Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeOmni6D: Large-Vocabulary 3D Object Dataset for Category-Level 6D Object Pose Estimation
6D object pose estimation aims at determining an object's translation, rotation, and scale, typically from a single RGBD image. Recent advancements have expanded this estimation from instance-level to category-level, allowing models to generalize across unseen instances within the same category. However, this generalization is limited by the narrow range of categories covered by existing datasets, such as NOCS, which also tend to overlook common real-world challenges like occlusion. To tackle these challenges, we introduce Omni6D, a comprehensive RGBD dataset featuring a wide range of categories and varied backgrounds, elevating the task to a more realistic context. 1) The dataset comprises an extensive spectrum of 166 categories, 4688 instances adjusted to the canonical pose, and over 0.8 million captures, significantly broadening the scope for evaluation. 2) We introduce a symmetry-aware metric and conduct systematic benchmarks of existing algorithms on Omni6D, offering a thorough exploration of new challenges and insights. 3) Additionally, we propose an effective fine-tuning approach that adapts models from previous datasets to our extensive vocabulary setting. We believe this initiative will pave the way for new insights and substantial progress in both the industrial and academic fields, pushing forward the boundaries of general 6D pose estimation.
SOCS: Semantically-aware Object Coordinate Space for Category-Level 6D Object Pose Estimation under Large Shape Variations
Most learning-based approaches to category-level 6D pose estimation are design around normalized object coordinate space (NOCS). While being successful, NOCS-based methods become inaccurate and less robust when handling objects of a category containing significant intra-category shape variations. This is because the object coordinates induced by global and rigid alignment of objects are semantically incoherent, making the coordinate regression hard to learn and generalize. We propose Semantically-aware Object Coordinate Space (SOCS) built by warping-and-aligning the objects guided by a sparse set of keypoints with semantically meaningful correspondence. SOCS is semantically coherent: Any point on the surface of a object can be mapped to a semantically meaningful location in SOCS, allowing for accurate pose and size estimation under large shape variations. To learn effective coordinate regression to SOCS, we propose a novel multi-scale coordinate-based attention network. Evaluations demonstrate that our method is easy to train, well-generalizing for large intra-category shape variations and robust to inter-object occlusions.
Omni6DPose: A Benchmark and Model for Universal 6D Object Pose Estimation and Tracking
6D Object Pose Estimation is a crucial yet challenging task in computer vision, suffering from a significant lack of large-scale datasets. This scarcity impedes comprehensive evaluation of model performance, limiting research advancements. Furthermore, the restricted number of available instances or categories curtails its applications. To address these issues, this paper introduces Omni6DPose, a substantial dataset characterized by its diversity in object categories, large scale, and variety in object materials. Omni6DPose is divided into three main components: ROPE (Real 6D Object Pose Estimation Dataset), which includes 332K images annotated with over 1.5M annotations across 581 instances in 149 categories; SOPE(Simulated 6D Object Pose Estimation Dataset), consisting of 475K images created in a mixed reality setting with depth simulation, annotated with over 5M annotations across 4162 instances in the same 149 categories; and the manually aligned real scanned objects used in both ROPE and SOPE. Omni6DPose is inherently challenging due to the substantial variations and ambiguities. To address this challenge, we introduce GenPose++, an enhanced version of the SOTA category-level pose estimation framework, incorporating two pivotal improvements: Semantic-aware feature extraction and Clustering-based aggregation. Moreover, we provide a comprehensive benchmarking analysis to evaluate the performance of previous methods on this large-scale dataset in the realms of 6D object pose estimation and pose tracking.
Category-Agnostic 6D Pose Estimation with Conditional Neural Processes
We present a novel meta-learning approach for 6D pose estimation on unknown objects. In contrast to ``instance-level" and ``category-level" pose estimation methods, our algorithm learns object representation in a category-agnostic way, which endows it with strong generalization capabilities across object categories. Specifically, we employ a neural process-based meta-learning approach to train an encoder to capture texture and geometry of an object in a latent representation, based on very few RGB-D images and ground-truth keypoints. The latent representation is then used by a simultaneously meta-trained decoder to predict the 6D pose of the object in new images. Furthermore, we propose a novel geometry-aware decoder for the keypoint prediction using a Graph Neural Network (GNN), which explicitly takes geometric constraints specific to each object into consideration. To evaluate our algorithm, extensive experiments are conducted on the \linemod dataset, and on our new fully-annotated synthetic datasets generated from Multiple Categories in Multiple Scenes (MCMS). Experimental results demonstrate that our model performs well on unseen objects with very different shapes and appearances. Remarkably, our model also shows robust performance on occluded scenes although trained fully on data without occlusion. To our knowledge, this is the first work exploring cross-category level 6D pose estimation.
OP-Align: Object-level and Part-level Alignment for Self-supervised Category-level Articulated Object Pose Estimation
Category-level articulated object pose estimation focuses on the pose estimation of unknown articulated objects within known categories. Despite its significance, this task remains challenging due to the varying shapes and poses of objects, expensive dataset annotation costs, and complex real-world environments. In this paper, we propose a novel self-supervised approach that leverages a single-frame point cloud to solve this task. Our model consistently generates reconstruction with a canonical pose and joint state for the entire input object, and it estimates object-level poses that reduce overall pose variance and part-level poses that align each part of the input with its corresponding part of the reconstruction. Experimental results demonstrate that our approach significantly outperforms previous self-supervised methods and is comparable to the state-of-the-art supervised methods. To assess the performance of our model in real-world scenarios, we also introduce a new real-world articulated object benchmark dataset.
Pseudo Flow Consistency for Self-Supervised 6D Object Pose Estimation
Most self-supervised 6D object pose estimation methods can only work with additional depth information or rely on the accurate annotation of 2D segmentation masks, limiting their application range. In this paper, we propose a 6D object pose estimation method that can be trained with pure RGB images without any auxiliary information. We first obtain a rough pose initialization from networks trained on synthetic images rendered from the target's 3D mesh. Then, we introduce a refinement strategy leveraging the geometry constraint in synthetic-to-real image pairs from multiple different views. We formulate this geometry constraint as pixel-level flow consistency between the training images with dynamically generated pseudo labels. We evaluate our method on three challenging datasets and demonstrate that it outperforms state-of-the-art self-supervised methods significantly, with neither 2D annotations nor additional depth images.
CenterSnap: Single-Shot Multi-Object 3D Shape Reconstruction and Categorical 6D Pose and Size Estimation
This paper studies the complex task of simultaneous multi-object 3D reconstruction, 6D pose and size estimation from a single-view RGB-D observation. In contrast to instance-level pose estimation, we focus on a more challenging problem where CAD models are not available at inference time. Existing approaches mainly follow a complex multi-stage pipeline which first localizes and detects each object instance in the image and then regresses to either their 3D meshes or 6D poses. These approaches suffer from high-computational cost and low performance in complex multi-object scenarios, where occlusions can be present. Hence, we present a simple one-stage approach to predict both the 3D shape and estimate the 6D pose and size jointly in a bounding-box free manner. In particular, our method treats object instances as spatial centers where each center denotes the complete shape of an object along with its 6D pose and size. Through this per-pixel representation, our approach can reconstruct in real-time (40 FPS) multiple novel object instances and predict their 6D pose and sizes in a single-forward pass. Through extensive experiments, we demonstrate that our approach significantly outperforms all shape completion and categorical 6D pose and size estimation baselines on multi-object ShapeNet and NOCS datasets respectively with a 12.6% absolute improvement in mAP for 6D pose for novel real-world object instances.
CapeX: Category-Agnostic Pose Estimation from Textual Point Explanation
Conventional 2D pose estimation models are constrained by their design to specific object categories. This limits their applicability to predefined objects. To overcome these limitations, category-agnostic pose estimation (CAPE) emerged as a solution. CAPE aims to facilitate keypoint localization for diverse object categories using a unified model, which can generalize from minimal annotated support images. Recent CAPE works have produced object poses based on arbitrary keypoint definitions annotated on a user-provided support image. Our work departs from conventional CAPE methods, which require a support image, by adopting a text-based approach instead of the support image. Specifically, we use a pose-graph, where nodes represent keypoints that are described with text. This representation takes advantage of the abstraction of text descriptions and the structure imposed by the graph. Our approach effectively breaks symmetry, preserves structure, and improves occlusion handling. We validate our novel approach using the MP-100 benchmark, a comprehensive dataset spanning over 100 categories and 18,000 images. Under a 1-shot setting, our solution achieves a notable performance boost of 1.07\%, establishing a new state-of-the-art for CAPE. Additionally, we enrich the dataset by providing text description annotations, further enhancing its utility for future research.
POPE: 6-DoF Promptable Pose Estimation of Any Object, in Any Scene, with One Reference
Despite the significant progress in six degrees-of-freedom (6DoF) object pose estimation, existing methods have limited applicability in real-world scenarios involving embodied agents and downstream 3D vision tasks. These limitations mainly come from the necessity of 3D models, closed-category detection, and a large number of densely annotated support views. To mitigate this issue, we propose a general paradigm for object pose estimation, called Promptable Object Pose Estimation (POPE). The proposed approach POPE enables zero-shot 6DoF object pose estimation for any target object in any scene, while only a single reference is adopted as the support view. To achieve this, POPE leverages the power of the pre-trained large-scale 2D foundation model, employs a framework with hierarchical feature representation and 3D geometry principles. Moreover, it estimates the relative camera pose between object prompts and the target object in new views, enabling both two-view and multi-view 6DoF pose estimation tasks. Comprehensive experimental results demonstrate that POPE exhibits unrivaled robust performance in zero-shot settings, by achieving a significant reduction in the averaged Median Pose Error by 52.38% and 50.47% on the LINEMOD and OnePose datasets, respectively. We also conduct more challenging testings in causally captured images (see Figure 1), which further demonstrates the robustness of POPE. Project page can be found with https://paulpanwang.github.io/POPE/.
Pose Anything: A Graph-Based Approach for Category-Agnostic Pose Estimation
Traditional 2D pose estimation models are limited by their category-specific design, making them suitable only for predefined object categories. This restriction becomes particularly challenging when dealing with novel objects due to the lack of relevant training data. To address this limitation, category-agnostic pose estimation (CAPE) was introduced. CAPE aims to enable keypoint localization for arbitrary object categories using a single model, requiring minimal support images with annotated keypoints. This approach not only enables object pose generation based on arbitrary keypoint definitions but also significantly reduces the associated costs, paving the way for versatile and adaptable pose estimation applications. We present a novel approach to CAPE that leverages the inherent geometrical relations between keypoints through a newly designed Graph Transformer Decoder. By capturing and incorporating this crucial structural information, our method enhances the accuracy of keypoint localization, marking a significant departure from conventional CAPE techniques that treat keypoints as isolated entities. We validate our approach on the MP-100 benchmark, a comprehensive dataset comprising over 20,000 images spanning more than 100 categories. Our method outperforms the prior state-of-the-art by substantial margins, achieving remarkable improvements of 2.16% and 1.82% under 1-shot and 5-shot settings, respectively. Furthermore, our method's end-to-end training demonstrates both scalability and efficiency compared to previous CAPE approaches.
Improving 6D Object Pose Estimation of metallic Household and Industry Objects
6D object pose estimation suffers from reduced accuracy when applied to metallic objects. We set out to improve the state-of-the-art by addressing challenges such as reflections and specular highlights in industrial applications. Our novel BOP-compatible dataset, featuring a diverse set of metallic objects (cans, household, and industrial items) under various lighting and background conditions, provides additional geometric and visual cues. We demonstrate that these cues can be effectively leveraged to enhance overall performance. To illustrate the usefulness of the additional features, we improve upon the GDRNPP algorithm by introducing an additional keypoint prediction and material estimator head in order to improve spatial scene understanding. Evaluations on the new dataset show improved accuracy for metallic objects, supporting the hypothesis that additional geometric and visual cues can improve learning.
MFOS: Model-Free & One-Shot Object Pose Estimation
Existing learning-based methods for object pose estimation in RGB images are mostly model-specific or category based. They lack the capability to generalize to new object categories at test time, hence severely hindering their practicability and scalability. Notably, recent attempts have been made to solve this issue, but they still require accurate 3D data of the object surface at both train and test time. In this paper, we introduce a novel approach that can estimate in a single forward pass the pose of objects never seen during training, given minimum input. In contrast to existing state-of-the-art approaches, which rely on task-specific modules, our proposed model is entirely based on a transformer architecture, which can benefit from recently proposed 3D-geometry general pretraining. We conduct extensive experiments and report state-of-the-art one-shot performance on the challenging LINEMOD benchmark. Finally, extensive ablations allow us to determine good practices with this relatively new type of architecture in the field.
Extending 6D Object Pose Estimators for Stereo Vision
Estimating the 6D pose of objects accurately, quickly, and robustly remains a difficult task. However, recent methods for directly regressing poses from RGB images using dense features have achieved state-of-the-art results. Stereo vision, which provides an additional perspective on the object, can help reduce pose ambiguity and occlusion. Moreover, stereo can directly infer the distance of an object, while mono-vision requires internalized knowledge of the object's size. To extend the state-of-the-art in 6D object pose estimation to stereo, we created a BOP compatible stereo version of the YCB-V dataset. Our method outperforms state-of-the-art 6D pose estimation algorithms by utilizing stereo vision and can easily be adopted for other dense feature-based algorithms.
FreeZe: Training-free zero-shot 6D pose estimation with geometric and vision foundation models
Estimating the 6D pose of objects unseen during training is highly desirable yet challenging. Zero-shot object 6D pose estimation methods address this challenge by leveraging additional task-specific supervision provided by large-scale, photo-realistic synthetic datasets. However, their performance heavily depends on the quality and diversity of rendered data and they require extensive training. In this work, we show how to tackle the same task but without training on specific data. We propose FreeZe, a novel solution that harnesses the capabilities of pre-trained geometric and vision foundation models. FreeZe leverages 3D geometric descriptors learned from unrelated 3D point clouds and 2D visual features learned from web-scale 2D images to generate discriminative 3D point-level descriptors. We then estimate the 6D pose of unseen objects by 3D registration based on RANSAC. We also introduce a novel algorithm to solve ambiguous cases due to geometrically symmetric objects that is based on visual features. We comprehensively evaluate FreeZe across the seven core datasets of the BOP Benchmark, which include over a hundred 3D objects and 20,000 images captured in various scenarios. FreeZe consistently outperforms all state-of-the-art approaches, including competitors extensively trained on synthetic 6D pose estimation data. Code will be publicly available at https://andreacaraffa.github.io/freeze.
SA6D: Self-Adaptive Few-Shot 6D Pose Estimator for Novel and Occluded Objects
To enable meaningful robotic manipulation of objects in the real-world, 6D pose estimation is one of the critical aspects. Most existing approaches have difficulties to extend predictions to scenarios where novel object instances are continuously introduced, especially with heavy occlusions. In this work, we propose a few-shot pose estimation (FSPE) approach called SA6D, which uses a self-adaptive segmentation module to identify the novel target object and construct a point cloud model of the target object using only a small number of cluttered reference images. Unlike existing methods, SA6D does not require object-centric reference images or any additional object information, making it a more generalizable and scalable solution across categories. We evaluate SA6D on real-world tabletop object datasets and demonstrate that SA6D outperforms existing FSPE methods, particularly in cluttered scenes with occlusions, while requiring fewer reference images.
BOP Challenge 2022 on Detection, Segmentation and Pose Estimation of Specific Rigid Objects
We present the evaluation methodology, datasets and results of the BOP Challenge 2022, the fourth in a series of public competitions organized with the goal to capture the status quo in the field of 6D object pose estimation from an RGB/RGB-D image. In 2022, we witnessed another significant improvement in the pose estimation accuracy -- the state of the art, which was 56.9 AR_C in 2019 (Vidal et al.) and 69.8 AR_C in 2020 (CosyPose), moved to new heights of 83.7 AR_C (GDRNPP). Out of 49 pose estimation methods evaluated since 2019, the top 18 are from 2022. Methods based on point pair features, which were introduced in 2010 and achieved competitive results even in 2020, are now clearly outperformed by deep learning methods. The synthetic-to-real domain gap was again significantly reduced, with 82.7 AR_C achieved by GDRNPP trained only on synthetic images from BlenderProc. The fastest variant of GDRNPP reached 80.5 AR_C with an average time per image of 0.23s. Since most of the recent methods for 6D object pose estimation begin by detecting/segmenting objects, we also started evaluating 2D object detection and segmentation performance based on the COCO metrics. Compared to the Mask R-CNN results from CosyPose in 2020, detection improved from 60.3 to 77.3 AP_C and segmentation from 40.5 to 58.7 AP_C. The online evaluation system stays open and is available at: http://bop.felk.cvut.cz/{bop.felk.cvut.cz}.
