new

Get trending papers in your email inbox!

Subscribe

byAK and the research community

Jul 9

RLVER: Reinforcement Learning with Verifiable Emotion Rewards for Empathetic Agents

Large language models (LLMs) excel at logical and algorithmic reasoning, yet their emotional intelligence (EQ) still lags far behind their cognitive prowess. While reinforcement learning from verifiable rewards (RLVR) has advanced in other domains, its application to dialogue-especially for emotional intelligence-remains underexplored. In this work, we introduce RLVER, the first end-to-end reinforcement learning framework that leverages verifiable emotion rewards from simulated users to cultivate higher-order empathetic abilities in LLMs. Within this framework, self-consistent affective simulated users engage in dialogue rollouts and produce deterministic emotion scores during conversations, serving as reward signals to guide the LLM's learning. Fine-tuning publicly available Qwen2.5-7B-Instruct model with PPO boosts its Sentient-Benchmark score from 13.3 to 79.2 while largely preserving mathematical and coding competence. Extensive experiments reveal that: (i) RLVER consistently improves multiple dialogue capabilities; (ii) Thinking and non-thinking models show distinct trends--thinking models excel in empathy and insight, while non-thinking models favor action; (iii) GRPO often yields stable gains, while PPO can push certain capabilities to a higher ceiling; (iv) More challenging environments are not always better-moderate ones can yield stronger outcomes. Our results show that RLVER is a practical route toward emotionally intelligent and broadly capable language agents.

Large Language Models Understand and Can be Enhanced by Emotional Stimuli

Emotional intelligence significantly impacts our daily behaviors and interactions. Although Large Language Models (LLMs) are increasingly viewed as a stride toward artificial general intelligence, exhibiting impressive performance in numerous tasks, it is still uncertain if LLMs can genuinely grasp psychological emotional stimuli. Understanding and responding to emotional cues gives humans a distinct advantage in problem-solving. In this paper, we take the first step towards exploring the ability of LLMs to understand emotional stimuli. To this end, we first conduct automatic experiments on 45 tasks using various LLMs, including Flan-T5-Large, Vicuna, Llama 2, BLOOM, ChatGPT, and GPT-4. Our tasks span deterministic and generative applications that represent comprehensive evaluation scenarios. Our automatic experiments show that LLMs have a grasp of emotional intelligence, and their performance can be improved with emotional prompts (which we call "EmotionPrompt" that combines the original prompt with emotional stimuli), e.g., 8.00% relative performance improvement in Instruction Induction and 115% in BIG-Bench. In addition to those deterministic tasks that can be automatically evaluated using existing metrics, we conducted a human study with 106 participants to assess the quality of generative tasks using both vanilla and emotional prompts. Our human study results demonstrate that EmotionPrompt significantly boosts the performance of generative tasks (10.9% average improvement in terms of performance, truthfulness, and responsibility metrics). We provide an in-depth discussion regarding why EmotionPrompt works for LLMs and the factors that may influence its performance. We posit that EmotionPrompt heralds a novel avenue for exploring interdisciplinary knowledge for human-LLMs interaction.

Aligning Language Models Using Follow-up Likelihood as Reward Signal

In natural human-to-human conversations, participants often receive feedback signals from one another based on their follow-up reactions. These reactions can include verbal responses, facial expressions, changes in emotional state, and other non-verbal cues. Similarly, in human-machine interactions, the machine can leverage the user's follow-up utterances as feedback signals to assess whether it has appropriately addressed the user's request. Therefore, we propose using the likelihood of follow-up utterances as rewards to differentiate preferred responses from less favored ones, without relying on human or commercial LLM-based preference annotations. Our proposed reward mechanism, ``Follow-up Likelihood as Reward" (FLR), matches the performance of strong reward models trained on large-scale human or GPT-4 annotated data on 8 pairwise-preference and 4 rating-based benchmarks. Building upon the FLR mechanism, we propose to automatically mine preference data from the online generations of a base policy model. The preference data are subsequently used to boost the helpfulness of the base model through direct alignment from preference (DAP) methods, such as direct preference optimization (DPO). Lastly, we demonstrate that fine-tuning the language model that provides follow-up likelihood with natural language feedback significantly enhances FLR's performance on reward modeling benchmarks and effectiveness in aligning the base policy model's helpfulness.

Constructing interval variables via faceted Rasch measurement and multitask deep learning: a hate speech application

We propose a general method for measuring complex variables on a continuous, interval spectrum by combining supervised deep learning with the Constructing Measures approach to faceted Rasch item response theory (IRT). We decompose the target construct, hate speech in our case, into multiple constituent components that are labeled as ordinal survey items. Those survey responses are transformed via IRT into a debiased, continuous outcome measure. Our method estimates the survey interpretation bias of the human labelers and eliminates that influence on the generated continuous measure. We further estimate the response quality of each labeler using faceted IRT, allowing responses from low-quality labelers to be removed. Our faceted Rasch scaling procedure integrates naturally with a multitask deep learning architecture for automated prediction on new data. The ratings on the theorized components of the target outcome are used as supervised, ordinal variables for the neural networks' internal concept learning. We test the use of an activation function (ordinal softmax) and loss function (ordinal cross-entropy) designed to exploit the structure of ordinal outcome variables. Our multitask architecture leads to a new form of model interpretation because each continuous prediction can be directly explained by the constituent components in the penultimate layer. We demonstrate this new method on a dataset of 50,000 social media comments sourced from YouTube, Twitter, and Reddit and labeled by 11,000 U.S.-based Amazon Mechanical Turk workers to measure a continuous spectrum from hate speech to counterspeech. We evaluate Universal Sentence Encoders, BERT, and RoBERTa as language representation models for the comment text, and compare our predictive accuracy to Google Jigsaw's Perspective API models, showing significant improvement over this standard benchmark.

