- VI-Net: Boosting Category-level 6D Object Pose Estimation via Learning Decoupled Rotations on the Spherical Representations Rotation estimation of high precision from an RGB-D object observation is a huge challenge in 6D object pose estimation, due to the difficulty of learning in the non-linear space of SO(3). In this paper, we propose a novel rotation estimation network, termed as VI-Net, to make the task easier by decoupling the rotation as the combination of a viewpoint rotation and an in-plane rotation. More specifically, VI-Net bases the feature learning on the sphere with two individual branches for the estimates of two factorized rotations, where a V-Branch is employed to learn the viewpoint rotation via binary classification on the spherical signals, while another I-Branch is used to estimate the in-plane rotation by transforming the signals to view from the zenith direction. To process the spherical signals, a Spherical Feature Pyramid Network is constructed based on a novel design of SPAtial Spherical Convolution (SPA-SConv), which settles the boundary problem of spherical signals via feature padding and realizesviewpoint-equivariant feature extraction by symmetric convolutional operations. We apply the proposed VI-Net to the challenging task of category-level 6D object pose estimation for predicting the poses of unknown objects without available CAD models; experiments on the benchmarking datasets confirm the efficacy of our method, which outperforms the existing ones with a large margin in the regime of high precision. 4 authors · Aug 19, 2023
- Tensor Programs VI: Feature Learning in Infinite-Depth Neural Networks By classifying infinite-width neural networks and identifying the *optimal* limit, Tensor Programs IV and V demonstrated a universal way, called muP, for *widthwise hyperparameter transfer*, i.e., predicting optimal hyperparameters of wide neural networks from narrow ones. Here we investigate the analogous classification for *depthwise parametrizations* of deep residual networks (resnets). We classify depthwise parametrizations of block multiplier and learning rate by their infinite-width-then-depth limits. In resnets where each block has only one layer, we identify a unique optimal parametrization, called Depth-muP that extends muP and show empirically it admits depthwise hyperparameter transfer. We identify *feature diversity* as a crucial factor in deep networks, and Depth-muP can be characterized as maximizing both feature learning and feature diversity. Exploiting this, we find that absolute value, among all homogeneous nonlinearities, maximizes feature diversity and indeed empirically leads to significantly better performance. However, if each block is deeper (such as modern transformers), then we find fundamental limitations in all possible infinite-depth limits of such parametrizations, which we illustrate both theoretically and empirically on simple networks as well as Megatron transformer trained on Common Crawl. 4 authors · Oct 3, 2023
1 Modality Unifying Network for Visible-Infrared Person Re-Identification Visible-infrared person re-identification (VI-ReID) is a challenging task due to large cross-modality discrepancies and intra-class variations. Existing methods mainly focus on learning modality-shared representations by embedding different modalities into the same feature space. As a result, the learned feature emphasizes the common patterns across modalities while suppressing modality-specific and identity-aware information that is valuable for Re-ID. To address these issues, we propose a novel Modality Unifying Network (MUN) to explore a robust auxiliary modality for VI-ReID. First, the auxiliary modality is generated by combining the proposed cross-modality learner and intra-modality learner, which can dynamically model the modality-specific and modality-shared representations to alleviate both cross-modality and intra-modality variations. Second, by aligning identity centres across the three modalities, an identity alignment loss function is proposed to discover the discriminative feature representations. Third, a modality alignment loss is introduced to consistently reduce the distribution distance of visible and infrared images by modality prototype modeling. Extensive experiments on multiple public datasets demonstrate that the proposed method surpasses the current state-of-the-art methods by a significant margin. 5 authors · Sep 12, 2023
3 A Study on the Performance of U-Net Modifications in Retroperitoneal Tumor Segmentation The retroperitoneum hosts a variety of tumors, including rare benign and malignant types, which pose diagnostic and treatment challenges due to their infrequency and proximity to vital structures. Estimating tumor volume is difficult due to their irregular shapes, and manual segmentation is time-consuming. Automatic segmentation using U-Net and its variants, incorporating Vision Transformer (ViT) elements, has shown promising results but struggles with high computational demands. To address this, architectures like the Mamba State Space Model (SSM) and Extended Long-Short Term Memory (xLSTM) offer efficient solutions by handling long-range dependencies with lower resource consumption. This study evaluates U-Net enhancements, including CNN, ViT, Mamba, and xLSTM, on a new in-house CT dataset and a public organ segmentation dataset. The proposed ViLU-Net model integrates Vi-blocks for improved segmentation. Results highlight xLSTM's efficiency in the U-Net framework. The code is publicly accessible on GitHub. 8 authors · Jan 31 3
