops as we reduce the number of layers, notably in advanced NLP tasks such as span question answering. In addition, a separate model must be trained for each inference scenario with its distinct computational budget. Dynamic-TinyBERT tackles both limitations by partially implementing the Length Adaptive Transformer (LAT) technique onto TinyBERT, achieving x3 speedup over BERT-base with minimal accuracy loss. In this work, we expand the Dynamic-TinyBERT approach to generate a much more highly efficient model. We use MiniLM distillation jointly with the LAT method, and we further enhance the efficiency by applying low-bit quantization. Our quantized length-adaptive MiniLM model (QuaLA-MiniLM) is trained only once, dynamically fits any inference scenario, and achieves an accuracy-efficiency trade-off superior to any other efficient approaches per any computational budget on the SQuAD1.1 dataset (up to x8.8 speedup with <1% accuracy loss). The code to reproduce this work is publicly available on Github.
TinyFusion: Diffusion Transformers Learned Shallow
Diffusion Transformers have demonstrated remarkable capabilities in image generation but often come with excessive parameterization, resulting in considerable inference overhead in real-world applications. In this work, we present TinyFusion, a depth pruning method designed to remove redundant layers from diffusion transformers via end-to-end learning. The core principle of our approach is to create a pruned model with high recoverability, allowing it to regain strong performance after fine-tuning. To accomplish this, we introduce a differentiable sampling technique to make pruning learnable, paired with a co-optimized parameter to simulate future fine-tuning. While prior works focus on minimizing loss or error after pruning, our method explicitly models and optimizes the post-fine-tuning performance of pruned models. Experimental results indicate that this learnable paradigm offers substantial benefits for layer pruning of diffusion transformers, surpassing existing importance-based and error-based methods. Additionally, TinyFusion exhibits strong generalization across diverse architectures, such as DiTs, MARs, and SiTs. Experiments with DiT-XL show that TinyFusion can craft a shallow diffusion transformer at less than 7% of the pre-training cost, achieving a 2times speedup with an FID score of 2.86, outperforming competitors with comparable efficiency. Code is available at https://github.com/VainF/TinyFusion.
Benchmarks and leaderboards for sound demixing tasks
Music demixing is the task of separating different tracks from the given single audio signal into components, such as drums, bass, and vocals from the rest of the accompaniment. Separation of sources is useful for a range of areas, including entertainment and hearing aids. In this paper, we introduce two new benchmarks for the sound source separation tasks and compare popular models for sound demixing, as well as their ensembles, on these benchmarks. For the models' assessments, we provide the leaderboard at https://mvsep.com/quality_checker/, giving a comparison for a range of models. The new benchmark datasets are available for download. We also develop a novel approach for audio separation, based on the ensembling of different models that are suited best for the particular stem. The proposed solution was evaluated in the context of the Music Demixing Challenge 2023 and achieved top results in different tracks of the challenge. The code and the approach are open-sourced on GitHub.
TinyReptile: TinyML with Federated Meta-Learning
Tiny machine learning (TinyML) is a rapidly growing field aiming to democratize machine learning (ML) for resource-constrained microcontrollers (MCUs). Given the pervasiveness of these tiny devices, it is inherent to ask whether TinyML applications can benefit from aggregating their knowledge. Federated learning (FL) enables decentralized agents to jointly learn a global model without sharing sensitive local data. However, a common global model may not work for all devices due to the complexity of the actual deployment environment and the heterogeneity of the data available on each device. In addition, the deployment of TinyML hardware has significant computational and communication constraints, which traditional ML fails to address. Considering these challenges, we propose TinyReptile, a simple but efficient algorithm inspired by meta-learning and online learning, to collaboratively learn a solid initialization for a neural network (NN) across tiny devices that can be quickly adapted to a new device with respect to its data. We demonstrate TinyReptile on Raspberry Pi 4 and Cortex-M4 MCU with only 256-KB RAM. The evaluations on various TinyML use cases confirm a resource reduction and training time saving by at least two factors compared with baseline algorithms with comparable performance.