Towards Interpretable Mental Health Analysis with Large Language Models

The latest large language models (LLMs) such as ChatGPT, exhibit strong capabilities in automated mental health analysis. However, existing relevant studies bear several limitations, including inadequate evaluations, lack of prompting strategies, and ignorance of exploring LLMs for explainability. To bridge these gaps, we comprehensively evaluate the mental health analysis and emotional reasoning ability of LLMs on 11 datasets across 5 tasks. We explore the effects of different prompting strategies with unsupervised and distantly supervised emotional information. Based on these prompts, we explore LLMs for interpretable mental health analysis by instructing them to generate explanations for each of their decisions. We convey strict human evaluations to assess the quality of the generated explanations, leading to a novel dataset with 163 human-assessed explanations. We benchmark existing automatic evaluation metrics on this dataset to guide future related works. According to the results, ChatGPT shows strong in-context learning ability but still has a significant gap with advanced task-specific methods. Careful prompt engineering with emotional cues and expert-written few-shot examples can also effectively improve performance on mental health analysis. In addition, ChatGPT generates explanations that approach human performance, showing its great potential in explainable mental health analysis.

DAIC-WOZ: On the Validity of Using the Therapist's prompts in Automatic Depression Detection from Clinical Interviews

Automatic depression detection from conversational data has gained significant interest in recent years. The DAIC-WOZ dataset, interviews conducted by a human-controlled virtual agent, has been widely used for this task. Recent studies have reported enhanced performance when incorporating interviewer's prompts into the model. In this work, we hypothesize that this improvement might be mainly due to a bias present in these prompts, rather than the proposed architectures and methods. Through ablation experiments and qualitative analysis, we discover that models using interviewer's prompts learn to focus on a specific region of the interviews, where questions about past experiences with mental health issues are asked, and use them as discriminative shortcuts to detect depressed participants. In contrast, models using participant responses gather evidence from across the entire interview. Finally, to highlight the magnitude of this bias, we achieve a 0.90 F1 score by intentionally exploiting it, the highest result reported to date on this dataset using only textual information. Our findings underline the need for caution when incorporating interviewers' prompts into models, as they may inadvertently learn to exploit targeted prompts, rather than learning to characterize the language and behavior that are genuinely indicative of the patient's mental health condition.

Personalized Dynamic Music Emotion Recognition with Dual-Scale Attention-Based Meta-Learning

Dynamic Music Emotion Recognition (DMER) aims to predict the emotion of different moments in music, playing a crucial role in music information retrieval. The existing DMER methods struggle to capture long-term dependencies when dealing with sequence data, which limits their performance. Furthermore, these methods often overlook the influence of individual differences on emotion perception, even though everyone has their own personalized emotional perception in the real world. Motivated by these issues, we explore more effective sequence processing methods and introduce the Personalized DMER (PDMER) problem, which requires models to predict emotions that align with personalized perception. Specifically, we propose a Dual-Scale Attention-Based Meta-Learning (DSAML) method. This method fuses features from a dual-scale feature extractor and captures both short and long-term dependencies using a dual-scale attention transformer, improving the performance in traditional DMER. To achieve PDMER, we design a novel task construction strategy that divides tasks by annotators. Samples in a task are annotated by the same annotator, ensuring consistent perception. Leveraging this strategy alongside meta-learning, DSAML can predict personalized perception of emotions with just one personalized annotation sample. Our objective and subjective experiments demonstrate that our method can achieve state-of-the-art performance in both traditional DMER and PDMER.

Facial Expression Recognition using Squeeze and Excitation-powered Swin Transformers

The ability to recognize and interpret facial emotions is a critical component of human communication, as it allows individuals to understand and respond to emotions conveyed through facial expressions and vocal tones. The recognition of facial emotions is a complex cognitive process that involves the integration of visual and auditory information, as well as prior knowledge and social cues. It plays a crucial role in social interaction, affective processing, and empathy, and is an important aspect of many real-world applications, including human-computer interaction, virtual assistants, and mental health diagnosis and treatment. The development of accurate and efficient models for facial emotion recognition is therefore of great importance and has the potential to have a significant impact on various fields of study.The field of Facial Emotion Recognition (FER) is of great significance in the areas of computer vision and artificial intelligence, with vast commercial and academic potential in fields such as security, advertising, and entertainment. We propose a FER framework that employs Swin Vision Transformers (SwinT) and squeeze and excitation block (SE) to address vision tasks. The approach uses a transformer model with an attention mechanism, SE, and SAM to improve the efficiency of the model, as transformers often require a large amount of data. Our focus was to create an efficient FER model based on SwinT architecture that can recognize facial emotions using minimal data. We trained our model on a hybrid dataset and evaluated its performance on the AffectNet dataset, achieving an F1-score of 0.5420, which surpassed the winner of the Affective Behavior Analysis in the Wild (ABAW) Competition held at the European Conference on Computer Vision (ECCV) 2022~Kollias.

PsyDI: Towards a Personalized and Progressively In-depth Chatbot for Psychological Measurements

In the field of psychology, traditional assessment methods, such as standardized scales, are frequently critiqued for their static nature, lack of personalization, and reduced participant engagement, while comprehensive counseling evaluations are often inaccessible. The complexity of quantifying psychological traits further limits these methods. Despite advances with large language models (LLMs), many still depend on single-round Question-and-Answer interactions. To bridge this gap, we introduce PsyDI, a personalized and progressively in-depth chatbot designed for psychological measurements, exemplified by its application in the Myers-Briggs Type Indicator (MBTI) framework. PsyDI leverages user-related multi-modal information and engages in customized, multi-turn interactions to provide personalized, easily accessible measurements, while ensuring precise MBTI type determination. To address the challenge of unquantifiable psychological traits, we introduce a novel training paradigm that involves learning the ranking of proxy variables associated with these traits, culminating in a robust score model for MBTI measurements. The score model enables PsyDI to conduct comprehensive and precise measurements through multi-turn interactions within a unified estimation context. Through various experiments, we validate the efficacy of both the score model and the PsyDI pipeline, demonstrating its potential to serve as a general framework for psychological measurements. Furthermore, the online deployment of PsyDI has garnered substantial user engagement, with over 3,000 visits, resulting in the collection of numerous multi-turn dialogues annotated with MBTI types, which facilitates further research.

