Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeBinary and Multitask Classification Model for Dutch Anaphora Resolution: Die/Dat Prediction
The correct use of Dutch pronouns 'die' and 'dat' is a stumbling block for both native and non-native speakers of Dutch due to the multiplicity of syntactic functions and the dependency on the antecedent's gender and number. Drawing on previous research conducted on neural context-dependent dt-mistake correction models (Heyman et al. 2018), this study constructs the first neural network model for Dutch demonstrative and relative pronoun resolution that specifically focuses on the correction and part-of-speech prediction of these two pronouns. Two separate datasets are built with sentences obtained from, respectively, the Dutch Europarl corpus (Koehn 2015) - which contains the proceedings of the European Parliament from 1996 to the present - and the SoNaR corpus (Oostdijk et al. 2013) - which contains Dutch texts from a variety of domains such as newspapers, blogs and legal texts. Firstly, a binary classification model solely predicts the correct 'die' or 'dat'. The classifier with a bidirectional long short-term memory architecture achieves 84.56% accuracy. Secondly, a multitask classification model simultaneously predicts the correct 'die' or 'dat' and its part-of-speech tag. The model containing a combination of a sentence and context encoder with both a bidirectional long short-term memory architecture results in 88.63% accuracy for die/dat prediction and 87.73% accuracy for part-of-speech prediction. More evenly-balanced data, larger word embeddings, an extra bidirectional long short-term memory layer and integrated part-of-speech knowledge positively affects die/dat prediction performance, while a context encoder architecture raises part-of-speech prediction performance. This study shows promising results and can serve as a starting point for future research on machine learning models for Dutch anaphora resolution.
UNIC: Universal Classification Models via Multi-teacher Distillation
Pretrained models have become a commodity and offer strong results on a broad range of tasks. In this work, we focus on classification and seek to learn a unique encoder able to take from several complementary pretrained models. We aim at even stronger generalization across a variety of classification tasks. We propose to learn such an encoder via multi-teacher distillation. We first thoroughly analyse standard distillation when driven by multiple strong teachers with complementary strengths. Guided by this analysis, we gradually propose improvements to the basic distillation setup. Among those, we enrich the architecture of the encoder with a ladder of expendable projectors, which increases the impact of intermediate features during distillation, and we introduce teacher dropping, a regularization mechanism that better balances the teachers' influence. Our final distillation strategy leads to student models of the same capacity as any of the teachers, while retaining or improving upon the performance of the best teacher for each task. Project page and code: https://europe.naverlabs.com/unic
Can Score-Based Generative Modeling Effectively Handle Medical Image Classification?
The remarkable success of deep learning in recent years has prompted applications in medical image classification and diagnosis tasks. While classification models have demonstrated robustness in classifying simpler datasets like MNIST or natural images such as ImageNet, this resilience is not consistently observed in complex medical image datasets where data is more scarce and lacks diversity. Moreover, previous findings on natural image datasets have indicated a potential trade-off between data likelihood and classification accuracy. In this study, we explore the use of score-based generative models as classifiers for medical images, specifically mammographic images. Our findings suggest that our proposed generative classifier model not only achieves superior classification results on CBIS-DDSM, INbreast and Vin-Dr Mammo datasets, but also introduces a novel approach to image classification in a broader context. Our code is publicly available at https://github.com/sushmitasarker/sgc_for_medical_image_classification
Lightweight Fish Classification Model for Sustainable Marine Management: Indonesian Case
The enormous demand for seafood products has led to exploitation of marine resources and near-extinction of some species. In particular, overfishing is one the main issues in sustainable marine development. In alignment with the protection of marine resources and sustainable fishing, this study proposes to advance fish classification techniques that support identifying protected fish species using state-of-the-art machine learning. We use a custom modification of the MobileNet model to design a lightweight classifier called M-MobileNet that is capable of running on limited hardware. As part of the study, we compiled a labeled dataset of 37,462 images of fish found in the waters of the Indonesian archipelago. The proposed model is trained on the dataset to classify images of the captured fish into their species and give recommendations on whether they are consumable or not. Our modified MobileNet model uses only 50\% of the top layer parameters with about 42% GTX 860M utility and achieves up to 97% accuracy in fish classification and determining its consumability. Given the limited computing capacity available on many fishing vessels, the proposed model provides a practical solution to on-site fish classification. In addition, synchronized implementation of the proposed model on multiple vessels can supply valuable information about the movement and location of different species of fish.
Model Calibration in Dense Classification with Adaptive Label Perturbation
For safety-related applications, it is crucial to produce trustworthy deep neural networks whose prediction is associated with confidence that can represent the likelihood of correctness for subsequent decision-making. Existing dense binary classification models are prone to being over-confident. To improve model calibration, we propose Adaptive Stochastic Label Perturbation (ASLP) which learns a unique label perturbation level for each training image. ASLP employs our proposed Self-Calibrating Binary Cross Entropy (SC-BCE) loss, which unifies label perturbation processes including stochastic approaches (like DisturbLabel), and label smoothing, to correct calibration while maintaining classification rates. ASLP follows Maximum Entropy Inference of classic statistical mechanics to maximise prediction entropy with respect to missing information. It performs this while: (1) preserving classification accuracy on known data as a conservative solution, or (2) specifically improves model calibration degree by minimising the gap between the prediction accuracy and expected confidence of the target training label. Extensive results demonstrate that ASLP can significantly improve calibration degrees of dense binary classification models on both in-distribution and out-of-distribution data. The code is available on https://github.com/Carlisle-Liu/ASLP.
Adversarial Attacks on Image Classification Models: Analysis and Defense
The notion of adversarial attacks on image classification models based on convolutional neural networks (CNN) is introduced in this work. To classify images, deep learning models called CNNs are frequently used. However, when the networks are subject to adversarial attacks, extremely potent and previously trained CNN models that perform quite effectively on image datasets for image classification tasks may perform poorly. In this work, one well-known adversarial attack known as the fast gradient sign method (FGSM) is explored and its adverse effects on the performances of image classification models are examined. The FGSM attack is simulated on three pre-trained image classifier CNN architectures, ResNet-101, AlexNet, and RegNetY 400MF using randomly chosen images from the ImageNet dataset. The classification accuracies of the models are computed in the absence and presence of the attack to demonstrate the detrimental effect of the attack on the performances of the classifiers. Finally, a mechanism is proposed to defend against the FGSM attack based on a modified defensive distillation-based approach. Extensive results are presented for the validation of the proposed scheme.
Adversarial Attacks on Image Classification Models: FGSM and Patch Attacks and their Impact
This chapter introduces the concept of adversarial attacks on image classification models built on convolutional neural networks (CNN). CNNs are very popular deep-learning models which are used in image classification tasks. However, very powerful and pre-trained CNN models working very accurately on image datasets for image classification tasks may perform disastrously when the networks are under adversarial attacks. In this work, two very well-known adversarial attacks are discussed and their impact on the performance of image classifiers is analyzed. These two adversarial attacks are the fast gradient sign method (FGSM) and adversarial patch attack. These attacks are launched on three powerful pre-trained image classifier architectures, ResNet-34, GoogleNet, and DenseNet-161. The classification accuracy of the models in the absence and presence of the two attacks are computed on images from the publicly accessible ImageNet dataset. The results are analyzed to evaluate the impact of the attacks on the image classification task.
Weakly-supervised segmentation using inherently-explainable classification models and their application to brain tumour classification
Deep learning models have shown their potential for several applications. However, most of the models are opaque and difficult to trust due to their complex reasoning - commonly known as the black-box problem. Some fields, such as medicine, require a high degree of transparency to accept and adopt such technologies. Consequently, creating explainable/interpretable models or applying post-hoc methods on classifiers to build trust in deep learning models are required. Moreover, deep learning methods can be used for segmentation tasks, which typically require hard-to-obtain, time-consuming manually-annotated segmentation labels for training. This paper introduces three inherently-explainable classifiers to tackle both of these problems as one. The localisation heatmaps provided by the networks -- representing the models' focus areas and being used in classification decision-making -- can be directly interpreted, without requiring any post-hoc methods to derive information for model explanation. The models are trained by using the input image and only the classification labels as ground-truth in a supervised fashion - without using any information about the location of the region of interest (i.e. the segmentation labels), making the segmentation training of the models weakly-supervised through classification labels. The final segmentation is obtained by thresholding these heatmaps. The models were employed for the task of multi-class brain tumour classification using two different datasets, resulting in the best F1-score of 0.93 for the supervised classification task while securing a median Dice score of 0.67pm0.08 for the weakly-supervised segmentation task. Furthermore, the obtained accuracy on a subset of tumour-only images outperformed the state-of-the-art glioma tumour grading binary classifiers with the best model achieving 98.7\% accuracy.
FastText.zip: Compressing text classification models
We consider the problem of producing compact architectures for text classification, such that the full model fits in a limited amount of memory. After considering different solutions inspired by the hashing literature, we propose a method built upon product quantization to store word embeddings. While the original technique leads to a loss in accuracy, we adapt this method to circumvent quantization artefacts. Our experiments carried out on several benchmarks show that our approach typically requires two orders of magnitude less memory than fastText while being only slightly inferior with respect to accuracy. As a result, it outperforms the state of the art by a good margin in terms of the compromise between memory usage and accuracy.
An efficient unsupervised classification model for galaxy morphology: Voting clustering based on coding from ConvNeXt large model
In this work, we update the unsupervised machine learning (UML) step by proposing an algorithm based on ConvNeXt large model coding to improve the efficiency of unlabeled galaxy morphology classifications. The method can be summarized into three key aspects as follows: (1) a convolutional autoencoder is used for image denoising and reconstruction and the rotational invariance of the model is improved by polar coordinate extension; (2) utilizing a pre-trained convolutional neural network (CNN) named ConvNeXt for encoding the image data. The features were further compressed via a principal component analysis (PCA) dimensionality reduction; (3) adopting a bagging-based multi-model voting classification algorithm to enhance robustness. We applied this model to I-band images of a galaxy sample with I_{rm mag}< 25 in the COSMOS field. Compared to the original unsupervised method, the number of clustering groups required by the new method is reduced from 100 to 20. Finally, we managed to classify about 53\% galaxies, significantly improving the classification efficiency. To verify the validity of the morphological classification, we selected massive galaxies with M(*)>10^{10}(M(sun)) for morphological parameter tests. The corresponding rules between the classification results and the physical properties of galaxies on multiple parameter surfaces are consistent with the existing evolution model. Our method has demonstrated the feasibility of using large model encoding to classify galaxy morphology, which not only improves the efficiency of galaxy morphology classification, but also saves time and manpower. Furthermore, in comparison to the original UML model, the enhanced classification performance is more evident in qualitative analysis and has successfully surpassed a greater number of parameter tests.
Explaining Speech Classification Models via Word-Level Audio Segments and Paralinguistic Features
Recent advances in eXplainable AI (XAI) have provided new insights into how models for vision, language, and tabular data operate. However, few approaches exist for understanding speech models. Existing work focuses on a few spoken language understanding (SLU) tasks, and explanations are difficult to interpret for most users. We introduce a new approach to explain speech classification models. We generate easy-to-interpret explanations via input perturbation on two information levels. 1) Word-level explanations reveal how each word-related audio segment impacts the outcome. 2) Paralinguistic features (e.g., prosody and background noise) answer the counterfactual: ``What would the model prediction be if we edited the audio signal in this way?'' We validate our approach by explaining two state-of-the-art SLU models on two speech classification tasks in English and Italian. Our findings demonstrate that the explanations are faithful to the model's inner workings and plausible to humans. Our method and findings pave the way for future research on interpreting speech models.
Modeling Collaborator: Enabling Subjective Vision Classification With Minimal Human Effort via LLM Tool-Use
From content moderation to wildlife conservation, the number of applications that require models to recognize nuanced or subjective visual concepts is growing. Traditionally, developing classifiers for such concepts requires substantial manual effort measured in hours, days, or even months to identify and annotate data needed for training. Even with recently proposed Agile Modeling techniques, which enable rapid bootstrapping of image classifiers, users are still required to spend 30 minutes or more of monotonous, repetitive data labeling just to train a single classifier. Drawing on Fiske's Cognitive Miser theory, we propose a new framework that alleviates manual effort by replacing human labeling with natural language interactions, reducing the total effort required to define a concept by an order of magnitude: from labeling 2,000 images to only 100 plus some natural language interactions. Our framework leverages recent advances in foundation models, both large language models and vision-language models, to carve out the concept space through conversation and by automatically labeling training data points. Most importantly, our framework eliminates the need for crowd-sourced annotations. Moreover, our framework ultimately produces lightweight classification models that are deployable in cost-sensitive scenarios. Across 15 subjective concepts and across 2 public image classification datasets, our trained models outperform traditional Agile Modeling as well as state-of-the-art zero-shot classification models like ALIGN, CLIP, CuPL, and large visual question-answering models like PaLI-X.
Open Vocabulary Extreme Classification Using Generative Models
The extreme multi-label classification (XMC) task aims at tagging content with a subset of labels from an extremely large label set. The label vocabulary is typically defined in advance by domain experts and assumed to capture all necessary tags. However in real world scenarios this label set, although large, is often incomplete and experts frequently need to refine it. To develop systems that simplify this process, we introduce the task of open vocabulary XMC (OXMC): given a piece of content, predict a set of labels, some of which may be outside of the known tag set. Hence, in addition to not having training data for some labels - as is the case in zero-shot classification - models need to invent some labels on-the-fly. We propose GROOV, a fine-tuned seq2seq model for OXMC that generates the set of labels as a flat sequence and is trained using a novel loss independent of predicted label order. We show the efficacy of the approach, experimenting with popular XMC datasets for which GROOV is able to predict meaningful labels outside the given vocabulary while performing on par with state-of-the-art solutions for known labels.
Development of a Large-scale Dataset of Chest Computed Tomography Reports in Japanese and a High-performance Finding Classification Model
Background: Recent advances in large language models highlight the need for high-quality multilingual medical datasets. While Japan leads globally in CT scanner deployment and utilization, the lack of large-scale Japanese radiology datasets has hindered the development of specialized language models for medical imaging analysis. Objective: To develop a comprehensive Japanese CT report dataset through machine translation and establish a specialized language model for structured finding classification. Additionally, to create a rigorously validated evaluation dataset through expert radiologist review. Methods: We translated the CT-RATE dataset (24,283 CT reports from 21,304 patients) into Japanese using GPT-4o mini. The training dataset consisted of 22,778 machine-translated reports, while the validation dataset included 150 radiologist-revised reports. We developed CT-BERT-JPN based on "tohoku-nlp/bert-base-japanese-v3" architecture for extracting 18 structured findings from Japanese radiology reports. Results: Translation metrics showed strong performance with BLEU scores of 0.731 and 0.690, and ROUGE scores ranging from 0.770 to 0.876 for Findings and from 0.748 to 0.857 for Impression sections. CT-BERT-JPN demonstrated superior performance compared to GPT-4o in 11 out of 18 conditions, including lymphadenopathy (+14.2%), interlobular septal thickening (+10.9%), and atelectasis (+7.4%). The model maintained F1 scores exceeding 0.95 in 14 out of 18 conditions and achieved perfect scores in four conditions. Conclusions: Our study establishes a robust Japanese CT report dataset and demonstrates the effectiveness of a specialized language model for structured finding classification. The hybrid approach of machine translation and expert validation enables the creation of large-scale medical datasets while maintaining high quality.
ResumeAtlas: Revisiting Resume Classification with Large-Scale Datasets and Large Language Models
The increasing reliance on online recruitment platforms coupled with the adoption of AI technologies has highlighted the critical need for efficient resume classification methods. However, challenges such as small datasets, lack of standardized resume templates, and privacy concerns hinder the accuracy and effectiveness of existing classification models. In this work, we address these challenges by presenting a comprehensive approach to resume classification. We curated a large-scale dataset of 13,389 resumes from diverse sources and employed Large Language Models (LLMs) such as BERT and Gemma1.1 2B for classification. Our results demonstrate significant improvements over traditional machine learning approaches, with our best model achieving a top-1 accuracy of 92\% and a top-5 accuracy of 97.5\%. These findings underscore the importance of dataset quality and advanced model architectures in enhancing the accuracy and robustness of resume classification systems, thus advancing the field of online recruitment practices.
Why are Visually-Grounded Language Models Bad at Image Classification?
Image classification is one of the most fundamental capabilities of machine vision intelligence. In this work, we revisit the image classification task using visually-grounded language models (VLMs) such as GPT-4V and LLaVA. We find that existing proprietary and public VLMs, despite often using CLIP as a vision encoder and having many more parameters, significantly underperform CLIP on standard image classification benchmarks like ImageNet. To understand the reason, we explore several hypotheses concerning the inference algorithms, training objectives, and data processing in VLMs. Our analysis reveals that the primary cause is data-related: critical information for image classification is encoded in the VLM's latent space but can only be effectively decoded with enough training data. Specifically, there is a strong correlation between the frequency of class exposure during VLM training and instruction-tuning and the VLM's performance in those classes; when trained with sufficient data, VLMs can match the accuracy of state-of-the-art classification models. Based on these findings, we enhance a VLM by integrating classification-focused datasets into its training, and demonstrate that the enhanced classification performance of the VLM transfers to its general capabilities, resulting in an improvement of 11.8% on the newly collected ImageWikiQA dataset.
Evaluating Large Language Models for Health-Related Text Classification Tasks with Public Social Media Data
Large language models (LLMs) have demonstrated remarkable success in NLP tasks. However, there is a paucity of studies that attempt to evaluate their performances on social media-based health-related natural language processing tasks, which have traditionally been difficult to achieve high scores in. We benchmarked one supervised classic machine learning model based on Support Vector Machines (SVMs), three supervised pretrained language models (PLMs) based on RoBERTa, BERTweet, and SocBERT, and two LLM based classifiers (GPT3.5 and GPT4), across 6 text classification tasks. We developed three approaches for leveraging LLMs for text classification: employing LLMs as zero-shot classifiers, us-ing LLMs as annotators to annotate training data for supervised classifiers, and utilizing LLMs with few-shot examples for augmentation of manually annotated data. Our comprehensive experiments demonstrate that employ-ing data augmentation using LLMs (GPT-4) with relatively small human-annotated data to train lightweight supervised classification models achieves superior results compared to training with human-annotated data alone. Supervised learners also outperform GPT-4 and GPT-3.5 in zero-shot settings. By leveraging this data augmentation strategy, we can harness the power of LLMs to develop smaller, more effective domain-specific NLP models. LLM-annotated data without human guidance for training light-weight supervised classification models is an ineffective strategy. However, LLM, as a zero-shot classifier, shows promise in excluding false negatives and potentially reducing the human effort required for data annotation. Future investigations are imperative to explore optimal training data sizes and the optimal amounts of augmented data.
PETGEN: Personalized Text Generation Attack on Deep Sequence Embedding-based Classification Models
What should a malicious user write next to fool a detection model? Identifying malicious users is critical to ensure the safety and integrity of internet platforms. Several deep learning-based detection models have been created. However, malicious users can evade deep detection models by manipulating their behavior, rendering these models of little use. The vulnerability of such deep detection models against adversarial attacks is unknown. Here we create a novel adversarial attack model against deep user sequence embedding based classification models, which use the sequence of user posts to generate user embeddings and detect malicious users. In the attack, the adversary generates a new post to fool the classifier. We propose a novel end-to-end Personalized Text Generation Attack model, called PETGEN, that simultaneously reduces the efficacy of the detection model and generates posts that have several key desirable properties. Specifically, PETGEN generates posts that are personalized to the user's writing style, have knowledge about a given target context, are aware of the user's historical posts on the target context, and encapsulate the user's recent topical interests. We conduct extensive experiments on two real-world datasets (Yelp and Wikipedia, both with ground-truth of malicious users) to show that PETGEN significantly reduces the performance of popular deep user sequence embedding-based classification models. PETGEN outperforms five attack baselines in terms of text quality and attack efficacy in both white-box and black-box classifier settings. Overall, this work paves the path towards the next generation of adversary-aware sequence classification models.
Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
This paper addresses the visualisation of image classification models, learnt using deep Convolutional Networks (ConvNets). We consider two visualisation techniques, based on computing the gradient of the class score with respect to the input image. The first one generates an image, which maximises the class score [Erhan et al., 2009], thus visualising the notion of the class, captured by a ConvNet. The second technique computes a class saliency map, specific to a given image and class. We show that such maps can be employed for weakly supervised object segmentation using classification ConvNets. Finally, we establish the connection between the gradient-based ConvNet visualisation methods and deconvolutional networks [Zeiler et al., 2013].
One for All: Towards Training One Graph Model for All Classification Tasks
Designing a single model to address multiple tasks has been a long-standing objective in artificial intelligence. Recently, large language models have demonstrated exceptional capability in solving different tasks within the language domain. However, a unified model for various graph tasks remains underexplored, primarily due to the challenges unique to the graph learning domain. First, graph data from different areas carry distinct attributes and follow different distributions. Such discrepancy makes it hard to represent graphs in a single representation space. Second, tasks on graphs diversify into node, link, and graph tasks, requiring distinct embedding strategies. Finally, an appropriate graph prompting paradigm for in-context learning is unclear. We propose One for All (OFA), the first general framework that can use a single graph model to address the above challenges. Specifically, OFA proposes text-attributed graphs to unify different graph data by describing nodes and edges with natural language and uses language models to encode the diverse and possibly cross-domain text attributes to feature vectors in the same embedding space. Furthermore, OFA introduces the concept of nodes-of-interest to standardize different tasks with a single task representation. For in-context learning on graphs, OFA introduces a novel graph prompting paradigm that appends prompting substructures to the input graph, which enables it to address varied tasks without fine-tuning. We train the OFA model using graph data from multiple domains (including citation networks, molecular graphs, knowledge graphs, etc.) simultaneously and evaluate its ability in supervised, few-shot, and zero-shot learning scenarios. OFA performs well across different tasks, making it the first general-purpose across-domains classification model on graphs.
Synthetic Data Generation with Large Language Models for Text Classification: Potential and Limitations
The collection and curation of high-quality training data is crucial for developing text classification models with superior performance, but it is often associated with significant costs and time investment. Researchers have recently explored using large language models (LLMs) to generate synthetic datasets as an alternative approach. However, the effectiveness of the LLM-generated synthetic data in supporting model training is inconsistent across different classification tasks. To better understand factors that moderate the effectiveness of the LLM-generated synthetic data, in this study, we look into how the performance of models trained on these synthetic data may vary with the subjectivity of classification. Our results indicate that subjectivity, at both the task level and instance level, is negatively associated with the performance of the model trained on synthetic data. We conclude by discussing the implications of our work on the potential and limitations of leveraging LLM for synthetic data generation.
A Modified Word Saliency-Based Adversarial Attack on Text Classification Models
This paper introduces a novel adversarial attack method targeting text classification models, termed the Modified Word Saliency-based Adversarial At-tack (MWSAA). The technique builds upon the concept of word saliency to strategically perturb input texts, aiming to mislead classification models while preserving semantic coherence. By refining the traditional adversarial attack approach, MWSAA significantly enhances its efficacy in evading detection by classification systems. The methodology involves first identifying salient words in the input text through a saliency estimation process, which prioritizes words most influential to the model's decision-making process. Subsequently, these salient words are subjected to carefully crafted modifications, guided by semantic similarity metrics to ensure that the altered text remains coherent and retains its original meaning. Empirical evaluations conducted on diverse text classification datasets demonstrate the effectiveness of the proposed method in generating adversarial examples capable of successfully deceiving state-of-the-art classification models. Comparative analyses with existing adversarial attack techniques further indicate the superiority of the proposed approach in terms of both attack success rate and preservation of text coherence.
From Modern CNNs to Vision Transformers: Assessing the Performance, Robustness, and Classification Strategies of Deep Learning Models in Histopathology
While machine learning is currently transforming the field of histopathology, the domain lacks a comprehensive evaluation of state-of-the-art models based on essential but complementary quality requirements beyond a mere classification accuracy. In order to fill this gap, we developed a new methodology to extensively evaluate a wide range of classification models, including recent vision transformers, and convolutional neural networks such as: ConvNeXt, ResNet (BiT), Inception, ViT and Swin transformer, with and without supervised or self-supervised pretraining. We thoroughly tested the models on five widely used histopathology datasets containing whole slide images of breast, gastric, and colorectal cancer and developed a novel approach using an image-to-image translation model to assess the robustness of a cancer classification model against stain variations. Further, we extended existing interpretability methods to previously unstudied models and systematically reveal insights of the models' classifications strategies that can be transferred to future model architectures.
Improve Machine Learning carbon footprint using Nvidia GPU and Mixed Precision training for classification models -- Part I
This is the 1st part of the dissertation for my master degree and compares the power consumption using the default floating point (32bit) and Nvidia mixed precision (16bit and 32bit) while training a classification ML model. A custom PC with specific hardware was built to perform the experiments, and different ML hyper-parameters, such as batch size, neurons, and epochs, were chosen to build Deep Neural Networks (DNN). Additionally, various software was used during the experiments to collect the power consumption data in Watts from the Graphics Processing Unit (GPU), Central Processing Unit (CPU), Random Access Memory (RAM) and manually from a wattmeter connected to the wall. A benchmarking test with default hyper parameter values for the DNN was used as a reference, while the experiments used a combination of different settings. The results were recorded in Excel, and descriptive statistics were chosen to calculate the mean between the groups and compare them using graphs and tables. The outcome was positive when using mixed precision combined with specific hyper-parameters. Compared to the benchmarking, the optimisation for the classification reduced the power consumption between 7 and 11 Watts. Similarly, the carbon footprint is reduced because the calculation uses the same power consumption data. Still, a consideration is required when configuring hyper-parameters because it can negatively affect hardware performance. However, this research required inferential statistics, specifically ANOVA and T-test, to compare the relationship between the means. Furthermore, tests indicated no statistical significance of the relationship between the benchmarking and experiments. However, a more extensive implementation with a cluster of GPUs can increase the sample size significantly, as it is an essential factor and can change the outcome of the statistical analysis.
A Survey on Cost Types, Interaction Schemes, and Annotator Performance Models in Selection Algorithms for Active Learning in Classification
Pool-based active learning (AL) aims to optimize the annotation process (i.e., labeling) as the acquisition of annotations is often time-consuming and therefore expensive. For this purpose, an AL strategy queries annotations intelligently from annotators to train a high-performance classification model at a low annotation cost. Traditional AL strategies operate in an idealized framework. They assume a single, omniscient annotator who never gets tired and charges uniformly regardless of query difficulty. However, in real-world applications, we often face human annotators, e.g., crowd or in-house workers, who make annotation mistakes and can be reluctant to respond if tired or faced with complex queries. Recently, a wide range of novel AL strategies has been proposed to address these issues. They differ in at least one of the following three central aspects from traditional AL: (1) They explicitly consider (multiple) human annotators whose performances can be affected by various factors, such as missing expertise. (2) They generalize the interaction with human annotators by considering different query and annotation types, such as asking an annotator for feedback on an inferred classification rule. (3) They take more complex cost schemes regarding annotations and misclassifications into account. This survey provides an overview of these AL strategies and refers to them as real-world AL. Therefore, we introduce a general real-world AL strategy as part of a learning cycle and use its elements, e.g., the query and annotator selection algorithm, to categorize about 60 real-world AL strategies. Finally, we outline possible directions for future research in the field of AL.
Why only Micro-F1? Class Weighting of Measures for Relation Classification
Relation classification models are conventionally evaluated using only a single measure, e.g., micro-F1, macro-F1 or AUC. In this work, we analyze weighting schemes, such as micro and macro, for imbalanced datasets. We introduce a framework for weighting schemes, where existing schemes are extremes, and two new intermediate schemes. We show that reporting results of different weighting schemes better highlights strengths and weaknesses of a model.
A Model or 603 Exemplars: Towards Memory-Efficient Class-Incremental Learning
Real-world applications require the classification model to adapt to new classes without forgetting old ones. Correspondingly, Class-Incremental Learning (CIL) aims to train a model with limited memory size to meet this requirement. Typical CIL methods tend to save representative exemplars from former classes to resist forgetting, while recent works find that storing models from history can substantially boost the performance. However, the stored models are not counted into the memory budget, which implicitly results in unfair comparisons. We find that when counting the model size into the total budget and comparing methods with aligned memory size, saving models do not consistently work, especially for the case with limited memory budgets. As a result, we need to holistically evaluate different CIL methods at different memory scales and simultaneously consider accuracy and memory size for measurement. On the other hand, we dive deeply into the construction of the memory buffer for memory efficiency. By analyzing the effect of different layers in the network, we find that shallow and deep layers have different characteristics in CIL. Motivated by this, we propose a simple yet effective baseline, denoted as MEMO for Memory-efficient Expandable MOdel. MEMO extends specialized layers based on the shared generalized representations, efficiently extracting diverse representations with modest cost and maintaining representative exemplars. Extensive experiments on benchmark datasets validate MEMO's competitive performance. Code is available at: https://github.com/wangkiw/ICLR23-MEMO
Underwater SONAR Image Classification and Analysis using LIME-based Explainable Artificial Intelligence
Deep learning techniques have revolutionized image classification by mimicking human cognition and automating complex decision-making processes. However, the deployment of AI systems in the wild, especially in high-security domains such as defence, is curbed by the lack of explainability of the model. To this end, eXplainable AI (XAI) is an emerging area of research that is intended to explore the unexplained hidden black box nature of deep neural networks. This paper explores the application of the eXplainable Artificial Intelligence (XAI) tool to interpret the underwater image classification results, one of the first works in the domain to the best of our knowledge. Our study delves into the realm of SONAR image classification using a custom dataset derived from diverse sources, including the Seabed Objects KLSG dataset, the camera SONAR dataset, the mine SONAR images dataset, and the SCTD dataset. An extensive analysis of transfer learning techniques for image classification using benchmark Convolutional Neural Network (CNN) architectures such as VGG16, ResNet50, InceptionV3, DenseNet121, etc. is carried out. On top of this classification model, a post-hoc XAI technique, viz. Local Interpretable Model-Agnostic Explanations (LIME) are incorporated to provide transparent justifications for the model's decisions by perturbing input data locally to see how predictions change. Furthermore, Submodular Picks LIME (SP-LIME) a version of LIME particular to images, that perturbs the image based on the submodular picks is also extensively studied. To this end, two submodular optimization algorithms i.e. Quickshift and Simple Linear Iterative Clustering (SLIC) are leveraged towards submodular picks. The extensive analysis of XAI techniques highlights interpretability of the results in a more human-compliant way, thus boosting our confidence and reliability.
A Blackbox Model Is All You Need to Breach Privacy: Smart Grid Forecasting Models as a Use Case
This paper investigates the potential privacy risks associated with forecasting models, with specific emphasis on their application in the context of smart grids. While machine learning and deep learning algorithms offer valuable utility, concerns arise regarding their exposure of sensitive information. Previous studies have focused on classification models, overlooking risks associated with forecasting models. Deep learning based forecasting models, such as Long Short Term Memory (LSTM), play a crucial role in several applications including optimizing smart grid systems but also introduce privacy risks. Our study analyzes the ability of forecasting models to leak global properties and privacy threats in smart grid systems. We demonstrate that a black box access to an LSTM model can reveal a significant amount of information equivalent to having access to the data itself (with the difference being as low as 1% in Area Under the ROC Curve). This highlights the importance of protecting forecasting models at the same level as the data.
LS-Tree: Model Interpretation When the Data Are Linguistic
We study the problem of interpreting trained classification models in the setting of linguistic data sets. Leveraging a parse tree, we propose to assign least-squares based importance scores to each word of an instance by exploiting syntactic constituency structure. We establish an axiomatic characterization of these importance scores by relating them to the Banzhaf value in coalitional game theory. Based on these importance scores, we develop a principled method for detecting and quantifying interactions between words in a sentence. We demonstrate that the proposed method can aid in interpretability and diagnostics for several widely-used language models.
An Automatic SOAP Classification System Using Weakly Supervision And Transfer Learning
In this paper, we introduce a comprehensive framework for developing a machine learning-based SOAP (Subjective, Objective, Assessment, and Plan) classification system without manually SOAP annotated training data or with less manually SOAP annotated training data. The system is composed of the following two parts: 1) Data construction, 2) A neural network-based SOAP classifier, and 3) Transfer learning framework. In data construction, since a manual construction of a large size training dataset is expensive, we propose a rule-based weak labeling method utilizing the structured information of an EHR note. Then, we present a SOAP classifier composed of a pre-trained language model and bi-directional long-short term memory with conditional random field (Bi-LSTM-CRF). Finally, we propose a transfer learning framework that re-uses the trained parameters of the SOAP classifier trained with the weakly labeled dataset for datasets collected from another hospital. The proposed weakly label-based learning model successfully performed SOAP classification (89.99 F1-score) on the notes collected from the target hospital. Otherwise, in the notes collected from other hospitals and departments, the performance dramatically decreased. Meanwhile, we verified that the transfer learning framework is advantageous for inter-hospital adaptation of the model increasing the models' performance in every cases. In particular, the transfer learning approach was more efficient when the manually annotated data size was smaller. We showed that SOAP classification models trained with our weakly labeling algorithm can perform SOAP classification without manually annotated data on the EHR notes from the same hospital. The transfer learning framework helps SOAP classification model's inter-hospital migration with a minimal size of the manually annotated dataset.
Addressing contingency in algorithmic (mis)information classification: Toward a responsible machine learning agenda
Machine learning (ML) enabled classification models are becoming increasingly popular for tackling the sheer volume and speed of online misinformation and other content that could be identified as harmful. In building these models, data scientists need to take a stance on the legitimacy, authoritativeness and objectivity of the sources of ``truth" used for model training and testing. This has political, ethical and epistemic implications which are rarely addressed in technical papers. Despite (and due to) their reported high accuracy and performance, ML-driven moderation systems have the potential to shape online public debate and create downstream negative impacts such as undue censorship and the reinforcing of false beliefs. Using collaborative ethnography and theoretical insights from social studies of science and expertise, we offer a critical analysis of the process of building ML models for (mis)information classification: we identify a series of algorithmic contingencies--key moments during model development that could lead to different future outcomes, uncertainty and harmful effects as these tools are deployed by social media platforms. We conclude by offering a tentative path toward reflexive and responsible development of ML tools for moderating misinformation and other harmful content online.
What does a platypus look like? Generating customized prompts for zero-shot image classification
Open-vocabulary models are a promising new paradigm for image classification. Unlike traditional classification models, open-vocabulary models classify among any arbitrary set of categories specified with natural language during inference. This natural language, called "prompts", typically consists of a set of hand-written templates (e.g., "a photo of a {}") which are completed with each of the category names. This work introduces a simple method to generate higher accuracy prompts, without relying on any explicit knowledge of the task domain and with far fewer hand-constructed sentences. To achieve this, we combine open-vocabulary models with large language models (LLMs) to create Customized Prompts via Language models (CuPL, pronounced "couple"). In particular, we leverage the knowledge contained in LLMs in order to generate many descriptive sentences that contain important discriminating characteristics of the image categories. This allows the model to place a greater importance on these regions in the image when making predictions. We find that this straightforward and general approach improves accuracy on a range of zero-shot image classification benchmarks, including over one percentage point gain on ImageNet. Finally, this simple baseline requires no additional training and remains completely zero-shot. Code available at https://github.com/sarahpratt/CuPL.
Diffusion Models for Adversarial Purification
Adversarial purification refers to a class of defense methods that remove adversarial perturbations using a generative model. These methods do not make assumptions on the form of attack and the classification model, and thus can defend pre-existing classifiers against unseen threats. However, their performance currently falls behind adversarial training methods. In this work, we propose DiffPure that uses diffusion models for adversarial purification: Given an adversarial example, we first diffuse it with a small amount of noise following a forward diffusion process, and then recover the clean image through a reverse generative process. To evaluate our method against strong adaptive attacks in an efficient and scalable way, we propose to use the adjoint method to compute full gradients of the reverse generative process. Extensive experiments on three image datasets including CIFAR-10, ImageNet and CelebA-HQ with three classifier architectures including ResNet, WideResNet and ViT demonstrate that our method achieves the state-of-the-art results, outperforming current adversarial training and adversarial purification methods, often by a large margin. Project page: https://diffpure.github.io.
Captum: A unified and generic model interpretability library for PyTorch
In this paper we introduce a novel, unified, open-source model interpretability library for PyTorch [12]. The library contains generic implementations of a number of gradient and perturbation-based attribution algorithms, also known as feature, neuron and layer importance algorithms, as well as a set of evaluation metrics for these algorithms. It can be used for both classification and non-classification models including graph-structured models built on Neural Networks (NN). In this paper we give a high-level overview of supported attribution algorithms and show how to perform memory-efficient and scalable computations. We emphasize that the three main characteristics of the library are multimodality, extensibility and ease of use. Multimodality supports different modality of inputs such as image, text, audio or video. Extensibility allows adding new algorithms and features. The library is also designed for easy understanding and use. Besides, we also introduce an interactive visualization tool called Captum Insights that is built on top of Captum library and allows sample-based model debugging and visualization using feature importance metrics.