Category-level Neural Field for Reconstruction of Partially Observed Objects in Indoor Environment
Neural implicit representation has attracted attention in 3D reconstruction through various success cases. For further applications such as scene understanding or editing, several works have shown progress towards object compositional reconstruction. Despite their superior performance in observed regions, their performance is still limited in reconstructing objects that are partially observed. To better treat this problem, we introduce category-level neural fields that learn meaningful common 3D information among objects belonging to the same category present in the scene. Our key idea is to subcategorize objects based on their observed shape for better training of the category-level model. Then we take advantage of the neural field to conduct the challenging task of registering partially observed objects by selecting and aligning against representative objects selected by ray-based uncertainty. Experiments on both simulation and real-world datasets demonstrate that our method improves the reconstruction of unobserved parts for several categories.
Deep Learning-Based Object Pose Estimation: A Comprehensive Survey
Object pose estimation is a fundamental computer vision problem with broad applications in augmented reality and robotics. Over the past decade, deep learning models, due to their superior accuracy and robustness, have increasingly supplanted conventional algorithms reliant on engineered point pair features. Nevertheless, several challenges persist in contemporary methods, including their dependency on labeled training data, model compactness, robustness under challenging conditions, and their ability to generalize to novel unseen objects. A recent survey discussing the progress made on different aspects of this area, outstanding challenges, and promising future directions, is missing. To fill this gap, we discuss the recent advances in deep learning-based object pose estimation, covering all three formulations of the problem, i.e., instance-level, category-level, and unseen object pose estimation. Our survey also covers multiple input data modalities, degrees-of-freedom of output poses, object properties, and downstream tasks, providing the readers with a holistic understanding of this field. Additionally, it discusses training paradigms of different domains, inference modes, application areas, evaluation metrics, and benchmark datasets, as well as reports the performance of current state-of-the-art methods on these benchmarks, thereby facilitating the readers in selecting the most suitable method for their application. Finally, the survey identifies key challenges, reviews the prevailing trends along with their pros and cons, and identifies promising directions for future research. We also keep tracing the latest works at https://github.com/CNJianLiu/Awesome-Object-Pose-Estimation.
PoseCNN: A Convolutional Neural Network for 6D Object Pose Estimation in Cluttered Scenes
Estimating the 6D pose of known objects is important for robots to interact with the real world. The problem is challenging due to the variety of objects as well as the complexity of a scene caused by clutter and occlusions between objects. In this work, we introduce PoseCNN, a new Convolutional Neural Network for 6D object pose estimation. PoseCNN estimates the 3D translation of an object by localizing its center in the image and predicting its distance from the camera. The 3D rotation of the object is estimated by regressing to a quaternion representation. We also introduce a novel loss function that enables PoseCNN to handle symmetric objects. In addition, we contribute a large scale video dataset for 6D object pose estimation named the YCB-Video dataset. Our dataset provides accurate 6D poses of 21 objects from the YCB dataset observed in 92 videos with 133,827 frames. We conduct extensive experiments on our YCB-Video dataset and the OccludedLINEMOD dataset to show that PoseCNN is highly robust to occlusions, can handle symmetric objects, and provide accurate pose estimation using only color images as input. When using depth data to further refine the poses, our approach achieves state-of-the-art results on the challenging OccludedLINEMOD dataset. Our code and dataset are available at https://rse-lab.cs.washington.edu/projects/posecnn/.
Novel Object 6D Pose Estimation with a Single Reference View
Existing novel object 6D pose estimation methods typically rely on CAD models or dense reference views, which are both difficult to acquire. Using only a single reference view is more scalable, but challenging due to large pose discrepancies and limited geometric and spatial information. To address these issues, we propose a Single-Reference-based novel object 6D (SinRef-6D) pose estimation method. Our key idea is to iteratively establish point-wise alignment in the camera coordinate system based on state space models (SSMs). Specifically, iterative camera-space point-wise alignment can effectively handle large pose discrepancies, while our proposed RGB and Points SSMs can capture long-range dependencies and spatial information from a single view, offering linear complexity and superior spatial modeling capability. Once pre-trained on synthetic data, SinRef-6D can estimate the 6D pose of a novel object using only a single reference view, without requiring retraining or a CAD model. Extensive experiments on six popular datasets and real-world robotic scenes demonstrate that we achieve on-par performance with CAD-based and dense reference view-based methods, despite operating in the more challenging single reference setting. Code will be released at https://github.com/CNJianLiu/SinRef-6D.
DenseFusion: 6D Object Pose Estimation by Iterative Dense Fusion
A key technical challenge in performing 6D object pose estimation from RGB-D image is to fully leverage the two complementary data sources. Prior works either extract information from the RGB image and depth separately or use costly post-processing steps, limiting their performances in highly cluttered scenes and real-time applications. In this work, we present DenseFusion, a generic framework for estimating 6D pose of a set of known objects from RGB-D images. DenseFusion is a heterogeneous architecture that processes the two data sources individually and uses a novel dense fusion network to extract pixel-wise dense feature embedding, from which the pose is estimated. Furthermore, we integrate an end-to-end iterative pose refinement procedure that further improves the pose estimation while achieving near real-time inference. Our experiments show that our method outperforms state-of-the-art approaches in two datasets, YCB-Video and LineMOD. We also deploy our proposed method to a real robot to grasp and manipulate objects based on the estimated pose.
Linear-Covariance Loss for End-to-End Learning of 6D Pose Estimation
Most modern image-based 6D object pose estimation methods learn to predict 2D-3D correspondences, from which the pose can be obtained using a PnP solver. Because of the non-differentiable nature of common PnP solvers, these methods are supervised via the individual correspondences. To address this, several methods have designed differentiable PnP strategies, thus imposing supervision on the pose obtained after the PnP step. Here, we argue that this conflicts with the averaging nature of the PnP problem, leading to gradients that may encourage the network to degrade the accuracy of individual correspondences. To address this, we derive a loss function that exploits the ground truth pose before solving the PnP problem. Specifically, we linearize the PnP solver around the ground-truth pose and compute the covariance of the resulting pose distribution. We then define our loss based on the diagonal covariance elements, which entails considering the final pose estimate yet not suffering from the PnP averaging issue. Our experiments show that our loss consistently improves the pose estimation accuracy for both dense and sparse correspondence based methods, achieving state-of-the-art results on both Linemod-Occluded and YCB-Video.
Deep Fusion Transformer Network with Weighted Vector-Wise Keypoints Voting for Robust 6D Object Pose Estimation
One critical challenge in 6D object pose estimation from a single RGBD image is efficient integration of two different modalities, i.e., color and depth. In this work, we tackle this problem by a novel Deep Fusion Transformer~(DFTr) block that can aggregate cross-modality features for improving pose estimation. Unlike existing fusion methods, the proposed DFTr can better model cross-modality semantic correlation by leveraging their semantic similarity, such that globally enhanced features from different modalities can be better integrated for improved information extraction. Moreover, to further improve robustness and efficiency, we introduce a novel weighted vector-wise voting algorithm that employs a non-iterative global optimization strategy for precise 3D keypoint localization while achieving near real-time inference. Extensive experiments show the effectiveness and strong generalization capability of our proposed 3D keypoint voting algorithm. Results on four widely used benchmarks also demonstrate that our method outperforms the state-of-the-art methods by large margins.
TTA-COPE: Test-Time Adaptation for Category-Level Object Pose Estimation
Test-time adaptation methods have been gaining attention recently as a practical solution for addressing source-to-target domain gaps by gradually updating the model without requiring labels on the target data. In this paper, we propose a method of test-time adaptation for category-level object pose estimation called TTA-COPE. We design a pose ensemble approach with a self-training loss using pose-aware confidence. Unlike previous unsupervised domain adaptation methods for category-level object pose estimation, our approach processes the test data in a sequential, online manner, and it does not require access to the source domain at runtime. Extensive experimental results demonstrate that the proposed pose ensemble and the self-training loss improve category-level object pose performance during test time under both semi-supervised and unsupervised settings. Project page: https://taeyeop.com/ttacope
Symmetry and Uncertainty-Aware Object SLAM for 6DoF Object Pose Estimation
We propose a keypoint-based object-level SLAM framework that can provide globally consistent 6DoF pose estimates for symmetric and asymmetric objects alike. To the best of our knowledge, our system is among the first to utilize the camera pose information from SLAM to provide prior knowledge for tracking keypoints on symmetric objects -- ensuring that new measurements are consistent with the current 3D scene. Moreover, our semantic keypoint network is trained to predict the Gaussian covariance for the keypoints that captures the true error of the prediction, and thus is not only useful as a weight for the residuals in the system's optimization problems, but also as a means to detect harmful statistical outliers without choosing a manual threshold. Experiments show that our method provides competitive performance to the state of the art in 6DoF object pose estimation, and at a real-time speed. Our code, pre-trained models, and keypoint labels are available https://github.com/rpng/suo_slam.
NOPE: Novel Object Pose Estimation from a Single Image
The practicality of 3D object pose estimation remains limited for many applications due to the need for prior knowledge of a 3D model and a training period for new objects. To address this limitation, we propose an approach that takes a single image of a new object as input and predicts the relative pose of this object in new images without prior knowledge of the object's 3D model and without requiring training time for new objects and categories. We achieve this by training a model to directly predict discriminative embeddings for viewpoints surrounding the object. This prediction is done using a simple U-Net architecture with attention and conditioned on the desired pose, which yields extremely fast inference. We compare our approach to state-of-the-art methods and show it outperforms them both in terms of accuracy and robustness. Our source code is publicly available at https://github.com/nv-nguyen/nope
Source-Free and Image-Only Unsupervised Domain Adaptation for Category Level Object Pose Estimation
We consider the problem of source-free unsupervised category-level pose estimation from only RGB images to a target domain without any access to source domain data or 3D annotations during adaptation. Collecting and annotating real-world 3D data and corresponding images is laborious, expensive, yet unavoidable process, since even 3D pose domain adaptation methods require 3D data in the target domain. We introduce 3DUDA, a method capable of adapting to a nuisance-ridden target domain without 3D or depth data. Our key insight stems from the observation that specific object subparts remain stable across out-of-domain (OOD) scenarios, enabling strategic utilization of these invariant subcomponents for effective model updates. We represent object categories as simple cuboid meshes, and harness a generative model of neural feature activations modeled at each mesh vertex learnt using differential rendering. We focus on individual locally robust mesh vertex features and iteratively update them based on their proximity to corresponding features in the target domain even when the global pose is not correct. Our model is then trained in an EM fashion, alternating between updating the vertex features and the feature extractor. We show that our method simulates fine-tuning on a global pseudo-labeled dataset under mild assumptions, which converges to the target domain asymptotically. Through extensive empirical validation, including a complex extreme UDA setup which combines real nuisances, synthetic noise, and occlusion, we demonstrate the potency of our simple approach in addressing the domain shift challenge and significantly improving pose estimation accuracy.
BOP Challenge 2023 on Detection, Segmentation and Pose Estimation of Seen and Unseen Rigid Objects
We present the evaluation methodology, datasets and results of the BOP Challenge 2023, the fifth in a series of public competitions organized to capture the state of the art in model-based 6D object pose estimation from an RGB/RGB-D image and related tasks. Besides the three tasks from 2022 (model-based 2D detection, 2D segmentation, and 6D localization of objects seen during training), the 2023 challenge introduced new variants of these tasks focused on objects unseen during training. In the new tasks, methods were required to learn new objects during a short onboarding stage (max 5 minutes, 1 GPU) from provided 3D object models. The best 2023 method for 6D localization of unseen objects (GenFlow) notably reached the accuracy of the best 2020 method for seen objects (CosyPose), although being noticeably slower. The best 2023 method for seen objects (GPose) achieved a moderate accuracy improvement but a significant 43% run-time improvement compared to the best 2022 counterpart (GDRNPP). Since 2017, the accuracy of 6D localization of seen objects has improved by more than 50% (from 56.9 to 85.6 AR_C). The online evaluation system stays open and is available at: http://bop.felk.cvut.cz/.
Edge Weight Prediction For Category-Agnostic Pose Estimation
Category-Agnostic Pose Estimation (CAPE) localizes keypoints across diverse object categories with a single model, using one or a few annotated support images. Recent works have shown that using a pose graph (i.e., treating keypoints as nodes in a graph rather than isolated points) helps handle occlusions and break symmetry. However, these methods assume a static pose graph with equal-weight edges, leading to suboptimal results. We introduce EdgeCape, a novel framework that overcomes these limitations by predicting the graph's edge weights which optimizes localization. To further leverage structural priors, we propose integrating Markovian Structural Bias, which modulates the self-attention interaction between nodes based on the number of hops between them. We show that this improves the model's ability to capture global spatial dependencies. Evaluated on the MP-100 benchmark, which includes 100 categories and over 20K images, EdgeCape achieves state-of-the-art results in the 1-shot setting and leads among similar-sized methods in the 5-shot setting, significantly improving keypoint localization accuracy. Our code is publicly available.
FoundPose: Unseen Object Pose Estimation with Foundation Features
We propose FoundPose, a model-based method for 6D pose estimation of unseen objects from a single RGB image. The method can quickly onboard new objects using their 3D models without requiring any object- or task-specific training. In contrast, existing methods typically pre-train on large-scale, task-specific datasets in order to generalize to new objects and to bridge the image-to-model domain gap. We demonstrate that such generalization capabilities can be observed in a recent vision foundation model trained in a self-supervised manner. Specifically, our method estimates the object pose from image-to-model 2D-3D correspondences, which are established by matching patch descriptors from the recent DINOv2 model between the image and pre-rendered object templates. We find that reliable correspondences can be established by kNN matching of patch descriptors from an intermediate DINOv2 layer. Such descriptors carry stronger positional information than descriptors from the last layer, and we show their importance when semantic information is ambiguous due to object symmetries or a lack of texture. To avoid establishing correspondences against all object templates, we develop an efficient template retrieval approach that integrates the patch descriptors into the bag-of-words representation and can promptly propose a handful of similarly looking templates. Additionally, we apply featuremetric alignment to compensate for discrepancies in the 2D-3D correspondences caused by coarse patch sampling. The resulting method noticeably outperforms existing RGB methods for refinement-free pose estimation on the standard BOP benchmark with seven diverse datasets and can be seamlessly combined with an existing render-and-compare refinement method to achieve RGB-only state-of-the-art results. Project page: evinpinar.github.io/foundpose.
3D Registration for Self-Occluded Objects in Context
While much progress has been made on the task of 3D point cloud registration, there still exists no learning-based method able to estimate the 6D pose of an object observed by a 2.5D sensor in a scene. The challenges of this scenario include the fact that most measurements are outliers depicting the object's surrounding context, and the mismatch between the complete 3D object model and its self-occluded observations. We introduce the first deep learning framework capable of effectively handling this scenario. Our method consists of an instance segmentation module followed by a pose estimation one. It allows us to perform 3D registration in a one-shot manner, without requiring an expensive iterative procedure. We further develop an on-the-fly rendering-based training strategy that is both time- and memory-efficient. Our experiments evidence the superiority of our approach over the state-of-the-art traditional and learning-based 3D registration methods.
Modular Quantization-Aware Training: Increasing Accuracy by Decreasing Precision in 6D Object Pose Estimation
Edge applications, such as collaborative robotics and spacecraft rendezvous, demand efficient 6D object pose estimation on resource-constrained embedded platforms. Existing 6D pose estimation networks are often too large for such deployments, necessitating compression while maintaining reliable performance. To address this challenge, we introduce Modular Quantization-Aware Training (MQAT), an adaptive and mixed-precision quantization-aware training strategy that exploits the modular structure of modern 6D pose estimation architectures. MQAT guides a systematic gradated modular quantization sequence and determines module-specific bit precisions, leading to quantized models that outperform those produced by state-of-the-art uniform and mixed-precision quantization techniques. Our experiments showcase the generality of MQAT across datasets, architectures, and quantization algorithms. Remarkably, MQAT-trained quantized models achieve a significant accuracy boost (>7%) over the baseline full-precision network while reducing model size by a factor of 4x or more.
3D Bounding Box Estimation Using Deep Learning and Geometry
We present a method for 3D object detection and pose estimation from a single image. In contrast to current techniques that only regress the 3D orientation of an object, our method first regresses relatively stable 3D object properties using a deep convolutional neural network and then combines these estimates with geometric constraints provided by a 2D object bounding box to produce a complete 3D bounding box. The first network output estimates the 3D object orientation using a novel hybrid discrete-continuous loss, which significantly outperforms the L2 loss. The second output regresses the 3D object dimensions, which have relatively little variance compared to alternatives and can often be predicted for many object types. These estimates, combined with the geometric constraints on translation imposed by the 2D bounding box, enable us to recover a stable and accurate 3D object pose. We evaluate our method on the challenging KITTI object detection benchmark both on the official metric of 3D orientation estimation and also on the accuracy of the obtained 3D bounding boxes. Although conceptually simple, our method outperforms more complex and computationally expensive approaches that leverage semantic segmentation, instance level segmentation and flat ground priors and sub-category detection. Our discrete-continuous loss also produces state of the art results for 3D viewpoint estimation on the Pascal 3D+ dataset.