Dynamic-TinyBERT: Boost TinyBERT's Inference Efficiency by Dynamic Sequence Length
Limited computational budgets often prevent transformers from being used in production and from having their high accuracy utilized. TinyBERT addresses the computational efficiency by self-distilling BERT into a smaller transformer representation having fewer layers and smaller internal embedding. However, TinyBERT's performance drops when we reduce the number of layers by 50%, and drops even more abruptly when we reduce the number of layers by 75% for advanced NLP tasks such as span question answering. Additionally, a separate model must be trained for each inference scenario with its distinct computational budget. In this work we present Dynamic-TinyBERT, a TinyBERT model that utilizes sequence-length reduction and Hyperparameter Optimization for enhanced inference efficiency per any computational budget. Dynamic-TinyBERT is trained only once, performing on-par with BERT and achieving an accuracy-speedup trade-off superior to any other efficient approaches (up to 3.3x with <1% loss-drop). Upon publication, the code to reproduce our work will be open-sourced.
TinySAM: Pushing the Envelope for Efficient Segment Anything Model
Recently segment anything model (SAM) has shown powerful segmentation capability and has drawn great attention in computer vision fields. Massive following works have developed various applications based on the pretrained SAM and achieved impressive performance on downstream vision tasks. However, SAM consists of heavy architectures and requires massive computational capacity, which hinders the further application of SAM on computation constrained edge devices. To this end, in this paper we propose a framework to obtain a tiny segment anything model (TinySAM) while maintaining the strong zero-shot performance. We first propose a full-stage knowledge distillation method with online hard prompt sampling strategy to distill a lightweight student model. We also adapt the post-training quantization to the promptable segmentation task and further reduce the computational cost. Moreover, a hierarchical segmenting everything strategy is proposed to accelerate the everything inference by 2times with almost no performance degradation. With all these proposed methods, our TinySAM leads to orders of magnitude computational reduction and pushes the envelope for efficient segment anything task. Extensive experiments on various zero-shot transfer tasks demonstrate the significantly advantageous performance of our TinySAM against counterpart methods. Pre-trained models and codes will be available at https://github.com/xinghaochen/TinySAM and https://gitee.com/mindspore/models/tree/master/research/cv/TinySAM.
TinyBERT: Distilling BERT for Natural Language Understanding
Language model pre-training, such as BERT, has significantly improved the performances of many natural language processing tasks. However, pre-trained language models are usually computationally expensive, so it is difficult to efficiently execute them on resource-restricted devices. To accelerate inference and reduce model size while maintaining accuracy, we first propose a novel Transformer distillation method that is specially designed for knowledge distillation (KD) of the Transformer-based models. By leveraging this new KD method, the plenty of knowledge encoded in a large teacher BERT can be effectively transferred to a small student Tiny-BERT. Then, we introduce a new two-stage learning framework for TinyBERT, which performs Transformer distillation at both the pretraining and task-specific learning stages. This framework ensures that TinyBERT can capture he general-domain as well as the task-specific knowledge in BERT. TinyBERT with 4 layers is empirically effective and achieves more than 96.8% the performance of its teacher BERTBASE on GLUE benchmark, while being 7.5x smaller and 9.4x faster on inference. TinyBERT with 4 layers is also significantly better than 4-layer state-of-the-art baselines on BERT distillation, with only about 28% parameters and about 31% inference time of them. Moreover, TinyBERT with 6 layers performs on-par with its teacher BERTBASE.
TinySV: Speaker Verification in TinyML with On-device Learning
TinyML is a novel area of machine learning that gained huge momentum in the last few years thanks to the ability to execute machine learning algorithms on tiny devices (such as Internet-of-Things or embedded systems). Interestingly, research in this area focused on the efficient execution of the inference phase of TinyML models on tiny devices, while very few solutions for on-device learning of TinyML models are available in the literature due to the relevant overhead introduced by the learning algorithms. The aim of this paper is to introduce a new type of adaptive TinyML solution that can be used in tasks, such as the presented Tiny Speaker Verification (TinySV), that require to be tackled with an on-device learning algorithm. Achieving this goal required (i) reducing the memory and computational demand of TinyML learning algorithms, and (ii) designing a TinyML learning algorithm operating with few and possibly unlabelled training data. The proposed TinySV solution relies on a two-layer hierarchical TinyML solution comprising Keyword Spotting and Adaptive Speaker Verification module. We evaluated the effectiveness and efficiency of the proposed TinySV solution on a dataset collected expressly for the task and tested the proposed solution on a real-world IoT device (Infineon PSoC 62S2 Wi-Fi BT Pioneer Kit).