Multilingual Models for Check-Worthy Social Media Posts Detection
This work presents an extensive study of transformer-based NLP models for detection of social media posts that contain verifiable factual claims and harmful claims. The study covers various activities, including dataset collection, dataset pre-processing, architecture selection, setup of settings, model training (fine-tuning), model testing, and implementation. The study includes a comprehensive analysis of different models, with a special focus on multilingual models where the same model is capable of processing social media posts in both English and in low-resource languages such as Arabic, Bulgarian, Dutch, Polish, Czech, Slovak. The results obtained from the study were validated against state-of-the-art models, and the comparison demonstrated the robustness of the proposed models. The novelty of this work lies in the development of multi-label multilingual classification models that can simultaneously detect harmful posts and posts that contain verifiable factual claims in an efficient way.
Multi-class Multilingual Classification of Wikipedia Articles Using Extended Named Entity Tag Set
Wikipedia is a great source of general world knowledge which can guide NLP models better understand their motivation to make predictions. Structuring Wikipedia is the initial step towards this goal which can facilitate fine-grain classification of articles. In this work, we introduce the Shinra 5-Language Categorization Dataset (SHINRA-5LDS), a large multi-lingual and multi-labeled set of annotated Wikipedia articles in Japanese, English, French, German, and Farsi using Extended Named Entity (ENE) tag set. We evaluate the dataset using the best models provided for ENE label set classification and show that the currently available classification models struggle with large datasets using fine-grained tag sets.
Can this Model Also Recognize Dogs? Zero-Shot Model Search from Weights
With the increasing numbers of publicly available models, there are probably pretrained, online models for most tasks users require. However, current model search methods are rudimentary, essentially a text-based search in the documentation, thus users cannot find the relevant models. This paper presents ProbeLog, a method for retrieving classification models that can recognize a target concept, such as "Dog", without access to model metadata or training data. Differently from previous probing methods, ProbeLog computes a descriptor for each output dimension (logit) of each model, by observing its responses on a fixed set of inputs (probes). Our method supports both logit-based retrieval ("find more logits like this") and zero-shot, text-based retrieval ("find all logits corresponding to dogs"). As probing-based representations require multiple costly feedforward passes through the model, we develop a method, based on collaborative filtering, that reduces the cost of encoding repositories by 3x. We demonstrate that ProbeLog achieves high retrieval accuracy, both in real-world and fine-grained search tasks and is scalable to full-size repositories.
Foundation Model-oriented Robustness: Robust Image Model Evaluation with Pretrained Models
Machine learning has demonstrated remarkable performance over finite datasets, yet whether the scores over the fixed benchmarks can sufficiently indicate the model's performance in the real world is still in discussion. In reality, an ideal robust model will probably behave similarly to the oracle (e.g., the human users), thus a good evaluation protocol is probably to evaluate the models' behaviors in comparison to the oracle. In this paper, we introduce a new robustness measurement that directly measures the image classification model's performance compared with a surrogate oracle (i.e., a foundation model). Besides, we design a simple method that can accomplish the evaluation beyond the scope of the benchmarks. Our method extends the image datasets with new samples that are sufficiently perturbed to be distinct from the ones in the original sets, but are still bounded within the same image-label structure the original test image represents, constrained by a foundation model pretrained with a large amount of samples. As a result, our new method will offer us a new way to evaluate the models' robustness performance, free of limitations of fixed benchmarks or constrained perturbations, although scoped by the power of the oracle. In addition to the evaluation results, we also leverage our generated data to understand the behaviors of the model and our new evaluation strategies.
PerLTQA: A Personal Long-Term Memory Dataset for Memory Classification, Retrieval, and Synthesis in Question Answering
Long-term memory plays a critical role in personal interaction, considering long-term memory can better leverage world knowledge, historical information, and preferences in dialogues. Our research introduces PerLTQA, an innovative QA dataset that combines semantic and episodic memories, including world knowledge, profiles, social relationships, events, and dialogues. This dataset is collected to investigate the use of personalized memories, focusing on social interactions and events in the QA task. PerLTQA features two types of memory and a comprehensive benchmark of 8,593 questions for 30 characters, facilitating the exploration and application of personalized memories in Large Language Models (LLMs). Based on PerLTQA, we propose a novel framework for memory integration and generation, consisting of three main components: Memory Classification, Memory Retrieval, and Memory Synthesis. We evaluate this framework using five LLMs and three retrievers. Experimental results demonstrate that BERT-based classification models significantly outperform LLMs such as ChatGLM3 and ChatGPT in the memory classification task. Furthermore, our study highlights the importance of effective memory integration in the QA task.
Well-classified Examples are Underestimated in Classification with Deep Neural Networks
The conventional wisdom behind learning deep classification models is to focus on bad-classified examples and ignore well-classified examples that are far from the decision boundary. For instance, when training with cross-entropy loss, examples with higher likelihoods (i.e., well-classified examples) contribute smaller gradients in back-propagation. However, we theoretically show that this common practice hinders representation learning, energy optimization, and margin growth. To counteract this deficiency, we propose to reward well-classified examples with additive bonuses to revive their contribution to the learning process. This counterexample theoretically addresses these three issues. We empirically support this claim by directly verifying the theoretical results or significant performance improvement with our counterexample on diverse tasks, including image classification, graph classification, and machine translation. Furthermore, this paper shows that we can deal with complex scenarios, such as imbalanced classification, OOD detection, and applications under adversarial attacks because our idea can solve these three issues. Code is available at: https://github.com/lancopku/well-classified-examples-are-underestimated.
Leveraging Self-Supervised Learning for Scene Classification in Child Sexual Abuse Imagery
Crime in the 21st century is split into a virtual and real world. However, the former has become a global menace to people's well-being and security in the latter. The challenges it presents must be faced with unified global cooperation, and we must rely more than ever on automated yet trustworthy tools to combat the ever-growing nature of online offenses. Over 10 million child sexual abuse reports are submitted to the US National Center for Missing \& Exploited Children every year, and over 80% originate from online sources. Therefore, investigation centers cannot manually process and correctly investigate all imagery. In light of that, reliable automated tools that can securely and efficiently deal with this data are paramount. In this sense, the scene classification task looks for contextual cues in the environment, being able to group and classify child sexual abuse data without requiring to be trained on sensitive material. The scarcity and limitations of working with child sexual abuse images lead to self-supervised learning, a machine-learning methodology that leverages unlabeled data to produce powerful representations that can be more easily transferred to downstream tasks. This work shows that self-supervised deep learning models pre-trained on scene-centric data can reach 71.6% balanced accuracy on our indoor scene classification task and, on average, 2.2 percentage points better performance than a fully supervised version. We cooperate with Brazilian Federal Police experts to evaluate our indoor classification model on actual child abuse material. The results demonstrate a notable discrepancy between the features observed in widely used scene datasets and those depicted on sensitive materials.
Weight Squeezing: Reparameterization for Knowledge Transfer and Model Compression
In this work, we present a novel approach for simultaneous knowledge transfer and model compression called Weight Squeezing. With this method, we perform knowledge transfer from a teacher model by learning the mapping from its weights to smaller student model weights. We applied Weight Squeezing to a pre-trained text classification model based on BERT-Medium model and compared our method to various other knowledge transfer and model compression methods on GLUE multitask benchmark. We observed that our approach produces better results while being significantly faster than other methods for training student models. We also proposed a variant of Weight Squeezing called Gated Weight Squeezing, for which we combined fine-tuning of BERT-Medium model and learning mapping from BERT-Base weights. We showed that fine-tuning with Gated Weight Squeezing outperforms plain fine-tuning of BERT-Medium model as well as other concurrent SoTA approaches while much being easier to implement.
Key Protected Classification for Collaborative Learning
Large-scale datasets play a fundamental role in training deep learning models. However, dataset collection is difficult in domains that involve sensitive information. Collaborative learning techniques provide a privacy-preserving solution, by enabling training over a number of private datasets that are not shared by their owners. However, recently, it has been shown that the existing collaborative learning frameworks are vulnerable to an active adversary that runs a generative adversarial network (GAN) attack. In this work, we propose a novel classification model that is resilient against such attacks by design. More specifically, we introduce a key-based classification model and a principled training scheme that protects class scores by using class-specific private keys, which effectively hide the information necessary for a GAN attack. We additionally show how to utilize high dimensional keys to improve the robustness against attacks without increasing the model complexity. Our detailed experiments demonstrate the effectiveness of the proposed technique. Source code is available at https://github.com/mbsariyildiz/key-protected-classification.
Differential Privacy Has Disparate Impact on Model Accuracy
Differential privacy (DP) is a popular mechanism for training machine learning models with bounded leakage about the presence of specific points in the training data. The cost of differential privacy is a reduction in the model's accuracy. We demonstrate that in the neural networks trained using differentially private stochastic gradient descent (DP-SGD), this cost is not borne equally: accuracy of DP models drops much more for the underrepresented classes and subgroups. For example, a gender classification model trained using DP-SGD exhibits much lower accuracy for black faces than for white faces. Critically, this gap is bigger in the DP model than in the non-DP model, i.e., if the original model is unfair, the unfairness becomes worse once DP is applied. We demonstrate this effect for a variety of tasks and models, including sentiment analysis of text and image classification. We then explain why DP training mechanisms such as gradient clipping and noise addition have disproportionate effect on the underrepresented and more complex subgroups, resulting in a disparate reduction of model accuracy.
Neural Field Classifiers via Target Encoding and Classification Loss
Neural field methods have seen great progress in various long-standing tasks in computer vision and computer graphics, including novel view synthesis and geometry reconstruction. As existing neural field methods try to predict some coordinate-based continuous target values, such as RGB for Neural Radiance Field (NeRF), all of these methods are regression models and are optimized by some regression loss. However, are regression models really better than classification models for neural field methods? In this work, we try to visit this very fundamental but overlooked question for neural fields from a machine learning perspective. We successfully propose a novel Neural Field Classifier (NFC) framework which formulates existing neural field methods as classification tasks rather than regression tasks. The proposed NFC can easily transform arbitrary Neural Field Regressor (NFR) into its classification variant via employing a novel Target Encoding module and optimizing a classification loss. By encoding a continuous regression target into a high-dimensional discrete encoding, we naturally formulate a multi-label classification task. Extensive experiments demonstrate the impressive effectiveness of NFC at the nearly free extra computational costs. Moreover, NFC also shows robustness to sparse inputs, corrupted images, and dynamic scenes.
LambdaNetworks: Modeling Long-Range Interactions Without Attention
We present lambda layers -- an alternative framework to self-attention -- for capturing long-range interactions between an input and structured contextual information (e.g. a pixel surrounded by other pixels). Lambda layers capture such interactions by transforming available contexts into linear functions, termed lambdas, and applying these linear functions to each input separately. Similar to linear attention, lambda layers bypass expensive attention maps, but in contrast, they model both content and position-based interactions which enables their application to large structured inputs such as images. The resulting neural network architectures, LambdaNetworks, significantly outperform their convolutional and attentional counterparts on ImageNet classification, COCO object detection and COCO instance segmentation, while being more computationally efficient. Additionally, we design LambdaResNets, a family of hybrid architectures across different scales, that considerably improves the speed-accuracy tradeoff of image classification models. LambdaResNets reach excellent accuracies on ImageNet while being 3.2 - 4.4x faster than the popular EfficientNets on modern machine learning accelerators. When training with an additional 130M pseudo-labeled images, LambdaResNets achieve up to a 9.5x speed-up over the corresponding EfficientNet checkpoints.
Knowledge Distillation of Large Language Models
Knowledge Distillation (KD) is a promising technique for reducing the high computational demand of large language models (LLMs). However, previous KD methods are primarily applied to white-box classification models or training small models to imitate black-box model APIs like ChatGPT. How to effectively distill the knowledge from white-box generative LLMs is still under-explored, which becomes more and more important with the prosperity of LLMs. In this work, we propose MiniLLM that distills smaller language models from generative larger language models. We first replace the forward Kullback-Leibler divergence (KLD) objective in the standard KD approaches with reverse KLD, which is more suitable for KD on generative language models, to prevent the student model from overestimating the low-probability regions of the teacher distribution. Then, we derive an effective optimization approach to learn this objective. Extensive experiments in the instruction-following setting show that the MiniLLM models generate more precise responses with the higher overall quality, lower exposure bias, better calibration, and higher long-text generation performance. Our method is also scalable for different model families with 120M to 13B parameters. We will release our code and model checkpoints at https://aka.ms/MiniLLM.
Medical Speech Symptoms Classification via Disentangled Representation
Intent is defined for understanding spoken language in existing works. Both textual features and acoustic features involved in medical speech contain intent, which is important for symptomatic diagnosis. In this paper, we propose a medical speech classification model named DRSC that automatically learns to disentangle intent and content representations from textual-acoustic data for classification. The intent representations of the text domain and the Mel-spectrogram domain are extracted via intent encoders, and then the reconstructed text feature and the Mel-spectrogram feature are obtained through two exchanges. After combining the intent from two domains into a joint representation, the integrated intent representation is fed into a decision layer for classification. Experimental results show that our model obtains an average accuracy rate of 95% in detecting 25 different medical symptoms.
Substrate Prediction for RiPP Biosynthetic Enzymes via Masked Language Modeling and Transfer Learning
Ribosomally synthesized and post-translationally modified peptide (RiPP) biosynthetic enzymes often exhibit promiscuous substrate preferences that cannot be reduced to simple rules. Large language models are promising tools for predicting such peptide fitness landscapes. However, state-of-the-art protein language models are trained on relatively few peptide sequences. A previous study comprehensively profiled the peptide substrate preferences of LazBF (a two-component serine dehydratase) and LazDEF (a three-component azole synthetase) from the lactazole biosynthetic pathway. We demonstrated that masked language modeling of LazBF substrate preferences produced language model embeddings that improved downstream classification models of both LazBF and LazDEF substrates. Similarly, masked language modeling of LazDEF substrate preferences produced embeddings that improved the performance of classification models of both LazBF and LazDEF substrates. Our results suggest that the models learned functional forms that are transferable between distinct enzymatic transformations that act within the same biosynthetic pathway. Our transfer learning method improved performance and data efficiency in data-scarce scenarios. We then fine-tuned models on each data set and showed that the fine-tuned models provided interpretable insight that we anticipate will facilitate the design of substrate libraries that are compatible with desired RiPP biosynthetic pathways.
Automated Chest X-Ray Report Generator Using Multi-Model Deep Learning Approach
Reading and interpreting chest X-ray images is one of the most radiologist's routines. However, it still can be challenging, even for the most experienced ones. Therefore, we proposed a multi-model deep learning-based automated chest X-ray report generator system designed to assist radiologists in their work. The basic idea of the proposed system is by utilizing multi binary-classification models for detecting multi abnormalities, with each model responsible for detecting one abnormality, in a single image. In this study, we limited the radiology abnormalities detection to only cardiomegaly, lung effusion, and consolidation. The system generates a radiology report by performing the following three steps: image pre-processing, utilizing deep learning models to detect abnormalities, and producing a report. The aim of the image pre-processing step is to standardize the input by scaling it to 128x128 pixels and slicing it into three segments, which covers the upper, lower, and middle parts of the lung. After pre-processing, each corresponding model classifies the image, resulting in a 0 (zero) for no abnormality detected and a 1 (one) for the presence of an abnormality. The prediction outputs of each model are then concatenated to form a 'result code'. The 'result code' is used to construct a report by selecting the appropriate pre-determined sentence for each detected abnormality in the report generation step. The proposed system is expected to reduce the workload of radiologists and increase the accuracy of chest X-ray diagnosis.
Efficient Shapley Values Estimation by Amortization for Text Classification
Despite the popularity of Shapley Values in explaining neural text classification models, computing them is prohibitive for large pretrained models due to a large number of model evaluations. In practice, Shapley Values are often estimated with a small number of stochastic model evaluations. However, we show that the estimated Shapley Values are sensitive to random seed choices -- the top-ranked features often have little overlap across different seeds, especially on examples with longer input texts. This can only be mitigated by aggregating thousands of model evaluations, which on the other hand, induces substantial computational overheads. To mitigate the trade-off between stability and efficiency, we develop an amortized model that directly predicts each input feature's Shapley Value without additional model evaluations. It is trained on a set of examples whose Shapley Values are estimated from a large number of model evaluations to ensure stability. Experimental results on two text classification datasets demonstrate that our amortized model estimates Shapley Values accurately with up to 60 times speedup compared to traditional methods. Furthermore, the estimated values are stable as the inference is deterministic. We release our code at https://github.com/yangalan123/Amortized-Interpretability.
How Do Training Methods Influence the Utilization of Vision Models?
Not all learnable parameters (e.g., weights) contribute equally to a neural network's decision function. In fact, entire layers' parameters can sometimes be reset to random values with little to no impact on the model's decisions. We revisit earlier studies that examined how architecture and task complexity influence this phenomenon and ask: is this phenomenon also affected by how we train the model? We conducted experimental evaluations on a diverse set of ImageNet-1k classification models to explore this, keeping the architecture and training data constant but varying the training pipeline. Our findings reveal that the training method strongly influences which layers become critical to the decision function for a given task. For example, improved training regimes and self-supervised training increase the importance of early layers while significantly under-utilizing deeper layers. In contrast, methods such as adversarial training display an opposite trend. Our preliminary results extend previous findings, offering a more nuanced understanding of the inner mechanics of neural networks. Code: https://github.com/paulgavrikov/layer_criticality
The MERIT Dataset: Modelling and Efficiently Rendering Interpretable Transcripts
This paper introduces the MERIT Dataset, a multimodal (text + image + layout) fully labeled dataset within the context of school reports. Comprising over 400 labels and 33k samples, the MERIT Dataset is a valuable resource for training models in demanding Visually-rich Document Understanding (VrDU) tasks. By its nature (student grade reports), the MERIT Dataset can potentially include biases in a controlled way, making it a valuable tool to benchmark biases induced in Language Models (LLMs). The paper outlines the dataset's generation pipeline and highlights its main features in the textual, visual, layout, and bias domains. To demonstrate the dataset's utility, we present a benchmark with token classification models, showing that the dataset poses a significant challenge even for SOTA models and that these would greatly benefit from including samples from the MERIT Dataset in their pretraining phase.
Arabic Synonym BERT-based Adversarial Examples for Text Classification
Text classification systems have been proven vulnerable to adversarial text examples, modified versions of the original text examples that are often unnoticed by human eyes, yet can force text classification models to alter their classification. Often, research works quantifying the impact of adversarial text attacks have been applied only to models trained in English. In this paper, we introduce the first word-level study of adversarial attacks in Arabic. Specifically, we use a synonym (word-level) attack using a Masked Language Modeling (MLM) task with a BERT model in a black-box setting to assess the robustness of the state-of-the-art text classification models to adversarial attacks in Arabic. To evaluate the grammatical and semantic similarities of the newly produced adversarial examples using our synonym BERT-based attack, we invite four human evaluators to assess and compare the produced adversarial examples with their original examples. We also study the transferability of these newly produced Arabic adversarial examples to various models and investigate the effectiveness of defense mechanisms against these adversarial examples on the BERT models. We find that fine-tuned BERT models were more susceptible to our synonym attacks than the other Deep Neural Networks (DNN) models like WordCNN and WordLSTM we trained. We also find that fine-tuned BERT models were more susceptible to transferred attacks. We, lastly, find that fine-tuned BERT models successfully regain at least 2% in accuracy after applying adversarial training as an initial defense mechanism.
Assessing In-context Learning and Fine-tuning for Topic Classification of German Web Data
Researchers in the political and social sciences often rely on classification models to analyze trends in information consumption by examining browsing histories of millions of webpages. Automated scalable methods are necessary due to the impracticality of manual labeling. In this paper, we model the detection of topic-related content as a binary classification task and compare the accuracy of fine-tuned pre-trained encoder models against in-context learning strategies. Using only a few hundred annotated data points per topic, we detect content related to three German policies in a database of scraped webpages. We compare multilingual and monolingual models, as well as zero and few-shot approaches, and investigate the impact of negative sampling strategies and the combination of URL & content-based features. Our results show that a small sample of annotated data is sufficient to train an effective classifier. Fine-tuning encoder-based models yields better results than in-context learning. Classifiers using both URL & content-based features perform best, while using URLs alone provides adequate results when content is unavailable.
Stability of Syntactic Dialect Classification Over Space and Time
This paper analyses the degree to which dialect classifiers based on syntactic representations remain stable over space and time. While previous work has shown that the combination of grammar induction and geospatial text classification produces robust dialect models, we do not know what influence both changing grammars and changing populations have on dialect models. This paper constructs a test set for 12 dialects of English that spans three years at monthly intervals with a fixed spatial distribution across 1,120 cities. Syntactic representations are formulated within the usage-based Construction Grammar paradigm (CxG). The decay rate of classification performance for each dialect over time allows us to identify regions undergoing syntactic change. And the distribution of classification accuracy within dialect regions allows us to identify the degree to which the grammar of a dialect is internally heterogeneous. The main contribution of this paper is to show that a rigorous evaluation of dialect classification models can be used to find both variation over space and change over time.
Interaction Matching for Long-Tail Multi-Label Classification
We present an elegant and effective approach for addressing limitations in existing multi-label classification models by incorporating interaction matching, a concept shown to be useful for ad-hoc search result ranking. By performing soft n-gram interaction matching, we match labels with natural language descriptions (which are common to have in most multi-labeling tasks). Our approach can be used to enhance existing multi-label classification approaches, which are biased toward frequently-occurring labels. We evaluate our approach on two challenging tasks: automatic medical coding of clinical notes and automatic labeling of entities from software tutorial text. Our results show that our method can yield up to an 11% relative improvement in macro performance, with most of the gains stemming labels that appear infrequently in the training set (i.e., the long tail of labels).
Enhanced Convolutional Neural Networks for Improved Image Classification
Image classification is a fundamental task in computer vision with diverse applications, ranging from autonomous systems to medical imaging. The CIFAR-10 dataset is a widely used benchmark to evaluate the performance of classification models on small-scale, multi-class datasets. Convolutional Neural Networks (CNNs) have demonstrated state-of-the-art results; however, they often suffer from overfitting and suboptimal feature representation when applied to challenging datasets like CIFAR-10. In this paper, we propose an enhanced CNN architecture that integrates deeper convolutional blocks, batch normalization, and dropout regularization to achieve superior performance. The proposed model achieves a test accuracy of 84.95%, outperforming baseline CNN architectures. Through detailed ablation studies, we demonstrate the effectiveness of the enhancements and analyze the hierarchical feature representations. This work highlights the potential of refined CNN architectures for tackling small-scale image classification problems effectively.
Exploring Zero and Few-shot Techniques for Intent Classification
Conversational NLU providers often need to scale to thousands of intent-classification models where new customers often face the cold-start problem. Scaling to so many customers puts a constraint on storage space as well. In this paper, we explore four different zero and few-shot intent classification approaches with this low-resource constraint: 1) domain adaptation, 2) data augmentation, 3) zero-shot intent classification using descriptions large language models (LLMs), and 4) parameter-efficient fine-tuning of instruction-finetuned language models. Our results show that all these approaches are effective to different degrees in low-resource settings. Parameter-efficient fine-tuning using T-few recipe (Liu et al., 2022) on Flan-T5 (Chang et al., 2022) yields the best performance even with just one sample per intent. We also show that the zero-shot method of prompting LLMs using intent descriptions
Robustness and Sensitivity of BERT Models Predicting Alzheimer's Disease from Text
Understanding robustness and sensitivity of BERT models predicting Alzheimer's disease from text is important for both developing better classification models and for understanding their capabilities and limitations. In this paper, we analyze how a controlled amount of desired and undesired text alterations impacts performance of BERT. We show that BERT is robust to natural linguistic variations in text. On the other hand, we show that BERT is not sensitive to removing clinically important information from text.
We don't need no labels: Estimating post-deployment model performance under covariate shift without ground truth
The performance of machine learning models often degrades after deployment due to data distribution shifts. In many use cases, it is impossible to calculate the post-deployment performance because labels are unavailable or significantly delayed. Proxy methods for evaluating model performance stability, like drift detection techniques, do not properly quantify data distribution shift impact. As a solution, we propose a robust and accurate performance estimation method for evaluating ML classification models on unlabeled data that accurately quantifies the impact of covariate shift on model performance. We call it multi-calibrated confidence-based performance estimation (M-CBPE). It is model and data-type agnostic and works for any performance metric. It does not require access to the monitored model - it uses the model predictions and probability estimates. M-CBPE does not need user input on the nature of the covariate shift as it fully learns from the data. We evaluate it with over 600 dataset-model pairs from US census data and compare it with multiple benchmarks using several evaluation metrics. Results show that M-CBPE is the best method to estimate the performance of classification models in any evaluation context.
GVdoc: Graph-based Visual Document Classification
The robustness of a model for real-world deployment is decided by how well it performs on unseen data and distinguishes between in-domain and out-of-domain samples. Visual document classifiers have shown impressive performance on in-distribution test sets. However, they tend to have a hard time correctly classifying and differentiating out-of-distribution examples. Image-based classifiers lack the text component, whereas multi-modality transformer-based models face the token serialization problem in visual documents due to their diverse layouts. They also require a lot of computing power during inference, making them impractical for many real-world applications. We propose, GVdoc, a graph-based document classification model that addresses both of these challenges. Our approach generates a document graph based on its layout, and then trains a graph neural network to learn node and graph embeddings. Through experiments, we show that our model, even with fewer parameters, outperforms state-of-the-art models on out-of-distribution data while retaining comparable performance on the in-distribution test set.
Plug-In Inversion: Model-Agnostic Inversion for Vision with Data Augmentations
Existing techniques for model inversion typically rely on hard-to-tune regularizers, such as total variation or feature regularization, which must be individually calibrated for each network in order to produce adequate images. In this work, we introduce Plug-In Inversion, which relies on a simple set of augmentations and does not require excessive hyper-parameter tuning. Under our proposed augmentation-based scheme, the same set of augmentation hyper-parameters can be used for inverting a wide range of image classification models, regardless of input dimensions or the architecture. We illustrate the practicality of our approach by inverting Vision Transformers (ViTs) and Multi-Layer Perceptrons (MLPs) trained on the ImageNet dataset, tasks which to the best of our knowledge have not been successfully accomplished by any previous works.
VidModEx: Interpretable and Efficient Black Box Model Extraction for High-Dimensional Spaces
In the domain of black-box model extraction, conventional methods reliant on soft labels or surrogate datasets struggle with scaling to high-dimensional input spaces and managing the complexity of an extensive array of interrelated classes. In this work, we present a novel approach that utilizes SHAP (SHapley Additive exPlanations) to enhance synthetic data generation. SHAP quantifies the individual contributions of each input feature towards the victim model's output, facilitating the optimization of an energy-based GAN towards a desirable output. This method significantly boosts performance, achieving a 16.45% increase in the accuracy of image classification models and extending to video classification models with an average improvement of 26.11% and a maximum of 33.36% on challenging datasets such as UCF11, UCF101, Kinetics 400, Kinetics 600, and Something-Something V2. We further demonstrate the effectiveness and practical utility of our method under various scenarios, including the availability of top-k prediction probabilities, top-k prediction labels, and top-1 labels.
Exploring the Trade-off Between Model Performance and Explanation Plausibility of Text Classifiers Using Human Rationales
Saliency post-hoc explainability methods are important tools for understanding increasingly complex NLP models. While these methods can reflect the model's reasoning, they may not align with human intuition, making the explanations not plausible. In this work, we present a methodology for incorporating rationales, which are text annotations explaining human decisions, into text classification models. This incorporation enhances the plausibility of post-hoc explanations while preserving their faithfulness. Our approach is agnostic to model architectures and explainability methods. We introduce the rationales during model training by augmenting the standard cross-entropy loss with a novel loss function inspired by contrastive learning. By leveraging a multi-objective optimization algorithm, we explore the trade-off between the two loss functions and generate a Pareto-optimal frontier of models that balance performance and plausibility. Through extensive experiments involving diverse models, datasets, and explainability methods, we demonstrate that our approach significantly enhances the quality of model explanations without causing substantial (sometimes negligible) degradation in the original model's performance.
Fast and Accurate Zero-Training Classification for Tabular Engineering Data
In engineering design, navigating complex decision-making landscapes demands a thorough exploration of the design, performance, and constraint spaces, often impeded by resource-intensive simulations. Data-driven methods can mitigate this challenge by harnessing historical data to delineate feasible domains, accelerate optimization, or evaluate designs. However, the implementation of these methods usually demands machine-learning expertise and multiple trials to choose the right method and hyperparameters. This makes them less accessible for numerous engineering situations. Additionally, there is an inherent trade-off between training speed and accuracy, with faster methods sometimes compromising precision. In our paper, we demonstrate that a recently released general-purpose transformer-based classification model, TabPFN, is both fast and accurate. Notably, it requires no dataset-specific training to assess new tabular data. TabPFN is a Prior-Data Fitted Network, which undergoes a one-time offline training across a broad spectrum of synthetic datasets and performs in-context learning. We evaluated TabPFN's efficacy across eight engineering design classification problems, contrasting it with seven other algorithms, including a state-of-the-art AutoML method. For these classification challenges, TabPFN consistently outperforms in speed and accuracy. It is also the most data-efficient and provides the added advantage of being differentiable and giving uncertainty estimates. Our findings advocate for the potential of pre-trained models that learn from synthetic data and require no domain-specific tuning to make data-driven engineering design accessible to a broader community and open ways to efficient general-purpose models valid across applications. Furthermore, we share a benchmark problem set for evaluating new classification algorithms in engineering design.
Per-Pixel Classification is Not All You Need for Semantic Segmentation
Modern approaches typically formulate semantic segmentation as a per-pixel classification task, while instance-level segmentation is handled with an alternative mask classification. Our key insight: mask classification is sufficiently general to solve both semantic- and instance-level segmentation tasks in a unified manner using the exact same model, loss, and training procedure. Following this observation, we propose MaskFormer, a simple mask classification model which predicts a set of binary masks, each associated with a single global class label prediction. Overall, the proposed mask classification-based method simplifies the landscape of effective approaches to semantic and panoptic segmentation tasks and shows excellent empirical results. In particular, we observe that MaskFormer outperforms per-pixel classification baselines when the number of classes is large. Our mask classification-based method outperforms both current state-of-the-art semantic (55.6 mIoU on ADE20K) and panoptic segmentation (52.7 PQ on COCO) models.
The merits of Universal Language Model Fine-tuning for Small Datasets -- a case with Dutch book reviews
We evaluated the effectiveness of using language models, that were pre-trained in one domain, as the basis for a classification model in another domain: Dutch book reviews. Pre-trained language models have opened up new possibilities for classification tasks with limited labelled data, because representation can be learned in an unsupervised fashion. In our experiments we have studied the effects of training set size (100-1600 items) on the prediction accuracy of a ULMFiT classifier, based on a language models that we pre-trained on the Dutch Wikipedia. We also compared ULMFiT to Support Vector Machines, which is traditionally considered suitable for small collections. We found that ULMFiT outperforms SVM for all training set sizes and that satisfactory results (~90%) can be achieved using training sets that can be manually annotated within a few hours. We deliver both our new benchmark collection of Dutch book reviews for sentiment classification as well as the pre-trained Dutch language model to the community.
Machine Unlearning for Image-to-Image Generative Models
Machine unlearning has emerged as a new paradigm to deliberately forget data samples from a given model in order to adhere to stringent regulations. However, existing machine unlearning methods have been primarily focused on classification models, leaving the landscape of unlearning for generative models relatively unexplored. This paper serves as a bridge, addressing the gap by providing a unifying framework of machine unlearning for image-to-image generative models. Within this framework, we propose a computationally-efficient algorithm, underpinned by rigorous theoretical analysis, that demonstrates negligible performance degradation on the retain samples, while effectively removing the information from the forget samples. Empirical studies on two large-scale datasets, ImageNet-1K and Places-365, further show that our algorithm does not rely on the availability of the retain samples, which further complies with data retention policy. To our best knowledge, this work is the first that represents systemic, theoretical, empirical explorations of machine unlearning specifically tailored for image-to-image generative models. Our code is available at https://github.com/jpmorganchase/l2l-generator-unlearning.
LLM Teacher-Student Framework for Text Classification With No Manually Annotated Data: A Case Study in IPTC News Topic Classification
With the ever-increasing number of news stories available online, classifying them by topic, regardless of the language they are written in, has become crucial for enhancing readers' access to relevant content. To address this challenge, we propose a teacher-student framework based on large language models (LLMs) for developing multilingual news classification models of reasonable size with no need for manual data annotation. The framework employs a Generative Pretrained Transformer (GPT) model as the teacher model to develop an IPTC Media Topic training dataset through automatic annotation of news articles in Slovenian, Croatian, Greek, and Catalan. The teacher model exhibits a high zero-shot performance on all four languages. Its agreement with human annotators is comparable to that between the human annotators themselves. To mitigate the computational limitations associated with the requirement of processing millions of texts daily, smaller BERT-like student models are fine-tuned on the GPT-annotated dataset. These student models achieve high performance comparable to the teacher model. Furthermore, we explore the impact of the training data size on the performance of the student models and investigate their monolingual, multilingual and zero-shot cross-lingual capabilities. The findings indicate that student models can achieve high performance with a relatively small number of training instances, and demonstrate strong zero-shot cross-lingual abilities. Finally, we publish the best-performing news topic classifier, enabling multilingual classification with the top-level categories of the IPTC Media Topic schema.
State-of-the-Art in Nudity Classification: A Comparative Analysis
This paper presents a comparative analysis of existing nudity classification techniques for classifying images based on the presence of nudity, with a focus on their application in content moderation. The evaluation focuses on CNN-based models, vision transformer, and popular open-source safety checkers from Stable Diffusion and Large-scale Artificial Intelligence Open Network (LAION). The study identifies the limitations of current evaluation datasets and highlights the need for more diverse and challenging datasets. The paper discusses the potential implications of these findings for developing more accurate and effective image classification systems on online platforms. Overall, the study emphasizes the importance of continually improving image classification models to ensure the safety and well-being of platform users. The project page, including the demonstrations and results is publicly available at https://github.com/fcakyon/content-moderation-deep-learning.
Compositional Generalization for Multi-label Text Classification: A Data-Augmentation Approach
Despite significant advancements in multi-label text classification, the ability of existing models to generalize to novel and seldom-encountered complex concepts, which are compositions of elementary ones, remains underexplored. This research addresses this gap. By creating unique data splits across three benchmarks, we assess the compositional generalization ability of existing multi-label text classification models. Our results show that these models often fail to generalize to compositional concepts encountered infrequently during training, leading to inferior performance on tests with these new combinations. To address this, we introduce a data augmentation method that leverages two innovative text generation models designed to enhance the classification models' capacity for compositional generalization. Our experiments show that this data augmentation approach significantly improves the compositional generalization capabilities of classification models on our benchmarks, with both generation models surpassing other text generation baselines.
Enhancing Instance-Level Image Classification with Set-Level Labels
Instance-level image classification tasks have traditionally relied on single-instance labels to train models, e.g., few-shot learning and transfer learning. However, set-level coarse-grained labels that capture relationships among instances can provide richer information in real-world scenarios. In this paper, we present a novel approach to enhance instance-level image classification by leveraging set-level labels. We provide a theoretical analysis of the proposed method, including recognition conditions for fast excess risk rate, shedding light on the theoretical foundations of our approach. We conducted experiments on two distinct categories of datasets: natural image datasets and histopathology image datasets. Our experimental results demonstrate the effectiveness of our approach, showcasing improved classification performance compared to traditional single-instance label-based methods. Notably, our algorithm achieves 13% improvement in classification accuracy compared to the strongest baseline on the histopathology image classification benchmarks. Importantly, our experimental findings align with the theoretical analysis, reinforcing the robustness and reliability of our proposed method. This work bridges the gap between instance-level and set-level image classification, offering a promising avenue for advancing the capabilities of image classification models with set-level coarse-grained labels.
Retrieval-Augmented Meta Learning for Low-Resource Text Classification
Meta learning have achieved promising performance in low-resource text classification which aims to identify target classes with knowledge transferred from source classes with sets of small tasks named episodes. However, due to the limited training data in the meta-learning scenario and the inherent properties of parameterized neural networks, poor generalization performance has become a pressing problem that needs to be addressed. To deal with this issue, we propose a meta-learning based method called Retrieval-Augmented Meta Learning(RAML). It not only uses parameterization for inference but also retrieves non-parametric knowledge from an external corpus to make inferences, which greatly alleviates the problem of poor generalization performance caused by the lack of diverse training data in meta-learning. This method differs from previous models that solely rely on parameters, as it explicitly emphasizes the importance of non-parametric knowledge, aiming to strike a balance between parameterized neural networks and non-parametric knowledge. The model is required to determine which knowledge to access and utilize during inference. Additionally, our multi-view passages fusion network module can effectively and efficiently integrate the retrieved information into low-resource classification task. The extensive experiments demonstrate that RAML significantly outperforms current SOTA low-resource text classification models.
Image-free Classifier Injection for Zero-Shot Classification
Zero-shot learning models achieve remarkable results on image classification for samples from classes that were not seen during training. However, such models must be trained from scratch with specialised methods: therefore, access to a training dataset is required when the need for zero-shot classification arises. In this paper, we aim to equip pre-trained models with zero-shot classification capabilities without the use of image data. We achieve this with our proposed Image-free Classifier Injection with Semantics (ICIS) that injects classifiers for new, unseen classes into pre-trained classification models in a post-hoc fashion without relying on image data. Instead, the existing classifier weights and simple class-wise descriptors, such as class names or attributes, are used. ICIS has two encoder-decoder networks that learn to reconstruct classifier weights from descriptors (and vice versa), exploiting (cross-)reconstruction and cosine losses to regularise the decoding process. Notably, ICIS can be cheaply trained and applied directly on top of pre-trained classification models. Experiments on benchmark ZSL datasets show that ICIS produces unseen classifier weights that achieve strong (generalised) zero-shot classification performance. Code is available at https://github.com/ExplainableML/ImageFreeZSL .