HANDAL: A Dataset of Real-World Manipulable Object Categories with Pose Annotations, Affordances, and Reconstructions
We present the HANDAL dataset for category-level object pose estimation and affordance prediction. Unlike previous datasets, ours is focused on robotics-ready manipulable objects that are of the proper size and shape for functional grasping by robot manipulators, such as pliers, utensils, and screwdrivers. Our annotation process is streamlined, requiring only a single off-the-shelf camera and semi-automated processing, allowing us to produce high-quality 3D annotations without crowd-sourcing. The dataset consists of 308k annotated image frames from 2.2k videos of 212 real-world objects in 17 categories. We focus on hardware and kitchen tool objects to facilitate research in practical scenarios in which a robot manipulator needs to interact with the environment beyond simple pushing or indiscriminate grasping. We outline the usefulness of our dataset for 6-DoF category-level pose+scale estimation and related tasks. We also provide 3D reconstructed meshes of all objects, and we outline some of the bottlenecks to be addressed for democratizing the collection of datasets like this one.
img2pose: Face Alignment and Detection via 6DoF, Face Pose Estimation
We propose real-time, six degrees of freedom (6DoF), 3D face pose estimation without face detection or landmark localization. We observe that estimating the 6DoF rigid transformation of a face is a simpler problem than facial landmark detection, often used for 3D face alignment. In addition, 6DoF offers more information than face bounding box labels. We leverage these observations to make multiple contributions: (a) We describe an easily trained, efficient, Faster R-CNN--based model which regresses 6DoF pose for all faces in the photo, without preliminary face detection. (b) We explain how pose is converted and kept consistent between the input photo and arbitrary crops created while training and evaluating our model. (c) Finally, we show how face poses can replace detection bounding box training labels. Tests on AFLW2000-3D and BIWI show that our method runs at real-time and outperforms state of the art (SotA) face pose estimators. Remarkably, our method also surpasses SotA models of comparable complexity on the WIDER FACE detection benchmark, despite not been optimized on bounding box labels.
Multi-view Self-supervised Deep Learning for 6D Pose Estimation in the Amazon Picking Challenge
Robot warehouse automation has attracted significant interest in recent years, perhaps most visibly in the Amazon Picking Challenge (APC). A fully autonomous warehouse pick-and-place system requires robust vision that reliably recognizes and locates objects amid cluttered environments, self-occlusions, sensor noise, and a large variety of objects. In this paper we present an approach that leverages multi-view RGB-D data and self-supervised, data-driven learning to overcome those difficulties. The approach was part of the MIT-Princeton Team system that took 3rd- and 4th- place in the stowing and picking tasks, respectively at APC 2016. In the proposed approach, we segment and label multiple views of a scene with a fully convolutional neural network, and then fit pre-scanned 3D object models to the resulting segmentation to get the 6D object pose. Training a deep neural network for segmentation typically requires a large amount of training data. We propose a self-supervised method to generate a large labeled dataset without tedious manual segmentation. We demonstrate that our system can reliably estimate the 6D pose of objects under a variety of scenarios. All code, data, and benchmarks are available at http://apc.cs.princeton.edu/
3D-Aware Hypothesis & Verification for Generalizable Relative Object Pose Estimation
Prior methods that tackle the problem of generalizable object pose estimation highly rely on having dense views of the unseen object. By contrast, we address the scenario where only a single reference view of the object is available. Our goal then is to estimate the relative object pose between this reference view and a query image that depicts the object in a different pose. In this scenario, robust generalization is imperative due to the presence of unseen objects during testing and the large-scale object pose variation between the reference and the query. To this end, we present a new hypothesis-and-verification framework, in which we generate and evaluate multiple pose hypotheses, ultimately selecting the most reliable one as the relative object pose. To measure reliability, we introduce a 3D-aware verification that explicitly applies 3D transformations to the 3D object representations learned from the two input images. Our comprehensive experiments on the Objaverse, LINEMOD, and CO3D datasets evidence the superior accuracy of our approach in relative pose estimation and its robustness in large-scale pose variations, when dealing with unseen objects.
Diff9D: Diffusion-Based Domain-Generalized Category-Level 9-DoF Object Pose Estimation
Nine-degrees-of-freedom (9-DoF) object pose and size estimation is crucial for enabling augmented reality and robotic manipulation. Category-level methods have received extensive research attention due to their potential for generalization to intra-class unknown objects. However, these methods require manual collection and labeling of large-scale real-world training data. To address this problem, we introduce a diffusion-based paradigm for domain-generalized category-level 9-DoF object pose estimation. Our motivation is to leverage the latent generalization ability of the diffusion model to address the domain generalization challenge in object pose estimation. This entails training the model exclusively on rendered synthetic data to achieve generalization to real-world scenes. We propose an effective diffusion model to redefine 9-DoF object pose estimation from a generative perspective. Our model does not require any 3D shape priors during training or inference. By employing the Denoising Diffusion Implicit Model, we demonstrate that the reverse diffusion process can be executed in as few as 3 steps, achieving near real-time performance. Finally, we design a robotic grasping system comprising both hardware and software components. Through comprehensive experiments on two benchmark datasets and the real-world robotic system, we show that our method achieves state-of-the-art domain generalization performance. Our code will be made public at https://github.com/CNJianLiu/Diff9D.
FoundationPose: Unified 6D Pose Estimation and Tracking of Novel Objects
We present FoundationPose, a unified foundation model for 6D object pose estimation and tracking, supporting both model-based and model-free setups. Our approach can be instantly applied at test-time to a novel object without fine-tuning, as long as its CAD model is given, or a small number of reference images are captured. We bridge the gap between these two setups with a neural implicit representation that allows for effective novel view synthesis, keeping the downstream pose estimation modules invariant under the same unified framework. Strong generalizability is achieved via large-scale synthetic training, aided by a large language model (LLM), a novel transformer-based architecture, and contrastive learning formulation. Extensive evaluation on multiple public datasets involving challenging scenarios and objects indicate our unified approach outperforms existing methods specialized for each task by a large margin. In addition, it even achieves comparable results to instance-level methods despite the reduced assumptions. Project page: https://nvlabs.github.io/FoundationPose/
6DOPE-GS: Online 6D Object Pose Estimation using Gaussian Splatting
Efficient and accurate object pose estimation is an essential component for modern vision systems in many applications such as Augmented Reality, autonomous driving, and robotics. While research in model-based 6D object pose estimation has delivered promising results, model-free methods are hindered by the high computational load in rendering and inferring consistent poses of arbitrary objects in a live RGB-D video stream. To address this issue, we present 6DOPE-GS, a novel method for online 6D object pose estimation \& tracking with a single RGB-D camera by effectively leveraging advances in Gaussian Splatting. Thanks to the fast differentiable rendering capabilities of Gaussian Splatting, 6DOPE-GS can simultaneously optimize for 6D object poses and 3D object reconstruction. To achieve the necessary efficiency and accuracy for live tracking, our method uses incremental 2D Gaussian Splatting with an intelligent dynamic keyframe selection procedure to achieve high spatial object coverage and prevent erroneous pose updates. We also propose an opacity statistic-based pruning mechanism for adaptive Gaussian density control, to ensure training stability and efficiency. We evaluate our method on the HO3D and YCBInEOAT datasets and show that 6DOPE-GS matches the performance of state-of-the-art baselines for model-free simultaneous 6D pose tracking and reconstruction while providing a 5times speedup. We also demonstrate the method's suitability for live, dynamic object tracking and reconstruction in a real-world setting.
SUP-NeRF: A Streamlined Unification of Pose Estimation and NeRF for Monocular 3D Object Reconstruction
Monocular 3D reconstruction for categorical objects heavily relies on accurately perceiving each object's pose. While gradient-based optimization in a NeRF framework updates the initial pose, this paper highlights that scale-depth ambiguity in monocular object reconstruction causes failures when the initial pose deviates moderately from the true pose. Consequently, existing methods often depend on a third-party 3D object to provide an initial object pose, leading to increased complexity and generalization issues. To address these challenges, we present SUP-NeRF, a Streamlined Unification of object Pose estimation and NeRF-based object reconstruction. SUP-NeRF decouples the object's dimension estimation and pose refinement to resolve the scale-depth ambiguity, and introduces a camera-invariant projected-box representation that generalizes cross different domains. While using a dedicated pose estimator that smoothly integrates into an object-centric NeRF, SUP-NeRF is free from external 3D detectors. SUP-NeRF achieves state-of-the-art results in both reconstruction and pose estimation tasks on the nuScenes dataset. Furthermore, SUP-NeRF exhibits exceptional cross-dataset generalization on the KITTI and Waymo datasets, surpassing prior methods with up to 50\% reduction in rotation and translation error.
Industrial Application of 6D Pose Estimation for Robotic Manipulation in Automotive Internal Logistics
Despite the advances in robotics a large proportion of the of parts handling tasks in the automotive industry's internal logistics are not automated but still performed by humans. A key component to competitively automate these processes is a 6D pose estimation that can handle a large number of different parts, is adaptable to new parts with little manual effort, and is sufficiently accurate and robust with respect to industry requirements. In this context, the question arises as to the current status quo with respect to these measures. To address this we built a representative 6D pose estimation pipeline with state-of-the-art components from economically scalable real to synthetic data generation to pose estimators and evaluated it on automotive parts with regards to a realistic sequencing process. We found that using the data generation approaches, the performance of the trained 6D pose estimators are promising, but do not meet industry requirements. We reveal that the reason for this is the inability of the estimators to provide reliable uncertainties for their poses, rather than the ability of to provide sufficiently accurate poses. In this context we further analyzed how RGB- and RGB-D-based approaches compare against this background and show that they are differently vulnerable to the domain gap induced by synthetic data.
Towards Category Unification of 3D Single Object Tracking on Point Clouds
Category-specific models are provenly valuable methods in 3D single object tracking (SOT) regardless of Siamese or motion-centric paradigms. However, such over-specialized model designs incur redundant parameters, thus limiting the broader applicability of 3D SOT task. This paper first introduces unified models that can simultaneously track objects across all categories using a single network with shared model parameters. Specifically, we propose to explicitly encode distinct attributes associated to different object categories, enabling the model to adapt to cross-category data. We find that the attribute variances of point cloud objects primarily occur from the varying size and shape (e.g., large and square vehicles v.s. small and slender humans). Based on this observation, we design a novel point set representation learning network inheriting transformer architecture, termed AdaFormer, which adaptively encodes the dynamically varying shape and size information from cross-category data in a unified manner. We further incorporate the size and shape prior derived from the known template targets into the model's inputs and learning objective, facilitating the learning of unified representation. Equipped with such designs, we construct two category-unified models SiamCUT and MoCUT.Extensive experiments demonstrate that SiamCUT and MoCUT exhibit strong generalization and training stability. Furthermore, our category-unified models outperform the category-specific counterparts by a significant margin (e.g., on KITTI dataset, 12% and 3% performance gains on the Siamese and motion paradigms). Our code will be available.
Object Pose Estimation with Statistical Guarantees: Conformal Keypoint Detection and Geometric Uncertainty Propagation
The two-stage object pose estimation paradigm first detects semantic keypoints on the image and then estimates the 6D pose by minimizing reprojection errors. Despite performing well on standard benchmarks, existing techniques offer no provable guarantees on the quality and uncertainty of the estimation. In this paper, we inject two fundamental changes, namely conformal keypoint detection and geometric uncertainty propagation, into the two-stage paradigm and propose the first pose estimator that endows an estimation with provable and computable worst-case error bounds. On one hand, conformal keypoint detection applies the statistical machinery of inductive conformal prediction to convert heuristic keypoint detections into circular or elliptical prediction sets that cover the groundtruth keypoints with a user-specified marginal probability (e.g., 90%). Geometric uncertainty propagation, on the other, propagates the geometric constraints on the keypoints to the 6D object pose, leading to a Pose UnceRtainty SEt (PURSE) that guarantees coverage of the groundtruth pose with the same probability. The PURSE, however, is a nonconvex set that does not directly lead to estimated poses and uncertainties. Therefore, we develop RANdom SAmple averaGing (RANSAG) to compute an average pose and apply semidefinite relaxation to upper bound the worst-case errors between the average pose and the groundtruth. On the LineMOD Occlusion dataset we demonstrate: (i) the PURSE covers the groundtruth with valid probabilities; (ii) the worst-case error bounds provide correct uncertainty quantification; and (iii) the average pose achieves better or similar accuracy as representative methods based on sparse keypoints.
ADen: Adaptive Density Representations for Sparse-view Camera Pose Estimation
Recovering camera poses from a set of images is a foundational task in 3D computer vision, which powers key applications such as 3D scene/object reconstructions. Classic methods often depend on feature correspondence, such as keypoints, which require the input images to have large overlap and small viewpoint changes. Such requirements present considerable challenges in scenarios with sparse views. Recent data-driven approaches aim to directly output camera poses, either through regressing the 6DoF camera poses or formulating rotation as a probability distribution. However, each approach has its limitations. On one hand, directly regressing the camera poses can be ill-posed, since it assumes a single mode, which is not true under symmetry and leads to sub-optimal solutions. On the other hand, probabilistic approaches are capable of modeling the symmetry ambiguity, yet they sample the entire space of rotation uniformly by brute-force. This leads to an inevitable trade-off between high sample density, which improves model precision, and sample efficiency that determines the runtime. In this paper, we propose ADen to unify the two frameworks by employing a generator and a discriminator: the generator is trained to output multiple hypotheses of 6DoF camera pose to represent a distribution and handle multi-mode ambiguity, and the discriminator is trained to identify the hypothesis that best explains the data. This allows ADen to combine the best of both worlds, achieving substantially higher precision as well as lower runtime than previous methods in empirical evaluations.
ImageNet3D: Towards General-Purpose Object-Level 3D Understanding
A vision model with general-purpose object-level 3D understanding should be capable of inferring both 2D (e.g., class name and bounding box) and 3D information (e.g., 3D location and 3D viewpoint) for arbitrary rigid objects in natural images. This is a challenging task, as it involves inferring 3D information from 2D signals and most importantly, generalizing to rigid objects from unseen categories. However, existing datasets with object-level 3D annotations are often limited by the number of categories or the quality of annotations. Models developed on these datasets become specialists for certain categories or domains, and fail to generalize. In this work, we present ImageNet3D, a large dataset for general-purpose object-level 3D understanding. ImageNet3D augments 200 categories from the ImageNet dataset with 2D bounding box, 3D pose, 3D location annotations, and image captions interleaved with 3D information. With the new annotations available in ImageNet3D, we could (i) analyze the object-level 3D awareness of visual foundation models, and (ii) study and develop general-purpose models that infer both 2D and 3D information for arbitrary rigid objects in natural images, and (iii) integrate unified 3D models with large language models for 3D-related reasoning.. We consider two new tasks, probing of object-level 3D awareness and open vocabulary pose estimation, besides standard classification and pose estimation. Experimental results on ImageNet3D demonstrate the potential of our dataset in building vision models with stronger general-purpose object-level 3D understanding.
InLoc: Indoor Visual Localization with Dense Matching and View Synthesis
We seek to predict the 6 degree-of-freedom (6DoF) pose of a query photograph with respect to a large indoor 3D map. The contributions of this work are three-fold. First, we develop a new large-scale visual localization method targeted for indoor environments. The method proceeds along three steps: (i) efficient retrieval of candidate poses that ensures scalability to large-scale environments, (ii) pose estimation using dense matching rather than local features to deal with textureless indoor scenes, and (iii) pose verification by virtual view synthesis to cope with significant changes in viewpoint, scene layout, and occluders. Second, we collect a new dataset with reference 6DoF poses for large-scale indoor localization. Query photographs are captured by mobile phones at a different time than the reference 3D map, thus presenting a realistic indoor localization scenario. Third, we demonstrate that our method significantly outperforms current state-of-the-art indoor localization approaches on this new challenging data.