Universal Source Separation with Weakly Labelled Data
Universal source separation (USS) is a fundamental research task for computational auditory scene analysis, which aims to separate mono recordings into individual source tracks. There are three potential challenges awaiting the solution to the audio source separation task. First, previous audio source separation systems mainly focus on separating one or a limited number of specific sources. There is a lack of research on building a unified system that can separate arbitrary sources via a single model. Second, most previous systems require clean source data to train a separator, while clean source data are scarce. Third, there is a lack of USS system that can automatically detect and separate active sound classes in a hierarchical level. To use large-scale weakly labeled/unlabeled audio data for audio source separation, we propose a universal audio source separation framework containing: 1) an audio tagging model trained on weakly labeled data as a query net; and 2) a conditional source separation model that takes query net outputs as conditions to separate arbitrary sound sources. We investigate various query nets, source separation models, and training strategies and propose a hierarchical USS strategy to automatically detect and separate sound classes from the AudioSet ontology. By solely leveraging the weakly labelled AudioSet, our USS system is successful in separating a wide variety of sound classes, including sound event separation, music source separation, and speech enhancement. The USS system achieves an average signal-to-distortion ratio improvement (SDRi) of 5.57 dB over 527 sound classes of AudioSet; 10.57 dB on the DCASE 2018 Task 2 dataset; 8.12 dB on the MUSDB18 dataset; an SDRi of 7.28 dB on the Slakh2100 dataset; and an SSNR of 9.00 dB on the voicebank-demand dataset. We release the source code at https://github.com/bytedance/uss
Music Source Separation with Band-Split RoPE Transformer
Music source separation (MSS) aims to separate a music recording into multiple musically distinct stems, such as vocals, bass, drums, and more. Recently, deep learning approaches such as convolutional neural networks (CNNs) and recurrent neural networks (RNNs) have been used, but the improvement is still limited. In this paper, we propose a novel frequency-domain approach based on a Band-Split RoPE Transformer (called BS-RoFormer). BS-RoFormer relies on a band-split module to project the input complex spectrogram into subband-level representations, and then arranges a stack of hierarchical Transformers to model the inner-band as well as inter-band sequences for multi-band mask estimation. To facilitate training the model for MSS, we propose to use the Rotary Position Embedding (RoPE). The BS-RoFormer system trained on MUSDB18HQ and 500 extra songs ranked the first place in the MSS track of Sound Demixing Challenge (SDX23). Benchmarking a smaller version of BS-RoFormer on MUSDB18HQ, we achieve state-of-the-art result without extra training data, with 9.80 dB of average SDR.
Tiny-Toxic-Detector: A compact transformer-based model for toxic content detection
This paper presents Tiny-toxic-detector, a compact transformer-based model designed for toxic content detection. Despite having only 2.1 million parameters, Tiny-toxic-detector achieves competitive performance on benchmark datasets, with 90.97% accuracy on ToxiGen and 86.98% accuracy on the Jigsaw dataset, rivaling models over 50 times its size. This efficiency enables deployment in resource-constrained environments, addressing the need for effective content moderation tools that balance performance with computational efficiency. The model architecture features 4 transformer encoder layers, each with 2 attention heads, an embedding dimension of 64, and a feedforward dimension of 128. Trained on both public and private datasets, Tiny-toxic-detector demonstrates the potential of efficient, task-specific models for addressing online toxicity. The paper covers the model architecture, training process, performance benchmarks, and limitations, underscoring its suitability for applications such as social media monitoring and content moderation. By achieving results comparable to much larger models while significantly reducing computational demands, Tiny-toxic-detector represents progress toward more sustainable and scalable AI-driven content moderation solutions.
EELBERT: Tiny Models through Dynamic Embeddings
We introduce EELBERT, an approach for compression of transformer-based models (e.g., BERT), with minimal impact on the accuracy of downstream tasks. This is achieved by replacing the input embedding layer of the model with dynamic, i.e. on-the-fly, embedding computations. Since the input embedding layer accounts for a significant fraction of the model size, especially for the smaller BERT variants, replacing this layer with an embedding computation function helps us reduce the model size significantly. Empirical evaluation on the GLUE benchmark shows that our BERT variants (EELBERT) suffer minimal regression compared to the traditional BERT models. Through this approach, we are able to develop our smallest model UNO-EELBERT, which achieves a GLUE score within 4% of fully trained BERT-tiny, while being 15x smaller (1.2 MB) in size.