Is synthetic data from generative models ready for image recognition?
Recent text-to-image generation models have shown promising results in generating high-fidelity photo-realistic images. Though the results are astonishing to human eyes, how applicable these generated images are for recognition tasks remains under-explored. In this work, we extensively study whether and how synthetic images generated from state-of-the-art text-to-image generation models can be used for image recognition tasks, and focus on two perspectives: synthetic data for improving classification models in data-scarce settings (i.e. zero-shot and few-shot), and synthetic data for large-scale model pre-training for transfer learning. We showcase the powerfulness and shortcomings of synthetic data from existing generative models, and propose strategies for better applying synthetic data for recognition tasks. Code: https://github.com/CVMI-Lab/SyntheticData.
Twitter Topic Classification
Social media platforms host discussions about a wide variety of topics that arise everyday. Making sense of all the content and organising it into categories is an arduous task. A common way to deal with this issue is relying on topic modeling, but topics discovered using this technique are difficult to interpret and can differ from corpus to corpus. In this paper, we present a new task based on tweet topic classification and release two associated datasets. Given a wide range of topics covering the most important discussion points in social media, we provide training and testing data from recent time periods that can be used to evaluate tweet classification models. Moreover, we perform a quantitative evaluation and analysis of current general- and domain-specific language models on the task, which provide more insights on the challenges and nature of the task.
PRANC: Pseudo RAndom Networks for Compacting deep models
We demonstrate that a deep model can be reparametrized as a linear combination of several randomly initialized and frozen deep models in the weight space. During training, we seek local minima that reside within the subspace spanned by these random models (i.e., `basis' networks). Our framework, PRANC, enables significant compaction of a deep model. The model can be reconstructed using a single scalar `seed,' employed to generate the pseudo-random `basis' networks, together with the learned linear mixture coefficients. In practical applications, PRANC addresses the challenge of efficiently storing and communicating deep models, a common bottleneck in several scenarios, including multi-agent learning, continual learners, federated systems, and edge devices, among others. In this study, we employ PRANC to condense image classification models and compress images by compacting their associated implicit neural networks. PRANC outperforms baselines with a large margin on image classification when compressing a deep model almost 100 times. Moreover, we show that PRANC enables memory-efficient inference by generating layer-wise weights on the fly. The source code of PRANC is here: https://github.com/UCDvision/PRANC
TorchEsegeta: Framework for Interpretability and Explainability of Image-based Deep Learning Models
Clinicians are often very sceptical about applying automatic image processing approaches, especially deep learning based methods, in practice. One main reason for this is the black-box nature of these approaches and the inherent problem of missing insights of the automatically derived decisions. In order to increase trust in these methods, this paper presents approaches that help to interpret and explain the results of deep learning algorithms by depicting the anatomical areas which influence the decision of the algorithm most. Moreover, this research presents a unified framework, TorchEsegeta, for applying various interpretability and explainability techniques for deep learning models and generate visual interpretations and explanations for clinicians to corroborate their clinical findings. In addition, this will aid in gaining confidence in such methods. The framework builds on existing interpretability and explainability techniques that are currently focusing on classification models, extending them to segmentation tasks. In addition, these methods have been adapted to 3D models for volumetric analysis. The proposed framework provides methods to quantitatively compare visual explanations using infidelity and sensitivity metrics. This framework can be used by data scientists to perform post-hoc interpretations and explanations of their models, develop more explainable tools and present the findings to clinicians to increase their faith in such models. The proposed framework was evaluated based on a use case scenario of vessel segmentation models trained on Time-of-fight (TOF) Magnetic Resonance Angiogram (MRA) images of the human brain. Quantitative and qualitative results of a comparative study of different models and interpretability methods are presented. Furthermore, this paper provides an extensive overview of several existing interpretability and explainability methods.
An Amharic News Text classification Dataset
In NLP, text classification is one of the primary problems we try to solve and its uses in language analyses are indisputable. The lack of labeled training data made it harder to do these tasks in low resource languages like Amharic. The task of collecting, labeling, annotating, and making valuable this kind of data will encourage junior researchers, schools, and machine learning practitioners to implement existing classification models in their language. In this short paper, we aim to introduce the Amharic text classification dataset that consists of more than 50k news articles that were categorized into 6 classes. This dataset is made available with easy baseline performances to encourage studies and better performance experiments.
LandCoverNet: A global benchmark land cover classification training dataset
Regularly updated and accurate land cover maps are essential for monitoring 14 of the 17 Sustainable Development Goals. Multispectral satellite imagery provide high-quality and valuable information at global scale that can be used to develop land cover classification models. However, such a global application requires a geographically diverse training dataset. Here, we present LandCoverNet, a global training dataset for land cover classification based on Sentinel-2 observations at 10m spatial resolution. Land cover class labels are defined based on annual time-series of Sentinel-2, and verified by consensus among three human annotators.
Competence-Level Prediction and Resume & Job Description Matching Using Context-Aware Transformer Models
This paper presents a comprehensive study on resume classification to reduce the time and labor needed to screen an overwhelming number of applications significantly, while improving the selection of suitable candidates. A total of 6,492 resumes are extracted from 24,933 job applications for 252 positions designated into four levels of experience for Clinical Research Coordinators (CRC). Each resume is manually annotated to its most appropriate CRC position by experts through several rounds of triple annotation to establish guidelines. As a result, a high Kappa score of 61% is achieved for inter-annotator agreement. Given this dataset, novel transformer-based classification models are developed for two tasks: the first task takes a resume and classifies it to a CRC level (T1), and the second task takes both a resume and a job description to apply and predicts if the application is suited to the job T2. Our best models using section encoding and multi-head attention decoding give results of 73.3% to T1 and 79.2% to T2. Our analysis shows that the prediction errors are mostly made among adjacent CRC levels, which are hard for even experts to distinguish, implying the practical value of our models in real HR platforms.
HEp-2 Cell Image Classification with Deep Convolutional Neural Networks
Efficient Human Epithelial-2 (HEp-2) cell image classification can facilitate the diagnosis of many autoimmune diseases. This paper presents an automatic framework for this classification task, by utilizing the deep convolutional neural networks (CNNs) which have recently attracted intensive attention in visual recognition. This paper elaborates the important components of this framework, discusses multiple key factors that impact the efficiency of training a deep CNN, and systematically compares this framework with the well-established image classification models in the literature. Experiments on benchmark datasets show that i) the proposed framework can effectively outperform existing models by properly applying data augmentation; ii) our CNN-based framework demonstrates excellent adaptability across different datasets, which is highly desirable for classification under varying laboratory settings. Our system is ranked high in the cell image classification competition hosted by ICPR 2014.
SafeWatch: An Efficient Safety-Policy Following Video Guardrail Model with Transparent Explanations
With the rise of generative AI and rapid growth of high-quality video generation, video guardrails have become more crucial than ever to ensure safety and security across platforms. Current video guardrails, however, are either overly simplistic, relying on pure classification models trained on simple policies with limited unsafe categories, which lack detailed explanations, or prompting multimodal large language models (MLLMs) with long safety guidelines, which are inefficient and impractical for guardrailing real-world content. To bridge this gap, we propose SafeWatch, an efficient MLLM-based video guardrail model designed to follow customized safety policies and provide multi-label video guardrail outputs with content-specific explanations in a zero-shot manner. In particular, unlike traditional MLLM-based guardrails that encode all safety policies autoregressively, causing inefficiency and bias, SafeWatch uniquely encodes each policy chunk in parallel and eliminates their position bias such that all policies are attended simultaneously with equal importance. In addition, to improve efficiency and accuracy, SafeWatch incorporates a policy-aware visual token pruning algorithm that adaptively selects the most relevant video tokens for each policy, discarding noisy or irrelevant information. This allows for more focused, policy-compliant guardrail with significantly reduced computational overhead. Considering the limitations of existing video guardrail benchmarks, we propose SafeWatch-Bench, a large-scale video guardrail benchmark comprising over 2M videos spanning six safety categories which covers over 30 tasks to ensure a comprehensive coverage of all potential safety scenarios. SafeWatch outperforms SOTA by 28.2% on SafeWatch-Bench, 13.6% on benchmarks, cuts costs by 10%, and delivers top-tier explanations validated by LLM and human reviews.
Novel Human Machine Interface via Robust Hand Gesture Recognition System using Channel Pruned YOLOv5s Model
Hand gesture recognition (HGR) is a vital component in enhancing the human-computer interaction experience, particularly in multimedia applications, such as virtual reality, gaming, smart home automation systems, etc. Users can control and navigate through these applications seamlessly by accurately detecting and recognizing gestures. However, in a real-time scenario, the performance of the gesture recognition system is sometimes affected due to the presence of complex background, low-light illumination, occlusion problems, etc. Another issue is building a fast and robust gesture-controlled human-computer interface (HCI) in the real-time scenario. The overall objective of this paper is to develop an efficient hand gesture detection and classification model using a channel-pruned YOLOv5-small model and utilize the model to build a gesture-controlled HCI with a quick response time (in ms) and higher detection speed (in fps). First, the YOLOv5s model is chosen for the gesture detection task. Next, the model is simplified by using a channel-pruned algorithm. After that, the pruned model is further fine-tuned to ensure detection efficiency. We have compared our suggested scheme with other state-of-the-art works, and it is observed that our model has shown superior results in terms of mAP (mean average precision), precision (\%), recall (\%), and F1-score (\%), fast inference time (in ms), and detection speed (in fps). Our proposed method paves the way for deploying a pruned YOLOv5s model for a real-time gesture-command-based HCI to control some applications, such as the VLC media player, Spotify player, etc., using correctly classified gesture commands in real-time scenarios. The average detection speed of our proposed system has reached more than 60 frames per second (fps) in real-time, which meets the perfect requirement in real-time application control.
Interactive Segmentation as Gaussian Process Classification
Click-based interactive segmentation (IS) aims to extract the target objects under user interaction. For this task, most of the current deep learning (DL)-based methods mainly follow the general pipelines of semantic segmentation. Albeit achieving promising performance, they do not fully and explicitly utilize and propagate the click information, inevitably leading to unsatisfactory segmentation results, even at clicked points. Against this issue, in this paper, we propose to formulate the IS task as a Gaussian process (GP)-based pixel-wise binary classification model on each image. To solve this model, we utilize amortized variational inference to approximate the intractable GP posterior in a data-driven manner and then decouple the approximated GP posterior into double space forms for efficient sampling with linear complexity. Then, we correspondingly construct a GP classification framework, named GPCIS, which is integrated with the deep kernel learning mechanism for more flexibility. The main specificities of the proposed GPCIS lie in: 1) Under the explicit guidance of the derived GP posterior, the information contained in clicks can be finely propagated to the entire image and then boost the segmentation; 2) The accuracy of predictions at clicks has good theoretical support. These merits of GPCIS as well as its good generality and high efficiency are substantiated by comprehensive experiments on several benchmarks, as compared with representative methods both quantitatively and qualitatively.
SELECT: A Large-Scale Benchmark of Data Curation Strategies for Image Classification
Data curation is the problem of how to collect and organize samples into a dataset that supports efficient learning. Despite the centrality of the task, little work has been devoted towards a large-scale, systematic comparison of various curation methods. In this work, we take steps towards a formal evaluation of data curation strategies and introduce SELECT, the first large-scale benchmark of curation strategies for image classification. In order to generate baseline methods for the SELECT benchmark, we create a new dataset, ImageNet++, which constitutes the largest superset of ImageNet-1K to date. Our dataset extends ImageNet with 5 new training-data shifts, each approximately the size of ImageNet-1K itself, and each assembled using a distinct curation strategy. We evaluate our data curation baselines in two ways: (i) using each training-data shift to train identical image classification models from scratch (ii) using the data itself to fit a pretrained self-supervised representation. Our findings show interesting trends, particularly pertaining to recent methods for data curation such as synthetic data generation and lookup based on CLIP embeddings. We show that although these strategies are highly competitive for certain tasks, the curation strategy used to assemble the original ImageNet-1K dataset remains the gold standard. We anticipate that our benchmark can illuminate the path for new methods to further reduce the gap. We release our checkpoints, code, documentation, and a link to our dataset at https://github.com/jimmyxu123/SELECT.
Noninvasive Estimation of Mean Pulmonary Artery Pressure Using MRI, Computer Models, and Machine Learning
Pulmonary Hypertension (PH) is a severe disease characterized by an elevated pulmonary artery pressure. The gold standard for PH diagnosis is measurement of mean Pulmonary Artery Pressure (mPAP) during an invasive Right Heart Catheterization. In this paper, we investigate noninvasive approach to PH detection utilizing Magnetic Resonance Imaging, Computer Models and Machine Learning. We show using the ablation study, that physics-informed feature engineering based on models of blood circulation increases the performance of Gradient Boosting Decision Trees-based algorithms for classification of PH and regression of values of mPAP. We compare results of regression (with thresholding of estimated mPAP) and classification and demonstrate that metrics achieved in both experiments are comparable. The predicted mPAP values are more informative to the physicians than the probability of PH returned by classification models. They provide the intuitive explanation of the outcome of the machine learning model (clinicians are accustomed to the mPAP metric, contrary to the PH probability).
PromptKD: Distilling Student-Friendly Knowledge for Generative Language Models via Prompt Tuning
Recent advancements in large language models (LLMs) have raised concerns about inference costs, increasing the need for research into model compression. While knowledge distillation (KD) is a prominent method for this, research on KD for generative language models like LLMs is relatively sparse, and the approach of distilling student-friendly knowledge, which has shown promising performance in KD for classification models, remains unexplored in generative language models. To explore this approach, we propose PromptKD, a simple yet effective method that utilizes prompt tuning - for the first time in KD - to enable generative language models to transfer student-friendly knowledge. Unlike previous works in classification that require fine-tuning the entire teacher model for extracting student-friendly knowledge, PromptKD achieves similar effects by adding a small number of prompt tokens and tuning only the prompt with student guidance. Extensive experiments on instruction-following datasets using the GPT-2 model family show that PromptKD achieves state-of-the-art performance while adding only 0.0007% of the teacher's parameters as prompts. Further analysis suggests that distilling student-friendly knowledge alleviates exposure bias effectively throughout the entire training process, leading to performance enhancements.
L3Cube-IndicNews: News-based Short Text and Long Document Classification Datasets in Indic Languages
In this work, we introduce L3Cube-IndicNews, a multilingual text classification corpus aimed at curating a high-quality dataset for Indian regional languages, with a specific focus on news headlines and articles. We have centered our work on 10 prominent Indic languages, including Hindi, Bengali, Marathi, Telugu, Tamil, Gujarati, Kannada, Odia, Malayalam, and Punjabi. Each of these news datasets comprises 10 or more classes of news articles. L3Cube-IndicNews offers 3 distinct datasets tailored to handle different document lengths that are classified as: Short Headlines Classification (SHC) dataset containing the news headline and news category, Long Document Classification (LDC) dataset containing the whole news article and the news category, and Long Paragraph Classification (LPC) containing sub-articles of the news and the news category. We maintain consistent labeling across all 3 datasets for in-depth length-based analysis. We evaluate each of these Indic language datasets using 4 different models including monolingual BERT, multilingual Indic Sentence BERT (IndicSBERT), and IndicBERT. This research contributes significantly to expanding the pool of available text classification datasets and also makes it possible to develop topic classification models for Indian regional languages. This also serves as an excellent resource for cross-lingual analysis owing to the high overlap of labels among languages. The datasets and models are shared publicly at https://github.com/l3cube-pune/indic-nlp
On the Efficacy of Differentially Private Few-shot Image Classification
There has been significant recent progress in training differentially private (DP) models which achieve accuracy that approaches the best non-private models. These DP models are typically pretrained on large public datasets and then fine-tuned on private downstream datasets that are relatively large and similar in distribution to the pretraining data. However, in many applications including personalization and federated learning, it is crucial to perform well (i) in the few-shot setting, as obtaining large amounts of labeled data may be problematic; and (ii) on datasets from a wide variety of domains for use in various specialist settings. To understand under which conditions few-shot DP can be effective, we perform an exhaustive set of experiments that reveals how the accuracy and vulnerability to attack of few-shot DP image classification models are affected as the number of shots per class, privacy level, model architecture, downstream dataset, and subset of learnable parameters in the model vary. We show that to achieve DP accuracy on par with non-private models, the shots per class must be increased as the privacy level increases. We also show that learning parameter-efficient FiLM adapters under DP is competitive with learning just the final classifier layer or learning all of the network parameters. Finally, we evaluate DP federated learning systems and establish state-of-the-art performance on the challenging FLAIR benchmark.
FewRel 2.0: Towards More Challenging Few-Shot Relation Classification
We present FewRel 2.0, a more challenging task to investigate two aspects of few-shot relation classification models: (1) Can they adapt to a new domain with only a handful of instances? (2) Can they detect none-of-the-above (NOTA) relations? To construct FewRel 2.0, we build upon the FewRel dataset (Han et al., 2018) by adding a new test set in a quite different domain, and a NOTA relation choice. With the new dataset and extensive experimental analysis, we found (1) that the state-of-the-art few-shot relation classification models struggle on these two aspects, and (2) that the commonly-used techniques for domain adaptation and NOTA detection still cannot handle the two challenges well. Our research calls for more attention and further efforts to these two real-world issues. All details and resources about the dataset and baselines are released at https: //github.com/thunlp/fewrel.
Weakly-Supervised Action Localization by Hierarchically-structured Latent Attention Modeling
Weakly-supervised action localization aims to recognize and localize action instancese in untrimmed videos with only video-level labels. Most existing models rely on multiple instance learning(MIL), where the predictions of unlabeled instances are supervised by classifying labeled bags. The MIL-based methods are relatively well studied with cogent performance achieved on classification but not on localization. Generally, they locate temporal regions by the video-level classification but overlook the temporal variations of feature semantics. To address this problem, we propose a novel attention-based hierarchically-structured latent model to learn the temporal variations of feature semantics. Specifically, our model entails two components, the first is an unsupervised change-points detection module that detects change-points by learning the latent representations of video features in a temporal hierarchy based on their rates of change, and the second is an attention-based classification model that selects the change-points of the foreground as the boundaries. To evaluate the effectiveness of our model, we conduct extensive experiments on two benchmark datasets, THUMOS-14 and ActivityNet-v1.3. The experiments show that our method outperforms current state-of-the-art methods, and even achieves comparable performance with fully-supervised methods.
CX-ToM: Counterfactual Explanations with Theory-of-Mind for Enhancing Human Trust in Image Recognition Models
We propose CX-ToM, short for counterfactual explanations with theory-of mind, a new explainable AI (XAI) framework for explaining decisions made by a deep convolutional neural network (CNN). In contrast to the current methods in XAI that generate explanations as a single shot response, we pose explanation as an iterative communication process, i.e. dialog, between the machine and human user. More concretely, our CX-ToM framework generates sequence of explanations in a dialog by mediating the differences between the minds of machine and human user. To do this, we use Theory of Mind (ToM) which helps us in explicitly modeling human's intention, machine's mind as inferred by the human as well as human's mind as inferred by the machine. Moreover, most state-of-the-art XAI frameworks provide attention (or heat map) based explanations. In our work, we show that these attention based explanations are not sufficient for increasing human trust in the underlying CNN model. In CX-ToM, we instead use counterfactual explanations called fault-lines which we define as follows: given an input image I for which a CNN classification model M predicts class c_pred, a fault-line identifies the minimal semantic-level features (e.g., stripes on zebra, pointed ears of dog), referred to as explainable concepts, that need to be added to or deleted from I in order to alter the classification category of I by M to another specified class c_alt. We argue that, due to the iterative, conceptual and counterfactual nature of CX-ToM explanations, our framework is practical and more natural for both expert and non-expert users to understand the internal workings of complex deep learning models. Extensive quantitative and qualitative experiments verify our hypotheses, demonstrating that our CX-ToM significantly outperforms the state-of-the-art explainable AI models.
A ResNet is All You Need? Modeling A Strong Baseline for Detecting Referable Diabetic Retinopathy in Fundus Images
Deep learning is currently the state-of-the-art for automated detection of referable diabetic retinopathy (DR) from color fundus photographs (CFP). While the general interest is put on improving results through methodological innovations, it is not clear how good these approaches perform compared to standard deep classification models trained with the appropriate settings. In this paper we propose to model a strong baseline for this task based on a simple and standard ResNet-18 architecture. To this end, we built on top of prior art by training the model with a standard preprocessing strategy but using images from several public sources and an empirically calibrated data augmentation setting. To evaluate its performance, we covered multiple clinically relevant perspectives, including image and patient level DR screening, discriminating responses by input quality and DR grade, assessing model uncertainties and analyzing its results in a qualitative manner. With no other methodological innovation than a carefully designed training, our ResNet model achieved an AUC = 0.955 (0.953 - 0.956) on a combined test set of 61007 test images from different public datasets, which is in line or even better than what other more complex deep learning models reported in the literature. Similar AUC values were obtained in 480 images from two separate in-house databases specially prepared for this study, which emphasize its generalization ability. This confirms that standard networks can still be strong baselines for this task if properly trained.
Attribution-Scores in Data Management and Explainable Machine Learning
We describe recent research on the use of actual causality in the definition of responsibility scores as explanations for query answers in databases, and for outcomes from classification models in machine learning. In the case of databases, useful connections with database repairs are illustrated and exploited. Repairs are also used to give a quantitative measure of the consistency of a database. For classification models, the responsibility score is properly extended and illustrated. The efficient computation of Shap-score is also analyzed and discussed. The emphasis is placed on work done by the author and collaborators.
Online Recognition of Incomplete Gesture Data to Interface Collaborative Robots
Online recognition of gestures is critical for intuitive human-robot interaction (HRI) and further push collaborative robotics into the market, making robots accessible to more people. The problem is that it is difficult to achieve accurate gesture recognition in real unstructured environments, often using distorted and incomplete multisensory data. This paper introduces an HRI framework to classify large vocabularies of interwoven static gestures (SGs) and dynamic gestures (DGs) captured with wearable sensors. DG features are obtained by applying data dimensionality reduction to raw data from sensors (resampling with cubic interpolation and principal component analysis). Experimental tests were conducted using the UC2017 hand gesture dataset with samples from eight different subjects. The classification models show an accuracy of 95.6% for a library of 24 SGs with a random forest and 99.3% for 10 DGs using artificial neural networks. These results compare equally or favorably with different commonly used classifiers. Long short-term memory deep networks achieved similar performance in online frame-by-frame classification using raw incomplete data, performing better in terms of accuracy than static models with specially crafted features, but worse in training and inference time. The recognized gestures are used to teleoperate a robot in a collaborative process that consists in preparing a breakfast meal.
LettuceDetect: A Hallucination Detection Framework for RAG Applications
Retrieval Augmented Generation (RAG) systems remain vulnerable to hallucinated answers despite incorporating external knowledge sources. We present LettuceDetect a framework that addresses two critical limitations in existing hallucination detection methods: (1) the context window constraints of traditional encoder-based methods, and (2) the computational inefficiency of LLM based approaches. Building on ModernBERT's extended context capabilities (up to 8k tokens) and trained on the RAGTruth benchmark dataset, our approach outperforms all previous encoder-based models and most prompt-based models, while being approximately 30 times smaller than the best models. LettuceDetect is a token-classification model that processes context-question-answer triples, allowing for the identification of unsupported claims at the token level. Evaluations on the RAGTruth corpus demonstrate an F1 score of 79.22% for example-level detection, which is a 14.8% improvement over Luna, the previous state-of-the-art encoder-based architecture. Additionally, the system can process 30 to 60 examples per second on a single GPU, making it more practical for real-world RAG applications.
Exploiting Transformer Activation Sparsity with Dynamic Inference
Transformer models, despite their impressive performance, often face practical limitations due to their high computational requirements. At the same time, previous studies have revealed significant activation sparsity in these models, indicating the presence of redundant computations. In this paper, we propose Dynamic Sparsified Transformer Inference (DSTI), a method that radically reduces the inference cost of Transformer models by enforcing activation sparsity and subsequently transforming a dense model into its sparse Mixture of Experts (MoE) version. We demonstrate that it is possible to train small gating networks that successfully predict the relative contribution of each expert during inference. Furthermore, we introduce a mechanism that dynamically determines the number of executed experts individually for each token. DSTI can be applied to any Transformer-based architecture and has negligible impact on the accuracy. For the BERT-base classification model, we reduce inference cost by almost 60%.
VNLP: Turkish NLP Package
In this work, we present VNLP: the first dedicated, complete, open-source, well-documented, lightweight, production-ready, state-of-the-art Natural Language Processing (NLP) package for the Turkish language. It contains a wide variety of tools, ranging from the simplest tasks, such as sentence splitting and text normalization, to the more advanced ones, such as text and token classification models. Its token classification models are based on "Context Model", a novel architecture that is both an encoder and an auto-regressive model. NLP tasks solved by VNLP models include but are not limited to Sentiment Analysis, Named Entity Recognition, Morphological Analysis \& Disambiguation and Part-of-Speech Tagging. Moreover, it comes with pre-trained word embeddings and corresponding SentencePiece Unigram tokenizers. VNLP has an open-source GitHub repository, ReadtheDocs documentation, PyPi package for convenient installation, Python and command-line API and a demo page to test all the functionality. Consequently, our main contribution is a complete, compact, easy-to-install and easy-to-use NLP package for Turkish.
PDiscoNet: Semantically consistent part discovery for fine-grained recognition
Fine-grained classification often requires recognizing specific object parts, such as beak shape and wing patterns for birds. Encouraging a fine-grained classification model to first detect such parts and then using them to infer the class could help us gauge whether the model is indeed looking at the right details better than with interpretability methods that provide a single attribution map. We propose PDiscoNet to discover object parts by using only image-level class labels along with priors encouraging the parts to be: discriminative, compact, distinct from each other, equivariant to rigid transforms, and active in at least some of the images. In addition to using the appropriate losses to encode these priors, we propose to use part-dropout, where full part feature vectors are dropped at once to prevent a single part from dominating in the classification, and part feature vector modulation, which makes the information coming from each part distinct from the perspective of the classifier. Our results on CUB, CelebA, and PartImageNet show that the proposed method provides substantially better part discovery performance than previous methods while not requiring any additional hyper-parameter tuning and without penalizing the classification performance. The code is available at https://github.com/robertdvdk/part_detection.
FullStop:Punctuation and Segmentation Prediction for Dutch with Transformers
When applying automated speech recognition (ASR) for Belgian Dutch (Van Dyck et al. 2021), the output consists of an unsegmented stream of words, without any punctuation. A next step is to perform segmentation and insert punctuation, making the ASR output more readable and easy to manually correct. As far as we know there is no publicly available punctuation insertion system for Dutch that functions at a usable level. The model we present here is an extension of the models of Guhr et al. (2021) for Dutch and is made publicly available. We trained a sequence classification model, based on the Dutch language model RobBERT (Delobelle et al. 2020). For every word in the input sequence, the models predicts a punctuation marker that follows the word. We have also extended a multilingual model, for cases where the language is unknown or where code switching applies. When performing the task of segmentation, the application of the best models onto out of domain test data, a sliding window of 200 words of the ASR output stream is sent to the classifier, and segmentation is applied when the system predicts a segmenting punctuation sign with a ratio above threshold. Results show to be much better than a machine translation baseline approach.
Cyberbullying Detection Using Deep Neural Network from Social Media Comments in Bangla Language
Cyberbullying or Online harassment detection on social media for various major languages is currently being given a good amount of focus by researchers worldwide. Being the seventh most speaking language in the world and increasing usage of online platform among the Bengali speaking people urge to find effective detection technique to handle the online harassment. In this paper, we have proposed binary and multiclass classification model using hybrid neural network for bully expression detection in Bengali language. We have used 44,001 users comments from popular public Facebook pages, which fall into five classes - Non-bully, Sexual, Threat, Troll and Religious. We have examined the performance of our proposed models from different perspective. Our binary classification model gives 87.91% accuracy, whereas introducing ensemble technique after neural network for multiclass classification, we got 85% accuracy.
Automated Seed Quality Testing System using GAN & Active Learning
Quality assessment of agricultural produce is a crucial step in minimizing food stock wastage. However, this is currently done manually and often requires expert supervision, especially in smaller seeds like corn. We propose a novel computer vision-based system for automating this process. We build a novel seed image acquisition setup, which captures both the top and bottom views. Dataset collection for this problem has challenges of data annotation costs/time and class imbalance. We address these challenges by i.) using a Conditional Generative Adversarial Network (CGAN) to generate real-looking images for the classes with lesser images and ii.) annotate a large dataset with minimal expert human intervention by using a Batch Active Learning (BAL) based annotation tool. We benchmark different image classification models on the dataset obtained. We are able to get accuracies of up to 91.6% for testing the physical purity of seed samples.
yosm: A new yoruba sentiment corpus for movie reviews
A movie that is thoroughly enjoyed and recommended by an individual might be hated by another. One characteristic of humans is the ability to have feelings which could be positive or negative. To automatically classify and study human feelings, an aspect of natural language processing, sentiment analysis and opinion mining were designed to understand human feelings regarding several issues which could affect a product, a social media platforms, government, or societal discussions or even movies. Several works on sentiment analysis have been done on high resource languages while low resources languages like Yoruba have been sidelined. Due to the scarcity of datasets and linguistic architectures that will suit low resource languages, African languages "low resource languages" have been ignored and not fully explored. For this reason, our attention is placed on Yoruba to explore sentiment analysis on reviews of Nigerian movies. The data comprised 1500 movie reviews that were sourced from IMDB, Rotten Tomatoes, Letterboxd, Cinemapointer and Nollyrated. We develop sentiment classification models using the state-of-the-art pre-trained language models like mBERT and AfriBERTa to classify the movie reviews.
Navigation Turing Test (NTT): Learning to Evaluate Human-Like Navigation
A key challenge on the path to developing agents that learn complex human-like behavior is the need to quickly and accurately quantify human-likeness. While human assessments of such behavior can be highly accurate, speed and scalability are limited. We address these limitations through a novel automated Navigation Turing Test (ANTT) that learns to predict human judgments of human-likeness. We demonstrate the effectiveness of our automated NTT on a navigation task in a complex 3D environment. We investigate six classification models to shed light on the types of architectures best suited to this task, and validate them against data collected through a human NTT. Our best models achieve high accuracy when distinguishing true human and agent behavior. At the same time, we show that predicting finer-grained human assessment of agents' progress towards human-like behavior remains unsolved. Our work takes an important step towards agents that more effectively learn complex human-like behavior.
Learning Transferable Architectures for Scalable Image Recognition
Developing neural network image classification models often requires significant architecture engineering. In this paper, we study a method to learn the model architectures directly on the dataset of interest. As this approach is expensive when the dataset is large, we propose to search for an architectural building block on a small dataset and then transfer the block to a larger dataset. The key contribution of this work is the design of a new search space (the "NASNet search space") which enables transferability. In our experiments, we search for the best convolutional layer (or "cell") on the CIFAR-10 dataset and then apply this cell to the ImageNet dataset by stacking together more copies of this cell, each with their own parameters to design a convolutional architecture, named "NASNet architecture". We also introduce a new regularization technique called ScheduledDropPath that significantly improves generalization in the NASNet models. On CIFAR-10 itself, NASNet achieves 2.4% error rate, which is state-of-the-art. On ImageNet, NASNet achieves, among the published works, state-of-the-art accuracy of 82.7% top-1 and 96.2% top-5 on ImageNet. Our model is 1.2% better in top-1 accuracy than the best human-invented architectures while having 9 billion fewer FLOPS - a reduction of 28% in computational demand from the previous state-of-the-art model. When evaluated at different levels of computational cost, accuracies of NASNets exceed those of the state-of-the-art human-designed models. For instance, a small version of NASNet also achieves 74% top-1 accuracy, which is 3.1% better than equivalently-sized, state-of-the-art models for mobile platforms. Finally, the learned features by NASNet used with the Faster-RCNN framework surpass state-of-the-art by 4.0% achieving 43.1% mAP on the COCO dataset.
CHIP: Contrastive Hierarchical Image Pretraining
Few-shot object classification is the task of classifying objects in an image with limited number of examples as supervision. We propose a one-shot/few-shot classification model that can classify an object of any unseen class into a relatively general category in an hierarchically based classification. Our model uses a three-level hierarchical contrastive loss based ResNet152 classifier for classifying an object based on its features extracted from Image embedding, not used during the training phase. For our experimentation, we have used a subset of the ImageNet (ILSVRC-12) dataset that contains only the animal classes for training our model and created our own dataset of unseen classes for evaluating our trained model. Our model provides satisfactory results in classifying the unknown objects into a generic category which has been later discussed in greater detail.
Kolmogorov-Arnold Neural Networks for High-Entropy Alloys Design
A wide range of deep learning-based machine learning techniques are extensively applied to the design of high-entropy alloys (HEAs), yielding numerous valuable insights. Kolmogorov-Arnold Networks (KAN) is a recently developed architecture that aims to improve both the accuracy and interpretability of input features. In this work, we explore three different datasets for HEA design and demonstrate the application of KAN for both classification and regression models. In the first example, we use a KAN classification model to predict the probability of single-phase formation in high-entropy carbide ceramics based on various properties such as mixing enthalpy and valence electron concentration. In the second example, we employ a KAN regression model to predict the yield strength and ultimate tensile strength of HEAs based on their chemical composition and process conditions including annealing time, cold rolling percentage, and homogenization temperature. The third example involves a KAN classification model to determine whether a certain composition is an HEA or non-HEA, followed by a KAN regressor model to predict the bulk modulus of the identified HEA, aiming to identify HEAs with high bulk modulus. In all three examples, KAN either outperform or match the performance in terms of accuracy such as F1 score for classification and Mean Square Error (MSE), and coefficient of determination (R2) for regression of the multilayer perceptron (MLP) by demonstrating the efficacy of KAN in handling both classification and regression tasks. We provide a promising direction for future research to explore advanced machine learning techniques, which lead to more accurate predictions and better interpretability of complex materials, ultimately accelerating the discovery and optimization of HEAs with desirable properties.
What time is it? Temporal Analysis of Novels
Recognizing the flow of time in a story is a crucial aspect of understanding it. Prior work related to time has primarily focused on identifying temporal expressions or relative sequencing of events, but here we propose computationally annotating each line of a book with wall clock times, even in the absence of explicit time-descriptive phrases. To do so, we construct a data set of hourly time phrases from 52,183 fictional books. We then construct a time-of-day classification model that achieves an average error of 2.27 hours. Furthermore, we show that by analyzing a book in whole using dynamic programming of breakpoints, we can roughly partition a book into segments that each correspond to a particular time-of-day. This approach improves upon baselines by over two hours. Finally, we apply our model to a corpus of literature categorized by different periods in history, to show interesting trends of hourly activity throughout the past. Among several observations we find that the fraction of events taking place past 10 P.M jumps past 1880 - coincident with the advent of the electric light bulb and city lights.
Bag of Freebies for Training Object Detection Neural Networks
Training heuristics greatly improve various image classification model accuracies~he2018bag. Object detection models, however, have more complex neural network structures and optimization targets. The training strategies and pipelines dramatically vary among different models. In this works, we explore training tweaks that apply to various models including Faster R-CNN and YOLOv3. These tweaks do not change the model architectures, therefore, the inference costs remain the same. Our empirical results demonstrate that, however, these freebies can improve up to 5% absolute precision compared to state-of-the-art baselines.
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization
We propose a technique for producing "visual explanations" for decisions from a large class of CNN-based models, making them more transparent. Our approach - Gradient-weighted Class Activation Mapping (Grad-CAM), uses the gradients of any target concept, flowing into the final convolutional layer to produce a coarse localization map highlighting important regions in the image for predicting the concept. Grad-CAM is applicable to a wide variety of CNN model-families: (1) CNNs with fully-connected layers, (2) CNNs used for structured outputs, (3) CNNs used in tasks with multimodal inputs or reinforcement learning, without any architectural changes or re-training. We combine Grad-CAM with fine-grained visualizations to create a high-resolution class-discriminative visualization and apply it to off-the-shelf image classification, captioning, and visual question answering (VQA) models, including ResNet-based architectures. In the context of image classification models, our visualizations (a) lend insights into their failure modes, (b) are robust to adversarial images, (c) outperform previous methods on localization, (d) are more faithful to the underlying model and (e) help achieve generalization by identifying dataset bias. For captioning and VQA, we show that even non-attention based models can localize inputs. We devise a way to identify important neurons through Grad-CAM and combine it with neuron names to provide textual explanations for model decisions. Finally, we design and conduct human studies to measure if Grad-CAM helps users establish appropriate trust in predictions from models and show that Grad-CAM helps untrained users successfully discern a 'stronger' nodel from a 'weaker' one even when both make identical predictions. Our code is available at https://github.com/ramprs/grad-cam/, along with a demo at http://gradcam.cloudcv.org, and a video at youtu.be/COjUB9Izk6E.