ShAPO: Implicit Representations for Multi-Object Shape, Appearance, and Pose Optimization
Our method studies the complex task of object-centric 3D understanding from a single RGB-D observation. As it is an ill-posed problem, existing methods suffer from low performance for both 3D shape and 6D pose and size estimation in complex multi-object scenarios with occlusions. We present ShAPO, a method for joint multi-object detection, 3D textured reconstruction, 6D object pose and size estimation. Key to ShAPO is a single-shot pipeline to regress shape, appearance and pose latent codes along with the masks of each object instance, which is then further refined in a sparse-to-dense fashion. A novel disentangled shape and appearance database of priors is first learned to embed objects in their respective shape and appearance space. We also propose a novel, octree-based differentiable optimization step, allowing us to further improve object shape, pose and appearance simultaneously under the learned latent space, in an analysis-by-synthesis fashion. Our novel joint implicit textured object representation allows us to accurately identify and reconstruct novel unseen objects without having access to their 3D meshes. Through extensive experiments, we show that our method, trained on simulated indoor scenes, accurately regresses the shape, appearance and pose of novel objects in the real-world with minimal fine-tuning. Our method significantly out-performs all baselines on the NOCS dataset with an 8% absolute improvement in mAP for 6D pose estimation. Project page: https://zubair-irshad.github.io/projects/ShAPO.html
iComMa: Inverting 3D Gaussian Splatting for Camera Pose Estimation via Comparing and Matching
We present a method named iComMa to address the 6D camera pose estimation problem in computer vision. Conventional pose estimation methods typically rely on the target's CAD model or necessitate specific network training tailored to particular object classes. Some existing methods have achieved promising results in mesh-free object and scene pose estimation by inverting the Neural Radiance Fields (NeRF). However, they still struggle with adverse initializations such as large rotations and translations. To address this issue, we propose an efficient method for accurate camera pose estimation by inverting 3D Gaussian Splatting (3DGS). Specifically, a gradient-based differentiable framework optimizes camera pose by minimizing the residual between the query image and the rendered image, requiring no training. An end-to-end matching module is designed to enhance the model's robustness against adverse initializations, while minimizing pixel-level comparing loss aids in precise pose estimation. Experimental results on synthetic and complex real-world data demonstrate the effectiveness of the proposed approach in challenging conditions and the accuracy of camera pose estimation.
Learning Implicit Representation for Reconstructing Articulated Objects
3D Reconstruction of moving articulated objects without additional information about object structure is a challenging problem. Current methods overcome such challenges by employing category-specific skeletal models. Consequently, they do not generalize well to articulated objects in the wild. We treat an articulated object as an unknown, semi-rigid skeletal structure surrounded by nonrigid material (e.g., skin). Our method simultaneously estimates the visible (explicit) representation (3D shapes, colors, camera parameters) and the implicit skeletal representation, from motion cues in the object video without 3D supervision. Our implicit representation consists of four parts. (1) Skeleton, which specifies how semi-rigid parts are connected. (2) black{Skinning Weights}, which associates each surface vertex with semi-rigid parts with probability. (3) Rigidity Coefficients, specifying the articulation of the local surface. (4) Time-Varying Transformations, which specify the skeletal motion and surface deformation parameters. We introduce an algorithm that uses physical constraints as regularization terms and iteratively estimates both implicit and explicit representations. Our method is category-agnostic, thus eliminating the need for category-specific skeletons, we show that our method outperforms state-of-the-art across standard video datasets.
GS2Pose: Two-stage 6D Object Pose Estimation Guided by Gaussian Splatting
This paper proposes a new method for accurate and robust 6D pose estimation of novel objects, named GS2Pose. By introducing 3D Gaussian splatting, GS2Pose can utilize the reconstruction results without requiring a high-quality CAD model, which means it only requires segmented RGBD images as input. Specifically, GS2Pose employs a two-stage structure consisting of coarse estimation followed by refined estimation. In the coarse stage, a lightweight U-Net network with a polarization attention mechanism, called Pose-Net, is designed. By using the 3DGS model for supervised training, Pose-Net can generate NOCS images to compute a coarse pose. In the refinement stage, GS2Pose formulates a pose regression algorithm following the idea of reprojection or Bundle Adjustment (BA), referred to as GS-Refiner. By leveraging Lie algebra to extend 3DGS, GS-Refiner obtains a pose-differentiable rendering pipeline that refines the coarse pose by comparing the input images with the rendered images. GS-Refiner also selectively updates parameters in the 3DGS model to achieve environmental adaptation, thereby enhancing the algorithm's robustness and flexibility to illuminative variation, occlusion, and other challenging disruptive factors. GS2Pose was evaluated through experiments conducted on the LineMod dataset, where it was compared with similar algorithms, yielding highly competitive results. The code for GS2Pose will soon be released on GitHub.
Lowis3D: Language-Driven Open-World Instance-Level 3D Scene Understanding
Open-world instance-level scene understanding aims to locate and recognize unseen object categories that are not present in the annotated dataset. This task is challenging because the model needs to both localize novel 3D objects and infer their semantic categories. A key factor for the recent progress in 2D open-world perception is the availability of large-scale image-text pairs from the Internet, which cover a wide range of vocabulary concepts. However, this success is hard to replicate in 3D scenarios due to the scarcity of 3D-text pairs. To address this challenge, we propose to harness pre-trained vision-language (VL) foundation models that encode extensive knowledge from image-text pairs to generate captions for multi-view images of 3D scenes. This allows us to establish explicit associations between 3D shapes and semantic-rich captions. Moreover, to enhance the fine-grained visual-semantic representation learning from captions for object-level categorization, we design hierarchical point-caption association methods to learn semantic-aware embeddings that exploit the 3D geometry between 3D points and multi-view images. In addition, to tackle the localization challenge for novel classes in the open-world setting, we develop debiased instance localization, which involves training object grouping modules on unlabeled data using instance-level pseudo supervision. This significantly improves the generalization capabilities of instance grouping and thus the ability to accurately locate novel objects. We conduct extensive experiments on 3D semantic, instance, and panoptic segmentation tasks, covering indoor and outdoor scenes across three datasets. Our method outperforms baseline methods by a significant margin in semantic segmentation (e.g. 34.5%sim65.3%), instance segmentation (e.g. 21.8%sim54.0%) and panoptic segmentation (e.g. 14.7%sim43.3%). Code will be available.
PoseNet: A Convolutional Network for Real-Time 6-DOF Camera Relocalization
We present a robust and real-time monocular six degree of freedom relocalization system. Our system trains a convolutional neural network to regress the 6-DOF camera pose from a single RGB image in an end-to-end manner with no need of additional engineering or graph optimisation. The algorithm can operate indoors and outdoors in real time, taking 5ms per frame to compute. It obtains approximately 2m and 6 degree accuracy for large scale outdoor scenes and 0.5m and 10 degree accuracy indoors. This is achieved using an efficient 23 layer deep convnet, demonstrating that convnets can be used to solve complicated out of image plane regression problems. This was made possible by leveraging transfer learning from large scale classification data. We show the convnet localizes from high level features and is robust to difficult lighting, motion blur and different camera intrinsics where point based SIFT registration fails. Furthermore we show how the pose feature that is produced generalizes to other scenes allowing us to regress pose with only a few dozen training examples. PoseNet code, dataset and an online demonstration is available on our project webpage, at http://mi.eng.cam.ac.uk/projects/relocalisation/
BOP Challenge 2020 on 6D Object Localization
This paper presents the evaluation methodology, datasets, and results of the BOP Challenge 2020, the third in a series of public competitions organized with the goal to capture the status quo in the field of 6D object pose estimation from an RGB-D image. In 2020, to reduce the domain gap between synthetic training and real test RGB images, the participants were provided 350K photorealistic training images generated by BlenderProc4BOP, a new open-source and light-weight physically-based renderer (PBR) and procedural data generator. Methods based on deep neural networks have finally caught up with methods based on point pair features, which were dominating previous editions of the challenge. Although the top-performing methods rely on RGB-D image channels, strong results were achieved when only RGB channels were used at both training and test time - out of the 26 evaluated methods, the third method was trained on RGB channels of PBR and real images, while the fifth on RGB channels of PBR images only. Strong data augmentation was identified as a key component of the top-performing CosyPose method, and the photorealism of PBR images was demonstrated effective despite the augmentation. The online evaluation system stays open and is available on the project website: bop.felk.cvut.cz.
Self-supervised learning of object pose estimation using keypoint prediction
This paper describes recent developments in object specific pose and shape prediction from single images. The main contribution is a new approach to camera pose prediction by self-supervised learning of keypoints corresponding to locations on a category specific deformable shape. We designed a network to generate a proxy ground-truth heatmap from a set of keypoints distributed all over the category-specific mean shape, where each is represented by a unique color on a labeled texture. The proxy ground-truth heatmap is used to train a deep keypoint prediction network, which can be used in online inference. The proposed approach to camera pose prediction show significant improvements when compared with state-of-the-art methods. Our approach to camera pose prediction is used to infer 3D objects from 2D image frames of video sequences online. To train the reconstruction model, it receives only a silhouette mask from a single frame of a video sequence in every training step and a category-specific mean object shape. We conducted experiments using three different datasets representing the bird category: the CUB [51] image dataset, YouTubeVos and the Davis video datasets. The network is trained on the CUB dataset and tested on all three datasets. The online experiments are demonstrated on YouTubeVos and Davis [56] video sequences using a network trained on the CUB training set.
ASDF: Assembly State Detection Utilizing Late Fusion by Integrating 6D Pose Estimation
In medical and industrial domains, providing guidance for assembly processes can be critical to ensure efficiency and safety. Errors in assembly can lead to significant consequences such as extended surgery times and prolonged manufacturing or maintenance times in industry. Assembly scenarios can benefit from in-situ augmented reality visualization, i.e., augmentations in close proximity to the target object, to provide guidance, reduce assembly times, and minimize errors. In order to enable in-situ visualization, 6D pose estimation can be leveraged to identify the correct location for an augmentation. Existing 6D pose estimation techniques primarily focus on individual objects and static captures. However, assembly scenarios have various dynamics, including occlusion during assembly and dynamics in the appearance of assembly objects. Existing work focus either on object detection combined with state detection, or focus purely on the pose estimation. To address the challenges of 6D pose estimation in combination with assembly state detection, our approach ASDF builds upon the strengths of YOLOv8, a real-time capable object detection framework. We extend this framework, refine the object pose, and fuse pose knowledge with network-detected pose information. Utilizing our late fusion in our Pose2State module results in refined 6D pose estimation and assembly state detection. By combining both pose and state information, our Pose2State module predicts the final assembly state with precision. The evaluation of our ASDF dataset shows that our Pose2State module leads to an improved assembly state detection and that the improvement of the assembly state further leads to a more robust 6D pose estimation. Moreover, on the GBOT dataset, we outperform the pure deep learning-based network and even outperform the hybrid and pure tracking-based approaches.
CheckerPose: Progressive Dense Keypoint Localization for Object Pose Estimation with Graph Neural Network
Estimating the 6-DoF pose of a rigid object from a single RGB image is a crucial yet challenging task. Recent studies have shown the great potential of dense correspondence-based solutions, yet improvements are still needed to reach practical deployment. In this paper, we propose a novel pose estimation algorithm named CheckerPose, which improves on three main aspects. Firstly, CheckerPose densely samples 3D keypoints from the surface of the 3D object and finds their 2D correspondences progressively in the 2D image. Compared to previous solutions that conduct dense sampling in the image space, our strategy enables the correspondence searching in a 2D grid (i.e., pixel coordinate). Secondly, for our 3D-to-2D correspondence, we design a compact binary code representation for 2D image locations. This representation not only allows for progressive correspondence refinement but also converts the correspondence regression to a more efficient classification problem. Thirdly, we adopt a graph neural network to explicitly model the interactions among the sampled 3D keypoints, further boosting the reliability and accuracy of the correspondences. Together, these novel components make CheckerPose a strong pose estimation algorithm. When evaluated on the popular Linemod, Linemod-O, and YCB-V object pose estimation benchmarks, CheckerPose clearly boosts the accuracy of correspondence-based methods and achieves state-of-the-art performances. Code is available at https://github.com/RuyiLian/CheckerPose.
Root Pose Decomposition Towards Generic Non-rigid 3D Reconstruction with Monocular Videos
This work focuses on the 3D reconstruction of non-rigid objects based on monocular RGB video sequences. Concretely, we aim at building high-fidelity models for generic object categories and casually captured scenes. To this end, we do not assume known root poses of objects, and do not utilize category-specific templates or dense pose priors. The key idea of our method, Root Pose Decomposition (RPD), is to maintain a per-frame root pose transformation, meanwhile building a dense field with local transformations to rectify the root pose. The optimization of local transformations is performed by point registration to the canonical space. We also adapt RPD to multi-object scenarios with object occlusions and individual differences. As a result, RPD allows non-rigid 3D reconstruction for complicated scenarios containing objects with large deformations, complex motion patterns, occlusions, and scale diversities of different individuals. Such a pipeline potentially scales to diverse sets of objects in the wild. We experimentally show that RPD surpasses state-of-the-art methods on the challenging DAVIS, OVIS, and AMA datasets.
Towards Real-World Aerial Vision Guidance with Categorical 6D Pose Tracker
Tracking the object 6-DoF pose is crucial for various downstream robot tasks and real-world applications. In this paper, we investigate the real-world robot task of aerial vision guidance for aerial robotics manipulation, utilizing category-level 6-DoF pose tracking. Aerial conditions inevitably introduce special challenges, such as rapid viewpoint changes in pitch and roll and inter-frame differences. To support these challenges in task, we firstly introduce a robust category-level 6-DoF pose tracker (Robust6DoF). This tracker leverages shape and temporal prior knowledge to explore optimal inter-frame keypoint pairs, generated under a priori structural adaptive supervision in a coarse-to-fine manner. Notably, our Robust6DoF employs a Spatial-Temporal Augmentation module to deal with the problems of the inter-frame differences and intra-class shape variations through both temporal dynamic filtering and shape-similarity filtering. We further present a Pose-Aware Discrete Servo strategy (PAD-Servo), serving as a decoupling approach to implement the final aerial vision guidance task. It contains two servo action policies to better accommodate the structural properties of aerial robotics manipulation. Exhaustive experiments on four well-known public benchmarks demonstrate the superiority of our Robust6DoF. Real-world tests directly verify that our Robust6DoF along with PAD-Servo can be readily used in real-world aerial robotic applications.
CLA-NeRF: Category-Level Articulated Neural Radiance Field
We propose CLA-NeRF -- a Category-Level Articulated Neural Radiance Field that can perform view synthesis, part segmentation, and articulated pose estimation. CLA-NeRF is trained at the object category level using no CAD models and no depth, but a set of RGB images with ground truth camera poses and part segments. During inference, it only takes a few RGB views (i.e., few-shot) of an unseen 3D object instance within the known category to infer the object part segmentation and the neural radiance field. Given an articulated pose as input, CLA-NeRF can perform articulation-aware volume rendering to generate the corresponding RGB image at any camera pose. Moreover, the articulated pose of an object can be estimated via inverse rendering. In our experiments, we evaluate the framework across five categories on both synthetic and real-world data. In all cases, our method shows realistic deformation results and accurate articulated pose estimation. We believe that both few-shot articulated object rendering and articulated pose estimation open doors for robots to perceive and interact with unseen articulated objects.
FAR: Flexible, Accurate and Robust 6DoF Relative Camera Pose Estimation
Estimating relative camera poses between images has been a central problem in computer vision. Methods that find correspondences and solve for the fundamental matrix offer high precision in most cases. Conversely, methods predicting pose directly using neural networks are more robust to limited overlap and can infer absolute translation scale, but at the expense of reduced precision. We show how to combine the best of both methods; our approach yields results that are both precise and robust, while also accurately inferring translation scales. At the heart of our model lies a Transformer that (1) learns to balance between solved and learned pose estimations, and (2) provides a prior to guide a solver. A comprehensive analysis supports our design choices and demonstrates that our method adapts flexibly to various feature extractors and correspondence estimators, showing state-of-the-art performance in 6DoF pose estimation on Matterport3D, InteriorNet, StreetLearn, and Map-free Relocalization.
Pose-Aware Self-Supervised Learning with Viewpoint Trajectory Regularization
Learning visual features from unlabeled images has proven successful for semantic categorization, often by mapping different views of the same object to the same feature to achieve recognition invariance. However, visual recognition involves not only identifying what an object is but also understanding how it is presented. For example, seeing a car from the side versus head-on is crucial for deciding whether to stay put or jump out of the way. While unsupervised feature learning for downstream viewpoint reasoning is important, it remains under-explored, partly due to the lack of a standardized evaluation method and benchmarks. We introduce a new dataset of adjacent image triplets obtained from a viewpoint trajectory, without any semantic or pose labels. We benchmark both semantic classification and pose estimation accuracies on the same visual feature. Additionally, we propose a viewpoint trajectory regularization loss for learning features from unlabeled image triplets. Our experiments demonstrate that this approach helps develop a visual representation that encodes object identity and organizes objects by their poses, retaining semantic classification accuracy while achieving emergent global pose awareness and better generalization to novel objects. Our dataset and code are available at http://pwang.pw/trajSSL/.
Tracking by 3D Model Estimation of Unknown Objects in Videos
Most model-free visual object tracking methods formulate the tracking task as object location estimation given by a 2D segmentation or a bounding box in each video frame. We argue that this representation is limited and instead propose to guide and improve 2D tracking with an explicit object representation, namely the textured 3D shape and 6DoF pose in each video frame. Our representation tackles a complex long-term dense correspondence problem between all 3D points on the object for all video frames, including frames where some points are invisible. To achieve that, the estimation is driven by re-rendering the input video frames as well as possible through differentiable rendering, which has not been used for tracking before. The proposed optimization minimizes a novel loss function to estimate the best 3D shape, texture, and 6DoF pose. We improve the state-of-the-art in 2D segmentation tracking on three different datasets with mostly rigid objects.