Towards More Accurate Prediction of Human Empathy and Emotion in Text and Multi-turn Conversations by Combining Advanced NLP, Transformers-based Networks, and Linguistic Methodologies

Based on the WASSA 2022 Shared Task on Empathy Detection and Emotion Classification, we predict the level of empathic concern and personal distress displayed in essays. For the first stage of this project we implemented a Feed-Forward Neural Network using sentence-level embeddings as features. We experimented with four different embedding models for generating the inputs to the neural network. The subsequent stage builds upon the previous work and we have implemented three types of revisions. The first revision focuses on the enhancements to the model architecture and the training approach. The second revision focuses on handling class imbalance using stratified data sampling. The third revision focuses on leveraging lexical resources, where we apply four different resources to enrich the features associated with the dataset. During the final stage of this project, we have created the final end-to-end system for the primary task using an ensemble of models to revise primary task performance. Additionally, as part of the final stage, these approaches have been adapted to the WASSA 2023 Shared Task on Empathy Emotion and Personality Detection in Interactions, in which the empathic concern, emotion polarity, and emotion intensity in dyadic text conversations are predicted.

Beyond No: Quantifying AI Over-Refusal and Emotional Attachment Boundaries

We present an open-source benchmark and evaluation framework for assessing emotional boundary handling in Large Language Models (LLMs). Using a dataset of 1156 prompts across six languages, we evaluated three leading LLMs (GPT-4o, Claude-3.5 Sonnet, and Mistral-large) on their ability to maintain appropriate emotional boundaries through pattern-matched response analysis. Our framework quantifies responses across seven key patterns: direct refusal, apology, explanation, deflection, acknowledgment, boundary setting, and emotional awareness. Results demonstrate significant variation in boundary-handling approaches, with Claude-3.5 achieving the highest overall score (8.69/10) and producing longer, more nuanced responses (86.51 words on average). We identified a substantial performance gap between English (average score 25.62) and non-English interactions (< 0.22), with English responses showing markedly higher refusal rates (43.20% vs. < 1% for non-English). Pattern analysis revealed model-specific strategies, such as Mistral's preference for deflection (4.2%) and consistently low empathy scores across all models (< 0.06). Limitations include potential oversimplification through pattern matching, lack of contextual understanding in response analysis, and binary classification of complex emotional responses. Future work should explore more nuanced scoring methods, expand language coverage, and investigate cultural variations in emotional boundary expectations. Our benchmark and methodology provide a foundation for systematic evaluation of LLM emotional intelligence and boundary-setting capabilities.

Evaluating language models as risk scores

Current question-answering benchmarks predominantly focus on accuracy in realizable prediction tasks. Conditioned on a question and answer-key, does the most likely token match the ground truth? Such benchmarks necessarily fail to evaluate LLMs' ability to quantify ground-truth outcome uncertainty. In this work, we focus on the use of LLMs as risk scores for unrealizable prediction tasks. We introduce folktexts, a software package to systematically generate risk scores using LLMs, and evaluate them against US Census data products. A flexible API enables the use of different prompting schemes, local or web-hosted models, and diverse census columns that can be used to compose custom prediction tasks. We evaluate 17 recent LLMs across five proposed benchmark tasks. We find that zero-shot risk scores produced by multiple-choice question-answering have high predictive signal but are widely miscalibrated. Base models consistently overestimate outcome uncertainty, while instruction-tuned models underestimate uncertainty and produce over-confident risk scores. In fact, instruction-tuning polarizes answer distribution regardless of true underlying data uncertainty. This reveals a general inability of instruction-tuned LLMs to express data uncertainty using multiple-choice answers. A separate experiment using verbalized chat-style risk queries yields substantially improved calibration across instruction-tuned models. These differences in ability to quantify data uncertainty cannot be revealed in realizable settings, and highlight a blind-spot in the current evaluation ecosystem that folktexts covers.

NegativePrompt: Leveraging Psychology for Large Language Models Enhancement via Negative Emotional Stimuli

Large Language Models (LLMs) have become integral to a wide spectrum of applications, ranging from traditional computing tasks to advanced artificial intelligence (AI) applications. This widespread adoption has spurred extensive research into LLMs across various disciplines, including the social sciences. Notably, studies have revealed that LLMs possess emotional intelligence, which can be further developed through positive emotional stimuli. This discovery raises an intriguing question: can negative emotions similarly influence LLMs, potentially enhancing their performance? In response to this question, we introduce NegativePrompt, a novel approach underpinned by psychological principles, involving ten specifically designed negative emotional stimuli. We embark on rigorous experimental evaluations of five LLMs including Flan-T5-Large, Vicuna, Llama 2, ChatGPT, and GPT-4, across a set of 45 tasks. The results are revealing: NegativePrompt markedly enhances the performance of LLMs, evidenced by relative improvements of 12.89% in Instruction Induction tasks and 46.25% in BIG-Bench tasks. Moreover, we conduct attention visualization experiments to decipher the underlying mechanisms of NegativePrompt's influence. Our research contributes significantly to the understanding of LLMs and emotion interaction, demonstrating the practical efficacy of NegativePrompt as an emotion-driven method and offering novel insights for the enhancement of LLMs in real-world applications. The code is available at https://github.com/wangxu0820/NegativePrompt.