FactCG: Enhancing Fact Checkers with Graph-Based Multi-Hop Data
Prior research on training grounded factuality classification models to detect hallucinations in large language models (LLMs) has relied on public natural language inference (NLI) data and synthetic data. However, conventional NLI datasets are not well-suited for document-level reasoning, which is critical for detecting LLM hallucinations. Recent approaches to document-level synthetic data generation involve iteratively removing sentences from documents and annotating factuality using LLM-based prompts. While effective, this method is computationally expensive for long documents and limited by the LLM's capabilities. In this work, we analyze the differences between existing synthetic training data used in state-of-the-art models and real LLM output claims. Based on our findings, we propose a novel approach for synthetic data generation, CG2C, that leverages multi-hop reasoning on context graphs extracted from documents. Our fact checker model, FactCG, demonstrates improved performance with more connected reasoning, using the same backbone models. Experiments show it even outperforms GPT-4-o on the LLM-Aggrefact benchmark with much smaller model size.
A Holistic Evaluation of Piano Sound Quality
This paper aims to develop a holistic evaluation method for piano sound quality to assist in purchasing decisions. Unlike previous studies that focused on the effect of piano performance techniques on sound quality, this study evaluates the inherent sound quality of different pianos. To derive quality evaluation systems, the study uses subjective questionnaires based on a piano sound quality dataset. The method selects the optimal piano classification models by comparing the fine-tuning results of different pre-training models of Convolutional Neural Networks (CNN). To improve the interpretability of the models, the study applies Equivalent Rectangular Bandwidth (ERB) analysis. The results reveal that musically trained individuals are better able to distinguish between the sound quality differences of different pianos. The best fine-tuned CNN pre-trained backbone achieves a high accuracy of 98.3\% as the piano classifier. However, the dataset is limited, and the audio is sliced to increase its quantity, resulting in a lack of diversity and balance, so we use focal loss to reduce the impact of data imbalance. To optimize the method, the dataset will be expanded, or few-shot learning techniques will be employed in future research.
Multilingual Twitter Corpus and Baselines for Evaluating Demographic Bias in Hate Speech Recognition
Existing research on fairness evaluation of document classification models mainly uses synthetic monolingual data without ground truth for author demographic attributes. In this work, we assemble and publish a multilingual Twitter corpus for the task of hate speech detection with inferred four author demographic factors: age, country, gender and race/ethnicity. The corpus covers five languages: English, Italian, Polish, Portuguese and Spanish. We evaluate the inferred demographic labels with a crowdsourcing platform, Figure Eight. To examine factors that can cause biases, we take an empirical analysis of demographic predictability on the English corpus. We measure the performance of four popular document classifiers and evaluate the fairness and bias of the baseline classifiers on the author-level demographic attributes.
Can AI Examine Novelty of Patents?: Novelty Evaluation Based on the Correspondence between Patent Claim and Prior Art
Assessing the novelty of patent claims is a critical yet challenging task traditionally performed by patent examiners. While advancements in NLP have enabled progress in various patent-related tasks, novelty assessment remains unexplored. This paper introduces a novel challenge by evaluating the ability of large language models (LLMs) to assess patent novelty by comparing claims with cited prior art documents, following the process similar to that of patent examiners done. We present the first dataset specifically designed for novelty evaluation, derived from real patent examination cases, and analyze the capabilities of LLMs to address this task. Our study reveals that while classification models struggle to effectively assess novelty, generative models make predictions with a reasonable level of accuracy, and their explanations are accurate enough to understand the relationship between the target patent and prior art. These findings demonstrate the potential of LLMs to assist in patent evaluation, reducing the workload for both examiners and applicants. Our contributions highlight the limitations of current models and provide a foundation for improving AI-driven patent analysis through advanced models and refined datasets.
TartuNLP @ AXOLOTL-24: Leveraging Classifier Output for New Sense Detection in Lexical Semantics
We present our submission to the AXOLOTL-24 shared task. The shared task comprises two subtasks: identifying new senses that words gain with time (when comparing newer and older time periods) and producing the definitions for the identified new senses. We implemented a conceptually simple and computationally inexpensive solution to both subtasks. We trained adapter-based binary classification models to match glosses with usage examples and leveraged the probability output of the models to identify novel senses. The same models were used to match examples of novel sense usages with Wiktionary definitions. Our submission attained third place on the first subtask and the first place on the second subtask.
Class Machine Unlearning for Complex Data via Concepts Inference and Data Poisoning
In current AI era, users may request AI companies to delete their data from the training dataset due to the privacy concerns. As a model owner, retraining a model will consume significant computational resources. Therefore, machine unlearning is a new emerged technology to allow model owner to delete requested training data or a class with little affecting on the model performance. However, for large-scaling complex data, such as image or text data, unlearning a class from a model leads to a inferior performance due to the difficulty to identify the link between classes and model. An inaccurate class deleting may lead to over or under unlearning. In this paper, to accurately defining the unlearning class of complex data, we apply the definition of Concept, rather than an image feature or a token of text data, to represent the semantic information of unlearning class. This new representation can cut the link between the model and the class, leading to a complete erasing of the impact of a class. To analyze the impact of the concept of complex data, we adopt a Post-hoc Concept Bottleneck Model, and Integrated Gradients to precisely identify concepts across different classes. Next, we take advantage of data poisoning with random and targeted labels to propose unlearning methods. We test our methods on both image classification models and large language models (LLMs). The results consistently show that the proposed methods can accurately erase targeted information from models and can largely maintain the performance of the models.
On the Generalization of Training-based ChatGPT Detection Methods
ChatGPT is one of the most popular language models which achieve amazing performance on various natural language tasks. Consequently, there is also an urgent need to detect the texts generated ChatGPT from human written. One of the extensively studied methods trains classification models to distinguish both. However, existing studies also demonstrate that the trained models may suffer from distribution shifts (during test), i.e., they are ineffective to predict the generated texts from unseen language tasks or topics. In this work, we aim to have a comprehensive investigation on these methods' generalization behaviors under distribution shift caused by a wide range of factors, including prompts, text lengths, topics, and language tasks. To achieve this goal, we first collect a new dataset with human and ChatGPT texts, and then we conduct extensive studies on the collected dataset. Our studies unveil insightful findings which provide guidance for developing future methodologies or data collection strategies for ChatGPT detection.
Sampling Streaming Data with Parallel Vector Quantization -- PVQ
Accumulation of corporate data in the cloud has attracted more enterprise applications to the cloud creating data gravity. As a consequence, network traffic has become more cloud centric. This increase in cloud centric traffic poses new challenges in designing learning systems for streaming data due to class imbalance. The number of classes plays a vital role in the accuracy of the classifiers built from the data streams. In this paper, we present a vector quantization-based sampling method, which substantially reduces the class imbalance in data streams. We demonstrate its effectiveness by conducting experiments on network traffic and anomaly dataset with commonly used ML model building methods; Multilayered Perceptron on TensorFlow backend, Support Vector Machines, K-Nearest Neighbour, and Random Forests. We built models using parallel processing, batch processing, and randomly selecting samples. We show that the accuracy of classification models improves when the data streams are pre-processed with our method. We used out of the box hyper-parameters of these classifiers and auto sklearn for hyperparameter optimization.
Detecting Abusive Albanian
The ever growing usage of social media in the recent years has had a direct impact on the increased presence of hate speech and offensive speech in online platforms. Research on effective detection of such content has mainly focused on English and a few other widespread languages, while the leftover majority fail to have the same work put into them and thus cannot benefit from the steady advancements made in the field. In this paper we present Shaj, an annotated Albanian dataset for hate speech and offensive speech that has been constructed from user-generated content on various social media platforms. Its annotation follows the hierarchical schema introduced in OffensEval. The dataset is tested using three different classification models, the best of which achieves an F1 score of 0.77 for the identification of offensive language, 0.64 F1 score for the automatic categorization of offensive types and lastly, 0.52 F1 score for the offensive language target identification.
Detecting Inappropriate Messages on Sensitive Topics that Could Harm a Company's Reputation
Not all topics are equally "flammable" in terms of toxicity: a calm discussion of turtles or fishing less often fuels inappropriate toxic dialogues than a discussion of politics or sexual minorities. We define a set of sensitive topics that can yield inappropriate and toxic messages and describe the methodology of collecting and labeling a dataset for appropriateness. While toxicity in user-generated data is well-studied, we aim at defining a more fine-grained notion of inappropriateness. The core of inappropriateness is that it can harm the reputation of a speaker. This is different from toxicity in two respects: (i) inappropriateness is topic-related, and (ii) inappropriate message is not toxic but still unacceptable. We collect and release two datasets for Russian: a topic-labeled dataset and an appropriateness-labeled dataset. We also release pre-trained classification models trained on this data.
PanNuke Dataset Extension, Insights and Baselines
The emerging area of computational pathology (CPath) is ripe ground for the application of deep learning (DL) methods to healthcare due to the sheer volume of raw pixel data in whole-slide images (WSIs) of cancerous tissue slides. However, it is imperative for the DL algorithms relying on nuclei-level details to be able to cope with data from `the clinical wild', which tends to be quite challenging. We study, and extend recently released PanNuke dataset consisting of ~200,000 nuclei categorized into 5 clinically important classes for the challenging tasks of segmenting and classifying nuclei in WSIs. Previous pan-cancer datasets consisted of only up to 9 different tissues and up to 21,000 unlabeled nuclei and just over 24,000 labeled nuclei with segmentation masks. PanNuke consists of 19 different tissue types that have been semi-automatically annotated and quality controlled by clinical pathologists, leading to a dataset with statistics similar to the clinical wild and with minimal selection bias. We study the performance of segmentation and classification models when applied to the proposed dataset and demonstrate the application of models trained on PanNuke to whole-slide images. We provide comprehensive statistics about the dataset and outline recommendations and research directions to address the limitations of existing DL tools when applied to real-world CPath applications.
Using Supervised Learning to Classify Metadata of Research Data by Discipline of Research
Automated classification of metadata of research data by their discipline(s) of research can be used in scientometric research, by repository service providers, and in the context of research data aggregation services. Openly available metadata of the DataCite index for research data were used to compile a large training and evaluation set comprised of 609,524 records, which is published alongside this paper. These data allow to reproducibly assess classification approaches, such as tree-based models and neural networks. According to our experiments with 20 base classes (multi-label classification), multi-layer perceptron models perform best with a f1-macro score of 0.760 closely followed by Long Short-Term Memory models (f1-macro score of 0.755). A possible application of the trained classification models is the quantitative analysis of trends towards interdisciplinarity of digital scholarly output or the characterization of growth patterns of research data, stratified by discipline of research. Both applications perform at scale with the proposed models which are available for re-use.
Knowledge Concentration: Learning 100K Object Classifiers in a Single CNN
Fine-grained image labels are desirable for many computer vision applications, such as visual search or mobile AI assistant. These applications rely on image classification models that can produce hundreds of thousands (e.g. 100K) of diversified fine-grained image labels on input images. However, training a network at this vocabulary scale is challenging, and suffers from intolerable large model size and slow training speed, which leads to unsatisfying classification performance. A straightforward solution would be training separate expert networks (specialists), with each specialist focusing on learning one specific vertical (e.g. cars, birds...). However, deploying dozens of expert networks in a practical system would significantly increase system complexity and inference latency, and consumes large amounts of computational resources. To address these challenges, we propose a Knowledge Concentration method, which effectively transfers the knowledge from dozens of specialists (multiple teacher networks) into one single model (one student network) to classify 100K object categories. There are three salient aspects in our method: (1) a multi-teacher single-student knowledge distillation framework; (2) a self-paced learning mechanism to allow the student to learn from different teachers at various paces; (3) structurally connected layers to expand the student network capacity with limited extra parameters. We validate our method on OpenImage and a newly collected dataset, Entity-Foto-Tree (EFT), with 100K categories, and show that the proposed model performs significantly better than the baseline generalist model.
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
Training Deep Neural Networks is complicated by the fact that the distribution of each layer's inputs changes during training, as the parameters of the previous layers change. This slows down the training by requiring lower learning rates and careful parameter initialization, and makes it notoriously hard to train models with saturating nonlinearities. We refer to this phenomenon as internal covariate shift, and address the problem by normalizing layer inputs. Our method draws its strength from making normalization a part of the model architecture and performing the normalization for each training mini-batch. Batch Normalization allows us to use much higher learning rates and be less careful about initialization. It also acts as a regularizer, in some cases eliminating the need for Dropout. Applied to a state-of-the-art image classification model, Batch Normalization achieves the same accuracy with 14 times fewer training steps, and beats the original model by a significant margin. Using an ensemble of batch-normalized networks, we improve upon the best published result on ImageNet classification: reaching 4.9% top-5 validation error (and 4.8% test error), exceeding the accuracy of human raters.
PourIt!: Weakly-supervised Liquid Perception from a Single Image for Visual Closed-Loop Robotic Pouring
Liquid perception is critical for robotic pouring tasks. It usually requires the robust visual detection of flowing liquid. However, while recent works have shown promising results in liquid perception, they typically require labeled data for model training, a process that is both time-consuming and reliant on human labor. To this end, this paper proposes a simple yet effective framework PourIt!, to serve as a tool for robotic pouring tasks. We design a simple data collection pipeline that only needs image-level labels to reduce the reliance on tedious pixel-wise annotations. Then, a binary classification model is trained to generate Class Activation Map (CAM) that focuses on the visual difference between these two kinds of collected data, i.e., the existence of liquid drop or not. We also devise a feature contrast strategy to improve the quality of the CAM, thus entirely and tightly covering the actual liquid regions. Then, the container pose is further utilized to facilitate the 3D point cloud recovery of the detected liquid region. Finally, the liquid-to-container distance is calculated for visual closed-loop control of the physical robot. To validate the effectiveness of our proposed method, we also contribute a novel dataset for our task and name it PourIt! dataset. Extensive results on this dataset and physical Franka robot have shown the utility and effectiveness of our method in the robotic pouring tasks. Our dataset, code and pre-trained models will be available on the project page.
Jailbreaking ChatGPT via Prompt Engineering: An Empirical Study
Large Language Models (LLMs), like ChatGPT, have demonstrated vast potential but also introduce challenges related to content constraints and potential misuse. Our study investigates three key research questions: (1) the number of different prompt types that can jailbreak LLMs, (2) the effectiveness of jailbreak prompts in circumventing LLM constraints, and (3) the resilience of ChatGPT against these jailbreak prompts. Initially, we develop a classification model to analyze the distribution of existing prompts, identifying ten distinct patterns and three categories of jailbreak prompts. Subsequently, we assess the jailbreak capability of prompts with ChatGPT versions 3.5 and 4.0, utilizing a dataset of 3,120 jailbreak questions across eight prohibited scenarios. Finally, we evaluate the resistance of ChatGPT against jailbreak prompts, finding that the prompts can consistently evade the restrictions in 40 use-case scenarios. The study underscores the importance of prompt structures in jailbreaking LLMs and discusses the challenges of robust jailbreak prompt generation and prevention.
Revisiting Uncertainty-based Query Strategies for Active Learning with Transformers
Active learning is the iterative construction of a classification model through targeted labeling, enabling significant labeling cost savings. As most research on active learning has been carried out before transformer-based language models ("transformers") became popular, despite its practical importance, comparably few papers have investigated how transformers can be combined with active learning to date. This can be attributed to the fact that using state-of-the-art query strategies for transformers induces a prohibitive runtime overhead, which effectively nullifies, or even outweighs the desired cost savings. For this reason, we revisit uncertainty-based query strategies, which had been largely outperformed before, but are particularly suited in the context of fine-tuning transformers. In an extensive evaluation, we connect transformers to experiments from previous research, assessing their performance on five widely used text classification benchmarks. For active learning with transformers, several other uncertainty-based approaches outperform the well-known prediction entropy query strategy, thereby challenging its status as most popular uncertainty baseline in active learning for text classification.
Open-vocabulary Object Detection via Vision and Language Knowledge Distillation
We aim at advancing open-vocabulary object detection, which detects objects described by arbitrary text inputs. The fundamental challenge is the availability of training data. It is costly to further scale up the number of classes contained in existing object detection datasets. To overcome this challenge, we propose ViLD, a training method via Vision and Language knowledge Distillation. Our method distills the knowledge from a pretrained open-vocabulary image classification model (teacher) into a two-stage detector (student). Specifically, we use the teacher model to encode category texts and image regions of object proposals. Then we train a student detector, whose region embeddings of detected boxes are aligned with the text and image embeddings inferred by the teacher. We benchmark on LVIS by holding out all rare categories as novel categories that are not seen during training. ViLD obtains 16.1 mask AP_r with a ResNet-50 backbone, even outperforming the supervised counterpart by 3.8. When trained with a stronger teacher model ALIGN, ViLD achieves 26.3 AP_r. The model can directly transfer to other datasets without finetuning, achieving 72.2 AP_{50} on PASCAL VOC, 36.6 AP on COCO and 11.8 AP on Objects365. On COCO, ViLD outperforms the previous state-of-the-art by 4.8 on novel AP and 11.4 on overall AP. Code and demo are open-sourced at https://github.com/tensorflow/tpu/tree/master/models/official/detection/projects/vild.
Who's a Good Boy? Reinforcing Canine Behavior in Real-Time using Machine Learning
In this paper we outline the development methodology for an automatic dog treat dispenser which combines machine learning and embedded hardware to identify and reward dog behaviors in real-time. Using machine learning techniques for training an image classification model we identify three behaviors of our canine companions: "sit", "stand", and "lie down" with up to 92% test accuracy and 39 frames per second. We evaluate a variety of neural network architectures, interpretability methods, model quantization and optimization techniques to develop a model specifically for an NVIDIA Jetson Nano. We detect the aforementioned behaviors in real-time and reinforce positive actions by making inference on the Jetson Nano and transmitting a signal to a servo motor to release rewards from a treat delivery apparatus.
Attention-Based Neural Networks for Sentiment Attitude Extraction using Distant Supervision
In the sentiment attitude extraction task, the aim is to identify <<attitudes>> -- sentiment relations between entities mentioned in text. In this paper, we provide a study on attention-based context encoders in the sentiment attitude extraction task. For this task, we adapt attentive context encoders of two types: (1) feature-based; (2) self-based. In our study, we utilize the corpus of Russian analytical texts RuSentRel and automatically constructed news collection RuAttitudes for enriching the training set. We consider the problem of attitude extraction as two-class (positive, negative) and three-class (positive, negative, neutral) classification tasks for whole documents. Our experiments with the RuSentRel corpus show that the three-class classification models, which employ the RuAttitudes corpus for training, result in 10% increase and extra 3% by F1, when model architectures include the attention mechanism. We also provide the analysis of attention weight distributions in dependence on the term type.
Describing Differences in Image Sets with Natural Language
How do two sets of images differ? Discerning set-level differences is crucial for understanding model behaviors and analyzing datasets, yet manually sifting through thousands of images is impractical. To aid in this discovery process, we explore the task of automatically describing the differences between two sets of images, which we term Set Difference Captioning. This task takes in image sets D_A and D_B, and outputs a description that is more often true on D_A than D_B. We outline a two-stage approach that first proposes candidate difference descriptions from image sets and then re-ranks the candidates by checking how well they can differentiate the two sets. We introduce VisDiff, which first captions the images and prompts a language model to propose candidate descriptions, then re-ranks these descriptions using CLIP. To evaluate VisDiff, we collect VisDiffBench, a dataset with 187 paired image sets with ground truth difference descriptions. We apply VisDiff to various domains, such as comparing datasets (e.g., ImageNet vs. ImageNetV2), comparing classification models (e.g., zero-shot CLIP vs. supervised ResNet), summarizing model failure modes (supervised ResNet), characterizing differences between generative models (e.g., StableDiffusionV1 and V2), and discovering what makes images memorable. Using VisDiff, we are able to find interesting and previously unknown differences in datasets and models, demonstrating its utility in revealing nuanced insights.
Evolving Normalization-Activation Layers
Normalization layers and activation functions are fundamental components in deep networks and typically co-locate with each other. Here we propose to design them using an automated approach. Instead of designing them separately, we unify them into a single tensor-to-tensor computation graph, and evolve its structure starting from basic mathematical functions. Examples of such mathematical functions are addition, multiplication and statistical moments. The use of low-level mathematical functions, in contrast to the use of high-level modules in mainstream NAS, leads to a highly sparse and large search space which can be challenging for search methods. To address the challenge, we develop efficient rejection protocols to quickly filter out candidate layers that do not work well. We also use multi-objective evolution to optimize each layer's performance across many architectures to prevent overfitting. Our method leads to the discovery of EvoNorms, a set of new normalization-activation layers with novel, and sometimes surprising structures that go beyond existing design patterns. For example, some EvoNorms do not assume that normalization and activation functions must be applied sequentially, nor need to center the feature maps, nor require explicit activation functions. Our experiments show that EvoNorms work well on image classification models including ResNets, MobileNets and EfficientNets but also transfer well to Mask R-CNN with FPN/SpineNet for instance segmentation and to BigGAN for image synthesis, outperforming BatchNorm and GroupNorm based layers in many cases.
Fleurs-SLU: A Massively Multilingual Benchmark for Spoken Language Understanding
While recent multilingual automatic speech recognition models claim to support thousands of languages, ASR for low-resource languages remains highly unreliable due to limited bimodal speech and text training data. Better multilingual spoken language understanding (SLU) can strengthen massively the robustness of multilingual ASR by levering language semantics to compensate for scarce training data, such as disambiguating utterances via context or exploiting semantic similarities across languages. Even more so, SLU is indispensable for inclusive speech technology in roughly half of all living languages that lack a formal writing system. However, the evaluation of multilingual SLU remains limited to shallower tasks such as intent classification or language identification. To address this, we present Fleurs-SLU, a multilingual SLU benchmark that encompasses topical speech classification in 102 languages and multiple-choice question answering through listening comprehension in 92 languages. We extensively evaluate both end-to-end speech classification models and cascaded systems that combine speech-to-text transcription with subsequent classification by large language models on Fleurs-SLU. Our results show that cascaded systems exhibit greater robustness in multilingual SLU tasks, though speech encoders can achieve competitive performance in topical speech classification when appropriately pre-trained. We further find a strong correlation between robust multilingual ASR, effective speech-to-text translation, and strong multilingual SLU, highlighting the mutual benefits between acoustic and semantic speech representations.
What's Mine becomes Yours: Defining, Annotating and Detecting Context-Dependent Paraphrases in News Interview Dialogs
Best practices for high conflict conversations like counseling or customer support almost always include recommendations to paraphrase the previous speaker. Although paraphrase classification has received widespread attention in NLP, paraphrases are usually considered independent from context, and common models and datasets are not applicable to dialog settings. In this work, we investigate paraphrases in dialog (e.g., Speaker 1: "That book is mine." becomes Speaker 2: "That book is yours."). We provide an operationalization of context-dependent paraphrases, and develop a training for crowd-workers to classify paraphrases in dialog. We introduce a dataset with utterance pairs from NPR and CNN news interviews annotated for context-dependent paraphrases. To enable analyses on label variation, the dataset contains 5,581 annotations on 600 utterance pairs. We present promising results with in-context learning and with token classification models for automatic paraphrase detection in dialog.
Izindaba-Tindzaba: Machine learning news categorisation for Long and Short Text for isiZulu and Siswati
Local/Native South African languages are classified as low-resource languages. As such, it is essential to build the resources for these languages so that they can benefit from advances in the field of natural language processing. In this work, the focus was to create annotated news datasets for the isiZulu and Siswati native languages based on news topic classification tasks and present the findings from these baseline classification models. Due to the shortage of data for these native South African languages, the datasets that were created were augmented and oversampled to increase data size and overcome class classification imbalance. In total, four different classification models were used namely Logistic regression, Naive bayes, XGBoost and LSTM. These models were trained on three different word embeddings namely Bag-Of-Words, TFIDF and Word2vec. The results of this study showed that XGBoost, Logistic Regression and LSTM, trained from Word2vec performed better than the other combinations.
weighted CapsuleNet networks for Persian multi-domain sentiment analysis
Sentiment classification is a fundamental task in natural language processing, assigning one of the three classes, positive, negative, or neutral, to free texts. However, sentiment classification models are highly domain dependent; the classifier may perform classification with reasonable accuracy in one domain but not in another due to the Semantic multiplicity of words getting poor accuracy. This article presents a new Persian/Arabic multi-domain sentiment analysis method using the cumulative weighted capsule networks approach. Weighted capsule ensemble consists of training separate capsule networks for each domain and a weighting measure called domain belonging degree (DBD). This criterion consists of TF and IDF, which calculates the dependency of each document for each domain separately; this value is multiplied by the possible output that each capsule creates. In the end, the sum of these multiplications is the title of the final output, and is used to determine the polarity. And the most dependent domain is considered the final output for each domain. The proposed method was evaluated using the Digikala dataset and obtained acceptable accuracy compared to the existing approaches. It achieved an accuracy of 0.89 on detecting the domain of belonging and 0.99 on detecting the polarity. Also, for the problem of dealing with unbalanced classes, a cost-sensitive function was used. This function was able to achieve 0.0162 improvements in accuracy for sentiment classification. This approach on Amazon Arabic data can achieve 0.9695 accuracies in domain classification.
Multilingual Detection of Personal Employment Status on Twitter
Detecting disclosures of individuals' employment status on social media can provide valuable information to match job seekers with suitable vacancies, offer social protection, or measure labor market flows. However, identifying such personal disclosures is a challenging task due to their rarity in a sea of social media content and the variety of linguistic forms used to describe them. Here, we examine three Active Learning (AL) strategies in real-world settings of extreme class imbalance, and identify five types of disclosures about individuals' employment status (e.g. job loss) in three languages using BERT-based classification models. Our findings show that, even under extreme imbalance settings, a small number of AL iterations is sufficient to obtain large and significant gains in precision, recall, and diversity of results compared to a supervised baseline with the same number of labels. We also find that no AL strategy consistently outperforms the rest. Qualitative analysis suggests that AL helps focus the attention mechanism of BERT on core terms and adjust the boundaries of semantic expansion, highlighting the importance of interpretable models to provide greater control and visibility into this dynamic learning process.
Active Learning on a Budget: Opposite Strategies Suit High and Low Budgets
Investigating active learning, we focus on the relation between the number of labeled examples (budget size), and suitable querying strategies. Our theoretical analysis shows a behavior reminiscent of phase transition: typical examples are best queried when the budget is low, while unrepresentative examples are best queried when the budget is large. Combined evidence shows that a similar phenomenon occurs in common classification models. Accordingly, we propose TypiClust -- a deep active learning strategy suited for low budgets. In a comparative empirical investigation of supervised learning, using a variety of architectures and image datasets, TypiClust outperforms all other active learning strategies in the low-budget regime. Using TypiClust in the semi-supervised framework, performance gets an even more significant boost. In particular, state-of-the-art semi-supervised methods trained on CIFAR-10 with 10 labeled examples selected by TypiClust, reach 93.2% accuracy -- an improvement of 39.4% over random selection. Code is available at https://github.com/avihu111/TypiClust.
Robust Training Using Natural Transformation
Previous robustness approaches for deep learning models such as data augmentation techniques via data transformation or adversarial training cannot capture real-world variations that preserve the semantics of the input, such as a change in lighting conditions. To bridge this gap, we present NaTra, an adversarial training scheme that is designed to improve the robustness of image classification algorithms. We target attributes of the input images that are independent of the class identification, and manipulate those attributes to mimic real-world natural transformations (NaTra) of the inputs, which are then used to augment the training dataset of the image classifier. Specifically, we apply Batch Inverse Encoding and Shifting to map a batch of given images to corresponding disentangled latent codes of well-trained generative models. Latent Codes Expansion is used to boost image reconstruction quality through the incorporation of extended feature maps. Unsupervised Attribute Directing and Manipulation enables identification of the latent directions that correspond to specific attribute changes, and then produce interpretable manipulations of those attributes, thereby generating natural transformations to the input data. We demonstrate the efficacy of our scheme by utilizing the disentangled latent representations derived from well-trained GANs to mimic transformations of an image that are similar to real-world natural variations (such as lighting conditions or hairstyle), and train models to be invariant to these natural transformations. Extensive experiments show that our method improves generalization of classification models and increases its robustness to various real-world distortions
High-Performance Large-Scale Image Recognition Without Normalization
Batch normalization is a key component of most image classification models, but it has many undesirable properties stemming from its dependence on the batch size and interactions between examples. Although recent work has succeeded in training deep ResNets without normalization layers, these models do not match the test accuracies of the best batch-normalized networks, and are often unstable for large learning rates or strong data augmentations. In this work, we develop an adaptive gradient clipping technique which overcomes these instabilities, and design a significantly improved class of Normalizer-Free ResNets. Our smaller models match the test accuracy of an EfficientNet-B7 on ImageNet while being up to 8.7x faster to train, and our largest models attain a new state-of-the-art top-1 accuracy of 86.5%. In addition, Normalizer-Free models attain significantly better performance than their batch-normalized counterparts when finetuning on ImageNet after large-scale pre-training on a dataset of 300 million labeled images, with our best models obtaining an accuracy of 89.2%. Our code is available at https://github.com/deepmind/ deepmind-research/tree/master/nfnets
Demystifying Contrastive Self-Supervised Learning: Invariances, Augmentations and Dataset Biases
Self-supervised representation learning approaches have recently surpassed their supervised learning counterparts on downstream tasks like object detection and image classification. Somewhat mysteriously the recent gains in performance come from training instance classification models, treating each image and it's augmented versions as samples of a single class. In this work, we first present quantitative experiments to demystify these gains. We demonstrate that approaches like MOCO and PIRL learn occlusion-invariant representations. However, they fail to capture viewpoint and category instance invariance which are crucial components for object recognition. Second, we demonstrate that these approaches obtain further gains from access to a clean object-centric training dataset like Imagenet. Finally, we propose an approach to leverage unstructured videos to learn representations that possess higher viewpoint invariance. Our results show that the learned representations outperform MOCOv2 trained on the same data in terms of invariances encoded and the performance on downstream image classification and semantic segmentation tasks.
Automatic Text-based Personality Recognition on Monologues and Multiparty Dialogues Using Attentive Networks and Contextual Embeddings
Previous works related to automatic personality recognition focus on using traditional classification models with linguistic features. However, attentive neural networks with contextual embeddings, which have achieved huge success in text classification, are rarely explored for this task. In this project, we have two major contributions. First, we create the first dialogue-based personality dataset, FriendsPersona, by annotating 5 personality traits of speakers from Friends TV Show through crowdsourcing. Second, we present a novel approach to automatic personality recognition using pre-trained contextual embeddings (BERT and RoBERTa) and attentive neural networks. Our models largely improve the state-of-art results on the monologue Essays dataset by 2.49%, and establish a solid benchmark on our FriendsPersona. By comparing results in two datasets, we demonstrate the challenges of modeling personality in multi-party dialogue.
VISREAS: Complex Visual Reasoning with Unanswerable Questions
Verifying a question's validity before answering is crucial in real-world applications, where users may provide imperfect instructions. In this scenario, an ideal model should address the discrepancies in the query and convey them to the users rather than generating the best possible answer. Addressing this requirement, we introduce a new compositional visual question-answering dataset, VISREAS, that consists of answerable and unanswerable visual queries formulated by traversing and perturbing commonalities and differences among objects, attributes, and relations. VISREAS contains 2.07M semantically diverse queries generated automatically using Visual Genome scene graphs. The unique feature of this task, validating question answerability with respect to an image before answering, and the poor performance of state-of-the-art models inspired the design of a new modular baseline, LOGIC2VISION that reasons by producing and executing pseudocode without any external modules to generate the answer. LOGIC2VISION outperforms generative models in VISREAS (+4.82% over LLaVA-1.5; +12.23% over InstructBLIP) and achieves a significant gain in performance against the classification models.
Personality Style Recognition via Machine Learning: Identifying Anaclitic and Introjective Personality Styles from Patients' Speech
In disentangling the heterogeneity observed in psychopathology, personality of the patients is considered crucial. While it has been demonstrated that personality traits are reflected in the language used by a patient, we hypothesize that this enables automatic inference of the personality type directly from speech utterances, potentially more accurately than through a traditional questionnaire-based approach explicitly designed for personality classification. To validate this hypothesis, we adopt natural language processing (NLP) and standard machine learning tools for classification. We test this on a dataset of recorded clinical diagnostic interviews (CDI) on a sample of 79 patients diagnosed with major depressive disorder (MDD) -- a condition for which differentiated treatment based on personality styles has been advocated -- and classified into anaclitic and introjective personality styles. We start by analyzing the interviews to see which linguistic features are associated with each style, in order to gain a better understanding of the styles. Then, we develop automatic classifiers based on (a) standardized questionnaire responses; (b) basic text features, i.e., TF-IDF scores of words and word sequences; (c) more advanced text features, using LIWC (linguistic inquiry and word count) and context-aware features using BERT (bidirectional encoder representations from transformers); (d) audio features. We find that automated classification with language-derived features (i.e., based on LIWC) significantly outperforms questionnaire-based classification models. Furthermore, the best performance is achieved by combining LIWC with the questionnaire features. This suggests that more work should be put into developing linguistically based automated techniques for characterizing personality, however questionnaires still to some extent complement such methods.
Quick Starting Dialog Systems with Paraphrase Generation
Acquiring training data to improve the robustness of dialog systems can be a painstakingly long process. In this work, we propose a method to reduce the cost and effort of creating new conversational agents by artificially generating more data from existing examples, using paraphrase generation. Our proposed approach can kick-start a dialog system with little human effort, and brings its performance to a level satisfactory enough for allowing actual interactions with real end-users. We experimented with two neural paraphrasing approaches, namely Neural Machine Translation and a Transformer-based seq2seq model. We present the results obtained with two datasets in English and in French:~a crowd-sourced public intent classification dataset and our own corporate dialog system dataset. We show that our proposed approach increased the generalization capabilities of the intent classification model on both datasets, reducing the effort required to initialize a new dialog system and helping to deploy this technology at scale within an organization.
General Purpose Audio Effect Removal
Although the design and application of audio effects is well understood, the inverse problem of removing these effects is significantly more challenging and far less studied. Recently, deep learning has been applied to audio effect removal; however, existing approaches have focused on narrow formulations considering only one effect or source type at a time. In realistic scenarios, multiple effects are applied with varying source content. This motivates a more general task, which we refer to as general purpose audio effect removal. We developed a dataset for this task using five audio effects across four different sources and used it to train and evaluate a set of existing architectures. We found that no single model performed optimally on all effect types and sources. To address this, we introduced RemFX, an approach designed to mirror the compositionality of applied effects. We first trained a set of the best-performing effect-specific removal models and then leveraged an audio effect classification model to dynamically construct a graph of our models at inference. We found our approach to outperform single model baselines, although examples with many effects present remain challenging.
Priority prediction of Asian Hornet sighting report using machine learning methods
As infamous invaders to the North American ecosystem, the Asian giant hornet (Vespa mandarinia) is devastating not only to native bee colonies, but also to local apiculture. One of the most effective way to combat the harmful species is to locate and destroy their nests. By mobilizing the public to actively report possible sightings of the Asian giant hornet, the governmentcould timely send inspectors to confirm and possibly destroy the nests. However, such confirmation requires lab expertise, where manually checking the reports one by one is extremely consuming of human resources. Further given the limited knowledge of the public about the Asian giant hornet and the randomness of report submission, only few of the numerous reports proved positive, i.e. existing nests. How to classify or prioritize the reports efficiently and automatically, so as to determine the dispatch of personnel, is of great significance to the control of the Asian giant hornet. In this paper, we propose a method to predict the priority of sighting reports based on machine learning. We model the problem of optimal prioritization of sighting reports as a problem of classification and prediction. We extracted a variety of rich features in the report: location, time, image(s), and textual description. Based on these characteristics, we propose a classification model based on logistic regression to predict the credibility of a certain report. Furthermore, our model quantifies the impact between reports to get the priority ranking of the reports. Extensive experiments on the public dataset from the WSDA (the Washington State Department of Agriculture) have proved the effectiveness of our method.
Towards Million-Scale Adversarial Robustness Evaluation With Stronger Individual Attacks
As deep learning models are increasingly deployed in safety-critical applications, evaluating their vulnerabilities to adversarial perturbations is essential for ensuring their reliability and trustworthiness. Over the past decade, a large number of white-box adversarial robustness evaluation methods (i.e., attacks) have been proposed, ranging from single-step to multi-step methods and from individual to ensemble methods. Despite these advances, challenges remain in conducting meaningful and comprehensive robustness evaluations, particularly when it comes to large-scale testing and ensuring evaluations reflect real-world adversarial risks. In this work, we focus on image classification models and propose a novel individual attack method, Probability Margin Attack (PMA), which defines the adversarial margin in the probability space rather than the logits space. We analyze the relationship between PMA and existing cross-entropy or logits-margin-based attacks, and show that PMA can outperform the current state-of-the-art individual methods. Building on PMA, we propose two types of ensemble attacks that balance effectiveness and efficiency. Furthermore, we create a million-scale dataset, CC1M, derived from the existing CC3M dataset, and use it to conduct the first million-scale white-box adversarial robustness evaluation of adversarially-trained ImageNet models. Our findings provide valuable insights into the robustness gaps between individual versus ensemble attacks and small-scale versus million-scale evaluations.