BundleSDF: Neural 6-DoF Tracking and 3D Reconstruction of Unknown Objects
We present a near real-time method for 6-DoF tracking of an unknown object from a monocular RGBD video sequence, while simultaneously performing neural 3D reconstruction of the object. Our method works for arbitrary rigid objects, even when visual texture is largely absent. The object is assumed to be segmented in the first frame only. No additional information is required, and no assumption is made about the interaction agent. Key to our method is a Neural Object Field that is learned concurrently with a pose graph optimization process in order to robustly accumulate information into a consistent 3D representation capturing both geometry and appearance. A dynamic pool of posed memory frames is automatically maintained to facilitate communication between these threads. Our approach handles challenging sequences with large pose changes, partial and full occlusion, untextured surfaces, and specular highlights. We show results on HO3D, YCBInEOAT, and BEHAVE datasets, demonstrating that our method significantly outperforms existing approaches. Project page: https://bundlesdf.github.io
CARTO: Category and Joint Agnostic Reconstruction of ARTiculated Objects
We present CARTO, a novel approach for reconstructing multiple articulated objects from a single stereo RGB observation. We use implicit object-centric representations and learn a single geometry and articulation decoder for multiple object categories. Despite training on multiple categories, our decoder achieves a comparable reconstruction accuracy to methods that train bespoke decoders separately for each category. Combined with our stereo image encoder we infer the 3D shape, 6D pose, size, joint type, and the joint state of multiple unknown objects in a single forward pass. Our method achieves a 20.4% absolute improvement in mAP 3D IOU50 for novel instances when compared to a two-stage pipeline. Inference time is fast and can run on a NVIDIA TITAN XP GPU at 1 HZ for eight or less objects present. While only trained on simulated data, CARTO transfers to real-world object instances. Code and evaluation data is available at: http://carto.cs.uni-freiburg.de
Category-level Object Detection, Pose Estimation and Reconstruction from Stereo Images
We study the 3D object understanding task for manipulating everyday objects with different material properties (diffuse, specular, transparent and mixed). Existing monocular and RGB-D methods suffer from scale ambiguity due to missing or imprecise depth measurements. We present CODERS, a one-stage approach for Category-level Object Detection, pose Estimation and Reconstruction from Stereo images. The base of our pipeline is an implicit stereo matching module that combines stereo image features with 3D position information. Concatenating this presented module and the following transform-decoder architecture leads to end-to-end learning of multiple tasks required by robot manipulation. Our approach significantly outperforms all competing methods in the public TOD dataset. Furthermore, trained on simulated data, CODERS generalize well to unseen category-level object instances in real-world robot manipulation experiments. Our dataset, code, and demos will be available on our project page.
Open Vocabulary Monocular 3D Object Detection
In this work, we pioneer the study of open-vocabulary monocular 3D object detection, a novel task that aims to detect and localize objects in 3D space from a single RGB image without limiting detection to a predefined set of categories. We formalize this problem, establish baseline methods, and introduce a class-agnostic approach that leverages open-vocabulary 2D detectors and lifts 2D bounding boxes into 3D space. Our approach decouples the recognition and localization of objects in 2D from the task of estimating 3D bounding boxes, enabling generalization across unseen categories. Additionally, we propose a target-aware evaluation protocol to address inconsistencies in existing datasets, improving the reliability of model performance assessment. Extensive experiments on the Omni3D dataset demonstrate the effectiveness of the proposed method in zero-shot 3D detection for novel object categories, validating its robust generalization capabilities. Our method and evaluation protocols contribute towards the development of open-vocabulary object detection models that can effectively operate in real-world, category-diverse environments.
YCB-Ev 1.1: Event-vision dataset for 6DoF object pose estimation
Our work introduces the YCB-Ev dataset, which contains synchronized RGB-D frames and event data that enables evaluating 6DoF object pose estimation algorithms using these modalities. This dataset provides ground truth 6DoF object poses for the same 21 YCB objects that were used in the YCB-Video (YCB-V) dataset, allowing for cross-dataset algorithm performance evaluation. The dataset consists of 21 synchronized event and RGB-D sequences, totalling 13,851 frames (7 minutes and 43 seconds of event data). Notably, 12 of these sequences feature the same object arrangement as the YCB-V subset used in the BOP challenge. Ground truth poses are generated by detecting objects in the RGB-D frames, interpolating the poses to align with the event timestamps, and then transferring them to the event coordinate frame using extrinsic calibration. Our dataset is the first to provide ground truth 6DoF pose data for event streams. Furthermore, we evaluate the generalization capabilities of two state-of-the-art algorithms, which were pre-trained for the BOP challenge, using our novel YCB-V sequences. The dataset is publicly available at https://github.com/paroj/ycbev.
Telling Left from Right: Identifying Geometry-Aware Semantic Correspondence
While pre-trained large-scale vision models have shown significant promise for semantic correspondence, their features often struggle to grasp the geometry and orientation of instances. This paper identifies the importance of being geometry-aware for semantic correspondence and reveals a limitation of the features of current foundation models under simple post-processing. We show that incorporating this information can markedly enhance semantic correspondence performance with simple but effective solutions in both zero-shot and supervised settings. We also construct a new challenging benchmark for semantic correspondence built from an existing animal pose estimation dataset, for both pre-training validating models. Our method achieves a [email protected] score of 65.4 (zero-shot) and 85.6 (supervised) on the challenging SPair-71k dataset, outperforming the state of the art by 5.5p and 11.0p absolute gains, respectively. Our code and datasets are publicly available at: https://telling-left-from-right.github.io/.
6D Rotation Representation For Unconstrained Head Pose Estimation
In this paper, we present a method for unconstrained end-to-end head pose estimation. We address the problem of ambiguous rotation labels by introducing the rotation matrix formalism for our ground truth data and propose a continuous 6D rotation matrix representation for efficient and robust direct regression. This way, our method can learn the full rotation appearance which is contrary to previous approaches that restrict the pose prediction to a narrow-angle for satisfactory results. In addition, we propose a geodesic distance-based loss to penalize our network with respect to the SO(3) manifold geometry. Experiments on the public AFLW2000 and BIWI datasets demonstrate that our proposed method significantly outperforms other state-of-the-art methods by up to 20\%. We open-source our training and testing code along with our pre-trained models: https://github.com/thohemp/6DRepNet.
Templates for 3D Object Pose Estimation Revisited: Generalization to New Objects and Robustness to Occlusions
We present a method that can recognize new objects and estimate their 3D pose in RGB images even under partial occlusions. Our method requires neither a training phase on these objects nor real images depicting them, only their CAD models. It relies on a small set of training objects to learn local object representations, which allow us to locally match the input image to a set of "templates", rendered images of the CAD models for the new objects. In contrast with the state-of-the-art methods, the new objects on which our method is applied can be very different from the training objects. As a result, we are the first to show generalization without retraining on the LINEMOD and Occlusion-LINEMOD datasets. Our analysis of the failure modes of previous template-based approaches further confirms the benefits of local features for template matching. We outperform the state-of-the-art template matching methods on the LINEMOD, Occlusion-LINEMOD and T-LESS datasets. Our source code and data are publicly available at https://github.com/nv-nguyen/template-pose
Object Gaussian for Monocular 6D Pose Estimation from Sparse Views
Monocular object pose estimation, as a pivotal task in computer vision and robotics, heavily depends on accurate 2D-3D correspondences, which often demand costly CAD models that may not be readily available. Object 3D reconstruction methods offer an alternative, among which recent advancements in 3D Gaussian Splatting (3DGS) afford a compelling potential. Yet its performance still suffers and tends to overfit with fewer input views. Embracing this challenge, we introduce SGPose, a novel framework for sparse view object pose estimation using Gaussian-based methods. Given as few as ten views, SGPose generates a geometric-aware representation by starting with a random cuboid initialization, eschewing reliance on Structure-from-Motion (SfM) pipeline-derived geometry as required by traditional 3DGS methods. SGPose removes the dependence on CAD models by regressing dense 2D-3D correspondences between images and the reconstructed model from sparse input and random initialization, while the geometric-consistent depth supervision and online synthetic view warping are key to the success. Experiments on typical benchmarks, especially on the Occlusion LM-O dataset, demonstrate that SGPose outperforms existing methods even under sparse view constraints, under-scoring its potential in real-world applications.
3D ShapeNets: A Deep Representation for Volumetric Shapes
3D shape is a crucial but heavily underutilized cue in today's computer vision systems, mostly due to the lack of a good generic shape representation. With the recent availability of inexpensive 2.5D depth sensors (e.g. Microsoft Kinect), it is becoming increasingly important to have a powerful 3D shape representation in the loop. Apart from category recognition, recovering full 3D shapes from view-based 2.5D depth maps is also a critical part of visual understanding. To this end, we propose to represent a geometric 3D shape as a probability distribution of binary variables on a 3D voxel grid, using a Convolutional Deep Belief Network. Our model, 3D ShapeNets, learns the distribution of complex 3D shapes across different object categories and arbitrary poses from raw CAD data, and discovers hierarchical compositional part representations automatically. It naturally supports joint object recognition and shape completion from 2.5D depth maps, and it enables active object recognition through view planning. To train our 3D deep learning model, we construct ModelNet -- a large-scale 3D CAD model dataset. Extensive experiments show that our 3D deep representation enables significant performance improvement over the-state-of-the-arts in a variety of tasks.
Diff-DOPE: Differentiable Deep Object Pose Estimation
We introduce Diff-DOPE, a 6-DoF pose refiner that takes as input an image, a 3D textured model of an object, and an initial pose of the object. The method uses differentiable rendering to update the object pose to minimize the visual error between the image and the projection of the model. We show that this simple, yet effective, idea is able to achieve state-of-the-art results on pose estimation datasets. Our approach is a departure from recent methods in which the pose refiner is a deep neural network trained on a large synthetic dataset to map inputs to refinement steps. Rather, our use of differentiable rendering allows us to avoid training altogether. Our approach performs multiple gradient descent optimizations in parallel with different random learning rates to avoid local minima from symmetric objects, similar appearances, or wrong step size. Various modalities can be used, e.g., RGB, depth, intensity edges, and object segmentation masks. We present experiments examining the effect of various choices, showing that the best results are found when the RGB image is accompanied by an object mask and depth image to guide the optimization process.
Weakly Supervised 3D Object Detection via Multi-Level Visual Guidance
Weakly supervised 3D object detection aims to learn a 3D detector with lower annotation cost, e.g., 2D labels. Unlike prior work which still relies on few accurate 3D annotations, we propose a framework to study how to leverage constraints between 2D and 3D domains without requiring any 3D labels. Specifically, we employ visual data from three perspectives to establish connections between 2D and 3D domains. First, we design a feature-level constraint to align LiDAR and image features based on object-aware regions. Second, the output-level constraint is developed to enforce the overlap between 2D and projected 3D box estimations. Finally, the training-level constraint is utilized by producing accurate and consistent 3D pseudo-labels that align with the visual data. We conduct extensive experiments on the KITTI dataset to validate the effectiveness of the proposed three constraints. Without using any 3D labels, our method achieves favorable performance against state-of-the-art approaches and is competitive with the method that uses 500-frame 3D annotations. Code will be made publicly available at https://github.com/kuanchihhuang/VG-W3D.
SimNP: Learning Self-Similarity Priors Between Neural Points
Existing neural field representations for 3D object reconstruction either (1) utilize object-level representations, but suffer from low-quality details due to conditioning on a global latent code, or (2) are able to perfectly reconstruct the observations, but fail to utilize object-level prior knowledge to infer unobserved regions. We present SimNP, a method to learn category-level self-similarities, which combines the advantages of both worlds by connecting neural point radiance fields with a category-level self-similarity representation. Our contribution is two-fold. (1) We design the first neural point representation on a category level by utilizing the concept of coherent point clouds. The resulting neural point radiance fields store a high level of detail for locally supported object regions. (2) We learn how information is shared between neural points in an unconstrained and unsupervised fashion, which allows to derive unobserved regions of an object during the reconstruction process from given observations. We show that SimNP is able to outperform previous methods in reconstructing symmetric unseen object regions, surpassing methods that build upon category-level or pixel-aligned radiance fields, while providing semantic correspondences between instances
ASIC: Aligning Sparse in-the-wild Image Collections
We present a method for joint alignment of sparse in-the-wild image collections of an object category. Most prior works assume either ground-truth keypoint annotations or a large dataset of images of a single object category. However, neither of the above assumptions hold true for the long-tail of the objects present in the world. We present a self-supervised technique that directly optimizes on a sparse collection of images of a particular object/object category to obtain consistent dense correspondences across the collection. We use pairwise nearest neighbors obtained from deep features of a pre-trained vision transformer (ViT) model as noisy and sparse keypoint matches and make them dense and accurate matches by optimizing a neural network that jointly maps the image collection into a learned canonical grid. Experiments on CUB and SPair-71k benchmarks demonstrate that our method can produce globally consistent and higher quality correspondences across the image collection when compared to existing self-supervised methods. Code and other material will be made available at https://kampta.github.io/asic.
LEAP: Liberate Sparse-view 3D Modeling from Camera Poses
Are camera poses necessary for multi-view 3D modeling? Existing approaches predominantly assume access to accurate camera poses. While this assumption might hold for dense views, accurately estimating camera poses for sparse views is often elusive. Our analysis reveals that noisy estimated poses lead to degraded performance for existing sparse-view 3D modeling methods. To address this issue, we present LEAP, a novel pose-free approach, therefore challenging the prevailing notion that camera poses are indispensable. LEAP discards pose-based operations and learns geometric knowledge from data. LEAP is equipped with a neural volume, which is shared across scenes and is parameterized to encode geometry and texture priors. For each incoming scene, we update the neural volume by aggregating 2D image features in a feature-similarity-driven manner. The updated neural volume is decoded into the radiance field, enabling novel view synthesis from any viewpoint. On both object-centric and scene-level datasets, we show that LEAP significantly outperforms prior methods when they employ predicted poses from state-of-the-art pose estimators. Notably, LEAP performs on par with prior approaches that use ground-truth poses while running 400times faster than PixelNeRF. We show LEAP generalizes to novel object categories and scenes, and learns knowledge closely resembles epipolar geometry. Project page: https://hwjiang1510.github.io/LEAP/
Ellipse R-CNN: Learning to Infer Elliptical Object from Clustering and Occlusion
Images of heavily occluded objects in cluttered scenes, such as fruit clusters in trees, are hard to segment. To further retrieve the 3D size and 6D pose of each individual object in such cases, bounding boxes are not reliable from multiple views since only a little portion of the object's geometry is captured. We introduce the first CNN-based ellipse detector, called Ellipse R-CNN, to represent and infer occluded objects as ellipses. We first propose a robust and compact ellipse regression based on the Mask R-CNN architecture for elliptical object detection. Our method can infer the parameters of multiple elliptical objects even they are occluded by other neighboring objects. For better occlusion handling, we exploit refined feature regions for the regression stage, and integrate the U-Net structure for learning different occlusion patterns to compute the final detection score. The correctness of ellipse regression is validated through experiments performed on synthetic data of clustered ellipses. We further quantitatively and qualitatively demonstrate that our approach outperforms the state-of-the-art model (i.e., Mask R-CNN followed by ellipse fitting) and its three variants on both synthetic and real datasets of occluded and clustered elliptical objects.
Reconstructing Animatable Categories from Videos
Building animatable 3D models is challenging due to the need for 3D scans, laborious registration, and manual rigging, which are difficult to scale to arbitrary categories. Recently, differentiable rendering provides a pathway to obtain high-quality 3D models from monocular videos, but these are limited to rigid categories or single instances. We present RAC that builds category 3D models from monocular videos while disentangling variations over instances and motion over time. Three key ideas are introduced to solve this problem: (1) specializing a skeleton to instances via optimization, (2) a method for latent space regularization that encourages shared structure across a category while maintaining instance details, and (3) using 3D background models to disentangle objects from the background. We show that 3D models of humans, cats, and dogs can be learned from 50-100 internet videos.
3D Neural Embedding Likelihood for Robust Probabilistic Inverse Graphics
The ability to perceive and understand 3D scenes is crucial for many applications in computer vision and robotics. Inverse graphics is an appealing approach to 3D scene understanding that aims to infer the 3D scene structure from 2D images. In this paper, we introduce probabilistic modeling to the inverse graphics framework to quantify uncertainty and achieve robustness in 6D pose estimation tasks. Specifically, we propose 3D Neural Embedding Likelihood (3DNEL) as a unified probabilistic model over RGB-D images, and develop efficient inference procedures on 3D scene descriptions. 3DNEL effectively combines learned neural embeddings from RGB with depth information to improve robustness in sim-to-real 6D object pose estimation from RGB-D images. Performance on the YCB-Video dataset is on par with state-of-the-art yet is much more robust in challenging regimes. In contrast to discriminative approaches, 3DNEL's probabilistic generative formulation jointly models multi-object scenes, quantifies uncertainty in a principled way, and handles object pose tracking under heavy occlusion. Finally, 3DNEL provides a principled framework for incorporating prior knowledge about the scene and objects, which allows natural extension to additional tasks like camera pose tracking from video.