EmoNet-Voice: A Fine-Grained, Expert-Verified Benchmark for Speech Emotion Detection

The advancement of text-to-speech and audio generation models necessitates robust benchmarks for evaluating the emotional understanding capabilities of AI systems. Current speech emotion recognition (SER) datasets often exhibit limitations in emotional granularity, privacy concerns, or reliance on acted portrayals. This paper introduces EmoNet-Voice, a new resource for speech emotion detection, which includes EmoNet-Voice Big, a large-scale pre-training dataset (featuring over 4,500 hours of speech across 11 voices, 40 emotions, and 4 languages), and EmoNet-Voice Bench, a novel benchmark dataset with human expert annotations. EmoNet-Voice is designed to evaluate SER models on a fine-grained spectrum of 40 emotion categories with different levels of intensities. Leveraging state-of-the-art voice generation, we curated synthetic audio snippets simulating actors portraying scenes designed to evoke specific emotions. Crucially, we conducted rigorous validation by psychology experts who assigned perceived intensity labels. This synthetic, privacy-preserving approach allows for the inclusion of sensitive emotional states often absent in existing datasets. Lastly, we introduce Empathic Insight Voice models that set a new standard in speech emotion recognition with high agreement with human experts. Our evaluations across the current model landscape exhibit valuable findings, such as high-arousal emotions like anger being much easier to detect than low-arousal states like concentration.

Concept-Guided Chain-of-Thought Prompting for Pairwise Comparison Scoring of Texts with Large Language Models

Existing text scoring methods require a large corpus, struggle with short texts, or require hand-labeled data. We develop a text scoring framework that leverages generative large language models (LLMs) to (1) set texts against the backdrop of information from the near-totality of the web and digitized media, and (2) effectively transform pairwise text comparisons from a reasoning problem to a pattern recognition task. Our approach, concept-guided chain-of-thought (CGCoT), utilizes a chain of researcher-designed prompts with an LLM to generate a concept-specific breakdown for each text, akin to guidance provided to human coders. We then pairwise compare breakdowns using an LLM and aggregate answers into a score using a probability model. We apply this approach to better understand speech reflecting aversion to specific political parties on Twitter, a topic that has commanded increasing interest because of its potential contributions to democratic backsliding. We achieve stronger correlations with human judgments than widely used unsupervised text scoring methods like Wordfish. In a supervised setting, besides a small pilot dataset to develop CGCoT prompts, our measures require no additional hand-labeled data and produce predictions on par with RoBERTa-Large fine-tuned on thousands of hand-labeled tweets. This project showcases the potential of combining human expertise and LLMs for scoring tasks.

We Care: Multimodal Depression Detection and Knowledge Infused Mental Health Therapeutic Response Generation

The detection of depression through non-verbal cues has gained significant attention. Previous research predominantly centred on identifying depression within the confines of controlled laboratory environments, often with the supervision of psychologists or counsellors. Unfortunately, datasets generated in such controlled settings may struggle to account for individual behaviours in real-life situations. In response to this limitation, we present the Extended D-vlog dataset, encompassing a collection of 1, 261 YouTube vlogs. Additionally, the emergence of large language models (LLMs) like GPT3.5, and GPT4 has sparked interest in their potential they can act like mental health professionals. Yet, the readiness of these LLM models to be used in real-life settings is still a concern as they can give wrong responses that can harm the users. We introduce a virtual agent serving as an initial contact for mental health patients, offering Cognitive Behavioral Therapy (CBT)-based responses. It comprises two core functions: 1. Identifying depression in individuals, and 2. Delivering CBT-based therapeutic responses. Our Mistral model achieved impressive scores of 70.1% and 30.9% for distortion assessment and classification, along with a Bert score of 88.7%. Moreover, utilizing the TVLT model on our Multimodal Extended D-vlog Dataset yielded outstanding results, with an impressive F1-score of 67.8%

Uncovering the Causes of Emotions in Software Developer Communication Using Zero-shot LLMs

Understanding and identifying the causes behind developers' emotions (e.g., Frustration caused by `delays in merging pull requests') can be crucial towards finding solutions to problems and fostering collaboration in open-source communities. Effectively identifying such information in the high volume of communications across the different project channels, such as chats, emails, and issue comments, requires automated recognition of emotions and their causes. To enable this automation, large-scale software engineering-specific datasets that can be used to train accurate machine learning models are required. However, such datasets are expensive to create with the variety and informal nature of software projects' communication channels. In this paper, we explore zero-shot LLMs that are pre-trained on massive datasets but without being fine-tuned specifically for the task of detecting emotion causes in software engineering: ChatGPT, GPT-4, and flan-alpaca. Our evaluation indicates that these recently available models can identify emotion categories when given detailed emotions, although they perform worse than the top-rated models. For emotion cause identification, our results indicate that zero-shot LLMs are effective at recognizing the correct emotion cause with a BLEU-2 score of 0.598. To highlight the potential use of these techniques, we conduct a case study of the causes of Frustration in the last year of development of a popular open-source project, revealing several interesting insights.

Self-Assessment Tests are Unreliable Measures of LLM Personality

As large language models (LLM) evolve in their capabilities, various recent studies have tried to quantify their behavior using psychological tools created to study human behavior. One such example is the measurement of "personality" of LLMs using self-assessment personality tests developed to measure human personality. Yet almost none of these works verify the applicability of these tests on LLMs. In this paper, we analyze the reliability of LLM personality scores obtained from self-assessment personality tests using two simple experiments. We first introduce the property of prompt sensitivity, where three semantically equivalent prompts representing three intuitive ways of administering self-assessment tests on LLMs are used to measure the personality of the same LLM. We find that all three prompts lead to very different personality scores, a difference that is statistically significant for all traits in a large majority of scenarios. We then introduce the property of option-order symmetry for personality measurement of LLMs. Since most of the self-assessment tests exist in the form of multiple choice question (MCQ) questions, we argue that the scores should also be robust to not just the prompt template but also the order in which the options are presented. This test unsurprisingly reveals that the self-assessment test scores are not robust to the order of the options. These simple tests, done on ChatGPT and three Llama2 models of different sizes, show that self-assessment personality tests created for humans are unreliable measures of personality in LLMs.