- LadleNet: Translating Thermal Infrared Images to Visible Light Images Using A Scalable Two-stage U-Net The translation of thermal infrared (TIR) images to visible light (VI) images presents a challenging task with potential applications spanning various domains such as TIR-VI image registration and fusion. Leveraging supplementary information derived from TIR image conversions can significantly enhance model performance and generalization across these applications. However, prevailing issues within this field include suboptimal image fidelity and limited model scalability. In this paper, we introduce an algorithm, LadleNet, based on the U-Net architecture. LadleNet employs a two-stage U-Net concatenation structure, augmented with skip connections and refined feature aggregation techniques, resulting in a substantial enhancement in model performance. Comprising 'Handle' and 'Bowl' modules, LadleNet's Handle module facilitates the construction of an abstract semantic space, while the Bowl module decodes this semantic space to yield mapped VI images. The Handle module exhibits extensibility by allowing the substitution of its network architecture with semantic segmentation networks, thereby establishing more abstract semantic spaces to bolster model performance. Consequently, we propose LadleNet+, which replaces LadleNet's Handle module with the pre-trained DeepLabv3+ network, thereby endowing the model with enhanced semantic space construction capabilities. The proposed method is evaluated and tested on the KAIST dataset, accompanied by quantitative and qualitative analyses. Compared to existing methodologies, our approach achieves state-of-the-art performance in terms of image clarity and perceptual quality. The source code will be made available at https://github.com/Ach-1914/LadleNet/tree/main/. 1 authors · Aug 12, 2023
- Training Bayesian Neural Networks with Sparse Subspace Variational Inference Bayesian neural networks (BNNs) offer uncertainty quantification but come with the downside of substantially increased training and inference costs. Sparse BNNs have been investigated for efficient inference, typically by either slowly introducing sparsity throughout the training or by post-training compression of dense BNNs. The dilemma of how to cut down massive training costs remains, particularly given the requirement to learn about the uncertainty. To solve this challenge, we introduce Sparse Subspace Variational Inference (SSVI), the first fully sparse BNN framework that maintains a consistently highly sparse Bayesian model throughout the training and inference phases. Starting from a randomly initialized low-dimensional sparse subspace, our approach alternately optimizes the sparse subspace basis selection and its associated parameters. While basis selection is characterized as a non-differentiable problem, we approximate the optimal solution with a removal-and-addition strategy, guided by novel criteria based on weight distribution statistics. Our extensive experiments show that SSVI sets new benchmarks in crafting sparse BNNs, achieving, for instance, a 10-20x compression in model size with under 3\% performance drop, and up to 20x FLOPs reduction during training compared with dense VI training. Remarkably, SSVI also demonstrates enhanced robustness to hyperparameters, reducing the need for intricate tuning in VI and occasionally even surpassing VI-trained dense BNNs on both accuracy and uncertainty metrics. 4 authors · Feb 16, 2024
- VINet: Visual and Inertial-based Terrain Classification and Adaptive Navigation over Unknown Terrain We present a visual and inertial-based terrain classification network (VINet) for robotic navigation over different traversable surfaces. We use a novel navigation-based labeling scheme for terrain classification and generalization on unknown surfaces. Our proposed perception method and adaptive scheduling control framework can make predictions according to terrain navigation properties and lead to better performance on both terrain classification and navigation control on known and unknown surfaces. Our VINet can achieve 98.37% in terms of accuracy under supervised setting on known terrains and improve the accuracy by 8.51% on unknown terrains compared to previous methods. We deploy VINet on a mobile tracked robot for trajectory following and navigation on different terrains, and we demonstrate an improvement of 10.3% compared to a baseline controller in terms of RMSE. 4 authors · Sep 16, 2022
- Scaling silicon-based quantum computing using CMOS technology: State-of-the-art, Challenges and Perspectives Complementary metal-oxide semiconductor (CMOS) technology has radically reshaped the world by taking humanity to the digital age. Cramming more transistors into the same physical space has enabled an exponential increase in computational performance, a strategy that has been recently hampered by the increasing complexity and cost of miniaturization. To continue achieving significant gains in computing performance, new computing paradigms, such as quantum computing, must be developed. However, finding the optimal physical system to process quantum information, and scale it up to the large number of qubits necessary to build a general-purpose quantum computer, remains a significant challenge. Recent breakthroughs in nanodevice engineering have shown that qubits can now be manufactured in a similar fashion to silicon field-effect transistors, opening an opportunity to leverage the know-how of the CMOS industry to address the scaling challenge. In this article, we focus on the analysis of the scaling prospects of quantum computing systems based on CMOS technology. 6 authors · Nov 23, 2020
- Minimalistic Video Saliency Prediction via Efficient Decoder & Spatio Temporal Action Cues This paper introduces ViNet-S, a 36MB model based on the ViNet architecture with a U-Net design, featuring a lightweight decoder that significantly reduces model size and parameters without compromising performance. Additionally, ViNet-A (148MB) incorporates spatio-temporal action localization (STAL) features, differing from traditional video saliency models that use action classification backbones. Our studies show that an ensemble of ViNet-S and ViNet-A, by averaging predicted saliency maps, achieves state-of-the-art performance on three visual-only and six audio-visual saliency datasets, outperforming transformer-based models in both parameter efficiency and real-time performance, with ViNet-S reaching over 1000fps. 5 authors · Feb 1