DreamUp3D: Object-Centric Generative Models for Single-View 3D Scene Understanding and Real-to-Sim Transfer
3D scene understanding for robotic applications exhibits a unique set of requirements including real-time inference, object-centric latent representation learning, accurate 6D pose estimation and 3D reconstruction of objects. Current methods for scene understanding typically rely on a combination of trained models paired with either an explicit or learnt volumetric representation, all of which have their own drawbacks and limitations. We introduce DreamUp3D, a novel Object-Centric Generative Model (OCGM) designed explicitly to perform inference on a 3D scene informed only by a single RGB-D image. DreamUp3D is a self-supervised model, trained end-to-end, and is capable of segmenting objects, providing 3D object reconstructions, generating object-centric latent representations and accurate per-object 6D pose estimates. We compare DreamUp3D to baselines including NeRFs, pre-trained CLIP-features, ObSurf, and ObPose, in a range of tasks including 3D scene reconstruction, object matching and object pose estimation. Our experiments show that our model outperforms all baselines by a significant margin in real-world scenarios displaying its applicability for 3D scene understanding tasks while meeting the strict demands exhibited in robotics applications.
Distilled Feature Fields Enable Few-Shot Language-Guided Manipulation
Self-supervised and language-supervised image models contain rich knowledge of the world that is important for generalization. Many robotic tasks, however, require a detailed understanding of 3D geometry, which is often lacking in 2D image features. This work bridges this 2D-to-3D gap for robotic manipulation by leveraging distilled feature fields to combine accurate 3D geometry with rich semantics from 2D foundation models. We present a few-shot learning method for 6-DOF grasping and placing that harnesses these strong spatial and semantic priors to achieve in-the-wild generalization to unseen objects. Using features distilled from a vision-language model, CLIP, we present a way to designate novel objects for manipulation via free-text natural language, and demonstrate its ability to generalize to unseen expressions and novel categories of objects.
Learning Neural Volumetric Pose Features for Camera Localization
We introduce a novel neural volumetric pose feature, termed PoseMap, designed to enhance camera localization by encapsulating the information between images and the associated camera poses. Our framework leverages an Absolute Pose Regression (APR) architecture, together with an augmented NeRF module. This integration not only facilitates the generation of novel views to enrich the training dataset but also enables the learning of effective pose features. Additionally, we extend our architecture for self-supervised online alignment, allowing our method to be used and fine-tuned for unlabelled images within a unified framework. Experiments demonstrate that our method achieves 14.28% and 20.51% performance gain on average in indoor and outdoor benchmark scenes, outperforming existing APR methods with state-of-the-art accuracy.
Reloc3r: Large-Scale Training of Relative Camera Pose Regression for Generalizable, Fast, and Accurate Visual Localization
Visual localization aims to determine the camera pose of a query image relative to a database of posed images. In recent years, deep neural networks that directly regress camera poses have gained popularity due to their fast inference capabilities. However, existing methods struggle to either generalize well to new scenes or provide accurate camera pose estimates. To address these issues, we present Reloc3r, a simple yet effective visual localization framework. It consists of an elegantly designed relative pose regression network, and a minimalist motion averaging module for absolute pose estimation. Trained on approximately 8 million posed image pairs, Reloc3r achieves surprisingly good performance and generalization ability. We conduct extensive experiments on 6 public datasets, consistently demonstrating the effectiveness and efficiency of the proposed method. It provides high-quality camera pose estimates in real time and generalizes to novel scenes. Code, weights, and data at: https://github.com/ffrivera0/reloc3r.
SparsePose: Sparse-View Camera Pose Regression and Refinement
Camera pose estimation is a key step in standard 3D reconstruction pipelines that operate on a dense set of images of a single object or scene. However, methods for pose estimation often fail when only a few images are available because they rely on the ability to robustly identify and match visual features between image pairs. While these methods can work robustly with dense camera views, capturing a large set of images can be time-consuming or impractical. We propose SparsePose for recovering accurate camera poses given a sparse set of wide-baseline images (fewer than 10). The method learns to regress initial camera poses and then iteratively refine them after training on a large-scale dataset of objects (Co3D: Common Objects in 3D). SparsePose significantly outperforms conventional and learning-based baselines in recovering accurate camera rotations and translations. We also demonstrate our pipeline for high-fidelity 3D reconstruction using only 5-9 images of an object.
Free-Form Motion Control: A Synthetic Video Generation Dataset with Controllable Camera and Object Motions
Controlling the movements of dynamic objects and the camera within generated videos is a meaningful yet challenging task. Due to the lack of datasets with comprehensive motion annotations, existing algorithms can not simultaneously control the motions of both camera and objects, resulting in limited controllability over generated contents. To address this issue and facilitate the research in this field, we introduce a Synthetic Dataset for Free-Form Motion Control (SynFMC). The proposed SynFMC dataset includes diverse objects and environments and covers various motion patterns according to specific rules, simulating common and complex real-world scenarios. The complete 6D pose information facilitates models learning to disentangle the motion effects from objects and the camera in a video. To validate the effectiveness and generalization of SynFMC, we further propose a method, Free-Form Motion Control (FMC). FMC enables independent or simultaneous control of object and camera movements, producing high-fidelity videos. Moreover, it is compatible with various personalized text-to-image (T2I) models for different content styles. Extensive experiments demonstrate that the proposed FMC outperforms previous methods across multiple scenarios.
Can Generative Video Models Help Pose Estimation?
Pairwise pose estimation from images with little or no overlap is an open challenge in computer vision. Existing methods, even those trained on large-scale datasets, struggle in these scenarios due to the lack of identifiable correspondences or visual overlap. Inspired by the human ability to infer spatial relationships from diverse scenes, we propose a novel approach, InterPose, that leverages the rich priors encoded within pre-trained generative video models. We propose to use a video model to hallucinate intermediate frames between two input images, effectively creating a dense, visual transition, which significantly simplifies the problem of pose estimation. Since current video models can still produce implausible motion or inconsistent geometry, we introduce a self-consistency score that evaluates the consistency of pose predictions from sampled videos. We demonstrate that our approach generalizes among three state-of-the-art video models and show consistent improvements over the state-of-the-art DUSt3R on four diverse datasets encompassing indoor, outdoor, and object-centric scenes. Our findings suggest a promising avenue for improving pose estimation models by leveraging large generative models trained on vast amounts of video data, which is more readily available than 3D data. See our project page for results: https://inter-pose.github.io/.
Convolutional Pose Machines
Pose Machines provide a sequential prediction framework for learning rich implicit spatial models. In this work we show a systematic design for how convolutional networks can be incorporated into the pose machine framework for learning image features and image-dependent spatial models for the task of pose estimation. The contribution of this paper is to implicitly model long-range dependencies between variables in structured prediction tasks such as articulated pose estimation. We achieve this by designing a sequential architecture composed of convolutional networks that directly operate on belief maps from previous stages, producing increasingly refined estimates for part locations, without the need for explicit graphical model-style inference. Our approach addresses the characteristic difficulty of vanishing gradients during training by providing a natural learning objective function that enforces intermediate supervision, thereby replenishing back-propagated gradients and conditioning the learning procedure. We demonstrate state-of-the-art performance and outperform competing methods on standard benchmarks including the MPII, LSP, and FLIC datasets.
Dyna-DM: Dynamic Object-aware Self-supervised Monocular Depth Maps
Self-supervised monocular depth estimation has been a subject of intense study in recent years, because of its applications in robotics and autonomous driving. Much of the recent work focuses on improving depth estimation by increasing architecture complexity. This paper shows that state-of-the-art performance can also be achieved by improving the learning process rather than increasing model complexity. More specifically, we propose (i) disregarding small potentially dynamic objects when training, and (ii) employing an appearance-based approach to separately estimate object pose for truly dynamic objects. We demonstrate that these simplifications reduce GPU memory usage by 29% and result in qualitatively and quantitatively improved depth maps. The code is available at https://github.com/kieran514/Dyna-DM.
FaVoR: Features via Voxel Rendering for Camera Relocalization
Camera relocalization methods range from dense image alignment to direct camera pose regression from a query image. Among these, sparse feature matching stands out as an efficient, versatile, and generally lightweight approach with numerous applications. However, feature-based methods often struggle with significant viewpoint and appearance changes, leading to matching failures and inaccurate pose estimates. To overcome this limitation, we propose a novel approach that leverages a globally sparse yet locally dense 3D representation of 2D features. By tracking and triangulating landmarks over a sequence of frames, we construct a sparse voxel map optimized to render image patch descriptors observed during tracking. Given an initial pose estimate, we first synthesize descriptors from the voxels using volumetric rendering and then perform feature matching to estimate the camera pose. This methodology enables the generation of descriptors for unseen views, enhancing robustness to view changes. We extensively evaluate our method on the 7-Scenes and Cambridge Landmarks datasets. Our results show that our method significantly outperforms existing state-of-the-art feature representation techniques in indoor environments, achieving up to a 39% improvement in median translation error. Additionally, our approach yields comparable results to other methods for outdoor scenarios while maintaining lower memory and computational costs.
Learning to Reconstruct and Segment 3D Objects
To endow machines with the ability to perceive the real-world in a three dimensional representation as we do as humans is a fundamental and long-standing topic in Artificial Intelligence. Given different types of visual inputs such as images or point clouds acquired by 2D/3D sensors, one important goal is to understand the geometric structure and semantics of the 3D environment. Traditional approaches usually leverage hand-crafted features to estimate the shape and semantics of objects or scenes. However, they are difficult to generalize to novel objects and scenarios, and struggle to overcome critical issues caused by visual occlusions. By contrast, we aim to understand scenes and the objects within them by learning general and robust representations using deep neural networks, trained on large-scale real-world 3D data. To achieve these aims, this thesis makes three core contributions from object-level 3D shape estimation from single or multiple views to scene-level semantic understanding.
EgoLoc: Revisiting 3D Object Localization from Egocentric Videos with Visual Queries
With the recent advances in video and 3D understanding, novel 4D spatio-temporal methods fusing both concepts have emerged. Towards this direction, the Ego4D Episodic Memory Benchmark proposed a task for Visual Queries with 3D Localization (VQ3D). Given an egocentric video clip and an image crop depicting a query object, the goal is to localize the 3D position of the center of that query object with respect to the camera pose of a query frame. Current methods tackle the problem of VQ3D by unprojecting the 2D localization results of the sibling task Visual Queries with 2D Localization (VQ2D) into 3D predictions. Yet, we point out that the low number of camera poses caused by camera re-localization from previous VQ3D methods severally hinders their overall success rate. In this work, we formalize a pipeline (we dub EgoLoc) that better entangles 3D multiview geometry with 2D object retrieval from egocentric videos. Our approach involves estimating more robust camera poses and aggregating multi-view 3D displacements by leveraging the 2D detection confidence, which enhances the success rate of object queries and leads to a significant improvement in the VQ3D baseline performance. Specifically, our approach achieves an overall success rate of up to 87.12%, which sets a new state-of-the-art result in the VQ3D task. We provide a comprehensive empirical analysis of the VQ3D task and existing solutions, and highlight the remaining challenges in VQ3D. The code is available at https://github.com/Wayne-Mai/EgoLoc.
Object as Query: Lifting any 2D Object Detector to 3D Detection
3D object detection from multi-view images has drawn much attention over the past few years. Existing methods mainly establish 3D representations from multi-view images and adopt a dense detection head for object detection, or employ object queries distributed in 3D space to localize objects. In this paper, we design Multi-View 2D Objects guided 3D Object Detector (MV2D), which can lift any 2D object detector to multi-view 3D object detection. Since 2D detections can provide valuable priors for object existence, MV2D exploits 2D detectors to generate object queries conditioned on the rich image semantics. These dynamically generated queries help MV2D to recall objects in the field of view and show a strong capability of localizing 3D objects. For the generated queries, we design a sparse cross attention module to force them to focus on the features of specific objects, which suppresses interference from noises. The evaluation results on the nuScenes dataset demonstrate the dynamic object queries and sparse feature aggregation can promote 3D detection capability. MV2D also exhibits a state-of-the-art performance among existing methods. We hope MV2D can serve as a new baseline for future research.
Keypoint Communities
We present a fast bottom-up method that jointly detects over 100 keypoints on humans or objects, also referred to as human/object pose estimation. We model all keypoints belonging to a human or an object -- the pose -- as a graph and leverage insights from community detection to quantify the independence of keypoints. We use a graph centrality measure to assign training weights to different parts of a pose. Our proposed measure quantifies how tightly a keypoint is connected to its neighborhood. Our experiments show that our method outperforms all previous methods for human pose estimation with fine-grained keypoint annotations on the face, the hands and the feet with a total of 133 keypoints. We also show that our method generalizes to car poses.
Orient Anything: Learning Robust Object Orientation Estimation from Rendering 3D Models
Orientation is a key attribute of objects, crucial for understanding their spatial pose and arrangement in images. However, practical solutions for accurate orientation estimation from a single image remain underexplored. In this work, we introduce Orient Anything, the first expert and foundational model designed to estimate object orientation in a single- and free-view image. Due to the scarcity of labeled data, we propose extracting knowledge from the 3D world. By developing a pipeline to annotate the front face of 3D objects and render images from random views, we collect 2M images with precise orientation annotations. To fully leverage the dataset, we design a robust training objective that models the 3D orientation as probability distributions of three angles and predicts the object orientation by fitting these distributions. Besides, we employ several strategies to improve synthetic-to-real transfer. Our model achieves state-of-the-art orientation estimation accuracy in both rendered and real images and exhibits impressive zero-shot ability in various scenarios. More importantly, our model enhances many applications, such as comprehension and generation of complex spatial concepts and 3D object pose adjustment.
Self-Supervised Learning of 3D Human Pose using Multi-view Geometry
Training accurate 3D human pose estimators requires large amount of 3D ground-truth data which is costly to collect. Various weakly or self supervised pose estimation methods have been proposed due to lack of 3D data. Nevertheless, these methods, in addition to 2D ground-truth poses, require either additional supervision in various forms (e.g. unpaired 3D ground truth data, a small subset of labels) or the camera parameters in multiview settings. To address these problems, we present EpipolarPose, a self-supervised learning method for 3D human pose estimation, which does not need any 3D ground-truth data or camera extrinsics. During training, EpipolarPose estimates 2D poses from multi-view images, and then, utilizes epipolar geometry to obtain a 3D pose and camera geometry which are subsequently used to train a 3D pose estimator. We demonstrate the effectiveness of our approach on standard benchmark datasets i.e. Human3.6M and MPI-INF-3DHP where we set the new state-of-the-art among weakly/self-supervised methods. Furthermore, we propose a new performance measure Pose Structure Score (PSS) which is a scale invariant, structure aware measure to evaluate the structural plausibility of a pose with respect to its ground truth. Code and pretrained models are available at https://github.com/mkocabas/EpipolarPose
Shelving, Stacking, Hanging: Relational Pose Diffusion for Multi-modal Rearrangement
We propose a system for rearranging objects in a scene to achieve a desired object-scene placing relationship, such as a book inserted in an open slot of a bookshelf. The pipeline generalizes to novel geometries, poses, and layouts of both scenes and objects, and is trained from demonstrations to operate directly on 3D point clouds. Our system overcomes challenges associated with the existence of many geometrically-similar rearrangement solutions for a given scene. By leveraging an iterative pose de-noising training procedure, we can fit multi-modal demonstration data and produce multi-modal outputs while remaining precise and accurate. We also show the advantages of conditioning on relevant local geometric features while ignoring irrelevant global structure that harms both generalization and precision. We demonstrate our approach on three distinct rearrangement tasks that require handling multi-modality and generalization over object shape and pose in both simulation and the real world. Project website, code, and videos: https://anthonysimeonov.github.io/rpdiff-multi-modal/
Bifurcated backbone strategy for RGB-D salient object detection
Multi-level feature fusion is a fundamental topic in computer vision. It has been exploited to detect, segment and classify objects at various scales. When multi-level features meet multi-modal cues, the optimal feature aggregation and multi-modal learning strategy become a hot potato. In this paper, we leverage the inherent multi-modal and multi-level nature of RGB-D salient object detection to devise a novel cascaded refinement network. In particular, first, we propose to regroup the multi-level features into teacher and student features using a bifurcated backbone strategy (BBS). Second, we introduce a depth-enhanced module (DEM) to excavate informative depth cues from the channel and spatial views. Then, RGB and depth modalities are fused in a complementary way. Our architecture, named Bifurcated Backbone Strategy Network (BBS-Net), is simple, efficient, and backbone-independent. Extensive experiments show that BBS-Net significantly outperforms eighteen SOTA models on eight challenging datasets under five evaluation measures, demonstrating the superiority of our approach (sim 4 % improvement in S-measure vs. the top-ranked model: DMRA-iccv2019). In addition, we provide a comprehensive analysis on the generalization ability of different RGB-D datasets and provide a powerful training set for future research.