Thousand Voices of Trauma: A Large-Scale Synthetic Dataset for Modeling Prolonged Exposure Therapy Conversations

The advancement of AI systems for mental health support is hindered by limited access to therapeutic conversation data, particularly for trauma treatment. We present Thousand Voices of Trauma, a synthetic benchmark dataset of 3,000 therapy conversations based on Prolonged Exposure therapy protocols for Post-traumatic Stress Disorder (PTSD). The dataset comprises 500 unique cases, each explored through six conversational perspectives that mirror the progression of therapy from initial anxiety to peak distress to emotional processing. We incorporated diverse demographic profiles (ages 18-80, M=49.3, 49.4% male, 44.4% female, 6.2% non-binary), 20 trauma types, and 10 trauma-related behaviors using deterministic and probabilistic generation methods. Analysis reveals realistic distributions of trauma types (witnessing violence 10.6%, bullying 10.2%) and symptoms (nightmares 23.4%, substance abuse 20.8%). Clinical experts validated the dataset's therapeutic fidelity, highlighting its emotional depth while suggesting refinements for greater authenticity. We also developed an emotional trajectory benchmark with standardized metrics for evaluating model responses. This privacy-preserving dataset addresses critical gaps in trauma-focused mental health data, offering a valuable resource for advancing both patient-facing applications and clinician training tools.

VibeCheck: Discover and Quantify Qualitative Differences in Large Language Models

Large language models (LLMs) often exhibit subtle yet distinctive characteristics in their outputs that users intuitively recognize, but struggle to quantify. These "vibes" - such as tone, formatting, or writing style - influence user preferences, yet traditional evaluations focus primarily on the single axis of correctness. We introduce VibeCheck, a system for automatically comparing a pair of LLMs by discovering identifying traits of a model ("vibes") that are well-defined, differentiating, and user-aligned. VibeCheck iteratively discover vibes from model outputs, then utilizes a panel of LLM judges to quantitatively measure the utility of each vibe. We validate that the vibes generated by VibeCheck align with those found in human discovery and run VibeCheck on pairwise preference data from real-world user conversations with llama-3-70b VS GPT-4. VibeCheck reveals that Llama has a friendly, funny, and somewhat controversial vibe. These vibes predict model identity with 80% accuracy and human preference with 61% accuracy. Lastly, we run VibeCheck on a variety of models and tasks including summarization, math, and captioning to provide insight into differences in model behavior. Some of the vibes we find are that Command X prefers to add concrete intros and conclusions when summarizing in comparison to TNGL, Llama-405b often over-explains its thought process on math problems compared to GPT-4o, and GPT-4 prefers to focus on the mood and emotions of the scene when captioning compared to Gemini-1.5-Flash.

EmotionTalk: An Interactive Chinese Multimodal Emotion Dataset With Rich Annotations

In recent years, emotion recognition plays a critical role in applications such as human-computer interaction, mental health monitoring, and sentiment analysis. While datasets for emotion analysis in languages such as English have proliferated, there remains a pressing need for high-quality, comprehensive datasets tailored to the unique linguistic, cultural, and multimodal characteristics of Chinese. In this work, we propose EmotionTalk, an interactive Chinese multimodal emotion dataset with rich annotations. This dataset provides multimodal information from 19 actors participating in dyadic conversational settings, incorporating acoustic, visual, and textual modalities. It includes 23.6 hours of speech (19,250 utterances), annotations for 7 utterance-level emotion categories (happy, surprise, sad, disgust, anger, fear, and neutral), 5-dimensional sentiment labels (negative, weakly negative, neutral, weakly positive, and positive) and 4-dimensional speech captions (speaker, speaking style, emotion and overall). The dataset is well-suited for research on unimodal and multimodal emotion recognition, missing modality challenges, and speech captioning tasks. To our knowledge, it represents the first high-quality and versatile Chinese dialogue multimodal emotion dataset, which is a valuable contribution to research on cross-cultural emotion analysis and recognition. Additionally, we conduct experiments on EmotionTalk to demonstrate the effectiveness and quality of the dataset. It will be open-source and freely available for all academic purposes. The dataset and codes will be made available at: https://github.com/NKU-HLT/EmotionTalk.

LEIA: Linguistic Embeddings for the Identification of Affect

The wealth of text data generated by social media has enabled new kinds of analysis of emotions with language models. These models are often trained on small and costly datasets of text annotations produced by readers who guess the emotions expressed by others in social media posts. This affects the quality of emotion identification methods due to training data size limitations and noise in the production of labels used in model development. We present LEIA, a model for emotion identification in text that has been trained on a dataset of more than 6 million posts with self-annotated emotion labels for happiness, affection, sadness, anger, and fear. LEIA is based on a word masking method that enhances the learning of emotion words during model pre-training. LEIA achieves macro-F1 values of approximately 73 on three in-domain test datasets, outperforming other supervised and unsupervised methods in a strong benchmark that shows that LEIA generalizes across posts, users, and time periods. We further perform an out-of-domain evaluation on five different datasets of social media and other sources, showing LEIA's robust performance across media, data collection methods, and annotation schemes. Our results show that LEIA generalizes its classification of anger, happiness, and sadness beyond the domain it was trained on. LEIA can be applied in future research to provide better identification of emotions in text from the perspective of the writer. The models produced for this article are publicly available at https://huggingface.co/LEIA