FakeWatch: A Framework for Detecting Fake News to Ensure Credible Elections
In today's technologically driven world, the rapid spread of fake news, particularly during critical events like elections, poses a growing threat to the integrity of information. To tackle this challenge head-on, we introduce FakeWatch, a comprehensive framework carefully designed to detect fake news. Leveraging a newly curated dataset of North American election-related news articles, we construct robust classification models. Our framework integrates a model hub comprising of both traditional machine learning (ML) techniques, and state-of-the-art Language Models (LMs) to discern fake news effectively. Our objective is to provide the research community with adaptable and precise classification models adept at identifying fake news for the elections agenda. Quantitative evaluations of fake news classifiers on our dataset reveal that, while state-of-the-art LMs exhibit a slight edge over traditional ML models, classical models remain competitive due to their balance of accuracy and computational efficiency. Additionally, qualitative analyses shed light on patterns within fake news articles. We provide our labeled data at https://huggingface.co/datasets/newsmediabias/fake_news_elections_labelled_data and model https://huggingface.co/newsmediabias/FakeWatch for reproducibility and further research.
DDI-CoCo: A Dataset For Understanding The Effect Of Color Contrast In Machine-Assisted Skin Disease Detection
Skin tone as a demographic bias and inconsistent human labeling poses challenges in dermatology AI. We take another angle to investigate color contrast's impact, beyond skin tones, on malignancy detection in skin disease datasets: We hypothesize that in addition to skin tones, the color difference between the lesion area and skin also plays a role in malignancy detection performance of dermatology AI models. To study this, we first propose a robust labeling method to quantify color contrast scores of each image and validate our method by showing small labeling variations. More importantly, applying our method to the only diverse-skin tone and pathologically-confirmed skin disease dataset DDI, yields DDI-CoCo Dataset, and we observe a performance gap between the high and low color difference groups. This disparity remains consistent across various state-of-the-art (SoTA) image classification models, which supports our hypothesis. Furthermore, we study the interaction between skin tone and color difference effects and suggest that color difference can be an additional reason behind model performance bias between skin tones. Our work provides a complementary angle to dermatology AI for improving skin disease detection.
SENetV2: Aggregated dense layer for channelwise and global representations
Convolutional Neural Networks (CNNs) have revolutionized image classification by extracting spatial features and enabling state-of-the-art accuracy in vision-based tasks. The squeeze and excitation network proposed module gathers channelwise representations of the input. Multilayer perceptrons (MLP) learn global representation from the data and in most image classification models used to learn extracted features of the image. In this paper, we introduce a novel aggregated multilayer perceptron, a multi-branch dense layer, within the Squeeze excitation residual module designed to surpass the performance of existing architectures. Our approach leverages a combination of squeeze excitation network module with dense layers. This fusion enhances the network's ability to capture channel-wise patterns and have global knowledge, leading to a better feature representation. This proposed model has a negligible increase in parameters when compared to SENet. We conduct extensive experiments on benchmark datasets to validate the model and compare them with established architectures. Experimental results demonstrate a remarkable increase in the classification accuracy of the proposed model.
A Generative Framework for Low-Cost Result Validation of Machine Learning-as-a-Service Inference
The growing popularity of Machine Learning (ML) has led to its deployment in various sensitive domains, which has resulted in significant research focused on ML security and privacy. However, in some applications, such as Augmented/Virtual Reality, integrity verification of the outsourced ML tasks is more critical--a facet that has not received much attention. Existing solutions, such as multi-party computation and proof-based systems, impose significant computation overhead, which makes them unfit for real-time applications. We propose Fides, a novel framework for real-time integrity validation of ML-as-a-Service (MLaaS) inference. Fides features a novel and efficient distillation technique--Greedy Distillation Transfer Learning--that dynamically distills and fine-tunes a space and compute-efficient verification model for verifying the corresponding service model while running inside a trusted execution environment. Fides features a client-side attack detection model that uses statistical analysis and divergence measurements to identify, with a high likelihood, if the service model is under attack. Fides also offers a re-classification functionality that predicts the original class whenever an attack is identified. We devised a generative adversarial network framework for training the attack detection and re-classification models. The evaluation shows that Fides achieves an accuracy of up to 98% for attack detection and 94% for re-classification.
FBNetV5: Neural Architecture Search for Multiple Tasks in One Run
Neural Architecture Search (NAS) has been widely adopted to design accurate and efficient image classification models. However, applying NAS to a new computer vision task still requires a huge amount of effort. This is because 1) previous NAS research has been over-prioritized on image classification while largely ignoring other tasks; 2) many NAS works focus on optimizing task-specific components that cannot be favorably transferred to other tasks; and 3) existing NAS methods are typically designed to be "proxyless" and require significant effort to be integrated with each new task's training pipelines. To tackle these challenges, we propose FBNetV5, a NAS framework that can search for neural architectures for a variety of vision tasks with much reduced computational cost and human effort. Specifically, we design 1) a search space that is simple yet inclusive and transferable; 2) a multitask search process that is disentangled with target tasks' training pipeline; and 3) an algorithm to simultaneously search for architectures for multiple tasks with a computational cost agnostic to the number of tasks. We evaluate the proposed FBNetV5 targeting three fundamental vision tasks -- image classification, object detection, and semantic segmentation. Models searched by FBNetV5 in a single run of search have outperformed the previous stateof-the-art in all the three tasks: image classification (e.g., +1.3% ImageNet top-1 accuracy under the same FLOPs as compared to FBNetV3), semantic segmentation (e.g., +1.8% higher ADE20K val. mIoU than SegFormer with 3.6x fewer FLOPs), and object detection (e.g., +1.1% COCO val. mAP with 1.2x fewer FLOPs as compared to YOLOX).
PREGO: online mistake detection in PRocedural EGOcentric videos
Promptly identifying procedural errors from egocentric videos in an online setting is highly challenging and valuable for detecting mistakes as soon as they happen. This capability has a wide range of applications across various fields, such as manufacturing and healthcare. The nature of procedural mistakes is open-set since novel types of failures might occur, which calls for one-class classifiers trained on correctly executed procedures. However, no technique can currently detect open-set procedural mistakes online. We propose PREGO, the first online one-class classification model for mistake detection in PRocedural EGOcentric videos. PREGO is based on an online action recognition component to model the current action, and a symbolic reasoning module to predict the next actions. Mistake detection is performed by comparing the recognized current action with the expected future one. We evaluate PREGO on two procedural egocentric video datasets, Assembly101 and Epic-tent, which we adapt for online benchmarking of procedural mistake detection to establish suitable benchmarks, thus defining the Assembly101-O and Epic-tent-O datasets, respectively.
Comparison of Current Approaches to Lemmatization: A Case Study in Estonian
This study evaluates three different lemmatization approaches to Estonian -- Generative character-level models, Pattern-based word-level classification models, and rule-based morphological analysis. According to our experiments, a significantly smaller Generative model consistently outperforms the Pattern-based classification model based on EstBERT. Additionally, we observe a relatively small overlap in errors made by all three models, indicating that an ensemble of different approaches could lead to improvements.
NBIAS: A Natural Language Processing Framework for Bias Identification in Text
Bias in textual data can lead to skewed interpretations and outcomes when the data is used. These biases could perpetuate stereotypes, discrimination, or other forms of unfair treatment. An algorithm trained on biased data may end up making decisions that disproportionately impact a certain group of people. Therefore, it is crucial to detect and remove these biases to ensure the fair and ethical use of data. To this end, we develop a comprehensive and robust framework NBIAS that consists of four main layers: data, corpus construction, model development and an evaluation layer. The dataset is constructed by collecting diverse data from various domains, including social media, healthcare, and job hiring portals. As such, we applied a transformer-based token classification model that is able to identify bias words/ phrases through a unique named entity BIAS. In the evaluation procedure, we incorporate a blend of quantitative and qualitative measures to gauge the effectiveness of our models. We achieve accuracy improvements ranging from 1% to 8% compared to baselines. We are also able to generate a robust understanding of the model functioning. The proposed approach is applicable to a variety of biases and contributes to the fair and ethical use of textual data.
Does fine-tuning GPT-3 with the OpenAI API leak personally-identifiable information?
Machine learning practitioners often fine-tune generative pre-trained models like GPT-3 to improve model performance at specific tasks. Previous works, however, suggest that fine-tuned machine learning models memorize and emit sensitive information from the original fine-tuning dataset. Companies such as OpenAI offer fine-tuning services for their models, but no prior work has conducted a memorization attack on any closed-source models. In this work, we simulate a privacy attack on GPT-3 using OpenAI's fine-tuning API. Our objective is to determine if personally identifiable information (PII) can be extracted from this model. We (1) explore the use of naive prompting methods on a GPT-3 fine-tuned classification model, and (2) we design a practical word generation task called Autocomplete to investigate the extent of PII memorization in fine-tuned GPT-3 within a real-world context. Our findings reveal that fine-tuning GPT3 for both tasks led to the model memorizing and disclosing critical personally identifiable information (PII) obtained from the underlying fine-tuning dataset. To encourage further research, we have made our codes and datasets publicly available on GitHub at: https://github.com/albertsun1/gpt3-pii-attacks
The ParlaSent-BCS dataset of sentiment-annotated parliamentary debates from Bosnia-Herzegovina, Croatia, and Serbia
Expression of sentiment in parliamentary debates is deemed to be significantly different from that on social media or in product reviews. This paper adds to an emerging body of research on parliamentary debates with a dataset of sentences annotated for detection sentiment polarity in political discourse. We sample the sentences for annotation from the proceedings of three Southeast European parliaments: Croatia, Bosnia-Herzegovina, and Serbia. A six-level schema is applied to the data with the aim of training a classification model for the detection of sentiment in parliamentary proceedings. Krippendorff's alpha measuring the inter-annotator agreement ranges from 0.6 for the six-level annotation schema to 0.75 for the three-level schema and 0.83 for the two-level schema. Our initial experiments on the dataset show that transformer models perform significantly better than those using a simpler architecture. Furthermore, regardless of the similarity of the three languages, we observe differences in performance across different languages. Performing parliament-specific training and evaluation shows that the main reason for the differing performance between parliaments seems to be the different complexity of the automatic classification task, which is not observable in annotator performance. Language distance does not seem to play any role neither in annotator nor in automatic classification performance. We release the dataset and the best-performing model under permissive licences.
CUNI Submission to MRL 2023 Shared Task on Multi-lingual Multi-task Information Retrieval
We present the Charles University system for the MRL~2023 Shared Task on Multi-lingual Multi-task Information Retrieval. The goal of the shared task was to develop systems for named entity recognition and question answering in several under-represented languages. Our solutions to both subtasks rely on the translate-test approach. We first translate the unlabeled examples into English using a multilingual machine translation model. Then, we run inference on the translated data using a strong task-specific model. Finally, we project the labeled data back into the original language. To keep the inferred tags on the correct positions in the original language, we propose a method based on scoring the candidate positions using a label-sensitive translation model. In both settings, we experiment with finetuning the classification models on the translated data. However, due to a domain mismatch between the development data and the shared task validation and test sets, the finetuned models could not outperform our baselines.
RGB Arabic Alphabets Sign Language Dataset
This paper introduces the RGB Arabic Alphabet Sign Language (AASL) dataset. AASL comprises 7,856 raw and fully labelled RGB images of the Arabic sign language alphabets, which to our best knowledge is the first publicly available RGB dataset. The dataset is aimed to help those interested in developing real-life Arabic sign language classification models. AASL was collected from more than 200 participants and with different settings such as lighting, background, image orientation, image size, and image resolution. Experts in the field supervised, validated and filtered the collected images to ensure a high-quality dataset. AASL is made available to the public on Kaggle.
Is More Data All You Need? A Causal Exploration
Curating a large scale medical imaging dataset for machine learning applications is both time consuming and expensive. Balancing the workload between model development, data collection and annotations is difficult for machine learning practitioners, especially under time constraints. Causal analysis is often used in medicine and economics to gain insights about the effects of actions and policies. In this paper we explore the effect of dataset interventions on the output of image classification models. Through a causal approach we investigate the effects of the quantity and type of data we need to incorporate in a dataset to achieve better performance for specific subtasks. The main goal of this paper is to highlight the potential of causal analysis as a tool for resource optimization for developing medical imaging ML applications. We explore this concept with a synthetic dataset and an exemplary use-case for Diabetic Retinopathy image analysis.
HINT: Healthy Influential-Noise based Training to Defend against Data Poisoning Attacks
While numerous defense methods have been proposed to prohibit potential poisoning attacks from untrusted data sources, most research works only defend against specific attacks, which leaves many avenues for an adversary to exploit. In this work, we propose an efficient and robust training approach to defend against data poisoning attacks based on influence functions, named Healthy Influential-Noise based Training. Using influence functions, we craft healthy noise that helps to harden the classification model against poisoning attacks without significantly affecting the generalization ability on test data. In addition, our method can perform effectively when only a subset of the training data is modified, instead of the current method of adding noise to all examples that has been used in several previous works. We conduct comprehensive evaluations over two image datasets with state-of-the-art poisoning attacks under different realistic attack scenarios. Our empirical results show that HINT can efficiently protect deep learning models against the effect of both untargeted and targeted poisoning attacks.
Baybayin Character Instance Detection
The Philippine Government recently passed the "National Writing System Act," which promotes using Baybayin in Philippine texts. In support of this effort to promote the use of Baybayin, we present a computer vision system which can aid individuals who cannot easily read Baybayin script. In this paper, we survey the existing methods of identifying Baybayin scripts using computer vision and machine learning techniques and discuss their capabilities and limitations. Further, we propose a Baybayin Optical Character Instance Segmentation and Classification model using state-of-the-art Convolutional Neural Networks (CNNs) that detect Baybayin character instances in an image then outputs the Latin alphabet counterparts of each character instance in the image. Most existing systems are limited to character-level image classification and often misclassify or not natively support characters with diacritics. In addition, these existing models often have specific input requirements that limit it to classifying Baybayin text in a controlled setting, such as limitations in clarity and contrast, among others. To our knowledge, our proposed method is the first end-to-end character instance detection model for Baybayin, achieving a mAP50 score of 93.30%, mAP50-95 score of 80.50%, and F1-Score of 84.84%.
Semi-supervised Learning with Network Embedding on Ambient RF Signals for Geofencing Services
In applications such as elderly care, dementia anti-wandering and pandemic control, it is important to ensure that people are within a predefined area for their safety and well-being. We propose GEM, a practical, semi-supervised Geofencing system with network EMbedding, which is based only on ambient radio frequency (RF) signals. GEM models measured RF signal records as a weighted bipartite graph. With access points on one side and signal records on the other, it is able to precisely capture the relationships between signal records. GEM then learns node embeddings from the graph via a novel bipartite network embedding algorithm called BiSAGE, based on a Bipartite graph neural network with a novel bi-level SAmple and aggreGatE mechanism and non-uniform neighborhood sampling. Using the learned embeddings, GEM finally builds a one-class classification model via an enhanced histogram-based algorithm for in-out detection, i.e., to detect whether the user is inside the area or not. This model also keeps on improving with newly collected signal records. We demonstrate through extensive experiments in diverse environments that GEM shows state-of-the-art performance with up to 34% improvement in F-score. BiSAGE in GEM leads to a 54% improvement in F-score, as compared to the one without BiSAGE.
HaSPeR: An Image Repository for Hand Shadow Puppet Recognition
Hand shadow puppetry, also known as shadowgraphy or ombromanie, is a form of theatrical art and storytelling where hand shadows are projected onto flat surfaces to create illusions of living creatures. The skilled performers create these silhouettes by hand positioning, finger movements, and dexterous gestures to resemble shadows of animals and objects. Due to the lack of practitioners and a seismic shift in people's entertainment standards, this art form is on the verge of extinction. To facilitate its preservation and proliferate it to a wider audience, we introduce {rm H{small A}SP{small E}R}, a novel dataset consisting of 15,000 images of hand shadow puppets across 15 classes extracted from both professional and amateur hand shadow puppeteer clips. We provide a detailed statistical analysis of the dataset and employ a range of pretrained image classification models to establish baselines. Our findings show a substantial performance superiority of skip-connected convolutional models over attention-based transformer architectures. We also find that lightweight models, such as MobileNetV2, suited for mobile applications and embedded devices, perform comparatively well. We surmise that such low-latency architectures can be useful in developing ombromanie teaching tools, and we create a prototype application to explore this surmission. Keeping the best-performing model ResNet34 under the limelight, we conduct comprehensive feature-spatial, explainability, and error analyses to gain insights into its decision-making process. To the best of our knowledge, this is the first documented dataset and research endeavor to preserve this dying art for future generations, with computer vision approaches. Our code and data will be publicly available.
Hardware Acceleration for Real-Time Wildfire Detection Onboard Drone Networks
Early wildfire detection in remote and forest areas is crucial for minimizing devastation and preserving ecosystems. Autonomous drones offer agile access to remote, challenging terrains, equipped with advanced imaging technology that delivers both high-temporal and detailed spatial resolution, making them valuable assets in the early detection and monitoring of wildfires. However, the limited computation and battery resources of Unmanned Aerial Vehicles (UAVs) pose significant challenges in implementing robust and efficient image classification models. Current works in this domain often operate offline, emphasizing the need for solutions that can perform inference in real time, given the constraints of UAVs. To address these challenges, this paper aims to develop a real-time image classification and fire segmentation model. It presents a comprehensive investigation into hardware acceleration using the Jetson Nano P3450 and the implications of TensorRT, NVIDIA's high-performance deep-learning inference library, on fire classification accuracy and speed. The study includes implementations of Quantization Aware Training (QAT), Automatic Mixed Precision (AMP), and post-training mechanisms, comparing them against the latest baselines for fire segmentation and classification. All experiments utilize the FLAME dataset - an image dataset collected by low-altitude drones during a prescribed forest fire. This work contributes to the ongoing efforts to enable real-time, on-board wildfire detection capabilities for UAVs, addressing speed and the computational and energy constraints of these crucial monitoring systems. The results show a 13% increase in classification speed compared to similar models without hardware optimization. Comparatively, loss and accuracy are within 1.225% of the original values.
Engineering Design Knowledge Graphs from Patented Artefact Descriptions for Retrieval-Augmented Generation in the Design Process
Despite significant popularity, Large-language Models (LLMs) require explicit, contextual facts to support domain-specific knowledge-intensive tasks in the design process. The applications built using LLMs should hence adopt Retrieval-Augmented Generation (RAG) to better suit the design process. In this article, we present a data-driven method to identify explicit facts from patent documents that provide standard descriptions of over 8 million artefacts. In our method, we train roBERTa Transformer-based sequence classification models using our dataset of 44,227 sentences and facts. Upon classifying tokens in a sentence as entities or relationships, our method uses another classifier to identify specific relationship tokens for a given pair of entities so that explicit facts of the form head entity :: relationship :: tail entity are identified. In the benchmark approaches for constructing facts, we use linear classifiers and Graph Neural Networks (GNNs) both incorporating BERT Transformer-based token embeddings to predict associations among the entities and relationships. We apply our method to 4,870 fan system related patents and populate a knowledge base of around 3 million facts. Upon retrieving the facts representing generalisable domain knowledge and the knowledge of specific subsystems and issues, we demonstrate how these facts contextualise LLMs for generating text that is more relevant to the design process.
DAF:re: A Challenging, Crowd-Sourced, Large-Scale, Long-Tailed Dataset For Anime Character Recognition
In this work we tackle the challenging problem of anime character recognition. Anime, referring to animation produced within Japan and work derived or inspired from it. For this purpose we present DAF:re (DanbooruAnimeFaces:revamped), a large-scale, crowd-sourced, long-tailed dataset with almost 500 K images spread across more than 3000 classes. Additionally, we conduct experiments on DAF:re and similar datasets using a variety of classification models, including CNN based ResNets and self-attention based Vision Transformer (ViT). Our results give new insights into the generalization and transfer learning properties of ViT models on substantially different domain datasets from those used for the upstream pre-training, including the influence of batch and image size in their training. Additionally, we share our dataset, source-code, pre-trained checkpoints and results, as Animesion, the first end-to-end framework for large-scale anime character recognition: https://github.com/arkel23/animesion
MixUp as Locally Linear Out-Of-Manifold Regularization
MixUp is a recently proposed data-augmentation scheme, which linearly interpolates a random pair of training examples and correspondingly the one-hot representations of their labels. Training deep neural networks with such additional data is shown capable of significantly improving the predictive accuracy of the current art. The power of MixUp, however, is primarily established empirically and its working and effectiveness have not been explained in any depth. In this paper, we develop an understanding for MixUp as a form of "out-of-manifold regularization", which imposes certain "local linearity" constraints on the model's input space beyond the data manifold. This analysis enables us to identify a limitation of MixUp, which we call "manifold intrusion". In a nutshell, manifold intrusion in MixUp is a form of under-fitting resulting from conflicts between the synthetic labels of the mixed-up examples and the labels of original training data. Such a phenomenon usually happens when the parameters controlling the generation of mixing policies are not sufficiently fine-tuned on the training data. To address this issue, we propose a novel adaptive version of MixUp, where the mixing policies are automatically learned from the data using an additional network and objective function designed to avoid manifold intrusion. The proposed regularizer, AdaMixUp, is empirically evaluated on several benchmark datasets. Extensive experiments demonstrate that AdaMixUp improves upon MixUp when applied to the current art of deep classification models.
Large-batch Optimization for Dense Visual Predictions
Training a large-scale deep neural network in a large-scale dataset is challenging and time-consuming. The recent breakthrough of large-batch optimization is a promising way to tackle this challenge. However, although the current advanced algorithms such as LARS and LAMB succeed in classification models, the complicated pipelines of dense visual predictions such as object detection and segmentation still suffer from the heavy performance drop in the large-batch training regime. To address this challenge, we propose a simple yet effective algorithm, named Adaptive Gradient Variance Modulator (AGVM), which can train dense visual predictors with very large batch size, enabling several benefits more appealing than prior arts. Firstly, AGVM can align the gradient variances between different modules in the dense visual predictors, such as backbone, feature pyramid network (FPN), detection, and segmentation heads. We show that training with a large batch size can fail with the gradient variances misaligned among them, which is a phenomenon primarily overlooked in previous work. Secondly, AGVM is a plug-and-play module that generalizes well to many different architectures (e.g., CNNs and Transformers) and different tasks (e.g., object detection, instance segmentation, semantic segmentation, and panoptic segmentation). It is also compatible with different optimizers (e.g., SGD and AdamW). Thirdly, a theoretical analysis of AGVM is provided. Extensive experiments on the COCO and ADE20K datasets demonstrate the superiority of AGVM. For example, it can train Faster R-CNN+ResNet50 in 4 minutes without losing performance. AGVM enables training an object detector with one billion parameters in just 3.5 hours, reducing the training time by 20.9x, whilst achieving 62.2 mAP on COCO. The deliverables are released at https://github.com/Sense-X/AGVM.
Vocalsound: A Dataset for Improving Human Vocal Sounds Recognition
Recognizing human non-speech vocalizations is an important task and has broad applications such as automatic sound transcription and health condition monitoring. However, existing datasets have a relatively small number of vocal sound samples or noisy labels. As a consequence, state-of-the-art audio event classification models may not perform well in detecting human vocal sounds. To support research on building robust and accurate vocal sound recognition, we have created a VocalSound dataset consisting of over 21,000 crowdsourced recordings of laughter, sighs, coughs, throat clearing, sneezes, and sniffs from 3,365 unique subjects. Experiments show that the vocal sound recognition performance of a model can be significantly improved by 41.9% by adding VocalSound dataset to an existing dataset as training material. In addition, different from previous datasets, the VocalSound dataset contains meta information such as speaker age, gender, native language, country, and health condition.
Boosting Co-teaching with Compression Regularization for Label Noise
In this paper, we study the problem of learning image classification models in the presence of label noise. We revisit a simple compression regularization named Nested Dropout. We find that Nested Dropout, though originally proposed to perform fast information retrieval and adaptive data compression, can properly regularize a neural network to combat label noise. Moreover, owing to its simplicity, it can be easily combined with Co-teaching to further boost the performance. Our final model remains simple yet effective: it achieves comparable or even better performance than the state-of-the-art approaches on two real-world datasets with label noise which are Clothing1M and ANIMAL-10N. On Clothing1M, our approach obtains 74.9% accuracy which is slightly better than that of DivideMix. On ANIMAL-10N, we achieve 84.1% accuracy while the best public result by PLC is 83.4%. We hope that our simple approach can be served as a strong baseline for learning with label noise. Our implementation is available at https://github.com/yingyichen-cyy/Nested-Co-teaching.
This Looks Like That, Because ... Explaining Prototypes for Interpretable Image Recognition
Image recognition with prototypes is considered an interpretable alternative for black box deep learning models. Classification depends on the extent to which a test image "looks like" a prototype. However, perceptual similarity for humans can be different from the similarity learned by the classification model. Hence, only visualising prototypes can be insufficient for a user to understand what a prototype exactly represents, and why the model considers a prototype and an image to be similar. We address this ambiguity and argue that prototypes should be explained. We improve interpretability by automatically enhancing visual prototypes with textual quantitative information about visual characteristics deemed important by the classification model. Specifically, our method clarifies the meaning of a prototype by quantifying the influence of colour hue, shape, texture, contrast and saturation and can generate both global and local explanations. Because of the generality of our approach, it can improve the interpretability of any similarity-based method for prototypical image recognition. In our experiments, we apply our method to the existing Prototypical Part Network (ProtoPNet). Our analysis confirms that the global explanations are generalisable, and often correspond to the visually perceptible properties of a prototype. Our explanations are especially relevant for prototypes which might have been interpreted incorrectly otherwise. By explaining such 'misleading' prototypes, we improve the interpretability and simulatability of a prototype-based classification model. We also use our method to check whether visually similar prototypes have similar explanations, and are able to discover redundancy. Code is available at https://github.com/M-Nauta/Explaining_Prototypes .
Do ImageNet Classifiers Generalize to ImageNet?
We build new test sets for the CIFAR-10 and ImageNet datasets. Both benchmarks have been the focus of intense research for almost a decade, raising the danger of overfitting to excessively re-used test sets. By closely following the original dataset creation processes, we test to what extent current classification models generalize to new data. We evaluate a broad range of models and find accuracy drops of 3% - 15% on CIFAR-10 and 11% - 14% on ImageNet. However, accuracy gains on the original test sets translate to larger gains on the new test sets. Our results suggest that the accuracy drops are not caused by adaptivity, but by the models' inability to generalize to slightly "harder" images than those found in the original test sets.
Benchmarking datasets for Anomaly-based Network Intrusion Detection: KDD CUP 99 alternatives
Machine Learning has been steadily gaining traction for its use in Anomaly-based Network Intrusion Detection Systems (A-NIDS). Research into this domain is frequently performed using the KDD~CUP~99 dataset as a benchmark. Several studies question its usability while constructing a contemporary NIDS, due to the skewed response distribution, non-stationarity, and failure to incorporate modern attacks. In this paper, we compare the performance for KDD-99 alternatives when trained using classification models commonly found in literature: Neural Network, Support Vector Machine, Decision Tree, Random Forest, Naive Bayes and K-Means. Applying the SMOTE oversampling technique and random undersampling, we create a balanced version of NSL-KDD and prove that skewed target classes in KDD-99 and NSL-KDD hamper the efficacy of classifiers on minority classes (U2R and R2L), leading to possible security risks. We explore UNSW-NB15, a modern substitute to KDD-99 with greater uniformity of pattern distribution. We benchmark this dataset before and after SMOTE oversampling to observe the effect on minority performance. Our results indicate that classifiers trained on UNSW-NB15 match or better the Weighted F1-Score of those trained on NSL-KDD and KDD-99 in the binary case, thus advocating UNSW-NB15 as a modern substitute to these datasets.
On Calibration of Modern Neural Networks
Confidence calibration -- the problem of predicting probability estimates representative of the true correctness likelihood -- is important for classification models in many applications. We discover that modern neural networks, unlike those from a decade ago, are poorly calibrated. Through extensive experiments, we observe that depth, width, weight decay, and Batch Normalization are important factors influencing calibration. We evaluate the performance of various post-processing calibration methods on state-of-the-art architectures with image and document classification datasets. Our analysis and experiments not only offer insights into neural network learning, but also provide a simple and straightforward recipe for practical settings: on most datasets, temperature scaling -- a single-parameter variant of Platt Scaling -- is surprisingly effective at calibrating predictions.
Text-to-3D with classifier score distillation
Text-to-3D generation has made remarkable progress recently, particularly with methods based on Score Distillation Sampling (SDS) that leverages pre-trained 2D diffusion models. While the usage of classifier-free guidance is well acknowledged to be crucial for successful optimization, it is considered an auxiliary trick rather than the most essential component. In this paper, we re-evaluate the role of classifier-free guidance in score distillation and discover a surprising finding: the guidance alone is enough for effective text-to-3D generation tasks. We name this method Classifier Score Distillation (CSD), which can be interpreted as using an implicit classification model for generation. This new perspective reveals new insights for understanding existing techniques. We validate the effectiveness of CSD across a variety of text-to-3D tasks including shape generation, texture synthesis, and shape editing, achieving results superior to those of state-of-the-art methods. Our project page is https://xinyu-andy.github.io/Classifier-Score-Distillation
FROD: Robust Object Detection for Free
Object detection is a vital task in computer vision and has become an integral component of numerous critical systems. However, state-of-the-art object detectors, similar to their classification counterparts, are susceptible to small adversarial perturbations that can significantly alter their normal behavior. Unlike classification, the robustness of object detectors has not been thoroughly explored. In this work, we take the initial step towards bridging the gap between the robustness of classification and object detection by leveraging adversarially trained classification models. Merely utilizing adversarially trained models as backbones for object detection does not result in robustness. We propose effective modifications to the classification-based backbone to instill robustness in object detection without incurring any computational overhead. To further enhance the robustness achieved by the proposed modified backbone, we introduce two lightweight components: imitation loss and delayed adversarial training. Extensive experiments on the MS-COCO and Pascal VOC datasets are conducted to demonstrate the effectiveness of our proposed approach.
AraCOVID19-MFH: Arabic COVID-19 Multi-label Fake News and Hate Speech Detection Dataset
Along with the COVID-19 pandemic, an "infodemic" of false and misleading information has emerged and has complicated the COVID-19 response efforts. Social networking sites such as Facebook and Twitter have contributed largely to the spread of rumors, conspiracy theories, hate, xenophobia, racism, and prejudice. To combat the spread of fake news, researchers around the world have and are still making considerable efforts to build and share COVID-19 related research articles, models, and datasets. This paper releases "AraCOVID19-MFH" a manually annotated multi-label Arabic COVID-19 fake news and hate speech detection dataset. Our dataset contains 10,828 Arabic tweets annotated with 10 different labels. The labels have been designed to consider some aspects relevant to the fact-checking task, such as the tweet's check worthiness, positivity/negativity, and factuality. To confirm our annotated dataset's practical utility, we used it to train and evaluate several classification models and reported the obtained results. Though the dataset is mainly designed for fake news detection, it can also be used for hate speech detection, opinion/news classification, dialect identification, and many other tasks.
Adapting Safe-for-Work Classifier for Malaysian Language Text: Enhancing Alignment in LLM-Ops Framework
As large language models (LLMs) become increasingly integrated into operational workflows (LLM-Ops), there is a pressing need for effective guardrails to ensure safe and aligned interactions, including the ability to detect potentially unsafe or inappropriate content across languages. However, existing safe-for-work classifiers are primarily focused on English text. To address this gap for the Malaysian language, we present a novel safe-for-work text classifier tailored specifically for Malaysian language content. By curating and annotating a first-of-its-kind dataset of Malaysian text spanning multiple content categories, we trained a classification model capable of identifying potentially unsafe material using state-of-the-art natural language processing techniques. This work represents an important step in enabling safer interactions and content filtering to mitigate potential risks and ensure responsible deployment of LLMs. To maximize accessibility and promote further research towards enhancing alignment in LLM-Ops for the Malaysian context, the model is publicly released at https://huggingface.co/malaysia-ai/malaysian-sfw-classifier.
Real Time Bearing Fault Diagnosis Based on Convolutional Neural Network and STM32 Microcontroller
With the rapid development of big data and edge computing, many researchers focus on improving the accuracy of bearing fault classification using deep learning models, and implementing the deep learning classification model on limited resource platforms such as STM32. To this end, this paper realizes the identification of bearing fault vibration signal based on convolutional neural network, the fault identification accuracy of the optimised model can reach 98.9%. In addition, this paper successfully applies the convolutional neural network model to STM32H743VI microcontroller, the running time of each diagnosis is 19ms. Finally, a complete real-time communication framework between the host computer and the STM32 is designed, which can perfectly complete the data transmission through the serial port and display the diagnosis results on the TFT-LCD screen.
StreetSurfaceVis: a dataset of crowdsourced street-level imagery with semi-automated annotations of road surface type and quality
Road unevenness significantly impacts the safety and comfort of various traffic participants, especially vulnerable road users such as cyclists and wheelchair users. This paper introduces StreetSurfaceVis, a novel dataset comprising 9,122 street-level images collected from a crowdsourcing platform and manually annotated by road surface type and quality. The dataset is intended to train models for comprehensive surface assessments of road networks. Existing open datasets are constrained by limited geospatial coverage and camera setups, typically excluding cycleways and footways. By crafting a heterogeneous dataset, we aim to fill this gap and enable robust models that maintain high accuracy across diverse image sources. However, the frequency distribution of road surface types and qualities is highly imbalanced. We address the challenge of ensuring sufficient images per class while reducing manual annotation by proposing a sampling strategy that incorporates various external label prediction resources. More precisely, we estimate the impact of (1) enriching the image data with OpenStreetMap tags, (2) iterative training and application of a custom surface type classification model, (3) amplifying underrepresented classes through prompt-based classification with GPT-4o or similarity search using image embeddings. We show that utilizing a combination of these strategies effectively reduces manual annotation workload while ensuring sufficient class representation.
REAPER: Reasoning based Retrieval Planning for Complex RAG Systems
Complex dialog systems often use retrieved evidence to facilitate factual responses. Such RAG (Retrieval Augmented Generation) systems retrieve from massive heterogeneous data stores that are usually architected as multiple indexes or APIs instead of a single monolithic source. For a given query, relevant evidence needs to be retrieved from one or a small subset of possible retrieval sources. Complex queries can even require multi-step retrieval. For example, a conversational agent on a retail site answering customer questions about past orders will need to retrieve the appropriate customer order first and then the evidence relevant to the customer's question in the context of the ordered product. Most RAG Agents handle such Chain-of-Thought (CoT) tasks by interleaving reasoning and retrieval steps. However, each reasoning step directly adds to the latency of the system. For large models (>100B parameters) this latency cost is significant -- in the order of multiple seconds. Multi-agent systems may classify the query to a single Agent associated with a retrieval source, though this means that a (small) classification model dictates the performance of a large language model. In this work we present REAPER (REAsoning-based PlannER) - an LLM based planner to generate retrieval plans in conversational systems. We show significant gains in latency over Agent-based systems and are able to scale easily to new and unseen use cases as compared to classification-based planning. Though our method can be applied to any RAG system, we show our results in the context of Rufus -- Amazon's conversational shopping assistant.
Exploring Highly Quantised Neural Networks for Intrusion Detection in Automotive CAN
Vehicles today comprise intelligent systems like connected autonomous driving and advanced driving assistance systems (ADAS) to enhance the driving experience, which is enabled through increased connectivity to infrastructure and fusion of information from different sensing modes. However, the rising connectivity coupled with the legacy network architecture within vehicles can be exploited for launching active and passive attacks on critical vehicle systems and directly affecting the safety of passengers. Machine learning-based intrusion detection models have been shown to successfully detect multiple targeted attack vectors in recent literature, whose deployments are enabled through quantised neural networks targeting low-power platforms. Multiple models are often required to simultaneously detect multiple attack vectors, increasing the area, (resource) cost, and energy consumption. In this paper, we present a case for utilising custom-quantised MLP's (CQMLP) as a multi-class classification model, capable of detecting multiple attacks from the benign flow of controller area network (CAN) messages. The specific quantisation and neural architecture are determined through a joint design space exploration, resulting in our choice of the 2-bit precision and the n-layer MLP. Our 2-bit version is trained using Brevitas and optimised as a dataflow hardware model through the FINN toolflow from AMD/Xilinx, targeting an XCZU7EV device. We show that the 2-bit CQMLP model, when integrated as the IDS, can detect malicious attack messages (DoS, fuzzing, and spoofing attack) with a very high accuracy of 99.9%, on par with the state-of-the-art methods in the literature. Furthermore, the dataflow model can perform line rate detection at a latency of 0.11 ms from message reception while consuming 0.23 mJ/inference, making it ideally suited for integration with an ECU in critical CAN networks.