CoDA: Collaborative Novel Box Discovery and Cross-modal Alignment for Open-vocabulary 3D Object Detection
Open-vocabulary 3D Object Detection (OV-3DDet) aims to detect objects from an arbitrary list of categories within a 3D scene, which remains seldom explored in the literature. There are primarily two fundamental problems in OV-3DDet, i.e., localizing and classifying novel objects. This paper aims at addressing the two problems simultaneously via a unified framework, under the condition of limited base categories. To localize novel 3D objects, we propose an effective 3D Novel Object Discovery strategy, which utilizes both the 3D box geometry priors and 2D semantic open-vocabulary priors to generate pseudo box labels of the novel objects. To classify novel object boxes, we further develop a cross-modal alignment module based on discovered novel boxes, to align feature spaces between 3D point cloud and image/text modalities. Specifically, the alignment process contains a class-agnostic and a class-discriminative alignment, incorporating not only the base objects with annotations but also the increasingly discovered novel objects, resulting in an iteratively enhanced alignment. The novel box discovery and crossmodal alignment are jointly learned to collaboratively benefit each other. The novel object discovery can directly impact the cross-modal alignment, while a better feature alignment can, in turn, boost the localization capability, leading to a unified OV-3DDet framework, named CoDA, for simultaneous novel object localization and classification. Extensive experiments on two challenging datasets (i.e., SUN-RGBD and ScanNet) demonstrate the effectiveness of our method and also show a significant mAP improvement upon the best-performing alternative method by 80%. Codes and pre-trained models are released on the project page.
Sparse Dense Fusion for 3D Object Detection
With the prevalence of multimodal learning, camera-LiDAR fusion has gained popularity in 3D object detection. Although multiple fusion approaches have been proposed, they can be classified into either sparse-only or dense-only fashion based on the feature representation in the fusion module. In this paper, we analyze them in a common taxonomy and thereafter observe two challenges: 1) sparse-only solutions preserve 3D geometric prior and yet lose rich semantic information from the camera, and 2) dense-only alternatives retain the semantic continuity but miss the accurate geometric information from LiDAR. By analyzing these two formulations, we conclude that the information loss is inevitable due to their design scheme. To compensate for the information loss in either manner, we propose Sparse Dense Fusion (SDF), a complementary framework that incorporates both sparse-fusion and dense-fusion modules via the Transformer architecture. Such a simple yet effective sparse-dense fusion structure enriches semantic texture and exploits spatial structure information simultaneously. Through our SDF strategy, we assemble two popular methods with moderate performance and outperform baseline by 4.3% in mAP and 2.5% in NDS, ranking first on the nuScenes benchmark. Extensive ablations demonstrate the effectiveness of our method and empirically align our analysis.
Semantic-Guided Multi-Attention Localization for Zero-Shot Learning
Zero-shot learning extends the conventional object classification to the unseen class recognition by introducing semantic representations of classes. Existing approaches predominantly focus on learning the proper mapping function for visual-semantic embedding, while neglecting the effect of learning discriminative visual features. In this paper, we study the significance of the discriminative region localization. We propose a semantic-guided multi-attention localization model, which automatically discovers the most discriminative parts of objects for zero-shot learning without any human annotations. Our model jointly learns cooperative global and local features from the whole object as well as the detected parts to categorize objects based on semantic descriptions. Moreover, with the joint supervision of embedding softmax loss and class-center triplet loss, the model is encouraged to learn features with high inter-class dispersion and intra-class compactness. Through comprehensive experiments on three widely used zero-shot learning benchmarks, we show the efficacy of the multi-attention localization and our proposed approach improves the state-of-the-art results by a considerable margin.
PARIS: Part-level Reconstruction and Motion Analysis for Articulated Objects
We address the task of simultaneous part-level reconstruction and motion parameter estimation for articulated objects. Given two sets of multi-view images of an object in two static articulation states, we decouple the movable part from the static part and reconstruct shape and appearance while predicting the motion parameters. To tackle this problem, we present PARIS: a self-supervised, end-to-end architecture that learns part-level implicit shape and appearance models and optimizes motion parameters jointly without any 3D supervision, motion, or semantic annotation. Our experiments show that our method generalizes better across object categories, and outperforms baselines and prior work that are given 3D point clouds as input. Our approach improves reconstruction relative to state-of-the-art baselines with a Chamfer-L1 distance reduction of 3.94 (45.2%) for objects and 26.79 (84.5%) for parts, and achieves 5% error rate for motion estimation across 10 object categories. Video summary at: https://youtu.be/tDSrROPCgUc
SRPose: Two-view Relative Pose Estimation with Sparse Keypoints
Two-view pose estimation is essential for map-free visual relocalization and object pose tracking tasks. However, traditional matching methods suffer from time-consuming robust estimators, while deep learning-based pose regressors only cater to camera-to-world pose estimation, lacking generalizability to different image sizes and camera intrinsics. In this paper, we propose SRPose, a sparse keypoint-based framework for two-view relative pose estimation in camera-to-world and object-to-camera scenarios. SRPose consists of a sparse keypoint detector, an intrinsic-calibration position encoder, and promptable prior knowledge-guided attention layers. Given two RGB images of a fixed scene or a moving object, SRPose estimates the relative camera or 6D object pose transformation. Extensive experiments demonstrate that SRPose achieves competitive or superior performance compared to state-of-the-art methods in terms of accuracy and speed, showing generalizability to both scenarios. It is robust to different image sizes and camera intrinsics, and can be deployed with low computing resources.
Generative Prompt Model for Weakly Supervised Object Localization
Weakly supervised object localization (WSOL) remains challenging when learning object localization models from image category labels. Conventional methods that discriminatively train activation models ignore representative yet less discriminative object parts. In this study, we propose a generative prompt model (GenPromp), defining the first generative pipeline to localize less discriminative object parts by formulating WSOL as a conditional image denoising procedure. During training, GenPromp converts image category labels to learnable prompt embeddings which are fed to a generative model to conditionally recover the input image with noise and learn representative embeddings. During inference, enPromp combines the representative embeddings with discriminative embeddings (queried from an off-the-shelf vision-language model) for both representative and discriminative capacity. The combined embeddings are finally used to generate multi-scale high-quality attention maps, which facilitate localizing full object extent. Experiments on CUB-200-2011 and ILSVRC show that GenPromp respectively outperforms the best discriminative models by 5.2% and 5.6% (Top-1 Loc), setting a solid baseline for WSOL with the generative model. Code is available at https://github.com/callsys/GenPromp.
EdaDet: Open-Vocabulary Object Detection Using Early Dense Alignment
Vision-language models such as CLIP have boosted the performance of open-vocabulary object detection, where the detector is trained on base categories but required to detect novel categories. Existing methods leverage CLIP's strong zero-shot recognition ability to align object-level embeddings with textual embeddings of categories. However, we observe that using CLIP for object-level alignment results in overfitting to base categories, i.e., novel categories most similar to base categories have particularly poor performance as they are recognized as similar base categories. In this paper, we first identify that the loss of critical fine-grained local image semantics hinders existing methods from attaining strong base-to-novel generalization. Then, we propose Early Dense Alignment (EDA) to bridge the gap between generalizable local semantics and object-level prediction. In EDA, we use object-level supervision to learn the dense-level rather than object-level alignment to maintain the local fine-grained semantics. Extensive experiments demonstrate our superior performance to competing approaches under the same strict setting and without using external training resources, i.e., improving the +8.4% novel box AP50 on COCO and +3.9% rare mask AP on LVIS.
Collaborative Novel Object Discovery and Box-Guided Cross-Modal Alignment for Open-Vocabulary 3D Object Detection
Open-vocabulary 3D Object Detection (OV-3DDet) addresses the detection of objects from an arbitrary list of novel categories in 3D scenes, which remains a very challenging problem. In this work, we propose CoDAv2, a unified framework designed to innovatively tackle both the localization and classification of novel 3D objects, under the condition of limited base categories. For localization, the proposed 3D Novel Object Discovery (3D-NOD) strategy utilizes 3D geometries and 2D open-vocabulary semantic priors to discover pseudo labels for novel objects during training. 3D-NOD is further extended with an Enrichment strategy that significantly enriches the novel object distribution in the training scenes, and then enhances the model's ability to localize more novel objects. The 3D-NOD with Enrichment is termed 3D-NODE. For classification, the Discovery-driven Cross-modal Alignment (DCMA) module aligns features from 3D point clouds and 2D/textual modalities, employing both class-agnostic and class-specific alignments that are iteratively refined to handle the expanding vocabulary of objects. Besides, 2D box guidance boosts the classification accuracy against complex background noises, which is coined as Box-DCMA. Extensive evaluation demonstrates the superiority of CoDAv2. CoDAv2 outperforms the best-performing method by a large margin (AP_Novel of 9.17 vs. 3.61 on SUN-RGBD and 9.12 vs. 3.74 on ScanNetv2). Source code and pre-trained models are available at the GitHub project page.
PoseScript: Linking 3D Human Poses and Natural Language
Natural language plays a critical role in many computer vision applications, such as image captioning, visual question answering, and cross-modal retrieval, to provide fine-grained semantic information. Unfortunately, while human pose is key to human understanding, current 3D human pose datasets lack detailed language descriptions. To address this issue, we have introduced the PoseScript dataset. This dataset pairs more than six thousand 3D human poses from AMASS with rich human-annotated descriptions of the body parts and their spatial relationships. Additionally, to increase the size of the dataset to a scale that is compatible with data-hungry learning algorithms, we have proposed an elaborate captioning process that generates automatic synthetic descriptions in natural language from given 3D keypoints. This process extracts low-level pose information, known as "posecodes", using a set of simple but generic rules on the 3D keypoints. These posecodes are then combined into higher level textual descriptions using syntactic rules. With automatic annotations, the amount of available data significantly scales up (100k), making it possible to effectively pretrain deep models for finetuning on human captions. To showcase the potential of annotated poses, we present three multi-modal learning tasks that utilize the PoseScript dataset. Firstly, we develop a pipeline that maps 3D poses and textual descriptions into a joint embedding space, allowing for cross-modal retrieval of relevant poses from large-scale datasets. Secondly, we establish a baseline for a text-conditioned model generating 3D poses. Thirdly, we present a learned process for generating pose descriptions. These applications demonstrate the versatility and usefulness of annotated poses in various tasks and pave the way for future research in the field.
Dense Object Grounding in 3D Scenes
Localizing objects in 3D scenes according to the semantics of a given natural language is a fundamental yet important task in the field of multimedia understanding, which benefits various real-world applications such as robotics and autonomous driving. However, the majority of existing 3D object grounding methods are restricted to a single-sentence input describing an individual object, which cannot comprehend and reason more contextualized descriptions of multiple objects in more practical 3D cases. To this end, we introduce a new challenging task, called 3D Dense Object Grounding (3D DOG), to jointly localize multiple objects described in a more complicated paragraph rather than a single sentence. Instead of naively localizing each sentence-guided object independently, we found that dense objects described in the same paragraph are often semantically related and spatially located in a focused region of the 3D scene. To explore such semantic and spatial relationships of densely referred objects for more accurate localization, we propose a novel Stacked Transformer based framework for 3D DOG, named 3DOGSFormer. Specifically, we first devise a contextual query-driven local transformer decoder to generate initial grounding proposals for each target object. Then, we employ a proposal-guided global transformer decoder that exploits the local object features to learn their correlation for further refining initial grounding proposals. Extensive experiments on three challenging benchmarks (Nr3D, Sr3D, and ScanRefer) show that our proposed 3DOGSFormer outperforms state-of-the-art 3D single-object grounding methods and their dense-object variants by significant margins.
HGCLIP: Exploring Vision-Language Models with Graph Representations for Hierarchical Understanding
Object categories are typically organized into a multi-granularity taxonomic hierarchy. When classifying categories at different hierarchy levels, traditional uni-modal approaches focus primarily on image features, revealing limitations in complex scenarios. Recent studies integrating Vision-Language Models (VLMs) with class hierarchies have shown promise, yet they fall short of fully exploiting the hierarchical relationships. These efforts are constrained by their inability to perform effectively across varied granularity of categories. To tackle this issue, we propose a novel framework (HGCLIP) that effectively combines CLIP with a deeper exploitation of the Hierarchical class structure via Graph representation learning. We explore constructing the class hierarchy into a graph, with its nodes representing the textual or image features of each category. After passing through a graph encoder, the textual features incorporate hierarchical structure information, while the image features emphasize class-aware features derived from prototypes through the attention mechanism. Our approach demonstrates significant improvements on 11 diverse visual recognition benchmarks. Our codes are fully available at https://github.com/richard-peng-xia/HGCLIP.
MPM: A Unified 2D-3D Human Pose Representation via Masked Pose Modeling
Estimating 3D human poses only from a 2D human pose sequence is thoroughly explored in recent years. Yet, prior to this, no such work has attempted to unify 2D and 3D pose representations in the shared feature space. In this paper, we propose MPM, a unified 2D-3D human pose representation framework via masked pose modeling. We treat 2D and 3D poses as two different modalities like vision and language and build a single-stream transformer-based architecture. We apply three pretext tasks, which are masked 2D pose modeling, masked 3D pose modeling, and masked 2D pose lifting to pre-train our network and use full-supervision to perform further fine-tuning. A high masking ratio of 72.5% in total with a spatio-temporal mask sampling strategy leading to better relation modeling both in spatial and temporal domains. MPM can handle multiple tasks including 3D human pose estimation, 3D pose estimation from occluded 2D pose, and 3D pose completion in a single framework. We conduct extensive experiments and ablation studies on several widely used human pose datasets and achieve state-of-the-art performance on Human3.6M and MPI-INF-3DHP. Codes and model checkpoints are available at https://github.com/vvirgooo2/MPM
Objaverse: A Universe of Annotated 3D Objects
Massive data corpora like WebText, Wikipedia, Conceptual Captions, WebImageText, and LAION have propelled recent dramatic progress in AI. Large neural models trained on such datasets produce impressive results and top many of today's benchmarks. A notable omission within this family of large-scale datasets is 3D data. Despite considerable interest and potential applications in 3D vision, datasets of high-fidelity 3D models continue to be mid-sized with limited diversity of object categories. Addressing this gap, we present Objaverse 1.0, a large dataset of objects with 800K+ (and growing) 3D models with descriptive captions, tags, and animations. Objaverse improves upon present day 3D repositories in terms of scale, number of categories, and in the visual diversity of instances within a category. We demonstrate the large potential of Objaverse via four diverse applications: training generative 3D models, improving tail category segmentation on the LVIS benchmark, training open-vocabulary object-navigation models for Embodied AI, and creating a new benchmark for robustness analysis of vision models. Objaverse can open new directions for research and enable new applications across the field of AI.
PersonLab: Person Pose Estimation and Instance Segmentation with a Bottom-Up, Part-Based, Geometric Embedding Model
We present a box-free bottom-up approach for the tasks of pose estimation and instance segmentation of people in multi-person images using an efficient single-shot model. The proposed PersonLab model tackles both semantic-level reasoning and object-part associations using part-based modeling. Our model employs a convolutional network which learns to detect individual keypoints and predict their relative displacements, allowing us to group keypoints into person pose instances. Further, we propose a part-induced geometric embedding descriptor which allows us to associate semantic person pixels with their corresponding person instance, delivering instance-level person segmentations. Our system is based on a fully-convolutional architecture and allows for efficient inference, with runtime essentially independent of the number of people present in the scene. Trained on COCO data alone, our system achieves COCO test-dev keypoint average precision of 0.665 using single-scale inference and 0.687 using multi-scale inference, significantly outperforming all previous bottom-up pose estimation systems. We are also the first bottom-up method to report competitive results for the person class in the COCO instance segmentation task, achieving a person category average precision of 0.417.
Fit-NGP: Fitting Object Models to Neural Graphics Primitives
Accurate 3D object pose estimation is key to enabling many robotic applications that involve challenging object interactions. In this work, we show that the density field created by a state-of-the-art efficient radiance field reconstruction method is suitable for highly accurate and robust pose estimation for objects with known 3D models, even when they are very small and with challenging reflective surfaces. We present a fully automatic object pose estimation system based on a robot arm with a single wrist-mounted camera, which can scan a scene from scratch, detect and estimate the 6-Degrees of Freedom (DoF) poses of multiple objects within a couple of minutes of operation. Small objects such as bolts and nuts are estimated with accuracy on order of 1mm.