Using LLMs to Establish Implicit User Sentiment of Software Desirability

This study explores the use of LLMs for providing quantitative zero-shot sentiment analysis of implicit software desirability, addressing a critical challenge in product evaluation where traditional review scores, though convenient, fail to capture the richness of qualitative user feedback. Innovations include establishing a method that 1) works with qualitative user experience data without the need for explicit review scores, 2) focuses on implicit user satisfaction, and 3) provides scaled numerical sentiment analysis, offering a more nuanced understanding of user sentiment, instead of simply classifying sentiment as positive, neutral, or negative. Data is collected using the Microsoft Product Desirability Toolkit (PDT), a well-known qualitative user experience analysis tool. For initial exploration, the PDT metric was given to users of two software systems. PDT data was fed through several LLMs (Claude Sonnet 3 and 3.5, GPT4, and GPT4o) and through a leading transfer learning technique, Twitter-Roberta-Base-Sentiment, and Vader, a leading sentiment analysis tool. Each system was asked to evaluate the data in two ways, by looking at the sentiment expressed in the PDT word/explanation pairs; and by looking at the sentiment expressed by the users in their grouped selection of five words and explanations, as a whole. Each LLM provided a sentiment score, its confidence (low, medium, high) in the score, and an explanation of the score. All LLMs tested were able to statistically detect user sentiment from the users' grouped data, whereas TRBS and Vader were not. The confidence and explanation of confidence provided by the LLMs assisted in understanding user sentiment. This study adds deeper understanding of evaluating user experiences, toward the goal of creating a universal tool that quantifies implicit sentiment.

BAH Dataset for Ambivalence/Hesitancy Recognition in Videos for Behavioural Change

Recognizing complex emotions linked to ambivalence and hesitancy (A/H) can play a critical role in the personalization and effectiveness of digital behaviour change interventions. These subtle and conflicting emotions are manifested by a discord between multiple modalities, such as facial and vocal expressions, and body language. Although experts can be trained to identify A/H, integrating them into digital interventions is costly and less effective. Automatic learning systems provide a cost-effective alternative that can adapt to individual users, and operate seamlessly within real-time, and resource-limited environments. However, there are currently no datasets available for the design of ML models to recognize A/H. This paper introduces a first Behavioural Ambivalence/Hesitancy (BAH) dataset collected for subject-based multimodal recognition of A/H in videos. It contains videos from 224 participants captured across 9 provinces in Canada, with different age, and ethnicity. Through our web platform, we recruited participants to answer 7 questions, some of which were designed to elicit A/H while recording themselves via webcam with microphone. BAH amounts to 1,118 videos for a total duration of 8.26 hours with 1.5 hours of A/H. Our behavioural team annotated timestamp segments to indicate where A/H occurs, and provide frame- and video-level annotations with the A/H cues. Video transcripts and their timestamps are also included, along with cropped and aligned faces in each frame, and a variety of participants meta-data. We include results baselines for BAH at frame- and video-level recognition in multi-modal setups, in addition to zero-shot prediction, and for personalization using unsupervised domain adaptation. The limited performance of baseline models highlights the challenges of recognizing A/H in real-world videos. The data, code, and pretrained weights are available.

Automatically Select Emotion for Response via Personality-affected Emotion Transition

To provide consistent emotional interaction with users, dialog systems should be capable to automatically select appropriate emotions for responses like humans. However, most existing works focus on rendering specified emotions in responses or empathetically respond to the emotion of users, yet the individual difference in emotion expression is overlooked. This may lead to inconsistent emotional expressions and disinterest users. To tackle this issue, we propose to equip the dialog system with personality and enable it to automatically select emotions in responses by simulating the emotion transition of humans in conversation. In detail, the emotion of the dialog system is transitioned from its preceding emotion in context. The transition is triggered by the preceding dialog context and affected by the specified personality trait. To achieve this, we first model the emotion transition in the dialog system as the variation between the preceding emotion and the response emotion in the Valence-Arousal-Dominance (VAD) emotion space. Then, we design neural networks to encode the preceding dialog context and the specified personality traits to compose the variation. Finally, the emotion for response is selected from the sum of the preceding emotion and the variation. We construct a dialog dataset with emotion and personality labels and conduct emotion prediction tasks for evaluation. Experimental results validate the effectiveness of the personality-affected emotion transition.

From Classification to Clinical Insights: Towards Analyzing and Reasoning About Mobile and Behavioral Health Data With Large Language Models

Passively collected behavioral health data from ubiquitous sensors holds significant promise to provide mental health professionals insights from patient's daily lives; however, developing analysis tools to use this data in clinical practice requires addressing challenges of generalization across devices and weak or ambiguous correlations between the measured signals and an individual's mental health. To address these challenges, we take a novel approach that leverages large language models (LLMs) to synthesize clinically useful insights from multi-sensor data. We develop chain of thought prompting methods that use LLMs to generate reasoning about how trends in data such as step count and sleep relate to conditions like depression and anxiety. We first demonstrate binary depression classification with LLMs achieving accuracies of 61.1% which exceed the state of the art. While it is not robust for clinical use, this leads us to our key finding: even more impactful and valued than classification is a new human-AI collaboration approach in which clinician experts interactively query these tools and combine their domain expertise and context about the patient with AI generated reasoning to support clinical decision-making. We find models like GPT-4 correctly reference numerical data 75% of the time, and clinician participants express strong interest in using this approach to interpret self-tracking data.