Mel-Band RoFormer for Music Source Separation
Recently, multi-band spectrogram-based approaches such as Band-Split RNN (BSRNN) have demonstrated promising results for music source separation. In our recent work, we introduce the BS-RoFormer model which inherits the idea of band-split scheme in BSRNN at the front-end, and then uses the hierarchical Transformer with Rotary Position Embedding (RoPE) to model the inner-band and inter-band sequences for multi-band mask estimation. This model has achieved state-of-the-art performance, but the band-split scheme is defined empirically, without analytic supports from the literature. In this paper, we propose Mel-RoFormer, which adopts the Mel-band scheme that maps the frequency bins into overlapped subbands according to the mel scale. In contract, the band-split mapping in BSRNN and BS-RoFormer is non-overlapping and designed based on heuristics. Using the MUSDB18HQ dataset for experiments, we demonstrate that Mel-RoFormer outperforms BS-RoFormer in the separation tasks of vocals, drums, and other stems.
MCUNetV2: Memory-Efficient Patch-based Inference for Tiny Deep Learning
Tiny deep learning on microcontroller units (MCUs) is challenging due to the limited memory size. We find that the memory bottleneck is due to the imbalanced memory distribution in convolutional neural network (CNN) designs: the first several blocks have an order of magnitude larger memory usage than the rest of the network. To alleviate this issue, we propose a generic patch-by-patch inference scheduling, which operates only on a small spatial region of the feature map and significantly cuts down the peak memory. However, naive implementation brings overlapping patches and computation overhead. We further propose network redistribution to shift the receptive field and FLOPs to the later stage and reduce the computation overhead. Manually redistributing the receptive field is difficult. We automate the process with neural architecture search to jointly optimize the neural architecture and inference scheduling, leading to MCUNetV2. Patch-based inference effectively reduces the peak memory usage of existing networks by 4-8x. Co-designed with neural networks, MCUNetV2 sets a record ImageNet accuracy on MCU (71.8%), and achieves >90% accuracy on the visual wake words dataset under only 32kB SRAM. MCUNetV2 also unblocks object detection on tiny devices, achieving 16.9% higher mAP on Pascal VOC compared to the state-of-the-art result. Our study largely addressed the memory bottleneck in tinyML and paved the way for various vision applications beyond image classification.
Squeezeformer: An Efficient Transformer for Automatic Speech Recognition
The recently proposed Conformer model has become the de facto backbone model for various downstream speech tasks based on its hybrid attention-convolution architecture that captures both local and global features. However, through a series of systematic studies, we find that the Conformer architecture's design choices are not optimal. After re-examining the design choices for both the macro and micro-architecture of Conformer, we propose Squeezeformer which consistently outperforms the state-of-the-art ASR models under the same training schemes. In particular, for the macro-architecture, Squeezeformer incorporates (i) the Temporal U-Net structure which reduces the cost of the multi-head attention modules on long sequences, and (ii) a simpler block structure of multi-head attention or convolution modules followed up by feed-forward module instead of the Macaron structure proposed in Conformer. Furthermore, for the micro-architecture, Squeezeformer (i) simplifies the activations in the convolutional block, (ii) removes redundant Layer Normalization operations, and (iii) incorporates an efficient depthwise down-sampling layer to efficiently sub-sample the input signal. Squeezeformer achieves state-of-the-art results of 7.5%, 6.5%, and 6.0% word-error-rate (WER) on LibriSpeech test-other without external language models, which are 3.1%, 1.4%, and 0.6% better than Conformer-CTC with the same number of FLOPs. Our code is open-sourced and available online.
Transcription Is All You Need: Learning to Separate Musical Mixtures with Score as Supervision
Most music source separation systems require large collections of isolated sources for training, which can be difficult to obtain. In this work, we use musical scores, which are comparatively easy to obtain, as a weak label for training a source separation system. In contrast with previous score-informed separation approaches, our system does not require isolated sources, and score is used only as a training target, not required for inference. Our model consists of a separator that outputs a time-frequency mask for each instrument, and a transcriptor that acts as a critic, providing both temporal and frequency supervision to guide the learning of the separator. A harmonic mask constraint is introduced as another way of leveraging score information during training, and we propose two novel adversarial losses for additional fine-tuning of both the transcriptor and the separator. Results demonstrate that using score information outperforms temporal weak-labels, and adversarial structures lead to further improvements in both separation and transcription performance.