DeeperCut: A Deeper, Stronger, and Faster Multi-Person Pose Estimation Model
The goal of this paper is to advance the state-of-the-art of articulated pose estimation in scenes with multiple people. To that end we contribute on three fronts. We propose (1) improved body part detectors that generate effective bottom-up proposals for body parts; (2) novel image-conditioned pairwise terms that allow to assemble the proposals into a variable number of consistent body part configurations; and (3) an incremental optimization strategy that explores the search space more efficiently thus leading both to better performance and significant speed-up factors. Evaluation is done on two single-person and two multi-person pose estimation benchmarks. The proposed approach significantly outperforms best known multi-person pose estimation results while demonstrating competitive performance on the task of single person pose estimation. Models and code available at http://pose.mpi-inf.mpg.de
3D Congealing: 3D-Aware Image Alignment in the Wild
We propose 3D Congealing, a novel problem of 3D-aware alignment for 2D images capturing semantically similar objects. Given a collection of unlabeled Internet images, our goal is to associate the shared semantic parts from the inputs and aggregate the knowledge from 2D images to a shared 3D canonical space. We introduce a general framework that tackles the task without assuming shape templates, poses, or any camera parameters. At its core is a canonical 3D representation that encapsulates geometric and semantic information. The framework optimizes for the canonical representation together with the pose for each input image, and a per-image coordinate map that warps 2D pixel coordinates to the 3D canonical frame to account for the shape matching. The optimization procedure fuses prior knowledge from a pre-trained image generative model and semantic information from input images. The former provides strong knowledge guidance for this under-constraint task, while the latter provides the necessary information to mitigate the training data bias from the pre-trained model. Our framework can be used for various tasks such as correspondence matching, pose estimation, and image editing, achieving strong results on real-world image datasets under challenging illumination conditions and on in-the-wild online image collections.
Sparse-view Pose Estimation and Reconstruction via Analysis by Generative Synthesis
Inferring the 3D structure underlying a set of multi-view images typically requires solving two co-dependent tasks -- accurate 3D reconstruction requires precise camera poses, and predicting camera poses relies on (implicitly or explicitly) modeling the underlying 3D. The classical framework of analysis by synthesis casts this inference as a joint optimization seeking to explain the observed pixels, and recent instantiations learn expressive 3D representations (e.g., Neural Fields) with gradient-descent-based pose refinement of initial pose estimates. However, given a sparse set of observed views, the observations may not provide sufficient direct evidence to obtain complete and accurate 3D. Moreover, large errors in pose estimation may not be easily corrected and can further degrade the inferred 3D. To allow robust 3D reconstruction and pose estimation in this challenging setup, we propose SparseAGS, a method that adapts this analysis-by-synthesis approach by: a) including novel-view-synthesis-based generative priors in conjunction with photometric objectives to improve the quality of the inferred 3D, and b) explicitly reasoning about outliers and using a discrete search with a continuous optimization-based strategy to correct them. We validate our framework across real-world and synthetic datasets in combination with several off-the-shelf pose estimation systems as initialization. We find that it significantly improves the base systems' pose accuracy while yielding high-quality 3D reconstructions that outperform the results from current multi-view reconstruction baselines.
FreeMan: Towards Benchmarking 3D Human Pose Estimation in the Wild
Estimating the 3D structure of the human body from natural scenes is a fundamental aspect of visual perception. This task carries great importance for fields like AIGC and human-robot interaction. In practice, 3D human pose estimation in real-world settings is a critical initial step in solving this problem. However, the current datasets, often collected under controlled laboratory conditions using complex motion capture equipment and unvarying backgrounds, are insufficient. The absence of real-world datasets is stalling the progress of this crucial task. To facilitate the development of 3D pose estimation, we present FreeMan, the first large-scale, real-world multi-view dataset. FreeMan was captured by synchronizing 8 smartphones across diverse scenarios. It comprises 11M frames from 8000 sequences, viewed from different perspectives. These sequences cover 40 subjects across 10 different scenarios, each with varying lighting conditions. We have also established an automated, precise labeling pipeline that allows for large-scale processing efficiently. We provide comprehensive evaluation baselines for a range of tasks, underlining the significant challenges posed by FreeMan. Further evaluations of standard indoor/outdoor human sensing datasets reveal that FreeMan offers robust representation transferability in real and complex scenes. FreeMan is now publicly available at https://wangjiongw.github.io/freeman.
CNOS: A Strong Baseline for CAD-based Novel Object Segmentation
We propose a simple three-stage approach to segment unseen objects in RGB images using their CAD models. Leveraging recent powerful foundation models, DINOv2 and Segment Anything, we create descriptors and generate proposals, including binary masks for a given input RGB image. By matching proposals with reference descriptors created from CAD models, we achieve precise object ID assignment along with modal masks. We experimentally demonstrate that our method achieves state-of-the-art results in CAD-based novel object segmentation, surpassing existing approaches on the seven core datasets of the BOP challenge by 19.8\% AP using the same BOP evaluation protocol. Our source code is available at https://github.com/nv-nguyen/cnos.
Supermarket-6DoF: A Real-World Grasping Dataset and Grasp Pose Representation Analysis
We present Supermarket-6DoF, a real-world dataset of 1500 grasp attempts across 20 supermarket objects with publicly available 3D models. Unlike most existing grasping datasets that rely on analytical metrics or simulation for grasp labeling, our dataset provides ground-truth outcomes from physical robot executions. Among the few real-world grasping datasets, wile more modest in size, Supermarket-6DoF uniquely features full 6-DoF grasp poses annotated with both initial grasp success and post-grasp stability under external perturbation. We demonstrate the dataset's utility by analyzing three grasp pose representations for grasp success prediction from point clouds. Our results show that representing the gripper geometry explicitly as a point cloud achieves higher prediction accuracy compared to conventional quaternion-based grasp pose encoding.
PoRF: Pose Residual Field for Accurate Neural Surface Reconstruction
Neural surface reconstruction is sensitive to the camera pose noise, even if state-of-the-art pose estimators like COLMAP or ARKit are used. More importantly, existing Pose-NeRF joint optimisation methods have struggled to improve pose accuracy in challenging real-world scenarios. To overcome the challenges, we introduce the pose residual field (PoRF), a novel implicit representation that uses an MLP for regressing pose updates. This is more robust than the conventional pose parameter optimisation due to parameter sharing that leverages global information over the entire sequence. Furthermore, we propose an epipolar geometry loss to enhance the supervision that leverages the correspondences exported from COLMAP results without the extra computational overhead. Our method yields promising results. On the DTU dataset, we reduce the rotation error by 78\% for COLMAP poses, leading to the decreased reconstruction Chamfer distance from 3.48mm to 0.85mm. On the MobileBrick dataset that contains casually captured unbounded 360-degree videos, our method refines ARKit poses and improves the reconstruction F1 score from 69.18 to 75.67, outperforming that with the dataset provided ground-truth pose (75.14). These achievements demonstrate the efficacy of our approach in refining camera poses and improving the accuracy of neural surface reconstruction in real-world scenarios.
Language-Driven 6-DoF Grasp Detection Using Negative Prompt Guidance
6-DoF grasp detection has been a fundamental and challenging problem in robotic vision. While previous works have focused on ensuring grasp stability, they often do not consider human intention conveyed through natural language, hindering effective collaboration between robots and users in complex 3D environments. In this paper, we present a new approach for language-driven 6-DoF grasp detection in cluttered point clouds. We first introduce Grasp-Anything-6D, a large-scale dataset for the language-driven 6-DoF grasp detection task with 1M point cloud scenes and more than 200M language-associated 3D grasp poses. We further introduce a novel diffusion model that incorporates a new negative prompt guidance learning strategy. The proposed negative prompt strategy directs the detection process toward the desired object while steering away from unwanted ones given the language input. Our method enables an end-to-end framework where humans can command the robot to grasp desired objects in a cluttered scene using natural language. Intensive experimental results show the effectiveness of our method in both benchmarking experiments and real-world scenarios, surpassing other baselines. In addition, we demonstrate the practicality of our approach in real-world robotic applications. Our project is available at https://airvlab.github.io/grasp-anything.
Diffusion-Based 3D Human Pose Estimation with Multi-Hypothesis Aggregation
In this paper, a novel Diffusion-based 3D Pose estimation (D3DP) method with Joint-wise reProjection-based Multi-hypothesis Aggregation (JPMA) is proposed for probabilistic 3D human pose estimation. On the one hand, D3DP generates multiple possible 3D pose hypotheses for a single 2D observation. It gradually diffuses the ground truth 3D poses to a random distribution, and learns a denoiser conditioned on 2D keypoints to recover the uncontaminated 3D poses. The proposed D3DP is compatible with existing 3D pose estimators and supports users to balance efficiency and accuracy during inference through two customizable parameters. On the other hand, JPMA is proposed to assemble multiple hypotheses generated by D3DP into a single 3D pose for practical use. It reprojects 3D pose hypotheses to the 2D camera plane, selects the best hypothesis joint-by-joint based on the reprojection errors, and combines the selected joints into the final pose. The proposed JPMA conducts aggregation at the joint level and makes use of the 2D prior information, both of which have been overlooked by previous approaches. Extensive experiments on Human3.6M and MPI-INF-3DHP datasets show that our method outperforms the state-of-the-art deterministic and probabilistic approaches by 1.5% and 8.9%, respectively. Code is available at https://github.com/paTRICK-swk/D3DP.
Learning Human Poses from Actions
We consider the task of learning to estimate human pose in still images. In order to avoid the high cost of full supervision, we propose to use a diverse data set, which consists of two types of annotations: (i) a small number of images are labeled using the expensive ground-truth pose; and (ii) other images are labeled using the inexpensive action label. As action information helps narrow down the pose of a human, we argue that this approach can help reduce the cost of training without significantly affecting the accuracy. To demonstrate this we design a probabilistic framework that employs two distributions: (i) a conditional distribution to model the uncertainty over the human pose given the image and the action; and (ii) a prediction distribution, which provides the pose of an image without using any action information. We jointly estimate the parameters of the two aforementioned distributions by minimizing their dissimilarity coefficient, as measured by a task-specific loss function. During both training and testing, we only require an efficient sampling strategy for both the aforementioned distributions. This allows us to use deep probabilistic networks that are capable of providing accurate pose estimates for previously unseen images. Using the MPII data set, we show that our approach outperforms baseline methods that either do not use the diverse annotations or rely on pointwise estimates of the pose.
Level-S^2fM: Structure from Motion on Neural Level Set of Implicit Surfaces
This paper presents a neural incremental Structure-from-Motion (SfM) approach, Level-S^2fM, which estimates the camera poses and scene geometry from a set of uncalibrated images by learning coordinate MLPs for the implicit surfaces and the radiance fields from the established keypoint correspondences. Our novel formulation poses some new challenges due to inevitable two-view and few-view configurations in the incremental SfM pipeline, which complicates the optimization of coordinate MLPs for volumetric neural rendering with unknown camera poses. Nevertheless, we demonstrate that the strong inductive basis conveying in the 2D correspondences is promising to tackle those challenges by exploiting the relationship between the ray sampling schemes. Based on this, we revisit the pipeline of incremental SfM and renew the key components, including two-view geometry initialization, the camera poses registration, the 3D points triangulation, and Bundle Adjustment, with a fresh perspective based on neural implicit surfaces. By unifying the scene geometry in small MLP networks through coordinate MLPs, our Level-S^2fM treats the zero-level set of the implicit surface as an informative top-down regularization to manage the reconstructed 3D points, reject the outliers in correspondences via querying SDF, and refine the estimated geometries by NBA (Neural BA). Not only does our Level-S^2fM lead to promising results on camera pose estimation and scene geometry reconstruction, but it also shows a promising way for neural implicit rendering without knowing camera extrinsic beforehand.
SE(3) Diffusion Model-based Point Cloud Registration for Robust 6D Object Pose Estimation
In this paper, we introduce an SE(3) diffusion model-based point cloud registration framework for 6D object pose estimation in real-world scenarios. Our approach formulates the 3D registration task as a denoising diffusion process, which progressively refines the pose of the source point cloud to obtain a precise alignment with the model point cloud. Training our framework involves two operations: An SE(3) diffusion process and an SE(3) reverse process. The SE(3) diffusion process gradually perturbs the optimal rigid transformation of a pair of point clouds by continuously injecting noise (perturbation transformation). By contrast, the SE(3) reverse process focuses on learning a denoising network that refines the noisy transformation step-by-step, bringing it closer to the optimal transformation for accurate pose estimation. Unlike standard diffusion models used in linear Euclidean spaces, our diffusion model operates on the SE(3) manifold. This requires exploiting the linear Lie algebra se(3) associated with SE(3) to constrain the transformation transitions during the diffusion and reverse processes. Additionally, to effectively train our denoising network, we derive a registration-specific variational lower bound as the optimization objective for model learning. Furthermore, we show that our denoising network can be constructed with a surrogate registration model, making our approach applicable to different deep registration networks. Extensive experiments demonstrate that our diffusion registration framework presents outstanding pose estimation performance on the real-world TUD-L, LINEMOD, and Occluded-LINEMOD datasets.
GVDepth: Zero-Shot Monocular Depth Estimation for Ground Vehicles based on Probabilistic Cue Fusion
Generalizing metric monocular depth estimation presents a significant challenge due to its ill-posed nature, while the entanglement between camera parameters and depth amplifies issues further, hindering multi-dataset training and zero-shot accuracy. This challenge is particularly evident in autonomous vehicles and mobile robotics, where data is collected with fixed camera setups, limiting the geometric diversity. Yet, this context also presents an opportunity: the fixed relationship between the camera and the ground plane imposes additional perspective geometry constraints, enabling depth regression via vertical image positions of objects. However, this cue is highly susceptible to overfitting, thus we propose a novel canonical representation that maintains consistency across varied camera setups, effectively disentangling depth from specific parameters and enhancing generalization across datasets. We also propose a novel architecture that adaptively and probabilistically fuses depths estimated via object size and vertical image position cues. A comprehensive evaluation demonstrates the effectiveness of the proposed approach on five autonomous driving datasets, achieving accurate metric depth estimation for varying resolutions, aspect ratios and camera setups. Notably, we achieve comparable accuracy to existing zero-shot methods, despite training on a single dataset with a single-camera setup.
MonoTAKD: Teaching Assistant Knowledge Distillation for Monocular 3D Object Detection
Monocular 3D object detection (Mono3D) holds noteworthy promise for autonomous driving applications owing to the cost-effectiveness and rich visual context of monocular camera sensors. However, depth ambiguity poses a significant challenge, as it requires extracting precise 3D scene geometry from a single image, resulting in suboptimal performance when transferring knowledge from a LiDAR-based teacher model to a camera-based student model. To address this issue, we introduce {\em Monocular Teaching Assistant Knowledge Distillation (MonoTAKD)} to enhance 3D perception in Mono3D. Our approach presents a robust camera-based teaching assistant model that effectively bridges the representation gap between different modalities for teacher and student models, addressing the challenge of inaccurate depth estimation. By defining 3D spatial cues as residual features that capture the differences between the teacher and the teaching assistant models, we leverage these cues into the student model, improving its 3D perception capabilities. Experimental results show that our MonoTAKD achieves state-of-the-art performance on the KITTI3D dataset. Additionally, we evaluate the performance on nuScenes and KITTI raw datasets to demonstrate the generalization of our model to multi-view 3D and unsupervised data settings. Our code will be available at https://github.com/hoiliu-0801/MonoTAKD.
Unsupervised Object Localization with Representer Point Selection
We propose a novel unsupervised object localization method that allows us to explain the predictions of the model by utilizing self-supervised pre-trained models without additional finetuning. Existing unsupervised and self-supervised object localization methods often utilize class-agnostic activation maps or self-similarity maps of a pre-trained model. Although these maps can offer valuable information for localization, their limited ability to explain how the model makes predictions remains challenging. In this paper, we propose a simple yet effective unsupervised object localization method based on representer point selection, where the predictions of the model can be represented as a linear combination of representer values of training points. By selecting representer points, which are the most important examples for the model predictions, our model can provide insights into how the model predicts the foreground object by providing relevant examples as well as their importance. Our method outperforms the state-of-the-art unsupervised and self-supervised object localization methods on various datasets with significant margins and even outperforms recent weakly supervised and few-shot methods.
IAM: Enhancing RGB-D Instance Segmentation with New Benchmarks
Image segmentation is a vital task for providing human assistance and enhancing autonomy in our daily lives. In particular, RGB-D segmentation-leveraging both visual and depth cues-has attracted increasing attention as it promises richer scene understanding than RGB-only methods. However, most existing efforts have primarily focused on semantic segmentation and thus leave a critical gap. There is a relative scarcity of instance-level RGB-D segmentation datasets, which restricts current methods to broad category distinctions rather than fully capturing the fine-grained details required for recognizing individual objects. To bridge this gap, we introduce three RGB-D instance segmentation benchmarks, distinguished at the instance level. These datasets are versatile, supporting a wide range of applications from indoor navigation to robotic manipulation. In addition, we present an extensive evaluation of various baseline models on these benchmarks. This comprehensive analysis identifies both their strengths and shortcomings, guiding future work toward more robust, generalizable solutions. Finally, we propose a simple yet effective method for RGB-D data integration. Extensive evaluations affirm the effectiveness of our approach, offering a robust framework for advancing toward more nuanced scene understanding.