SEWA DB: A Rich Database for Audio-Visual Emotion and Sentiment Research in the Wild

Natural human-computer interaction and audio-visual human behaviour sensing systems, which would achieve robust performance in-the-wild are more needed than ever as digital devices are increasingly becoming an indispensable part of our life. Accurately annotated real-world data are the crux in devising such systems. However, existing databases usually consider controlled settings, low demographic variability, and a single task. In this paper, we introduce the SEWA database of more than 2000 minutes of audio-visual data of 398 people coming from six cultures, 50% female, and uniformly spanning the age range of 18 to 65 years old. Subjects were recorded in two different contexts: while watching adverts and while discussing adverts in a video chat. The database includes rich annotations of the recordings in terms of facial landmarks, facial action units (FAU), various vocalisations, mirroring, and continuously valued valence, arousal, liking, agreement, and prototypic examples of (dis)liking. This database aims to be an extremely valuable resource for researchers in affective computing and automatic human sensing and is expected to push forward the research in human behaviour analysis, including cultural studies. Along with the database, we provide extensive baseline experiments for automatic FAU detection and automatic valence, arousal and (dis)liking intensity estimation.

REDAffectiveLM: Leveraging Affect Enriched Embedding and Transformer-based Neural Language Model for Readers' Emotion Detection

Technological advancements in web platforms allow people to express and share emotions towards textual write-ups written and shared by others. This brings about different interesting domains for analysis; emotion expressed by the writer and emotion elicited from the readers. In this paper, we propose a novel approach for Readers' Emotion Detection from short-text documents using a deep learning model called REDAffectiveLM. Within state-of-the-art NLP tasks, it is well understood that utilizing context-specific representations from transformer-based pre-trained language models helps achieve improved performance. Within this affective computing task, we explore how incorporating affective information can further enhance performance. Towards this, we leverage context-specific and affect enriched representations by using a transformer-based pre-trained language model in tandem with affect enriched Bi-LSTM+Attention. For empirical evaluation, we procure a new dataset REN-20k, besides using RENh-4k and SemEval-2007. We evaluate the performance of our REDAffectiveLM rigorously across these datasets, against a vast set of state-of-the-art baselines, where our model consistently outperforms baselines and obtains statistically significant results. Our results establish that utilizing affect enriched representation along with context-specific representation within a neural architecture can considerably enhance readers' emotion detection. Since the impact of affect enrichment specifically in readers' emotion detection isn't well explored, we conduct a detailed analysis over affect enriched Bi-LSTM+Attention using qualitative and quantitative model behavior evaluation techniques. We observe that compared to conventional semantic embedding, affect enriched embedding increases ability of the network to effectively identify and assign weightage to key terms responsible for readers' emotion detection.

Explainable Multimodal Emotion Reasoning

Multimodal emotion recognition is an active research topic in artificial intelligence. Its primary objective is to integrate multi-modalities (such as acoustic, visual, and lexical clues) to identify human emotional states. Current works generally assume accurate emotion labels for benchmark datasets and focus on developing more effective architectures. But due to the inherent subjectivity of emotions, existing datasets often lack high annotation consistency, resulting in potentially inaccurate labels. Consequently, models built on these datasets may struggle to meet the demands of practical applications. To address this issue, it is crucial to enhance the reliability of emotion annotations. In this paper, we propose a novel task called ``Explainable Multimodal Emotion Reasoning (EMER)''. In contrast to previous works that primarily focus on predicting emotions, EMER takes a step further by providing explanations for these predictions. The prediction is considered correct as long as the reasoning process behind the predicted emotion is plausible. This paper presents our initial efforts on EMER, where we introduce a benchmark dataset, establish baseline models, and define evaluation metrics. Meanwhile, we observe the necessity of integrating multi-faceted capabilities to deal with EMER. Therefore, we propose the first multimodal large language model (LLM) in affective computing, called AffectGPT. We aim to tackle the long-standing challenge of label ambiguity and chart a path toward more reliable techniques. Furthermore, EMER offers an opportunity to evaluate the audio-video-text understanding capabilities of recent multimodal LLM. To facilitate further research, we make the code and data available at: https://github.com/zeroQiaoba/AffectGPT.

Enhancing Empathetic Response Generation by Augmenting LLMs with Small-scale Empathetic Models

Empathetic response generation is increasingly significant in AI, necessitating nuanced emotional and cognitive understanding coupled with articulate response expression. Current large language models (LLMs) excel in response expression; however, they lack the ability to deeply understand emotional and cognitive nuances, particularly in pinpointing fine-grained emotions and their triggers. Conversely, small-scale empathetic models (SEMs) offer strength in fine-grained emotion detection and detailed emotion cause identification. To harness the complementary strengths of both LLMs and SEMs, we introduce a Hybrid Empathetic Framework (HEF). HEF regards SEMs as flexible plugins to improve LLM's nuanced emotional and cognitive understanding. Regarding emotional understanding, HEF implements a two-stage emotion prediction strategy, encouraging LLMs to prioritize primary emotions emphasized by SEMs, followed by other categories, substantially alleviates the difficulties for LLMs in fine-grained emotion detection. Regarding cognitive understanding, HEF employs an emotion cause perception strategy, prompting LLMs to focus on crucial emotion-eliciting words identified by SEMs, thus boosting LLMs' capabilities in identifying emotion causes. This collaborative approach enables LLMs to discern emotions more precisely and formulate empathetic responses. We validate HEF on the Empathetic-Dialogue dataset, and the findings indicate that our framework enhances the refined understanding of LLMs and their ability to convey empathetic responses.