Music Source Separation in the Waveform Domain
Source separation for music is the task of isolating contributions, or stems, from different instruments recorded individually and arranged together to form a song. Such components include voice, bass, drums and any other accompaniments.Contrarily to many audio synthesis tasks where the best performances are achieved by models that directly generate the waveform, the state-of-the-art in source separation for music is to compute masks on the magnitude spectrum. In this paper, we compare two waveform domain architectures. We first adapt Conv-Tasnet, initially developed for speech source separation,to the task of music source separation. While Conv-Tasnet beats many existing spectrogram-domain methods, it suffersfrom significant artifacts, as shown by human evaluations. We propose instead Demucs, a novel waveform-to-waveform model,with a U-Net structure and bidirectional LSTM.Experiments on the MusDB dataset show that, with proper data augmentation, Demucs beats allexisting state-of-the-art architectures, including Conv-Tasnet, with 6.3 SDR on average, (and up to 6.8 with 150 extra training songs, even surpassing the IRM oracle for the bass source).Using recent development in model quantization, Demucs can be compressed down to 120MBwithout any loss of accuracy.We also provide human evaluations, showing that Demucs benefit from a large advantagein terms of the naturalness of the audio. However, it suffers from some bleeding,especially between the vocals and other source.
TinyLLaVA-Video: A Simple Framework of Small-scale Large Multimodal Models for Video Understanding
We present the TinyLLaVA-Video, a video understanding model with parameters not exceeding 4B that processes video sequences in a simple manner, without the need for complex architectures, supporting both fps sampling and uniform frame sampling. Our model is characterized by modularity and scalability, allowing training and inference with limited computational resources and enabling users to replace components based on their needs. We validate the effectiveness of this framework through experiments, the best model achieving performance comparable to certain existing 7B models on multiple video understanding benchmarks. The code and training recipes are fully open source, with all components and training data publicly available. We hope this work can serve as a baseline for practitioners exploring small-scale multimodal models for video understanding. It is available at https://github.com/ZhangXJ199/TinyLLaVA-Video.
Danna-Sep: Unite to separate them all
Deep learning-based music source separation has gained a lot of interest in the last decades. Most of the existing methods operate with either spectrograms or waveforms. Spectrogram based models learn suitable masks for separating magnitude spectrogram into different sources, and waveform-based models directly generate waveforms of individual sources. The two types of models have complementary strengths; the former is superior given harmonic sources such as vocals, while the latter demonstrates better results for percussion and bass instruments. In this work, we improved upon the state-of-the-art (SoTA) models and successfully combined the best of both worlds. The backbones of the proposed framework, dubbed Danna-Sep, are two spectrogram-based models including a modified X-UMX and U-Net, and an enhanced Demucs as the waveform-based model. Given an input of mixture, we linearly combined respective outputs from the three models to obtain the final result. We showed in the experiments that, despite its simplicity, Danna-Sep surpassed the SoTA models by a large margin in terms of Source-to-Distortion Ratio.
Sanidha: A Studio Quality Multi-Modal Dataset for Carnatic Music
Music source separation demixes a piece of music into its individual sound sources (vocals, percussion, melodic instruments, etc.), a task with no simple mathematical solution. It requires deep learning methods involving training on large datasets of isolated music stems. The most commonly available datasets are made from commercial Western music, limiting the models' applications to non-Western genres like Carnatic music. Carnatic music is a live tradition, with the available multi-track recordings containing overlapping sounds and bleeds between the sources. This poses a challenge to commercially available source separation models like Spleeter and Hybrid Demucs. In this work, we introduce 'Sanidha', the first open-source novel dataset for Carnatic music, offering studio-quality, multi-track recordings with minimal to no overlap or bleed. Along with the audio files, we provide high-definition videos of the artists' performances. Additionally, we fine-tuned Spleeter, one of the most commonly used source separation models, on our dataset and observed improved SDR performance compared to fine-tuning on a pre-existing Carnatic multi-track dataset. The outputs of the fine-tuned model with 'Sanidha' are evaluated through a listening study.