Multiscale Positive-Unlabeled Detection of AI-Generated Texts
Recent releases of Large Language Models (LLMs), e.g. ChatGPT, are astonishing at generating human-like texts, but they may impact the authenticity of texts. Previous works proposed methods to detect these AI-generated texts, including simple ML classifiers, pretrained-model-based zero-shot methods, and finetuned language classification models. However, mainstream detectors always fail on short texts, like SMSes, Tweets, and reviews. In this paper, a Multiscale Positive-Unlabeled (MPU) training framework is proposed to address the difficulty of short-text detection without sacrificing long-texts. Firstly, we acknowledge the human-resemblance property of short machine texts, and rephrase AI text detection as a partial Positive-Unlabeled (PU) problem by regarding these short machine texts as partially "unlabeled". Then in this PU context, we propose the length-sensitive Multiscale PU Loss, where a recurrent model in abstraction is used to estimate positive priors of scale-variant corpora. Additionally, we introduce a Text Multiscaling module to enrich training corpora. Experiments show that our MPU method augments detection performance on long AI-generated texts, and significantly improves short-text detection of language model detectors. Language Models trained with MPU could outcompete existing detectors on various short-text and long-text detection benchmarks. The codes are available at https://github.com/mindspore-lab/mindone/tree/master/examples/detect_chatgpt and https://github.com/YuchuanTian/AIGC_text_detector.
DataDream: Few-shot Guided Dataset Generation
While text-to-image diffusion models have been shown to achieve state-of-the-art results in image synthesis, they have yet to prove their effectiveness in downstream applications. Previous work has proposed to generate data for image classifier training given limited real data access. However, these methods struggle to generate in-distribution images or depict fine-grained features, thereby hindering the generalization of classification models trained on synthetic datasets. We propose DataDream, a framework for synthesizing classification datasets that more faithfully represents the real data distribution when guided by few-shot examples of the target classes. DataDream fine-tunes LoRA weights for the image generation model on the few real images before generating the training data using the adapted model. We then fine-tune LoRA weights for CLIP using the synthetic data to improve downstream image classification over previous approaches on a large variety of datasets. We demonstrate the efficacy of DataDream through extensive experiments, surpassing state-of-the-art classification accuracy with few-shot data across 7 out of 10 datasets, while being competitive on the other 3. Additionally, we provide insights into the impact of various factors, such as the number of real-shot and generated images as well as the fine-tuning compute on model performance. The code is available at https://github.com/ExplainableML/DataDream.
AST: Audio Spectrogram Transformer
In the past decade, convolutional neural networks (CNNs) have been widely adopted as the main building block for end-to-end audio classification models, which aim to learn a direct mapping from audio spectrograms to corresponding labels. To better capture long-range global context, a recent trend is to add a self-attention mechanism on top of the CNN, forming a CNN-attention hybrid model. However, it is unclear whether the reliance on a CNN is necessary, and if neural networks purely based on attention are sufficient to obtain good performance in audio classification. In this paper, we answer the question by introducing the Audio Spectrogram Transformer (AST), the first convolution-free, purely attention-based model for audio classification. We evaluate AST on various audio classification benchmarks, where it achieves new state-of-the-art results of 0.485 mAP on AudioSet, 95.6% accuracy on ESC-50, and 98.1% accuracy on Speech Commands V2.
VANPY: Voice Analysis Framework
Voice data is increasingly being used in modern digital communications, yet there is still a lack of comprehensive tools for automated voice analysis and characterization. To this end, we developed the VANPY (Voice Analysis in Python) framework for automated pre-processing, feature extraction, and classification of voice data. The VANPY is an open-source end-to-end comprehensive framework that was developed for the purpose of speaker characterization from voice data. The framework is designed with extensibility in mind, allowing for easy integration of new components and adaptation to various voice analysis applications. It currently incorporates over fifteen voice analysis components - including music/speech separation, voice activity detection, speaker embedding, vocal feature extraction, and various classification models. Four of the VANPY's components were developed in-house and integrated into the framework to extend its speaker characterization capabilities: gender classification, emotion classification, age regression, and height regression. The models demonstrate robust performance across various datasets, although not surpassing state-of-the-art performance. As a proof of concept, we demonstrate the framework's ability to extract speaker characteristics on a use-case challenge of analyzing character voices from the movie "Pulp Fiction." The results illustrate the framework's capability to extract multiple speaker characteristics, including gender, age, height, emotion type, and emotion intensity measured across three dimensions: arousal, dominance, and valence.
Augmented Conditioning Is Enough For Effective Training Image Generation
Image generation abilities of text-to-image diffusion models have significantly advanced, yielding highly photo-realistic images from descriptive text and increasing the viability of leveraging synthetic images to train computer vision models. To serve as effective training data, generated images must be highly realistic while also sufficiently diverse within the support of the target data distribution. Yet, state-of-the-art conditional image generation models have been primarily optimized for creative applications, prioritizing image realism and prompt adherence over conditional diversity. In this paper, we investigate how to improve the diversity of generated images with the goal of increasing their effectiveness to train downstream image classification models, without fine-tuning the image generation model. We find that conditioning the generation process on an augmented real image and text prompt produces generations that serve as effective synthetic datasets for downstream training. Conditioning on real training images contextualizes the generation process to produce images that are in-domain with the real image distribution, while data augmentations introduce visual diversity that improves the performance of the downstream classifier. We validate augmentation-conditioning on a total of five established long-tail and few-shot image classification benchmarks and show that leveraging augmentations to condition the generation process results in consistent improvements over the state-of-the-art on the long-tailed benchmark and remarkable gains in extreme few-shot regimes of the remaining four benchmarks. These results constitute an important step towards effectively leveraging synthetic data for downstream training.
StainFuser: Controlling Diffusion for Faster Neural Style Transfer in Multi-Gigapixel Histology Images
Stain normalization algorithms aim to transform the color and intensity characteristics of a source multi-gigapixel histology image to match those of a target image, mitigating inconsistencies in the appearance of stains used to highlight cellular components in the images. We propose a new approach, StainFuser, which treats this problem as a style transfer task using a novel Conditional Latent Diffusion architecture, eliminating the need for handcrafted color components. With this method, we curate SPI-2M the largest stain normalization dataset to date of over 2 million histology images with neural style transfer for high-quality transformations. Trained on this data, StainFuser outperforms current state-of-the-art GAN and handcrafted methods in terms of the quality of normalized images. Additionally, compared to existing approaches, it improves the performance of nuclei instance segmentation and classification models when used as a test time augmentation method on the challenging CoNIC dataset. Finally, we apply StainFuser on multi-gigapixel Whole Slide Images (WSIs) and demonstrate improved performance in terms of computational efficiency, image quality and consistency across tiles over current methods.
Detectors for Safe and Reliable LLMs: Implementations, Uses, and Limitations
Large language models (LLMs) are susceptible to a variety of risks, from non-faithful output to biased and toxic generations. Due to several limiting factors surrounding LLMs (training cost, API access, data availability, etc.), it may not always be feasible to impose direct safety constraints on a deployed model. Therefore, an efficient and reliable alternative is required. To this end, we present our ongoing efforts to create and deploy a library of detectors: compact and easy-to-build classification models that provide labels for various harms. In addition to the detectors themselves, we discuss a wide range of uses for these detector models - from acting as guardrails to enabling effective AI governance. We also deep dive into inherent challenges in their development and discuss future work aimed at making the detectors more reliable and broadening their scope.
MixedNUTS: Training-Free Accuracy-Robustness Balance via Nonlinearly Mixed Classifiers
Adversarial robustness often comes at the cost of degraded accuracy, impeding the real-life application of robust classification models. Training-based solutions for better trade-offs are limited by incompatibilities with already-trained high-performance large models, necessitating the exploration of training-free ensemble approaches. Observing that robust models are more confident in correct predictions than in incorrect ones on clean and adversarial data alike, we speculate amplifying this "benign confidence property" can reconcile accuracy and robustness in an ensemble setting. To achieve so, we propose "MixedNUTS", a training-free method where the output logits of a robust classifier and a standard non-robust classifier are processed by nonlinear transformations with only three parameters, which are optimized through an efficient algorithm. MixedNUTS then converts the transformed logits into probabilities and mixes them as the overall output. On CIFAR-10, CIFAR-100, and ImageNet datasets, experimental results with custom strong adaptive attacks demonstrate MixedNUTS's vastly improved accuracy and near-SOTA robustness -- it boosts CIFAR-100 clean accuracy by 7.86 points, sacrificing merely 0.87 points in robust accuracy.
PRIME: Prioritizing Interpretability in Failure Mode Extraction
In this work, we study the challenge of providing human-understandable descriptions for failure modes in trained image classification models. Existing works address this problem by first identifying clusters (or directions) of incorrectly classified samples in a latent space and then aiming to provide human-understandable text descriptions for them. We observe that in some cases, describing text does not match well with identified failure modes, partially owing to the fact that shared interpretable attributes of failure modes may not be captured using clustering in the feature space. To improve on these shortcomings, we propose a novel approach that prioritizes interpretability in this problem: we start by obtaining human-understandable concepts (tags) of images in the dataset and then analyze the model's behavior based on the presence or absence of combinations of these tags. Our method also ensures that the tags describing a failure mode form a minimal set, avoiding redundant and noisy descriptions. Through several experiments on different datasets, we show that our method successfully identifies failure modes and generates high-quality text descriptions associated with them. These results highlight the importance of prioritizing interpretability in understanding model failures.
Privacy Assessment on Reconstructed Images: Are Existing Evaluation Metrics Faithful to Human Perception?
Hand-crafted image quality metrics, such as PSNR and SSIM, are commonly used to evaluate model privacy risk under reconstruction attacks. Under these metrics, reconstructed images that are determined to resemble the original one generally indicate more privacy leakage. Images determined as overall dissimilar, on the other hand, indicate higher robustness against attack. However, there is no guarantee that these metrics well reflect human opinions, which, as a judgement for model privacy leakage, are more trustworthy. In this paper, we comprehensively study the faithfulness of these hand-crafted metrics to human perception of privacy information from the reconstructed images. On 5 datasets ranging from natural images, faces, to fine-grained classes, we use 4 existing attack methods to reconstruct images from many different classification models and, for each reconstructed image, we ask multiple human annotators to assess whether this image is recognizable. Our studies reveal that the hand-crafted metrics only have a weak correlation with the human evaluation of privacy leakage and that even these metrics themselves often contradict each other. These observations suggest risks of current metrics in the community. To address this potential risk, we propose a learning-based measure called SemSim to evaluate the Semantic Similarity between the original and reconstructed images. SemSim is trained with a standard triplet loss, using an original image as an anchor, one of its recognizable reconstructed images as a positive sample, and an unrecognizable one as a negative. By training on human annotations, SemSim exhibits a greater reflection of privacy leakage on the semantic level. We show that SemSim has a significantly higher correlation with human judgment compared with existing metrics. Moreover, this strong correlation generalizes to unseen datasets, models and attack methods.
Fake it till you make it: Learning transferable representations from synthetic ImageNet clones
Recent image generation models such as Stable Diffusion have exhibited an impressive ability to generate fairly realistic images starting from a simple text prompt. Could such models render real images obsolete for training image prediction models? In this paper, we answer part of this provocative question by investigating the need for real images when training models for ImageNet classification. Provided only with the class names that have been used to build the dataset, we explore the ability of Stable Diffusion to generate synthetic clones of ImageNet and measure how useful these are for training classification models from scratch. We show that with minimal and class-agnostic prompt engineering, ImageNet clones are able to close a large part of the gap between models produced by synthetic images and models trained with real images, for the several standard classification benchmarks that we consider in this study. More importantly, we show that models trained on synthetic images exhibit strong generalization properties and perform on par with models trained on real data for transfer. Project page: https://europe.naverlabs.com/imagenet-sd/
Provably Learning Diverse Features in Multi-View Data with Midpoint Mixup
Mixup is a data augmentation technique that relies on training using random convex combinations of data points and their labels. In recent years, Mixup has become a standard primitive used in the training of state-of-the-art image classification models due to its demonstrated benefits over empirical risk minimization with regards to generalization and robustness. In this work, we try to explain some of this success from a feature learning perspective. We focus our attention on classification problems in which each class may have multiple associated features (or views) that can be used to predict the class correctly. Our main theoretical results demonstrate that, for a non-trivial class of data distributions with two features per class, training a 2-layer convolutional network using empirical risk minimization can lead to learning only one feature for almost all classes while training with a specific instantiation of Mixup succeeds in learning both features for every class. We also show empirically that these theoretical insights extend to the practical settings of image benchmarks modified to have multiple features.
A ConvNet for the 2020s
The "Roaring 20s" of visual recognition began with the introduction of Vision Transformers (ViTs), which quickly superseded ConvNets as the state-of-the-art image classification model. A vanilla ViT, on the other hand, faces difficulties when applied to general computer vision tasks such as object detection and semantic segmentation. It is the hierarchical Transformers (e.g., Swin Transformers) that reintroduced several ConvNet priors, making Transformers practically viable as a generic vision backbone and demonstrating remarkable performance on a wide variety of vision tasks. However, the effectiveness of such hybrid approaches is still largely credited to the intrinsic superiority of Transformers, rather than the inherent inductive biases of convolutions. In this work, we reexamine the design spaces and test the limits of what a pure ConvNet can achieve. We gradually "modernize" a standard ResNet toward the design of a vision Transformer, and discover several key components that contribute to the performance difference along the way. The outcome of this exploration is a family of pure ConvNet models dubbed ConvNeXt. Constructed entirely from standard ConvNet modules, ConvNeXts compete favorably with Transformers in terms of accuracy and scalability, achieving 87.8% ImageNet top-1 accuracy and outperforming Swin Transformers on COCO detection and ADE20K segmentation, while maintaining the simplicity and efficiency of standard ConvNets.
To BERT or Not To BERT: Comparing Speech and Language-based Approaches for Alzheimer's Disease Detection
Research related to automatically detecting Alzheimer's disease (AD) is important, given the high prevalence of AD and the high cost of traditional methods. Since AD significantly affects the content and acoustics of spontaneous speech, natural language processing and machine learning provide promising techniques for reliably detecting AD. We compare and contrast the performance of two such approaches for AD detection on the recent ADReSS challenge dataset: 1) using domain knowledge-based hand-crafted features that capture linguistic and acoustic phenomena, and 2) fine-tuning Bidirectional Encoder Representations from Transformer (BERT)-based sequence classification models. We also compare multiple feature-based regression models for a neuropsychological score task in the challenge. We observe that fine-tuned BERT models, given the relative importance of linguistics in cognitive impairment detection, outperform feature-based approaches on the AD detection task.
Sample-level CNN Architectures for Music Auto-tagging Using Raw Waveforms
Recent work has shown that the end-to-end approach using convolutional neural network (CNN) is effective in various types of machine learning tasks. For audio signals, the approach takes raw waveforms as input using an 1-D convolution layer. In this paper, we improve the 1-D CNN architecture for music auto-tagging by adopting building blocks from state-of-the-art image classification models, ResNets and SENets, and adding multi-level feature aggregation to it. We compare different combinations of the modules in building CNN architectures. The results show that they achieve significant improvements over previous state-of-the-art models on the MagnaTagATune dataset and comparable results on Million Song Dataset. Furthermore, we analyze and visualize our model to show how the 1-D CNN operates.
AMPERE: AMR-Aware Prefix for Generation-Based Event Argument Extraction Model
Event argument extraction (EAE) identifies event arguments and their specific roles for a given event. Recent advancement in generation-based EAE models has shown great performance and generalizability over classification-based models. However, existing generation-based EAE models mostly focus on problem re-formulation and prompt design, without incorporating additional information that has been shown to be effective for classification-based models, such as the abstract meaning representation (AMR) of the input passages. Incorporating such information into generation-based models is challenging due to the heterogeneous nature of the natural language form prevalently used in generation-based models and the structured form of AMRs. In this work, we study strategies to incorporate AMR into generation-based EAE models. We propose AMPERE, which generates AMR-aware prefixes for every layer of the generation model. Thus, the prefix introduces AMR information to the generation-based EAE model and then improves the generation. We also introduce an adjusted copy mechanism to AMPERE to help overcome potential noises brought by the AMR graph. Comprehensive experiments and analyses on ACE2005 and ERE datasets show that AMPERE can get 4% - 10% absolute F1 score improvements with reduced training data and it is in general powerful across different training sizes.
Multimodal Attention Merging for Improved Speech Recognition and Audio Event Classification
Training large foundation models using self-supervised objectives on unlabeled data, followed by fine-tuning on downstream tasks, has emerged as a standard procedure. Unfortunately, the efficacy of this approach is often constrained by both limited fine-tuning compute and scarcity in labeled downstream data. We introduce Multimodal Attention Merging (MAM), an attempt that facilitates direct knowledge transfer from attention matrices of models rooted in high resource modalities, text and images, to those in resource-constrained domains, speech and audio, employing a zero-shot paradigm. MAM reduces the relative Word Error Rate (WER) of an Automatic Speech Recognition (ASR) model by up to 6.70%, and relative classification error of an Audio Event Classification (AEC) model by 10.63%. In cases where some data/compute is available, we present Learnable-MAM, a data-driven approach to merging attention matrices, resulting in a further 2.90% relative reduction in WER for ASR and 18.42% relative reduction in AEC compared to fine-tuning.
Effective Data Augmentation With Diffusion Models
Data augmentation is one of the most prevalent tools in deep learning, underpinning many recent advances, including those from classification, generative models, and representation learning. The standard approach to data augmentation combines simple transformations like rotations and flips to generate new images from existing ones. However, these new images lack diversity along key semantic axes present in the data. Current augmentations cannot alter the high-level semantic attributes, such as animal species present in a scene, to enhance the diversity of data. We address the lack of diversity in data augmentation with image-to-image transformations parameterized by pre-trained text-to-image diffusion models. Our method edits images to change their semantics using an off-the-shelf diffusion model, and generalizes to novel visual concepts from a few labelled examples. We evaluate our approach on few-shot image classification tasks, and on a real-world weed recognition task, and observe an improvement in accuracy in tested domains.
Document Ranking with a Pretrained Sequence-to-Sequence Model
This work proposes a novel adaptation of a pretrained sequence-to-sequence model to the task of document ranking. Our approach is fundamentally different from a commonly-adopted classification-based formulation of ranking, based on encoder-only pretrained transformer architectures such as BERT. We show how a sequence-to-sequence model can be trained to generate relevance labels as "target words", and how the underlying logits of these target words can be interpreted as relevance probabilities for ranking. On the popular MS MARCO passage ranking task, experimental results show that our approach is at least on par with previous classification-based models and can surpass them with larger, more-recent models. On the test collection from the TREC 2004 Robust Track, we demonstrate a zero-shot transfer-based approach that outperforms previous state-of-the-art models requiring in-dataset cross-validation. Furthermore, we find that our approach significantly outperforms an encoder-only model in a data-poor regime (i.e., with few training examples). We investigate this observation further by varying target words to probe the model's use of latent knowledge.
Mamba3D: Enhancing Local Features for 3D Point Cloud Analysis via State Space Model
Existing Transformer-based models for point cloud analysis suffer from quadratic complexity, leading to compromised point cloud resolution and information loss. In contrast, the newly proposed Mamba model, based on state space models (SSM), outperforms Transformer in multiple areas with only linear complexity. However, the straightforward adoption of Mamba does not achieve satisfactory performance on point cloud tasks. In this work, we present Mamba3D, a state space model tailored for point cloud learning to enhance local feature extraction, achieving superior performance, high efficiency, and scalability potential. Specifically, we propose a simple yet effective Local Norm Pooling (LNP) block to extract local geometric features. Additionally, to obtain better global features, we introduce a bidirectional SSM (bi-SSM) with both a token forward SSM and a novel backward SSM that operates on the feature channel. Extensive experimental results show that Mamba3D surpasses Transformer-based counterparts and concurrent works in multiple tasks, with or without pre-training. Notably, Mamba3D achieves multiple SoTA, including an overall accuracy of 92.6% (train from scratch) on the ScanObjectNN and 95.1% (with single-modal pre-training) on the ModelNet40 classification task, with only linear complexity.
Beyond the Black Box: Do More Complex Deep Learning Models Provide Superior XAI Explanations?
The increasing complexity of Artificial Intelligence models poses challenges to interpretability, particularly in the healthcare sector. This study investigates the impact of deep learning model complexity and Explainable AI (XAI) efficacy, utilizing four ResNet architectures (ResNet-18, 34, 50, 101). Through methodical experimentation on 4,369 lung X-ray images of COVID-19-infected and healthy patients, the research evaluates models' classification performance and the relevance of corresponding XAI explanations with respect to the ground-truth disease masks. Results indicate that the increase in model complexity is associated with a decrease in classification accuracy and AUC-ROC scores (ResNet-18: 98.4%, 0.997; ResNet-101: 95.9%, 0.988). Notably, in eleven out of twelve statistical tests performed, no statistically significant differences occurred between XAI quantitative metrics - Relevance Rank Accuracy and the proposed Positive Attribution Ratio - across trained models. These results suggest that increased model complexity does not consistently lead to higher performance or relevance of explanations for models' decision-making processes.
Less Peaky and More Accurate CTC Forced Alignment by Label Priors
Connectionist temporal classification (CTC) models are known to have peaky output distributions. Such behavior is not a problem for automatic speech recognition (ASR), but it can cause inaccurate forced alignments (FA), especially at finer granularity, e.g., phoneme level. This paper aims at alleviating the peaky behavior for CTC and improve its suitability for forced alignment generation, by leveraging label priors, so that the scores of alignment paths containing fewer blanks are boosted and maximized during training. As a result, our CTC model produces less peaky posteriors and is able to more accurately predict the offset of the tokens besides their onset. It outperforms the standard CTC model and a heuristics-based approach for obtaining CTC's token offset timestamps by 12-40% in phoneme and word boundary errors (PBE and WBE) measured on the Buckeye and TIMIT data. Compared with the most widely used FA toolkit Montreal Forced Aligner (MFA), our method performs similarly on PBE/WBE on Buckeye, yet falls behind MFA on TIMIT. Nevertheless, our method has a much simpler training pipeline and better runtime efficiency. Our training recipe and pretrained model are released in TorchAudio.
KnowledgeHub: An end-to-end Tool for Assisted Scientific Discovery
This paper describes the KnowledgeHub tool, a scientific literature Information Extraction (IE) and Question Answering (QA) pipeline. This is achieved by supporting the ingestion of PDF documents that are converted to text and structured representations. An ontology can then be constructed where a user defines the types of entities and relationships they want to capture. A browser-based annotation tool enables annotating the contents of the PDF documents according to the ontology. Named Entity Recognition (NER) and Relation Classification (RC) models can be trained on the resulting annotations and can be used to annotate the unannotated portion of the documents. A knowledge graph is constructed from these entity and relation triples which can be queried to obtain insights from the data. Furthermore, we integrate a suite of Large Language Models (LLMs) that can be used for QA and summarisation that is grounded in the included documents via a retrieval component. KnowledgeHub is a unique tool that supports annotation, IE and QA, which gives the user full insight into the knowledge discovery pipeline.
PointNorm: Dual Normalization is All You Need for Point Cloud Analysis
Point cloud analysis is challenging due to the irregularity of the point cloud data structure. Existing works typically employ the ad-hoc sampling-grouping operation of PointNet++, followed by sophisticated local and/or global feature extractors for leveraging the 3D geometry of the point cloud. Unfortunately, the sampling-grouping operations do not address the point cloud's irregularity, whereas the intricate local and/or global feature extractors led to poor computational efficiency. In this paper, we introduce a novel DualNorm module after the sampling-grouping operation to effectively and efficiently address the irregularity issue. The DualNorm module consists of Point Normalization, which normalizes the grouped points to the sampled points, and Reverse Point Normalization, which normalizes the sampled points to the grouped points. The proposed framework, PointNorm, utilizes local mean and global standard deviation to benefit from both local and global features while maintaining a faithful inference speed. Experiments show that we achieved excellent accuracy and efficiency on ModelNet40 classification, ScanObjectNN classification, ShapeNetPart Part Segmentation, and S3DIS Semantic Segmentation. Code is available at https://github.com/ShenZheng2000/PointNorm-for-Point-Cloud-Analysis.
MV-MR: multi-views and multi-representations for self-supervised learning and knowledge distillation
We present a new method of self-supervised learning and knowledge distillation based on the multi-views and multi-representations (MV-MR). The MV-MR is based on the maximization of dependence between learnable embeddings from augmented and non-augmented views, jointly with the maximization of dependence between learnable embeddings from augmented view and multiple non-learnable representations from non-augmented view. We show that the proposed method can be used for efficient self-supervised classification and model-agnostic knowledge distillation. Unlike other self-supervised techniques, our approach does not use any contrastive learning, clustering, or stop gradients. MV-MR is a generic framework allowing the incorporation of constraints on the learnable embeddings via the usage of image multi-representations as regularizers. Along this line, knowledge distillation is considered a particular case of such a regularization. MV-MR provides the state-of-the-art performance on the STL10 and ImageNet-1K datasets among non-contrastive and clustering-free methods. We show that a lower complexity ResNet50 model pretrained using proposed knowledge distillation based on the CLIP ViT model achieves state-of-the-art performance on STL10 linear evaluation. The code is available at: https://github.com/vkinakh/mv-mr
AdaFisher: Adaptive Second Order Optimization via Fisher Information
First-order optimization methods are currently the mainstream in training deep neural networks (DNNs). Optimizers like Adam incorporate limited curvature information by employing the diagonal matrix preconditioning of the stochastic gradient during the training. Despite their widespread, second-order optimization algorithms exhibit superior convergence properties compared to their first-order counterparts e.g. Adam and SGD. However, their practicality in training DNNs are still limited due to increased per-iteration computations and suboptimal accuracy compared to the first order methods. We present AdaFisher--an adaptive second-order optimizer that leverages a block-diagonal approximation to the Fisher information matrix for adaptive gradient preconditioning. AdaFisher aims to bridge the gap between enhanced convergence capabilities and computational efficiency in second-order optimization framework for training DNNs. Despite the slow pace of second-order optimizers, we showcase that AdaFisher can be reliably adopted for image classification, language modelling and stand out for its stability and robustness in hyperparameter tuning. We demonstrate that AdaFisher outperforms the SOTA optimizers in terms of both accuracy and convergence speed. Code available from https://github.com/AtlasAnalyticsLab/AdaFisher{https://github.com/AtlasAnalyticsLab/AdaFisher}
ULIP: Learning a Unified Representation of Language, Images, and Point Clouds for 3D Understanding
The recognition capabilities of current state-of-the-art 3D models are limited by datasets with a small number of annotated data and a pre-defined set of categories. In its 2D counterpart, recent advances have shown that similar problems can be significantly alleviated by employing knowledge from other modalities, such as language. Inspired by this, leveraging multimodal information for 3D modality could be promising to improve 3D understanding under the restricted data regime, but this line of research is not well studied. Therefore, we introduce ULIP to learn a unified representation of images, texts, and 3D point clouds by pre-training with object triplets from the three modalities. To overcome the shortage of training triplets, ULIP leverages a pre-trained vision-language model that has already learned a common visual and textual space by training with massive image-text pairs. Then, ULIP learns a 3D representation space aligned with the common image-text space, using a small number of automatically synthesized triplets. ULIP is agnostic to 3D backbone networks and can easily be integrated into any 3D architecture. Experiments show that ULIP effectively improves the performance of multiple recent 3D backbones by simply pre-training them on ShapeNet55 using our framework, achieving state-of-the-art performance in both standard 3D classification and zero-shot 3D classification on ModelNet40 and ScanObjectNN. ULIP also improves the performance of PointMLP by around 3% in 3D classification on ScanObjectNN, and outperforms PointCLIP by 28.8% on top-1 accuracy for zero-shot 3D classification on ModelNet40. Our code and pre-trained models are released at https://github.com/salesforce/ULIP.
pNLP-Mixer: an Efficient all-MLP Architecture for Language
Large pre-trained language models based on transformer architecture have drastically changed the natural language processing (NLP) landscape. However, deploying those models for on-device applications in constrained devices such as smart watches is completely impractical due to their size and inference cost. As an alternative to transformer-based architectures, recent work on efficient NLP has shown that weight-efficient models can attain competitive performance for simple tasks, such as slot filling and intent classification, with model sizes in the order of the megabyte. This work introduces the pNLP-Mixer architecture, an embedding-free MLP-Mixer model for on-device NLP that achieves high weight-efficiency thanks to a novel projection layer. We evaluate a pNLP-Mixer model of only one megabyte in size on two multi-lingual semantic parsing datasets, MTOP and multiATIS. Our quantized model achieves 99.4% and 97.8% the performance of mBERT on MTOP and multi-ATIS, while using 170x fewer parameters. Our model consistently beats the state-of-the-art of tiny models (pQRNN), which is twice as large, by a margin up to 7.8% on MTOP.
ULIP-2: Towards Scalable Multimodal Pre-training For 3D Understanding
Recent advancements in multimodal pre-training methods have shown promising efficacy in 3D representation learning by aligning features across 3D modality, their 2D counterpart modality, and corresponding language modality. However, the methods used by existing multimodal pre-training frameworks to gather multimodal data for 3D applications lack scalability and comprehensiveness, potentially constraining the full potential of multimodal learning. The main bottleneck lies in the language modality's scalability and comprehensiveness. To address this bottleneck, we introduce ULIP-2, a multimodal pre-training framework that leverages state-of-the-art multimodal large language models (LLMs) pre-trained on extensive knowledge to automatically generate holistic language counterparts for 3D objects. We conduct experiments on two large-scale datasets, Objaverse and ShapeNet55, and release our generated three-modality triplet datasets (3D Point Cloud - Image - Language), named "ULIP-Objaverse Triplets" and "ULIP-ShapeNet Triplets". ULIP-2 requires only 3D data itself and eliminates the need for any manual annotation effort, demonstrating its scalability; and ULIP-2 achieves remarkable improvements on downstream zero-shot classification on ModelNet40 (74% Top1 Accuracy). Moreover, ULIP-2 sets a new record on the real-world ScanObjectNN benchmark (91.5% Overall Accuracy) while utilizing only 1.4 million parameters(~10x fewer than current SOTA), signifying a breakthrough in scalable multimodal 3D representation learning without human annotations. The code and datasets are available at https://github.com/salesforce/ULIP.
Building Information Modeling and Classification by Visual Learning At A City Scale
In this paper, we provide two case studies to demonstrate how artificial intelligence can empower civil engineering. In the first case, a machine learning-assisted framework, BRAILS, is proposed for city-scale building information modeling. Building information modeling (BIM) is an efficient way of describing buildings, which is essential to architecture, engineering, and construction. Our proposed framework employs deep learning technique to extract visual information of buildings from satellite/street view images. Further, a novel machine learning (ML)-based statistical tool, SURF, is proposed to discover the spatial patterns in building metadata. The second case focuses on the task of soft-story building classification. Soft-story buildings are a type of buildings prone to collapse during a moderate or severe earthquake. Hence, identifying and retrofitting such buildings is vital in the current earthquake preparedness efforts. For this task, we propose an automated deep learning-based procedure for identifying soft-story buildings from street view images at a regional scale. We also create a large-scale building image database and a semi-automated image labeling approach that effectively annotates new database entries. Through extensive computational experiments, we demonstrate the effectiveness of the proposed method.
ZeroBERTo: Leveraging Zero-Shot Text Classification by Topic Modeling
Traditional text classification approaches often require a good amount of labeled data, which is difficult to obtain, especially in restricted domains or less widespread languages. This lack of labeled data has led to the rise of low-resource methods, that assume low data availability in natural language processing. Among them, zero-shot learning stands out, which consists of learning a classifier without any previously labeled data. The best results reported with this approach use language models such as Transformers, but fall into two problems: high execution time and inability to handle long texts as input. This paper proposes a new model, ZeroBERTo, which leverages an unsupervised clustering step to obtain a compressed data representation before the classification task. We show that ZeroBERTo has better performance for long inputs and shorter execution time, outperforming XLM-R by about 12% in the F1 score in the FolhaUOL dataset. Keywords: Low-Resource NLP, Unlabeled data, Zero-Shot Learning, Topic Modeling, Transformers.
A Hybrid MLP-SVM Model for Classification using Spatial-Spectral Features on Hyper-Spectral Images
There are many challenges in the classification of hyper spectral images such as large dimensionality, scarcity of labeled data and spatial variability of spectral signatures. In this proposed method, we make a hybrid classifier (MLP-SVM) using multilayer perceptron (MLP) and support vector machine (SVM) which aimed to improve the various classification parameters such as accuracy, precision, recall, f-score and to predict the region without ground truth. In proposed method, outputs from the last hidden layer of the neural net-ork become the input to the SVM, which finally classifies into various desired classes. In the present study, we worked on Indian Pines, U. Pavia and Salinas dataset with 16, 9, 16 classes and 200, 103 and 204 reflectance bands respectively, which is provided by AVIRIS and ROSIS sensor of NASA Jet propulsion laboratory. The proposed method significantly increases the accuracy on testing dataset to 93.22%, 96.87%, 93.81% as compare to 86.97%, 88.58%, 88.85% and 91.61%, 96.20%, 90.68% based on individual classifiers SVM and MLP on Indian Pines, U. Pavia and Salinas datasets respectively.
Large Scale Legal Text Classification Using Transformer Models
Large multi-label text classification is a challenging Natural Language Processing (NLP) problem that is concerned with text classification for datasets with thousands of labels. We tackle this problem in the legal domain, where datasets, such as JRC-Acquis and EURLEX57K labeled with the EuroVoc vocabulary were created within the legal information systems of the European Union. The EuroVoc taxonomy includes around 7000 concepts. In this work, we study the performance of various recent transformer-based models in combination with strategies such as generative pretraining, gradual unfreezing and discriminative learning rates in order to reach competitive classification performance, and present new state-of-the-art results of 0.661 (F1) for JRC-Acquis and 0.754 for EURLEX57K. Furthermore, we quantify the impact of individual steps, such as language model fine-tuning or gradual unfreezing in an ablation study, and provide reference dataset splits created with an iterative stratification algorithm.
Evaluating Transfer Learning in Deep Learning Models for Classification on a Custom Wildlife Dataset: Can YOLOv8 Surpass Other Architectures?
Biodiversity plays a crucial role in maintaining the balance of the ecosystem. However, poaching and unintentional human activities contribute to the decline in the population of many species. Hence, active monitoring is required to preserve these endangered species. Current human-led monitoring techniques are prone to errors and are labor-intensive. Therefore, we study the application of deep learning methods like Convolutional Neural Networks (CNNs) and transfer learning, which can aid in automating the process of monitoring endangered species. For this, we create our custom dataset utilizing trustworthy online databases like iNaturalist and ZooChat. To choose the best model for our use case, we compare the performance of different architectures like DenseNet, ResNet, VGGNet, and YOLOv8 on the custom wildlife dataset. Transfer learning reduces training time by freezing the pre-trained weights and replacing only the output layer with custom, fully connected layers designed for our dataset. Our results indicate that YOLOv8 performs better, achieving a training accuracy of 97.39 % and an F1 score of 96.50 %, surpassing other models. Our findings suggest that integrating YOLOv8 into conservation efforts could revolutionize wildlife monitoring with its high accuracy and efficiency, potentially transforming how endangered species are monitored and protected worldwide.
byteSteady: Fast Classification Using Byte-Level n-Gram Embeddings
This article introduces byteSteady -- a fast model for classification using byte-level n-gram embeddings. byteSteady assumes that each input comes as a sequence of bytes. A representation vector is produced using the averaged embedding vectors of byte-level n-grams, with a pre-defined set of n. The hashing trick is used to reduce the number of embedding vectors. This input representation vector is then fed into a linear classifier. A straightforward application of byteSteady is text classification. We also apply byteSteady to one type of non-language data -- DNA sequences for gene classification. For both problems we achieved competitive classification results against strong baselines, suggesting that byteSteady can be applied to both language and non-language data. Furthermore, we find that simple compression using Huffman coding does not significantly impact the results, which offers an accuracy-speed trade-off previously unexplored in machine learning.
Understanding HTML with Large Language Models
Large language models (LLMs) have shown exceptional performance on a variety of natural language tasks. Yet, their capabilities for HTML understanding -- i.e., parsing the raw HTML of a webpage, with applications to automation of web-based tasks, crawling, and browser-assisted retrieval -- have not been fully explored. We contribute HTML understanding models (fine-tuned LLMs) and an in-depth analysis of their capabilities under three tasks: (i) Semantic Classification of HTML elements, (ii) Description Generation for HTML inputs, and (iii) Autonomous Web Navigation of HTML pages. While previous work has developed dedicated architectures and training procedures for HTML understanding, we show that LLMs pretrained on standard natural language corpora transfer remarkably well to HTML understanding tasks. For instance, fine-tuned LLMs are 12% more accurate at semantic classification compared to models trained exclusively on the task dataset. Moreover, when fine-tuned on data from the MiniWoB benchmark, LLMs successfully complete 50% more tasks using 192x less data compared to the previous best supervised model. Out of the LLMs we evaluate, we show evidence that T5-based models are ideal due to their bidirectional encoder-decoder architecture. To promote further research on LLMs for HTML understanding, we create and open-source a large-scale HTML dataset distilled and auto-labeled from CommonCrawl.
Sequence Modeling with Multiresolution Convolutional Memory
Efficiently capturing the long-range patterns in sequential data sources salient to a given task -- such as classification and generative modeling -- poses a fundamental challenge. Popular approaches in the space tradeoff between the memory burden of brute-force enumeration and comparison, as in transformers, the computational burden of complicated sequential dependencies, as in recurrent neural networks, or the parameter burden of convolutional networks with many or large filters. We instead take inspiration from wavelet-based multiresolution analysis to define a new building block for sequence modeling, which we call a MultiresLayer. The key component of our model is the multiresolution convolution, capturing multiscale trends in the input sequence. Our MultiresConv can be implemented with shared filters across a dilated causal convolution tree. Thus it garners the computational advantages of convolutional networks and the principled theoretical motivation of wavelet decompositions. Our MultiresLayer is straightforward to implement, requires significantly fewer parameters, and maintains at most a O(Nlog N) memory footprint for a length N sequence. Yet, by stacking such layers, our model yields state-of-the-art performance on a number of sequence classification and autoregressive density estimation tasks using CIFAR-10, ListOps, and PTB-XL datasets.
Introducing Bode: A Fine-Tuned Large Language Model for Portuguese Prompt-Based Task
Large Language Models (LLMs) are increasingly bringing advances to Natural Language Processing. However, low-resource languages, those lacking extensive prominence in datasets for various NLP tasks, or where existing datasets are not as substantial, such as Portuguese, already obtain several benefits from LLMs, but not to the same extent. LLMs trained on multilingual datasets normally struggle to respond to prompts in Portuguese satisfactorily, presenting, for example, code switching in their responses. This work proposes a fine-tuned LLaMA 2-based model for Portuguese prompts named Bode in two versions: 7B and 13B. We evaluate the performance of this model in classification tasks using the zero-shot approach with in-context learning, and compare it with other LLMs. Our main contribution is to bring an LLM with satisfactory results in the Portuguese language, as well as to provide a model that is free for research or commercial purposes.
TabICL: A Tabular Foundation Model for In-Context Learning on Large Data
The long-standing dominance of gradient-boosted decision trees on tabular data is currently challenged by tabular foundation models using In-Context Learning (ICL): setting the training data as context for the test data and predicting in a single forward pass without parameter updates. While the very recent TabPFNv2 foundation model (2025) excels on tables with up to 10K samples, its alternating column- and row-wise attentions make handling large training sets computationally prohibitive. So, can ICL be effectively scaled and deliver a benefit for larger tables? We introduce TabICL, a tabular foundation model for classification, pretrained on synthetic datasets with up to 60K samples and capable of handling 500K samples on affordable resources. This is enabled by a novel two-stage architecture: a column-then-row attention mechanism to build fixed-dimensional embeddings of rows, followed by a transformer for efficient ICL. Across 200 classification datasets from the TALENT benchmark, TabICL is on par with TabPFNv2 while being systematically faster (up to 10 times), and significantly outperforms all other approaches. On 56 datasets with over 10K samples, TabICL surpasses both TabPFNv2 and CatBoost, demonstrating the potential of ICL for large data.
Extreme Classification for Answer Type Prediction in Question Answering
Semantic answer type prediction (SMART) is known to be a useful step towards effective question answering (QA) systems. The SMART task involves predicting the top-k knowledge graph (KG) types for a given natural language question. This is challenging due to the large number of types in KGs. In this paper, we propose use of extreme multi-label classification using Transformer models (XBERT) by clustering KG types using structural and semantic features based on question text. We specifically improve the clustering stage of the XBERT pipeline using textual and structural features derived from KGs. We show that these features can improve end-to-end performance for the SMART task, and yield state-of-the-art results.
Accelerating Deep Learning Model Inference on Arm CPUs with Ultra-Low Bit Quantization and Runtime
Deep Learning has been one of the most disruptive technological advancements in recent times. The high performance of deep learning models comes at the expense of high computational, storage and power requirements. Sensing the immediate need for accelerating and compressing these models to improve on-device performance, we introduce Deeplite Neutrino for production-ready optimization of the models and Deeplite Runtime for deployment of ultra-low bit quantized models on Arm-based platforms. We implement low-level quantization kernels for Armv7 and Armv8 architectures enabling deployment on the vast array of 32-bit and 64-bit Arm-based devices. With efficient implementations using vectorization, parallelization, and tiling, we realize speedups of up to 2x and 2.2x compared to TensorFlow Lite with XNNPACK backend on classification and detection models, respectively. We also achieve significant speedups of up to 5x and 3.2x compared to ONNX Runtime for classification and detection models, respectively.
Model-based Asynchronous Hyperparameter and Neural Architecture Search
We introduce a model-based asynchronous multi-fidelity method for hyperparameter and neural architecture search that combines the strengths of asynchronous Hyperband and Gaussian process-based Bayesian optimization. At the heart of our method is a probabilistic model that can simultaneously reason across hyperparameters and resource levels, and supports decision-making in the presence of pending evaluations. We demonstrate the effectiveness of our method on a wide range of challenging benchmarks, for tabular data, image classification and language modelling, and report substantial speed-ups over current state-of-the-art methods. Our new methods, along with asynchronous baselines, are implemented in a distributed framework which will be open sourced along with this publication.
To Generate or Not? Safety-Driven Unlearned Diffusion Models Are Still Easy To Generate Unsafe Images ... For Now
The recent advances in diffusion models (DMs) have revolutionized the generation of realistic and complex images. However, these models also introduce potential safety hazards, such as producing harmful content and infringing data copyrights. Despite the development of safety-driven unlearning techniques to counteract these challenges, doubts about their efficacy persist. To tackle this issue, we introduce an evaluation framework that leverages adversarial prompts to discern the trustworthiness of these safety-driven DMs after they have undergone the process of unlearning harmful concepts. Specifically, we investigated the adversarial robustness of DMs, assessed by adversarial prompts, when eliminating unwanted concepts, styles, and objects. We develop an effective and efficient adversarial prompt generation approach for DMs, termed UnlearnDiffAtk. This method capitalizes on the intrinsic classification abilities of DMs to simplify the creation of adversarial prompts, thereby eliminating the need for auxiliary classification or diffusion models.Through extensive benchmarking, we evaluate the robustness of five widely-used safety-driven unlearned DMs (i.e., DMs after unlearning undesirable concepts, styles, or objects) across a variety of tasks. Our results demonstrate the effectiveness and efficiency merits of UnlearnDiffAtk over the state-of-the-art adversarial prompt generation method and reveal the lack of robustness of current safety-driven unlearning techniques when applied to DMs. Codes are available at https://github.com/OPTML-Group/Diffusion-MU-Attack. WARNING: This paper contains model outputs that may be offensive in nature.
Do Machine Learning Models Learn Statistical Rules Inferred from Data?
Machine learning models can make critical errors that are easily hidden within vast amounts of data. Such errors often run counter to rules based on human intuition. However, rules based on human knowledge are challenging to scale or to even formalize. We thereby seek to infer statistical rules from the data and quantify the extent to which a model has learned them. We propose a framework SQRL that integrates logic-based methods with statistical inference to derive these rules from a model's training data without supervision. We further show how to adapt models at test time to reduce rule violations and produce more coherent predictions. SQRL generates up to 300K rules over datasets from vision, tabular, and language settings. We uncover up to 158K violations of those rules by state-of-the-art models for classification, object detection, and data imputation. Test-time adaptation reduces these violations by up to 68.7% with relative performance improvement up to 32%. SQRL is available at https://github.com/DebugML/sqrl.
The iNaturalist Species Classification and Detection Dataset
Existing image classification datasets used in computer vision tend to have a uniform distribution of images across object categories. In contrast, the natural world is heavily imbalanced, as some species are more abundant and easier to photograph than others. To encourage further progress in challenging real world conditions we present the iNaturalist species classification and detection dataset, consisting of 859,000 images from over 5,000 different species of plants and animals. It features visually similar species, captured in a wide variety of situations, from all over the world. Images were collected with different camera types, have varying image quality, feature a large class imbalance, and have been verified by multiple citizen scientists. We discuss the collection of the dataset and present extensive baseline experiments using state-of-the-art computer vision classification and detection models. Results show that current non-ensemble based methods achieve only 67% top one classification accuracy, illustrating the difficulty of the dataset. Specifically, we observe poor results for classes with small numbers of training examples suggesting more attention is needed in low-shot learning.
From Text to Source: Results in Detecting Large Language Model-Generated Content
The widespread use of Large Language Models (LLMs), celebrated for their ability to generate human-like text, has raised concerns about misinformation and ethical implications. Addressing these concerns necessitates the development of robust methods to detect and attribute text generated by LLMs. This paper investigates "Cross-Model Detection," evaluating whether a classifier trained to distinguish between source LLM-generated and human-written text can also detect text from a target LLM without further training. The study comprehensively explores various LLM sizes and families, and assesses the impact of conversational fine-tuning techniques on classifier generalization. The research also delves into Model Attribution, encompassing source model identification, model family classification, and model size classification. Our results reveal several key findings: a clear inverse relationship between classifier effectiveness and model size, with larger LLMs being more challenging to detect, especially when the classifier is trained on data from smaller models. Training on data from similarly sized LLMs can improve detection performance from larger models but may lead to decreased performance when dealing with smaller models. Additionally, model attribution experiments show promising results in identifying source models and model families, highlighting detectable signatures in LLM-generated text. Overall, our study contributes valuable insights into the interplay of model size, family, and training data in LLM detection and attribution.
AllHands: Ask Me Anything on Large-scale Verbatim Feedback via Large Language Models
Verbatim feedback constitutes a valuable repository of user experiences, opinions, and requirements essential for software development. Effectively and efficiently extracting valuable insights from such data poses a challenging task. This paper introduces Allhands , an innovative analytic framework designed for large-scale feedback analysis through a natural language interface, leveraging large language models (LLMs). Allhands adheres to a conventional feedback analytic workflow, initially conducting classification and topic modeling on the feedback to convert them into a structurally augmented format, incorporating LLMs to enhance accuracy, robustness, generalization, and user-friendliness. Subsequently, an LLM agent is employed to interpret users' diverse questions in natural language on feedback, translating them into Python code for execution, and delivering comprehensive multi-modal responses, including text, code, tables, and images. We evaluate Allhands across three diverse feedback datasets. The experiments demonstrate that Allhands achieves superior efficacy at all stages of analysis, including classification and topic modeling, eventually providing users with an ``ask me anything'' experience with comprehensive, correct and human-readable response. To the best of our knowledge, Allhands stands as the first comprehensive feedback analysis framework that supports diverse and customized requirements for insight extraction through a natural language interface.
Computation-Efficient Era: A Comprehensive Survey of State Space Models in Medical Image Analysis
Sequence modeling plays a vital role across various domains, with recurrent neural networks being historically the predominant method of performing these tasks. However, the emergence of transformers has altered this paradigm due to their superior performance. Built upon these advances, transformers have conjoined CNNs as two leading foundational models for learning visual representations. However, transformers are hindered by the O(N^2) complexity of their attention mechanisms, while CNNs lack global receptive fields and dynamic weight allocation. State Space Models (SSMs), specifically the \textbf{Mamba} model with selection mechanisms and hardware-aware architecture, have garnered immense interest lately in sequential modeling and visual representation learning, challenging the dominance of transformers by providing infinite context lengths and offering substantial efficiency maintaining linear complexity in the input sequence. Capitalizing on the advances in computer vision, medical imaging has heralded a new epoch with Mamba models. Intending to help researchers navigate the surge, this survey seeks to offer an encyclopedic review of Mamba models in medical imaging. Specifically, we start with a comprehensive theoretical review forming the basis of SSMs, including Mamba architecture and its alternatives for sequence modeling paradigms in this context. Next, we offer a structured classification of Mamba models in the medical field and introduce a diverse categorization scheme based on their application, imaging modalities, and targeted organs. Finally, we summarize key challenges, discuss different future research directions of the SSMs in the medical domain, and propose several directions to fulfill the demands of this field. In addition, we have compiled the studies discussed in this paper along with their open-source implementations on our GitHub repository.
Hyp-OC: Hyperbolic One Class Classification for Face Anti-Spoofing
Face recognition technology has become an integral part of modern security systems and user authentication processes. However, these systems are vulnerable to spoofing attacks and can easily be circumvented. Most prior research in face anti-spoofing (FAS) approaches it as a two-class classification task where models are trained on real samples and known spoof attacks and tested for detection performance on unknown spoof attacks. However, in practice, FAS should be treated as a one-class classification task where, while training, one cannot assume any knowledge regarding the spoof samples a priori. In this paper, we reformulate the face anti-spoofing task from a one-class perspective and propose a novel hyperbolic one-class classification framework. To train our network, we use a pseudo-negative class sampled from the Gaussian distribution with a weighted running mean and propose two novel loss functions: (1) Hyp-PC: Hyperbolic Pairwise Confusion loss, and (2) Hyp-CE: Hyperbolic Cross Entropy loss, which operate in the hyperbolic space. Additionally, we employ Euclidean feature clipping and gradient clipping to stabilize the training in the hyperbolic space. To the best of our knowledge, this is the first work extending hyperbolic embeddings for face anti-spoofing in a one-class manner. With extensive experiments on five benchmark datasets: Rose-Youtu, MSU-MFSD, CASIA-MFSD, Idiap Replay-Attack, and OULU-NPU, we demonstrate that our method significantly outperforms the state-of-the-art, achieving better spoof detection performance.
Interpreting Black-box Machine Learning Models for High Dimensional Datasets
Deep neural networks (DNNs) have been shown to outperform traditional machine learning algorithms in a broad variety of application domains due to their effectiveness in modeling complex problems and handling high-dimensional datasets. Many real-life datasets, however, are of increasingly high dimensionality, where a large number of features may be irrelevant for both supervised and unsupervised learning tasks. The inclusion of such features would not only introduce unwanted noise but also increase computational complexity. Furthermore, due to high non-linearity and dependency among a large number of features, DNN models tend to be unavoidably opaque and perceived as black-box methods because of their not well-understood internal functioning. Their algorithmic complexity is often simply beyond the capacities of humans to understand the interplay among myriads of hyperparameters. A well-interpretable model can identify statistically significant features and explain the way they affect the model's outcome. In this paper, we propose an efficient method to improve the interpretability of black-box models for classification tasks in the case of high-dimensional datasets. First, we train a black-box model on a high-dimensional dataset to learn the embeddings on which the classification is performed. To decompose the inner working principles of the black-box model and to identify top-k important features, we employ different probing and perturbing techniques. We then approximate the behavior of the black-box model by means of an interpretable surrogate model on the top-k feature space. Finally, we derive decision rules and local explanations from the surrogate model to explain individual decisions. Our approach outperforms state-of-the-art methods like TabNet and XGboost when tested on different datasets with varying dimensionality between 50 and 20,000 w.r.t metrics and explainability.
Concept-Centric Transformers: Enhancing Model Interpretability through Object-Centric Concept Learning within a Shared Global Workspace
Many interpretable AI approaches have been proposed to provide plausible explanations for a model's decision-making. However, configuring an explainable model that effectively communicates among computational modules has received less attention. A recently proposed shared global workspace theory showed that networks of distributed modules can benefit from sharing information with a bottlenecked memory because the communication constraints encourage specialization, compositionality, and synchronization among the modules. Inspired by this, we propose Concept-Centric Transformers, a simple yet effective configuration of the shared global workspace for interpretability, consisting of: i) an object-centric-based memory module for extracting semantic concepts from input features, ii) a cross-attention mechanism between the learned concept and input embeddings, and iii) standard classification and explanation losses to allow human analysts to directly assess an explanation for the model's classification reasoning. We test our approach against other existing concept-based methods on classification tasks for various datasets, including CIFAR100, CUB-200-2011, and ImageNet, and we show that our model achieves better classification accuracy than all baselines across all problems but also generates more consistent concept-based explanations of classification output.
XAI-based Comparison of Input Representations for Audio Event Classification
Deep neural networks are a promising tool for Audio Event Classification. In contrast to other data like natural images, there are many sensible and non-obvious representations for audio data, which could serve as input to these models. Due to their black-box nature, the effect of different input representations has so far mostly been investigated by measuring classification performance. In this work, we leverage eXplainable AI (XAI), to understand the underlying classification strategies of models trained on different input representations. Specifically, we compare two model architectures with regard to relevant input features used for Audio Event Detection: one directly processes the signal as the raw waveform, and the other takes in its time-frequency spectrogram representation. We show how relevance heatmaps obtained via "Siren"{Layer-wise Relevance Propagation} uncover representation-dependent decision strategies. With these insights, we can make a well-informed decision about the best input representation in terms of robustness and representativity and confirm that the model's classification strategies align with human requirements.
SLCA: Slow Learner with Classifier Alignment for Continual Learning on a Pre-trained Model
The goal of continual learning is to improve the performance of recognition models in learning sequentially arrived data. Although most existing works are established on the premise of learning from scratch, growing efforts have been devoted to incorporating the benefits of pre-training. However, how to adaptively exploit the pre-trained knowledge for each incremental task while maintaining its generalizability remains an open question. In this work, we present an extensive analysis for continual learning on a pre-trained model (CLPM), and attribute the key challenge to a progressive overfitting problem. Observing that selectively reducing the learning rate can almost resolve this issue in the representation layer, we propose a simple but extremely effective approach named Slow Learner with Classifier Alignment (SLCA), which further improves the classification layer by modeling the class-wise distributions and aligning the classification layers in a post-hoc fashion. Across a variety of scenarios, our proposal provides substantial improvements for CLPM (e.g., up to 49.76%, 50.05%, 44.69% and 40.16% on Split CIFAR-100, Split ImageNet-R, Split CUB-200 and Split Cars-196, respectively), and thus outperforms state-of-the-art approaches by a large margin. Based on such a strong baseline, critical factors and promising directions are analyzed in-depth to facilitate subsequent research. Code has been made available at: https://github.com/GengDavid/SLCA.
t-RAIN: Robust generalization under weather-aliasing label shift attacks
In the classical supervised learning settings, classifiers are fit with the assumption of balanced label distributions and produce remarkable results on the same. In the real world, however, these assumptions often bend and in turn adversely impact model performance. Identifying bad learners in skewed target distributions is even more challenging. Thus achieving model robustness under these "label shift" settings is an important task in autonomous perception. In this paper, we analyze the impact of label shift on the task of multi-weather classification for autonomous vehicles. We use this information as a prior to better assess pedestrian detection in adverse weather. We model the classification performance as an indicator of robustness under 4 label shift scenarios and study the behavior of multiple classes of models. We propose t-RAIN a similarity mapping technique for synthetic data augmentation using large scale generative models and evaluate the performance on DAWN dataset. This mapping boosts model test accuracy by 2.1, 4.4, 1.9, 2.7 % in no-shift, fog, snow, dust shifts respectively. We present state-of-the-art pedestrian detection results on real and synthetic weather domains with best performing 82.69 AP (snow) and 62.31 AP (fog) respectively.
DNAGPT: A Generalized Pretrained Tool for Multiple DNA Sequence Analysis Tasks
The success of the GPT series proves that GPT can extract general information from sequences, thereby benefiting all downstream tasks. This motivates us to use pre-trained models to explore the hidden information in DNA sequences. However, data and task requirements in DNA sequence analysis are complexity and diversity as DNA relevant data includes different types of information, such as sequences, expression levels, etc, while there is currently no model specifically designed for these characteristics. Hereby, we present DNAGPT, a generalized foundation model pre-trained on over 10 billion base pairs from 9 species which can be fine-tuned for any DNA sequence analysis task. Our model can simultaneously process or output DNA sequences and numbers. In addition, our unique token design allows users to design prompts according to their own task requirements, making it applicable to any type of task. We have evaluated our model on classification, regression, and generation tasks. We demonstrate that DNAGPT benefits from pre-training, and therefore can bring performance gains to any downstream task. Our model is not only a new attempt in the field of genomes analysis, but also provides a new direction for the application of foundation models in biology.
L-GreCo: Layerwise-Adaptive Gradient Compression for Efficient and Accurate Deep Learning
Data-parallel distributed training of deep neural networks (DNN) has gained very widespread adoption, but can still experience communication bottlenecks. To address this issue, entire families of compression mechanisms have been developed, including quantization, sparsification, and low-rank approximation, some of which are seeing significant practical adoption. Despite this progress, almost all known compression schemes apply compression uniformly across DNN layers, although layers are heterogeneous in terms of parameter count and their impact on model accuracy. In this work, we provide a general framework for adapting the degree of compression across the model's layers dynamically during training, improving the overall compression, while leading to substantial speedups, without sacrificing accuracy. Our framework, called L-GreCo, is based on an adaptive algorithm, which automatically picks the optimal compression parameters for model layers guaranteeing the best compression ratio while satisfying an error constraint. Extensive experiments over image classification and language modeling tasks shows that L-GreCo is effective across all existing families of compression methods, and achieves up to 2.5times training speedup and up to 5times compression improvement over efficient implementations of existing approaches, while recovering full accuracy. Moreover, L-GreCo is complementary to existing adaptive algorithms, improving their compression ratio by 50% and practical throughput by 66%.
Cut your Losses with Squentropy
Nearly all practical neural models for classification are trained using cross-entropy loss. Yet this ubiquitous choice is supported by little theoretical or empirical evidence. Recent work (Hui & Belkin, 2020) suggests that training using the (rescaled) square loss is often superior in terms of the classification accuracy. In this paper we propose the "squentropy" loss, which is the sum of two terms: the cross-entropy loss and the average square loss over the incorrect classes. We provide an extensive set of experiments on multi-class classification problems showing that the squentropy loss outperforms both the pure cross entropy and rescaled square losses in terms of the classification accuracy. We also demonstrate that it provides significantly better model calibration than either of these alternative losses and, furthermore, has less variance with respect to the random initialization. Additionally, in contrast to the square loss, squentropy loss can typically be trained using exactly the same optimization parameters, including the learning rate, as the standard cross-entropy loss, making it a true "plug-and-play" replacement. Finally, unlike the rescaled square loss, multiclass squentropy contains no parameters that need to be adjusted.
SemEval-2017 Task 4: Sentiment Analysis in Twitter using BERT
This paper uses the BERT model, which is a transformer-based architecture, to solve task 4A, English Language, Sentiment Analysis in Twitter of SemEval2017. BERT is a very powerful large language model for classification tasks when the amount of training data is small. For this experiment, we have used the BERT(BASE) model, which has 12 hidden layers. This model provides better accuracy, precision, recall, and f1 score than the Naive Bayes baseline model. It performs better in binary classification subtasks than the multi-class classification subtasks. We also considered all kinds of ethical issues during this experiment, as Twitter data contains personal and sensible information. The dataset and code used in our experiment can be found in this GitHub repository.
Target-based Surrogates for Stochastic Optimization
We consider minimizing functions for which it is expensive to compute the (possibly stochastic) gradient. Such functions are prevalent in reinforcement learning, imitation learning and adversarial training. Our target optimization framework uses the (expensive) gradient computation to construct surrogate functions in a target space (e.g. the logits output by a linear model for classification) that can be minimized efficiently. This allows for multiple parameter updates to the model, amortizing the cost of gradient computation. In the full-batch setting, we prove that our surrogate is a global upper-bound on the loss, and can be (locally) minimized using a black-box optimization algorithm. We prove that the resulting majorization-minimization algorithm ensures convergence to a stationary point of the loss. Next, we instantiate our framework in the stochastic setting and propose the SSO algorithm, which can be viewed as projected stochastic gradient descent in the target space. This connection enables us to prove theoretical guarantees for SSO when minimizing convex functions. Our framework allows the use of standard stochastic optimization algorithms to construct surrogates which can be minimized by any deterministic optimization method. To evaluate our framework, we consider a suite of supervised learning and imitation learning problems. Our experiments indicate the benefits of target optimization and the effectiveness of SSO.
ArcAid: Analysis of Archaeological Artifacts using Drawings
Archaeology is an intriguing domain for computer vision. It suffers not only from shortage in (labeled) data, but also from highly-challenging data, which is often extremely abraded and damaged. This paper proposes a novel semi-supervised model for classification and retrieval of images of archaeological artifacts. This model utilizes unique data that exists in the domain -- manual drawings made by special artists. These are used during training to implicitly transfer the domain knowledge from the drawings to their corresponding images, improving their classification results. We show that while learning how to classify, our model also learns how to generate drawings of the artifacts, an important documentation task, which is currently performed manually. Last but not least, we collected a new dataset of stamp-seals of the Southern Levant. The dataset and the code will be released upon acceptance.
DeepliteRT: Computer Vision at the Edge
The proliferation of edge devices has unlocked unprecedented opportunities for deep learning model deployment in computer vision applications. However, these complex models require considerable power, memory and compute resources that are typically not available on edge platforms. Ultra low-bit quantization presents an attractive solution to this problem by scaling down the model weights and activations from 32-bit to less than 8-bit. We implement highly optimized ultra low-bit convolution operators for ARM-based targets that outperform existing methods by up to 4.34x. Our operator is implemented within Deeplite Runtime (DeepliteRT), an end-to-end solution for the compilation, tuning, and inference of ultra low-bit models on ARM devices. Compiler passes in DeepliteRT automatically convert a fake-quantized model in full precision to a compact ultra low-bit representation, easing the process of quantized model deployment on commodity hardware. We analyze the performance of DeepliteRT on classification and detection models against optimized 32-bit floating-point, 8-bit integer, and 2-bit baselines, achieving significant speedups of up to 2.20x, 2.33x and 2.17x, respectively.
Feature Learning for Stock Price Prediction Shows a Significant Role of Analyst Rating
To reject the Efficient Market Hypothesis a set of 5 technical indicators and 23 fundamental indicators was identified to establish the possibility of generating excess returns on the stock market. Leveraging these data points and various classification machine learning models, trading data of the 505 equities on the US S&P500 over the past 20 years was analysed to develop a classifier effective for our cause. From any given day, we were able to predict the direction of change in price by 1% up to 10 days in the future. The predictions had an overall accuracy of 83.62% with a precision of 85% for buy signals and a recall of 100% for sell signals. Moreover, we grouped equities by their sector and repeated the experiment to see if grouping similar assets together positively effected the results but concluded that it showed no significant improvements in the performance rejecting the idea of sector-based analysis. Also, using feature ranking we could identify an even smaller set of 6 indicators while maintaining similar accuracies as that from the original 28 features and also uncovered the importance of buy, hold and sell analyst ratings as they came out to be the top contributors in the model. Finally, to evaluate the effectiveness of the classifier in real-life situations, it was backtested on FAANG equities using a modest trading strategy where it generated high returns of above 60% over the term of the testing dataset. In conclusion, our proposed methodology with the combination of purposefully picked features shows an improvement over the previous studies, and our model predicts the direction of 1% price changes on the 10th day with high confidence and with enough buffer to even build a robotic trading system.
Learning Confident Classifiers in the Presence of Label Noise
The success of Deep Neural Network (DNN) models significantly depends on the quality of provided annotations. In medical image segmentation, for example, having multiple expert annotations for each data point is common to minimize subjective annotation bias. Then, the goal of estimation is to filter out the label noise and recover the ground-truth masks, which are not explicitly given. This paper proposes a probabilistic model for noisy observations that allows us to build a confident classification and segmentation models. To accomplish it, we explicitly model label noise and introduce a new information-based regularization that pushes the network to recover the ground-truth labels. In addition, for segmentation task we adjust the loss function by prioritizing learning in high-confidence regions where all the annotators agree on labeling. We evaluate the proposed method on a series of classification tasks such as noisy versions of MNIST, CIFAR-10, Fashion-MNIST datasets as well as CIFAR-10N, which is real-world dataset with noisy human annotations. Additionally, for segmentation task, we consider several medical imaging datasets, such as, LIDC and RIGA that reflect real-world inter-variability among multiple annotators. Our experiments show that our algorithm outperforms state-of-the-art solutions for the considered classification and segmentation problems.
An Introduction to Conditional Random Fields
Often we wish to predict a large number of variables that depend on each other as well as on other observed variables. Structured prediction methods are essentially a combination of classification and graphical modeling, combining the ability of graphical models to compactly model multivariate data with the ability of classification methods to perform prediction using large sets of input features. This tutorial describes conditional random fields, a popular probabilistic method for structured prediction. CRFs have seen wide application in natural language processing, computer vision, and bioinformatics. We describe methods for inference and parameter estimation for CRFs, including practical issues for implementing large scale CRFs. We do not assume previous knowledge of graphical modeling, so this tutorial is intended to be useful to practitioners in a wide variety of fields.
Stock Price Prediction Using Convolutional Neural Networks on a Multivariate Timeseries
Prediction of future movement of stock prices has been a subject matter of many research work. In this work, we propose a hybrid approach for stock price prediction using machine learning and deep learning-based methods. We select the NIFTY 50 index values of the National Stock Exchange of India, over a period of four years, from January 2015 till December 2019. Based on the NIFTY data during the said period, we build various predictive models using machine learning approaches, and then use those models to predict the Close value of NIFTY 50 for the year 2019, with a forecast horizon of one week. For predicting the NIFTY index movement patterns, we use a number of classification methods, while for forecasting the actual Close values of NIFTY index, various regression models are built. We, then, augment our predictive power of the models by building a deep learning-based regression model using Convolutional Neural Network with a walk-forward validation. The CNN model is fine-tuned for its parameters so that the validation loss stabilizes with increasing number of iterations, and the training and validation accuracies converge. We exploit the power of CNN in forecasting the future NIFTY index values using three approaches which differ in number of variables used in forecasting, number of sub-models used in the overall models and, size of the input data for training the models. Extensive results are presented on various metrics for all classification and regression models. The results clearly indicate that CNN-based multivariate forecasting model is the most effective and accurate in predicting the movement of NIFTY index values with a weekly forecast horizon.
Gradient Descent Happens in a Tiny Subspace
We show that in a variety of large-scale deep learning scenarios the gradient dynamically converges to a very small subspace after a short period of training. The subspace is spanned by a few top eigenvectors of the Hessian (equal to the number of classes in the dataset), and is mostly preserved over long periods of training. A simple argument then suggests that gradient descent may happen mostly in this subspace. We give an example of this effect in a solvable model of classification, and we comment on possible implications for optimization and learning.
Perceiver: General Perception with Iterative Attention
Biological systems perceive the world by simultaneously processing high-dimensional inputs from modalities as diverse as vision, audition, touch, proprioception, etc. The perception models used in deep learning on the other hand are designed for individual modalities, often relying on domain-specific assumptions such as the local grid structures exploited by virtually all existing vision models. These priors introduce helpful inductive biases, but also lock models to individual modalities. In this paper we introduce the Perceiver - a model that builds upon Transformers and hence makes few architectural assumptions about the relationship between its inputs, but that also scales to hundreds of thousands of inputs, like ConvNets. The model leverages an asymmetric attention mechanism to iteratively distill inputs into a tight latent bottleneck, allowing it to scale to handle very large inputs. We show that this architecture is competitive with or outperforms strong, specialized models on classification tasks across various modalities: images, point clouds, audio, video, and video+audio. The Perceiver obtains performance comparable to ResNet-50 and ViT on ImageNet without 2D convolutions by directly attending to 50,000 pixels. It is also competitive in all modalities in AudioSet.
Cross-D Conv: Cross-Dimensional Transferable Knowledge Base via Fourier Shifting Operation
In biomedical imaging analysis, the dichotomy between 2D and 3D data presents a significant challenge. While 3D volumes offer superior real-world applicability, they are less available for each modality and not easy to train in large scale, whereas 2D samples are abundant but less comprehensive. This paper introduces the Cross-D Conv operation, a novel approach that bridges the dimensional gap by learning the phase shifting in the Fourier domain. Our method enables seamless weight transfer between 2D and 3D convolution operations, effectively facilitating cross-dimensional learning. The proposed architecture leverages the abundance of 2D training data to enhance 3D model performance, offering a practical solution to the multimodal data scarcity challenge in 3D medical model pretraining. Experimental validation on the RadImagenet (2D) and multimodal (3D) sets demonstrates that our approach achieves comparable or superior performance in feature quality assessment comparable to conventional methods. The enhanced convolution operation presents new opportunities for developing efficient classification and segmentation models in medical imaging. This work represents an advancement in cross-dimensional and multi-modal medical image analysis, offering a robust framework for utilizing 2D priors in 3D model pretraining or vice versa while maintaining computational efficiency.
A Lung Nodule Dataset with Histopathology-based Cancer Type Annotation
Recently, Computer-Aided Diagnosis (CAD) systems have emerged as indispensable tools in clinical diagnostic workflows, significantly alleviating the burden on radiologists. Nevertheless, despite their integration into clinical settings, CAD systems encounter limitations. Specifically, while CAD systems can achieve high performance in the detection of lung nodules, they face challenges in accurately predicting multiple cancer types. This limitation can be attributed to the scarcity of publicly available datasets annotated with expert-level cancer type information. This research aims to bridge this gap by providing publicly accessible datasets and reliable tools for medical diagnosis, facilitating a finer categorization of different types of lung diseases so as to offer precise treatment recommendations. To achieve this objective, we curated a diverse dataset of lung Computed Tomography (CT) images, comprising 330 annotated nodules (nodules are labeled as bounding boxes) from 95 distinct patients. The quality of the dataset was evaluated using a variety of classical classification and detection models, and these promising results demonstrate that the dataset has a feasible application and further facilitate intelligent auxiliary diagnosis.
CACE-Net: Co-guidance Attention and Contrastive Enhancement for Effective Audio-Visual Event Localization
The audio-visual event localization task requires identifying concurrent visual and auditory events from unconstrained videos within a network model, locating them, and classifying their category. The efficient extraction and integration of audio and visual modal information have always been challenging in this field. In this paper, we introduce CACE-Net, which differs from most existing methods that solely use audio signals to guide visual information. We propose an audio-visual co-guidance attention mechanism that allows for adaptive bi-directional cross-modal attentional guidance between audio and visual information, thus reducing inconsistencies between modalities. Moreover, we have observed that existing methods have difficulty distinguishing between similar background and event and lack the fine-grained features for event classification. Consequently, we employ background-event contrast enhancement to increase the discrimination of fused feature and fine-tuned pre-trained model to extract more refined and discernible features from complex multimodal inputs. Specifically, we have enhanced the model's ability to discern subtle differences between event and background and improved the accuracy of event classification in our model. Experiments on the AVE dataset demonstrate that CACE-Net sets a new benchmark in the audio-visual event localization task, proving the effectiveness of our proposed methods in handling complex multimodal learning and event localization in unconstrained videos. Code is available at https://github.com/Brain-Cog-Lab/CACE-Net.
Straightening Out the Straight-Through Estimator: Overcoming Optimization Challenges in Vector Quantized Networks
This work examines the challenges of training neural networks using vector quantization using straight-through estimation. We find that a primary cause of training instability is the discrepancy between the model embedding and the code-vector distribution. We identify the factors that contribute to this issue, including the codebook gradient sparsity and the asymmetric nature of the commitment loss, which leads to misaligned code-vector assignments. We propose to address this issue via affine re-parameterization of the code vectors. Additionally, we introduce an alternating optimization to reduce the gradient error introduced by the straight-through estimation. Moreover, we propose an improvement to the commitment loss to ensure better alignment between the codebook representation and the model embedding. These optimization methods improve the mathematical approximation of the straight-through estimation and, ultimately, the model performance. We demonstrate the effectiveness of our methods on several common model architectures, such as AlexNet, ResNet, and ViT, across various tasks, including image classification and generative modeling.
Explainability in Deep Reinforcement Learning
A large set of the explainable Artificial Intelligence (XAI) literature is emerging on feature relevance techniques to explain a deep neural network (DNN) output or explaining models that ingest image source data. However, assessing how XAI techniques can help understand models beyond classification tasks, e.g. for reinforcement learning (RL), has not been extensively studied. We review recent works in the direction to attain Explainable Reinforcement Learning (XRL), a relatively new subfield of Explainable Artificial Intelligence, intended to be used in general public applications, with diverse audiences, requiring ethical, responsible and trustable algorithms. In critical situations where it is essential to justify and explain the agent's behaviour, better explainability and interpretability of RL models could help gain scientific insight on the inner workings of what is still considered a black box. We evaluate mainly studies directly linking explainability to RL, and split these into two categories according to the way the explanations are generated: transparent algorithms and post-hoc explainaility. We also review the most prominent XAI works from the lenses of how they could potentially enlighten the further deployment of the latest advances in RL, in the demanding present and future of everyday problems.
ABC: Achieving Better Control of Multimodal Embeddings using VLMs
Visual embedding models excel at zero-shot tasks like visual retrieval and classification. However, these models cannot be used for tasks that contain ambiguity or require user instruction. These tasks necessitate a multimodal embedding model, which outputs embeddings that combine visual and natural language input. Existing CLIP-based approaches embed images and text independently, and fuse the result. We find that this results in weak interactions between modalities, and poor user control over the representation. We introduce ABC, an open-source multimodal embedding model that uses a vision-language model backbone to deeply integrate image features with natural language instructions. ABC achieves bestfor-size performance on MSCOCO image-to-text retrieval and is the top performing model on classification and VQA tasks in the Massive Multimodal Embedding Benchmark. With a strongly unified vision-language representation, ABC can use natural language to solve subtle and potentially ambiguous visual retrieval problems. To evaluate this capability, we design CtrlBench, a benchmark that requires interleaving textual instructions with image content for correct retrieval. ABC advances the state of multimodal embeddings by offering high-quality representations and flexible natural language control. Our model and datasets are available at our project page.
Weight subcloning: direct initialization of transformers using larger pretrained ones
Training large transformer models from scratch for a target task requires lots of data and is computationally demanding. The usual practice of transfer learning overcomes this challenge by initializing the model with weights of a pretrained model of the same size and specification to increase the convergence and training speed. However, what if no pretrained model of the required size is available? In this paper, we introduce a simple yet effective technique to transfer the knowledge of a pretrained model to smaller variants. Our approach called weight subcloning expedites the training of scaled-down transformers by initializing their weights from larger pretrained models. Weight subcloning involves an operation on the pretrained model to obtain the equivalent initialized scaled-down model. It consists of two key steps: first, we introduce neuron importance ranking to decrease the embedding dimension per layer in the pretrained model. Then, we remove blocks from the transformer model to match the number of layers in the scaled-down network. The result is a network ready to undergo training, which gains significant improvements in training speed compared to random initialization. For instance, we achieve 4x faster training for vision transformers in image classification and language models designed for next token prediction.
SILC: Improving Vision Language Pretraining with Self-Distillation
Image-Text pretraining on web-scale image caption dataset has become the default recipe for open vocabulary classification and retrieval models thanks to the success of CLIP and its variants. Several works have also used CLIP features for dense prediction tasks and have shown the emergence of open-set abilities. However, the contrastive objective only focuses on image-text alignment and does not incentivise image feature learning for dense prediction tasks. In this work, we propose the simple addition of local-to-global correspondence learning by self-distillation as an additional objective for contrastive pre-training to propose SILC. We show that distilling local image features from an exponential moving average (EMA) teacher model significantly improves model performance on several computer vision tasks including classification, retrieval, and especially segmentation. We further show that SILC scales better with the same training duration compared to the baselines. Our model SILC sets a new state of the art for zero-shot classification, few shot classification, image and text retrieval, zero-shot segmentation, and open vocabulary segmentation.
CrAM: A Compression-Aware Minimizer
Deep neural networks (DNNs) often have to be compressed, via pruning and/or quantization, before they can be deployed in practical settings. In this work we propose a new compression-aware minimizer dubbed CrAM that modifies the optimization step in a principled way, in order to produce models whose local loss behavior is stable under compression operations such as pruning. Thus, dense models trained via CrAM should be compressible post-training, in a single step, without significant accuracy loss. Experimental results on standard benchmarks, such as residual networks for ImageNet classification and BERT models for language modelling, show that CrAM produces dense models that can be more accurate than the standard SGD/Adam-based baselines, but which are stable under weight pruning: specifically, we can prune models in one-shot to 70-80% sparsity with almost no accuracy loss, and to 90% with reasonable (sim 1%) accuracy loss, which is competitive with gradual compression methods. Additionally, CrAM can produce sparse models which perform well for transfer learning, and it also works for semi-structured 2:4 pruning patterns supported by GPU hardware. The code for reproducing the results is available at https://github.com/IST-DASLab/CrAM .
Role of Locality and Weight Sharing in Image-Based Tasks: A Sample Complexity Separation between CNNs, LCNs, and FCNs
Vision tasks are characterized by the properties of locality and translation invariance. The superior performance of convolutional neural networks (CNNs) on these tasks is widely attributed to the inductive bias of locality and weight sharing baked into their architecture. Existing attempts to quantify the statistical benefits of these biases in CNNs over locally connected convolutional neural networks (LCNs) and fully connected neural networks (FCNs) fall into one of the following categories: either they disregard the optimizer and only provide uniform convergence upper bounds with no separating lower bounds, or they consider simplistic tasks that do not truly mirror the locality and translation invariance as found in real-world vision tasks. To address these deficiencies, we introduce the Dynamic Signal Distribution (DSD) classification task that models an image as consisting of k patches, each of dimension d, and the label is determined by a d-sparse signal vector that can freely appear in any one of the k patches. On this task, for any orthogonally equivariant algorithm like gradient descent, we prove that CNNs require O(k+d) samples, whereas LCNs require Omega(kd) samples, establishing the statistical advantages of weight sharing in translation invariant tasks. Furthermore, LCNs need O(k(k+d)) samples, compared to Omega(k^2d) samples for FCNs, showcasing the benefits of locality in local tasks. Additionally, we develop information theoretic tools for analyzing randomized algorithms, which may be of interest for statistical research.
MeDSLIP: Medical Dual-Stream Language-Image Pre-training for Fine-grained Alignment
Vision-language pre-training (VLP) models have shown significant advancements in the medical domain. Yet, most VLP models align raw reports to images at a very coarse level, without modeling fine-grained relationships between anatomical and pathological concepts outlined in reports and the corresponding semantic counterparts in images. To address this problem, we propose a Medical Dual-Stream Language-Image Pre-training (MeDSLIP) framework. Specifically, MeDSLIP establishes vision-language fine-grained alignments via disentangling visual and textual representations into anatomy-relevant and pathology-relevant streams. Moreover, a novel vision-language Prototypical Contr-astive Learning (ProtoCL) method is adopted in MeDSLIP to enhance the alignment within the anatomical and pathological streams. MeDSLIP further employs cross-stream Intra-image Contrastive Learning (ICL) to ensure the consistent coexistence of paired anatomical and pathological concepts within the same image. Such a cross-stream regularization encourages the model to exploit the synchrony between two streams for a more comprehensive representation learning. MeDSLIP is evaluated under zero-shot and supervised fine-tuning settings on three public datasets: NIH CXR14, RSNA Pneumonia, and SIIM-ACR Pneumothorax. Under these settings, MeDSLIP outperforms six leading CNN-based models on classification, grounding, and segmentation tasks.
Challenges in Automated Debiasing for Toxic Language Detection
Biased associations have been a challenge in the development of classifiers for detecting toxic language, hindering both fairness and accuracy. As potential solutions, we investigate recently introduced debiasing methods for text classification datasets and models, as applied to toxic language detection. Our focus is on lexical (e.g., swear words, slurs, identity mentions) and dialectal markers (specifically African American English). Our comprehensive experiments establish that existing methods are limited in their ability to prevent biased behavior in current toxicity detectors. We then propose an automatic, dialect-aware data correction method, as a proof-of-concept. Despite the use of synthetic labels, this method reduces dialectal associations with toxicity. Overall, our findings show that debiasing a model trained on biased toxic language data is not as effective as simply relabeling the data to remove existing biases.
The Devil in Linear Transformer
Linear transformers aim to reduce the quadratic space-time complexity of vanilla transformers. However, they usually suffer from degraded performances on various tasks and corpus. In this paper, we examine existing kernel-based linear transformers and identify two key issues that lead to such performance gaps: 1) unbounded gradients in the attention computation adversely impact the convergence of linear transformer models; 2) attention dilution which trivially distributes attention scores over long sequences while neglecting neighbouring structures. To address these issues, we first identify that the scaling of attention matrices is the devil in unbounded gradients, which turns out unnecessary in linear attention as we show theoretically and empirically. To this end, we propose a new linear attention that replaces the scaling operation with a normalization to stabilize gradients. For the issue of attention dilution, we leverage a diagonal attention to confine attention to only neighbouring tokens in early layers. Benefiting from the stable gradients and improved attention, our new linear transformer model, transNormer, demonstrates superior performance on text classification and language modeling tasks, as well as on the challenging Long-Range Arena benchmark, surpassing vanilla transformer and existing linear variants by a clear margin while being significantly more space-time efficient. The code is available at https://github.com/OpenNLPLab/Transnormer .
Contrast Is All You Need
In this study, we analyze data-scarce classification scenarios, where available labeled legal data is small and imbalanced, potentially hurting the quality of the results. We focused on two finetuning objectives; SetFit (Sentence Transformer Finetuning), a contrastive learning setup, and a vanilla finetuning setup on a legal provision classification task. Additionally, we compare the features that are extracted with LIME (Local Interpretable Model-agnostic Explanations) to see which particular features contributed to the model's classification decisions. The results show that a contrastive setup with SetFit performed better than vanilla finetuning while using a fraction of the training samples. LIME results show that the contrastive learning approach helps boost both positive and negative features which are legally informative and contribute to the classification results. Thus a model finetuned with a contrastive objective seems to base its decisions more confidently on legally informative features.
MedExQA: Medical Question Answering Benchmark with Multiple Explanations
This paper introduces MedExQA, a novel benchmark in medical question-answering, to evaluate large language models' (LLMs) understanding of medical knowledge through explanations. By constructing datasets across five distinct medical specialties that are underrepresented in current datasets and further incorporating multiple explanations for each question-answer pair, we address a major gap in current medical QA benchmarks which is the absence of comprehensive assessments of LLMs' ability to generate nuanced medical explanations. Our work highlights the importance of explainability in medical LLMs, proposes an effective methodology for evaluating models beyond classification accuracy, and sheds light on one specific domain, speech language pathology, where current LLMs including GPT4 lack good understanding. Our results show generation evaluation with multiple explanations aligns better with human assessment, highlighting an opportunity for a more robust automated comprehension assessment for LLMs. To diversify open-source medical LLMs (currently mostly based on Llama2), this work also proposes a new medical model, MedPhi-2, based on Phi-2 (2.7B). The model outperformed medical LLMs based on Llama2-70B in generating explanations, showing its effectiveness in the resource-constrained medical domain. We will share our benchmark datasets and the trained model.
Back to the Source: Diffusion-Driven Test-Time Adaptation
Test-time adaptation harnesses test inputs to improve the accuracy of a model trained on source data when tested on shifted target data. Existing methods update the source model by (re-)training on each target domain. While effective, re-training is sensitive to the amount and order of the data and the hyperparameters for optimization. We instead update the target data, by projecting all test inputs toward the source domain with a generative diffusion model. Our diffusion-driven adaptation method, DDA, shares its models for classification and generation across all domains. Both models are trained on the source domain, then fixed during testing. We augment diffusion with image guidance and self-ensembling to automatically decide how much to adapt. Input adaptation by DDA is more robust than prior model adaptation approaches across a variety of corruptions, architectures, and data regimes on the ImageNet-C benchmark. With its input-wise updates, DDA succeeds where model adaptation degrades on too little data in small batches, dependent data in non-uniform order, or mixed data with multiple corruptions.
Provable Dynamic Fusion for Low-Quality Multimodal Data
The inherent challenge of multimodal fusion is to precisely capture the cross-modal correlation and flexibly conduct cross-modal interaction. To fully release the value of each modality and mitigate the influence of low-quality multimodal data, dynamic multimodal fusion emerges as a promising learning paradigm. Despite its widespread use, theoretical justifications in this field are still notably lacking. Can we design a provably robust multimodal fusion method? This paper provides theoretical understandings to answer this question under a most popular multimodal fusion framework from the generalization perspective. We proceed to reveal that several uncertainty estimation solutions are naturally available to achieve robust multimodal fusion. Then a novel multimodal fusion framework termed Quality-aware Multimodal Fusion (QMF) is proposed, which can improve the performance in terms of classification accuracy and model robustness. Extensive experimental results on multiple benchmarks can support our findings.
Scaling Open-Vocabulary Object Detection
Open-vocabulary object detection has benefited greatly from pretrained vision-language models, but is still limited by the amount of available detection training data. While detection training data can be expanded by using Web image-text pairs as weak supervision, this has not been done at scales comparable to image-level pretraining. Here, we scale up detection data with self-training, which uses an existing detector to generate pseudo-box annotations on image-text pairs. Major challenges in scaling self-training are the choice of label space, pseudo-annotation filtering, and training efficiency. We present the OWLv2 model and OWL-ST self-training recipe, which address these challenges. OWLv2 surpasses the performance of previous state-of-the-art open-vocabulary detectors already at comparable training scales (~10M examples). However, with OWL-ST, we can scale to over 1B examples, yielding further large improvement: With an L/14 architecture, OWL-ST improves AP on LVIS rare classes, for which the model has seen no human box annotations, from 31.2% to 44.6% (43% relative improvement). OWL-ST unlocks Web-scale training for open-world localization, similar to what has been seen for image classification and language modelling.
Latent Graph Diffusion: A Unified Framework for Generation and Prediction on Graphs
In this paper, we propose the first framework that enables solving graph learning tasks of all levels (node, edge and graph) and all types (generation, regression and classification) with one model. We first propose Latent Graph Diffusion (LGD), a generative model that can generate node, edge, and graph-level features of all categories simultaneously. We achieve this goal by embedding the graph structures and features into a latent space leveraging a powerful encoder which can also be decoded, then training a diffusion model in the latent space. LGD is also capable of conditional generation through a specifically designed cross-attention mechanism. Then we formulate prediction tasks including regression and classification as (conditional) generation, which enables our LGD to solve tasks of all levels and all types with provable guarantees. We verify the effectiveness of our framework with extensive experiments, where our models achieve state-of-the-art or highly competitive results across generation and regression tasks.
AdaBelief Optimizer: Adapting Stepsizes by the Belief in Observed Gradients
Most popular optimizers for deep learning can be broadly categorized as adaptive methods (e.g. Adam) and accelerated schemes (e.g. stochastic gradient descent (SGD) with momentum). For many models such as convolutional neural networks (CNNs), adaptive methods typically converge faster but generalize worse compared to SGD; for complex settings such as generative adversarial networks (GANs), adaptive methods are typically the default because of their stability.We propose AdaBelief to simultaneously achieve three goals: fast convergence as in adaptive methods, good generalization as in SGD, and training stability. The intuition for AdaBelief is to adapt the stepsize according to the "belief" in the current gradient direction. Viewing the exponential moving average (EMA) of the noisy gradient as the prediction of the gradient at the next time step, if the observed gradient greatly deviates from the prediction, we distrust the current observation and take a small step; if the observed gradient is close to the prediction, we trust it and take a large step. We validate AdaBelief in extensive experiments, showing that it outperforms other methods with fast convergence and high accuracy on image classification and language modeling. Specifically, on ImageNet, AdaBelief achieves comparable accuracy to SGD. Furthermore, in the training of a GAN on Cifar10, AdaBelief demonstrates high stability and improves the quality of generated samples compared to a well-tuned Adam optimizer. Code is available at https://github.com/juntang-zhuang/Adabelief-Optimizer
Classification of Geological Borehole Descriptions Using a Domain Adapted Large Language Model
Geological borehole descriptions contain detailed textual information about the composition of the subsurface. However, their unstructured format presents significant challenges for extracting relevant features into a structured format. This paper introduces GEOBERTje: a domain adapted large language model trained on geological borehole descriptions from Flanders (Belgium) in the Dutch language. This model effectively extracts relevant information from the borehole descriptions and represents it into a numeric vector space. Showcasing just one potential application of GEOBERTje, we finetune a classifier model on a limited number of manually labeled observations. This classifier categorizes borehole descriptions into a main, second and third lithology class. We show that our classifier outperforms both a rule-based approach and GPT-4 of OpenAI. This study exemplifies how domain adapted large language models enhance the efficiency and accuracy of extracting information from complex, unstructured geological descriptions. This offers new opportunities for geological analysis and modeling using vast amounts of data.
Classification of Brain Tumours in MR Images using Deep Spatiospatial Models
A brain tumour is a mass or cluster of abnormal cells in the brain, which has the possibility of becoming life-threatening because of its ability to invade neighbouring tissues and also form metastases. An accurate diagnosis is essential for successful treatment planning and magnetic resonance imaging is the principal imaging modality for diagnostic of brain tumours and their extent. Deep Learning methods in computer vision applications have shown significant improvement in recent years, most of which can be credited to the fact that a sizeable amount of data is available to train models on, and the improvements in the model architectures yielding better approximations in a supervised setting. Classifying tumours using such deep learning methods has made significant progress with the availability of open datasets with reliable annotations. Typically those methods are either 3D models, which use 3D volumetric MRIs or even 2D models considering each slice separately. However, by treating the slice spatial dimension separately, spatiotemporal models can be employed as spatiospatial models for this task. These models have the capabilities of learning specific spatial and temporal relationship, while reducing computational costs. This paper uses two spatiotemporal models, ResNet (2+1)D and ResNet Mixed Convolution, to classify different types of brain tumours. It was observed that both these models performed superior to the pure 3D convolutional model, ResNet18. Furthermore, it was also observed that pre-training the models on a different, even unrelated dataset before training them for the task of tumour classification improves the performance. Finally, Pre-trained ResNet Mixed Convolution was observed to be the best model in these experiments, achieving a macro F1-score of 0.93 and a test accuracy of 96.98\%, while at the same time being the model with the least computational cost.
Are Large Language Models Good Classifiers? A Study on Edit Intent Classification in Scientific Document Revisions
Classification is a core NLP task architecture with many potential applications. While large language models (LLMs) have brought substantial advancements in text generation, their potential for enhancing classification tasks remains underexplored. To address this gap, we propose a framework for thoroughly investigating fine-tuning LLMs for classification, including both generation- and encoding-based approaches. We instantiate this framework in edit intent classification (EIC), a challenging and underexplored classification task. Our extensive experiments and systematic comparisons with various training approaches and a representative selection of LLMs yield new insights into their application for EIC. We investigate the generalizability of these findings on five further classification tasks. To demonstrate the proposed methods and address the data shortage for empirical edit analysis, we use our best-performing EIC model to create Re3-Sci2.0, a new large-scale dataset of 1,780 scientific document revisions with over 94k labeled edits. The quality of the dataset is assessed through human evaluation. The new dataset enables an in-depth empirical study of human editing behavior in academic writing. We make our experimental framework, models and data publicly available.
Language Models for Text Classification: Is In-Context Learning Enough?
Recent foundational language models have shown state-of-the-art performance in many NLP tasks in zero- and few-shot settings. An advantage of these models over more standard approaches based on fine-tuning is the ability to understand instructions written in natural language (prompts), which helps them generalise better to different tasks and domains without the need for specific training data. This makes them suitable for addressing text classification problems for domains with limited amounts of annotated instances. However, existing research is limited in scale and lacks understanding of how text generation models combined with prompting techniques compare to more established methods for text classification such as fine-tuning masked language models. In this paper, we address this research gap by performing a large-scale evaluation study for 16 text classification datasets covering binary, multiclass, and multilabel problems. In particular, we compare zero- and few-shot approaches of large language models to fine-tuning smaller language models. We also analyse the results by prompt, classification type, domain, and number of labels. In general, the results show how fine-tuning smaller and more efficient language models can still outperform few-shot approaches of larger language models, which have room for improvement when it comes to text classification.
From Classification to Clinical Insights: Towards Analyzing and Reasoning About Mobile and Behavioral Health Data With Large Language Models
Passively collected behavioral health data from ubiquitous sensors holds significant promise to provide mental health professionals insights from patient's daily lives; however, developing analysis tools to use this data in clinical practice requires addressing challenges of generalization across devices and weak or ambiguous correlations between the measured signals and an individual's mental health. To address these challenges, we take a novel approach that leverages large language models (LLMs) to synthesize clinically useful insights from multi-sensor data. We develop chain of thought prompting methods that use LLMs to generate reasoning about how trends in data such as step count and sleep relate to conditions like depression and anxiety. We first demonstrate binary depression classification with LLMs achieving accuracies of 61.1% which exceed the state of the art. While it is not robust for clinical use, this leads us to our key finding: even more impactful and valued than classification is a new human-AI collaboration approach in which clinician experts interactively query these tools and combine their domain expertise and context about the patient with AI generated reasoning to support clinical decision-making. We find models like GPT-4 correctly reference numerical data 75% of the time, and clinician participants express strong interest in using this approach to interpret self-tracking data.
Visual Classification via Description from Large Language Models
Vision-language models (VLMs) such as CLIP have shown promising performance on a variety of recognition tasks using the standard zero-shot classification procedure -- computing similarity between the query image and the embedded words for each category. By only using the category name, they neglect to make use of the rich context of additional information that language affords. The procedure gives no intermediate understanding of why a category is chosen, and furthermore provides no mechanism for adjusting the criteria used towards this decision. We present an alternative framework for classification with VLMs, which we call classification by description. We ask VLMs to check for descriptive features rather than broad categories: to find a tiger, look for its stripes; its claws; and more. By basing decisions on these descriptors, we can provide additional cues that encourage using the features we want to be used. In the process, we can get a clear idea of what features the model uses to construct its decision; it gains some level of inherent explainability. We query large language models (e.g., GPT-3) for these descriptors to obtain them in a scalable way. Extensive experiments show our framework has numerous advantages past interpretability. We show improvements in accuracy on ImageNet across distribution shifts; demonstrate the ability to adapt VLMs to recognize concepts unseen during training; and illustrate how descriptors can be edited to effectively mitigate bias compared to the baseline.
Diffusion Models Beat GANs on Image Classification
While many unsupervised learning models focus on one family of tasks, either generative or discriminative, we explore the possibility of a unified representation learner: a model which uses a single pre-training stage to address both families of tasks simultaneously. We identify diffusion models as a prime candidate. Diffusion models have risen to prominence as a state-of-the-art method for image generation, denoising, inpainting, super-resolution, manipulation, etc. Such models involve training a U-Net to iteratively predict and remove noise, and the resulting model can synthesize high fidelity, diverse, novel images. The U-Net architecture, as a convolution-based architecture, generates a diverse set of feature representations in the form of intermediate feature maps. We present our findings that these embeddings are useful beyond the noise prediction task, as they contain discriminative information and can also be leveraged for classification. We explore optimal methods for extracting and using these embeddings for classification tasks, demonstrating promising results on the ImageNet classification task. We find that with careful feature selection and pooling, diffusion models outperform comparable generative-discriminative methods such as BigBiGAN for classification tasks. We investigate diffusion models in the transfer learning regime, examining their performance on several fine-grained visual classification datasets. We compare these embeddings to those generated by competing architectures and pre-trainings for classification tasks.
Mirage: Model-Agnostic Graph Distillation for Graph Classification
GNNs, like other deep learning models, are data and computation hungry. There is a pressing need to scale training of GNNs on large datasets to enable their usage on low-resource environments. Graph distillation is an effort in that direction with the aim to construct a smaller synthetic training set from the original training data without significantly compromising model performance. While initial efforts are promising, this work is motivated by two key observations: (1) Existing graph distillation algorithms themselves rely on training with the full dataset, which undermines the very premise of graph distillation. (2) The distillation process is specific to the target GNN architecture and hyper-parameters and thus not robust to changes in the modeling pipeline. We circumvent these limitations by designing a distillation algorithm called Mirage for graph classification. Mirage is built on the insight that a message-passing GNN decomposes the input graph into a multiset of computation trees. Furthermore, the frequency distribution of computation trees is often skewed in nature, enabling us to condense this data into a concise distilled summary. By compressing the computation data itself, as opposed to emulating gradient flows on the original training set-a prevalent approach to date-Mirage transforms into an unsupervised and architecture-agnostic distillation algorithm. Extensive benchmarking on real-world datasets underscores Mirage's superiority, showcasing enhanced generalization accuracy, data compression, and distillation efficiency when compared to state-of-the-art baselines.
Embedding Models for Supervised Automatic Extraction and Classification of Named Entities in Scientific Acknowledgements
Acknowledgments in scientific papers may give an insight into aspects of the scientific community, such as reward systems, collaboration patterns, and hidden research trends. The aim of the paper is to evaluate the performance of different embedding models for the task of automatic extraction and classification of acknowledged entities from the acknowledgment text in scientific papers. We trained and implemented a named entity recognition (NER) task using the Flair NLP framework. The training was conducted using three default Flair NER models with four differently-sized corpora and different versions of the Flair NLP framework. The Flair Embeddings model trained on the medium corpus with the latest FLAIR version showed the best accuracy of 0.79. Expanding the size of a training corpus from very small to medium size massively increased the accuracy of all training algorithms, but further expansion of the training corpus did not bring further improvement. Moreover, the performance of the model slightly deteriorated. Our model is able to recognize six entity types: funding agency, grant number, individuals, university, corporation, and miscellaneous. The model works more precisely for some entity types than for others; thus, individuals and grant numbers showed a very good F1-Score over 0.9. Most of the previous works on acknowledgment analysis were limited by the manual evaluation of data and therefore by the amount of processed data. This model can be applied for the comprehensive analysis of acknowledgment texts and may potentially make a great contribution to the field of automated acknowledgment analysis.
Emotion Classification In Software Engineering Texts: A Comparative Analysis of Pre-trained Transformers Language Models
Emotion recognition in software engineering texts is critical for understanding developer expressions and improving collaboration. This paper presents a comparative analysis of state-of-the-art Pre-trained Language Models (PTMs) for fine-grained emotion classification on two benchmark datasets from GitHub and Stack Overflow. We evaluate six transformer models - BERT, RoBERTa, ALBERT, DeBERTa, CodeBERT and GraphCodeBERT against the current best-performing tool SEntiMoji. Our analysis reveals consistent improvements ranging from 1.17\% to 16.79\% in terms of macro-averaged and micro-averaged F1 scores, with general domain models outperforming specialized ones. To further enhance PTMs, we incorporate polarity features in attention layer during training, demonstrating additional average gains of 1.0\% to 10.23\% over baseline PTMs approaches. Our work provides strong evidence for the advancements afforded by PTMs in recognizing nuanced emotions like Anger, Love, Fear, Joy, Sadness, and Surprise in software engineering contexts. Through comprehensive benchmarking and error analysis, we also outline scope for improvements to address contextual gaps.
On Classification with Large Language Models in Cultural Analytics
In this work, we survey the way in which classification is used as a sensemaking practice in cultural analytics, and assess where large language models can fit into this landscape. We identify ten tasks supported by publicly available datasets on which we empirically assess the performance of LLMs compared to traditional supervised methods, and explore the ways in which LLMs can be employed for sensemaking goals beyond mere accuracy. We find that prompt-based LLMs are competitive with traditional supervised models for established tasks, but perform less well on de novo tasks. In addition, LLMs can assist sensemaking by acting as an intermediary input to formal theory testing.
Neural models for Factual Inconsistency Classification with Explanations
Factual consistency is one of the most important requirements when editing high quality documents. It is extremely important for automatic text generation systems like summarization, question answering, dialog modeling, and language modeling. Still, automated factual inconsistency detection is rather under-studied. Existing work has focused on (a) finding fake news keeping a knowledge base in context, or (b) detecting broad contradiction (as part of natural language inference literature). However, there has been no work on detecting and explaining types of factual inconsistencies in text, without any knowledge base in context. In this paper, we leverage existing work in linguistics to formally define five types of factual inconsistencies. Based on this categorization, we contribute a novel dataset, FICLE (Factual Inconsistency CLassification with Explanation), with ~8K samples where each sample consists of two sentences (claim and context) annotated with type and span of inconsistency. When the inconsistency relates to an entity type, it is labeled as well at two levels (coarse and fine-grained). Further, we leverage this dataset to train a pipeline of four neural models to predict inconsistency type with explanations, given a (claim, context) sentence pair. Explanations include inconsistent claim fact triple, inconsistent context span, inconsistent claim component, coarse and fine-grained inconsistent entity types. The proposed system first predicts inconsistent spans from claim and context; and then uses them to predict inconsistency types and inconsistent entity types (when inconsistency is due to entities). We experiment with multiple Transformer-based natural language classification as well as generative models, and find that DeBERTa performs the best. Our proposed methods provide a weighted F1 of ~87% for inconsistency type classification across the five classes.
Universal Language Model Fine-tuning for Text Classification
Inductive transfer learning has greatly impacted computer vision, but existing approaches in NLP still require task-specific modifications and training from scratch. We propose Universal Language Model Fine-tuning (ULMFiT), an effective transfer learning method that can be applied to any task in NLP, and introduce techniques that are key for fine-tuning a language model. Our method significantly outperforms the state-of-the-art on six text classification tasks, reducing the error by 18-24% on the majority of datasets. Furthermore, with only 100 labeled examples, it matches the performance of training from scratch on 100x more data. We open-source our pretrained models and code.
TransformerRanker: A Tool for Efficiently Finding the Best-Suited Language Models for Downstream Classification Tasks
Classification tasks in NLP are typically addressed by selecting a pre-trained language model (PLM) from a model hub, and fine-tuning it for the task at hand. However, given the very large number of PLMs that are currently available, a practical challenge is to determine which of them will perform best for a specific downstream task. With this paper, we introduce TransformerRanker, a lightweight library that efficiently ranks PLMs for classification tasks without the need for computationally costly fine-tuning. Our library implements current approaches for transferability estimation (LogME, H-Score, kNN), in combination with layer aggregation options, which we empirically showed to yield state-of-the-art rankings of PLMs (Garbas et al., 2024). We designed the interface to be lightweight and easy to use, allowing users to directly connect to the HuggingFace Transformers and Dataset libraries. Users need only select a downstream classification task and a list of PLMs to create a ranking of likely best-suited PLMs for their task. We make TransformerRanker available as a pip-installable open-source library https://github.com/flairNLP/transformer-ranker.
Generative Diffusion Model Bootstraps Zero-shot Classification of Fetal Ultrasound Images In Underrepresented African Populations
Developing robust deep learning models for fetal ultrasound image analysis requires comprehensive, high-quality datasets to effectively learn informative data representations within the domain. However, the scarcity of labelled ultrasound images poses substantial challenges, especially in low-resource settings. To tackle this challenge, we leverage synthetic data to enhance the generalizability of deep learning models. This study proposes a diffusion-based method, Fetal Ultrasound LoRA (FU-LoRA), which involves fine-tuning latent diffusion models using the LoRA technique to generate synthetic fetal ultrasound images. These synthetic images are integrated into a hybrid dataset that combines real-world and synthetic images to improve the performance of zero-shot classifiers in low-resource settings. Our experimental results on fetal ultrasound images from African cohorts demonstrate that FU-LoRA outperforms the baseline method by a 13.73% increase in zero-shot classification accuracy. Furthermore, FU-LoRA achieves the highest accuracy of 82.40%, the highest F-score of 86.54%, and the highest AUC of 89.78%. It demonstrates that the FU-LoRA method is effective in the zero-shot classification of fetal ultrasound images in low-resource settings. Our code and data are publicly accessible on https://github.com/13204942/FU-LoRA.
Res-VMamba: Fine-Grained Food Category Visual Classification Using Selective State Space Models with Deep Residual Learning
Food classification is the foundation for developing food vision tasks and plays a key role in the burgeoning field of computational nutrition. Due to the complexity of food requiring fine-grained classification, recent academic research mainly modifies Convolutional Neural Networks (CNNs) and/or Vision Transformers (ViTs) to perform food category classification. However, to learn fine-grained features, the CNN backbone needs additional structural design, whereas ViT, containing the self-attention module, has increased computational complexity. In recent months, a new Sequence State Space (S4) model, through a Selection mechanism and computation with a Scan (S6), colloquially termed Mamba, has demonstrated superior performance and computation efficiency compared to the Transformer architecture. The VMamba model, which incorporates the Mamba mechanism into image tasks (such as classification), currently establishes the state-of-the-art (SOTA) on the ImageNet dataset. In this research, we introduce an academically underestimated food dataset CNFOOD-241, and pioneer the integration of a residual learning framework within the VMamba model to concurrently harness both global and local state features inherent in the original VMamba architectural design. The research results show that VMamba surpasses current SOTA models in fine-grained and food classification. The proposed Res-VMamba further improves the classification accuracy to 79.54\% without pretrained weight. Our findings elucidate that our proposed methodology establishes a new benchmark for SOTA performance in food recognition on the CNFOOD-241 dataset. The code can be obtained on GitHub: https://github.com/ChiShengChen/ResVMamba.
VISION-MAE: A Foundation Model for Medical Image Segmentation and Classification
Artificial Intelligence (AI) has the potential to revolutionize diagnosis and segmentation in medical imaging. However, development and clinical implementation face multiple challenges including limited data availability, lack of generalizability, and the necessity to incorporate multi-modal data effectively. A foundation model, which is a large-scale pre-trained AI model, offers a versatile base that can be adapted to a variety of specific tasks and contexts. Here, we present a novel foundation model, VISION-MAE, specifically designed for medical imaging. Specifically, VISION-MAE is trained on a dataset of 2.5 million unlabeled images from various modalities (CT, MR, PET, X-rays, and ultrasound), using self-supervised learning techniques. It is then adapted to classification and segmentation tasks using explicit labels. VISION-MAE has high label efficiency, outperforming several benchmark models in both in-domain and out-of-domain applications, and achieves high performance even with reduced availability of labeled data. This model represents a significant advancement in medical imaging AI, offering a generalizable and robust solution for improving segmentation and classification tasks while reducing the data annotation workload.
Multi-label Text Classification using GloVe and Neural Network Models
This study addresses the challenges of multi-label text classification. The difficulties arise from imbalanced data sets, varied text lengths, and numerous subjective feature labels. Existing solutions include traditional machine learning and deep neural networks for predictions. However, both approaches have their limitations. Traditional machine learning often overlooks the associations between words, while deep neural networks, despite their better classification performance, come with increased training complexity and time. This paper proposes a method utilizing the bag-of-words model approach based on the GloVe model and the CNN-BiLSTM network. The principle is to use the word vector matrix trained by the GloVe model as the input for the text embedding layer. Given that the GloVe model requires no further training, the neural network model can be trained more efficiently. The method achieves an accuracy rate of 87.26% on the test set and an F1 score of 0.8737, showcasing promising results.
Deep Learning Models for Arrhythmia Classification Using Stacked Time-frequency Scalogram Images from ECG Signals
Electrocardiograms (ECGs), a medical monitoring technology recording cardiac activity, are widely used for diagnosing cardiac arrhythmia. The diagnosis is based on the analysis of the deformation of the signal shapes due to irregular heart rates associated with heart diseases. Due to the infeasibility of manual examination of large volumes of ECG data, this paper aims to propose an automated AI based system for ECG-based arrhythmia classification. To this front, a deep learning based solution has been proposed for ECG-based arrhythmia classification. Twelve lead electrocardiograms (ECG) of length 10 sec from 45, 152 individuals from Shaoxing People's Hospital (SPH) dataset from PhysioNet with four different types of arrhythmias were used. The sampling frequency utilized was 500 Hz. Median filtering was used to preprocess the ECG signals. For every 1 sec of ECG signal, the time-frequency (TF) scalogram was estimated and stacked row wise to obtain a single image from 12 channels, resulting in 10 stacked TF scalograms for each ECG signal. These stacked TF scalograms are fed to the pretrained convolutional neural network (CNN), 1D CNN, and 1D CNN-LSTM (Long short-term memory) models, for arrhythmia classification. The fine-tuned CNN models obtained the best test accuracy of about 98% followed by 95% test accuracy by basic CNN-LSTM in arrhythmia classification.
Exploring Small Language Models with Prompt-Learning Paradigm for Efficient Domain-Specific Text Classification
Domain-specific text classification faces the challenge of scarce labeled data due to the high cost of manual labeling. Prompt-learning, known for its efficiency in few-shot scenarios, is proposed as an alternative to traditional fine-tuning methods. And besides, although large language models (LLMs) have gained prominence, small language models (SLMs, with under 1B parameters) offer significant customizability, adaptability, and cost-effectiveness for domain-specific tasks, given industry constraints. In this study, we investigate the potential of SLMs combined with prompt-learning paradigm for domain-specific text classification, specifically within customer-agent interactions in retail. Our evaluations show that, in few-shot settings when prompt-based model fine-tuning is possible, T5-base, a typical SLM with 220M parameters, achieve approximately 75% accuracy with limited labeled data (up to 15% of full data), which shows great potentials of SLMs with prompt-learning. Based on this, We further validate the effectiveness of active few-shot sampling and the ensemble strategy in the prompt-learning pipeline that contribute to a remarkable performance gain. Besides, in zero-shot settings with a fixed model, we underscore a pivotal observation that, although the GPT-3.5-turbo equipped with around 154B parameters garners an accuracy of 55.16%, the power of well designed prompts becomes evident when the FLAN-T5-large, a model with a mere 0.5% of GPT-3.5-turbo's parameters, achieves an accuracy exceeding 31% with the optimized prompt, a leap from its sub-18% performance with an unoptimized one. Our findings underscore the promise of prompt-learning in classification tasks with SLMs, emphasizing the benefits of active few-shot sampling, and ensemble strategies in few-shot settings, and the importance of prompt engineering in zero-shot settings.
CommonAccent: Exploring Large Acoustic Pretrained Models for Accent Classification Based on Common Voice
Despite the recent advancements in Automatic Speech Recognition (ASR), the recognition of accented speech still remains a dominant problem. In order to create more inclusive ASR systems, research has shown that the integration of accent information, as part of a larger ASR framework, can lead to the mitigation of accented speech errors. We address multilingual accent classification through the ECAPA-TDNN and Wav2Vec 2.0/XLSR architectures which have been proven to perform well on a variety of speech-related downstream tasks. We introduce a simple-to-follow recipe aligned to the SpeechBrain toolkit for accent classification based on Common Voice 7.0 (English) and Common Voice 11.0 (Italian, German, and Spanish). Furthermore, we establish new state-of-the-art for English accent classification with as high as 95% accuracy. We also study the internal categorization of the Wav2Vev 2.0 embeddings through t-SNE, noting that there is a level of clustering based on phonological similarity. (Our recipe is open-source in the SpeechBrain toolkit, see: https://github.com/speechbrain/speechbrain/tree/develop/recipes)
Pretrained Language Models for Sequential Sentence Classification
As a step toward better document-level understanding, we explore classification of a sequence of sentences into their corresponding categories, a task that requires understanding sentences in context of the document. Recent successful models for this task have used hierarchical models to contextualize sentence representations, and Conditional Random Fields (CRFs) to incorporate dependencies between subsequent labels. In this work, we show that pretrained language models, BERT (Devlin et al., 2018) in particular, can be used for this task to capture contextual dependencies without the need for hierarchical encoding nor a CRF. Specifically, we construct a joint sentence representation that allows BERT Transformer layers to directly utilize contextual information from all words in all sentences. Our approach achieves state-of-the-art results on four datasets, including a new dataset of structured scientific abstracts.