Comparing Machines and Children: Using Developmental Psychology Experiments to Assess the Strengths and Weaknesses of LaMDA Responses

Developmental psychologists have spent decades devising experiments to test the intelligence and knowledge of infants and children, tracing the origin of crucial concepts and capacities. Moreover, experimental techniques in developmental psychology have been carefully designed to discriminate the cognitive capacities that underlie particular behaviors. We propose that using classical experiments from child development is a particularly effective way to probe the computational abilities of AI models, in general, and LLMs in particular. First, the methodological techniques of developmental psychology, such as the use of novel stimuli to control for past experience or control conditions to determine whether children are using simple associations, can be equally helpful for assessing the capacities of LLMs. In parallel, testing LLMs in this way can tell us whether the information that is encoded in text is sufficient to enable particular responses, or whether those responses depend on other kinds of information, such as information from exploration of the physical world. In this work we adapt classical developmental experiments to evaluate the capabilities of LaMDA, a large language model from Google. We propose a novel LLM Response Score (LRS) metric which can be used to evaluate other language models, such as GPT. We find that LaMDA generates appropriate responses that are similar to those of children in experiments involving social understanding, perhaps providing evidence that knowledge of these domains is discovered through language. On the other hand, LaMDA's responses in early object and action understanding, theory of mind, and especially causal reasoning tasks are very different from those of young children, perhaps showing that these domains require more real-world, self-initiated exploration and cannot simply be learned from patterns in language input.

Expressions Causing Differences in Emotion Recognition in Social Networking Service Documents

It is often difficult to correctly infer a writer's emotion from text exchanged online, and differences in recognition between writers and readers can be problematic. In this paper, we propose a new framework for detecting sentences that create differences in emotion recognition between the writer and the reader and for detecting the kinds of expressions that cause such differences. The proposed framework consists of a bidirectional encoder representations from transformers (BERT)-based detector that detects sentences causing differences in emotion recognition and an analysis that acquires expressions that characteristically appear in such sentences. The detector, based on a Japanese SNS-document dataset with emotion labels annotated by both the writer and three readers of the social networking service (SNS) documents, detected "hidden-anger sentences" with AUC = 0.772; these sentences gave rise to differences in the recognition of anger. Because SNS documents contain many sentences whose meaning is extremely difficult to interpret, by analyzing the sentences detected by this detector, we obtained several expressions that appear characteristically in hidden-anger sentences. The detected sentences and expressions do not convey anger explicitly, and it is difficult to infer the writer's anger, but if the implicit anger is pointed out, it becomes possible to guess why the writer is angry. Put into practical use, this framework would likely have the ability to mitigate problems based on misunderstandings.

Generating Lead Sheets with Affect: A Novel Conditional seq2seq Framework

The field of automatic music composition has seen great progress in the last few years, much of which can be attributed to advances in deep neural networks. There are numerous studies that present different strategies for generating sheet music from scratch. The inclusion of high-level musical characteristics (e.g., perceived emotional qualities), however, as conditions for controlling the generation output remains a challenge. In this paper, we present a novel approach for calculating the valence (the positivity or negativity of the perceived emotion) of a chord progression within a lead sheet, using pre-defined mood tags proposed by music experts. Based on this approach, we propose a novel strategy for conditional lead sheet generation that allows us to steer the music generation in terms of valence, phrasing, and time signature. Our approach is similar to a Neural Machine Translation (NMT) problem, as we include high-level conditions in the encoder part of the sequence-to-sequence architectures used (i.e., long-short term memory networks, and a Transformer network). We conducted experiments to thoroughly analyze these two architectures. The results show that the proposed strategy is able to generate lead sheets in a controllable manner, resulting in distributions of musical attributes similar to those of the training dataset. We also verified through a subjective listening test that our approach is effective in controlling the valence of a generated chord progression.

Multimodal Deep Models for Predicting Affective Responses Evoked by Movies

The goal of this study is to develop and analyze multimodal models for predicting experienced affective responses of viewers watching movie clips. We develop hybrid multimodal prediction models based on both the video and audio of the clips. For the video content, we hypothesize that both image content and motion are crucial features for evoked emotion prediction. To capture such information, we extract features from RGB frames and optical flow using pre-trained neural networks. For the audio model, we compute an enhanced set of low-level descriptors including intensity, loudness, cepstrum, linear predictor coefficients, pitch and voice quality. Both visual and audio features are then concatenated to create audio-visual features, which are used to predict the evoked emotion. To classify the movie clips into the corresponding affective response categories, we propose two approaches based on deep neural network models. The first one is based on fully connected layers without memory on the time component, the second incorporates the sequential dependency with a long short-term memory recurrent neural network (LSTM). We perform a thorough analysis of the importance of each feature set. Our experiments reveal that in our set-up, predicting emotions at each time step independently gives slightly better accuracy performance than with the LSTM. Interestingly, we also observe that the optical flow is more informative than the RGB in videos, and overall, models using audio features are more accurate than those based on video features when making the final prediction of evoked emotions.

TONE: A 3-Tiered ONtology for Emotion analysis

Emotions have played an important part in many sectors, including psychology, medicine, mental health, computer science, and so on, and categorizing them has proven extremely useful in separating one emotion from another. Emotions can be classified using the following two methods: (1) The supervised method's efficiency is strongly dependent on the size and domain of the data collected. A categorization established using relevant data from one domain may not work well in another. (2) An unsupervised method that uses either domain expertise or a knowledge base of emotion types already exists. Though this second approach provides a suitable and generic categorization of emotions and is cost-effective, the literature doesn't possess a publicly available knowledge base that can be directly applied to any emotion categorization-related task. This pushes us to create a knowledge base that can be used for emotion classification across domains, and ontology is often used for this purpose. In this study, we provide TONE, an emotion-based ontology that effectively creates an emotional hierarchy based on Dr. Gerrod Parrot's group of emotions. In addition to ontology development, we introduce a semi-automated vocabulary construction process to generate a detailed collection of terms for emotions at each tier of the hierarchy. We also demonstrate automated methods for establishing three sorts of dependencies in order to develop linkages between different emotions. Our human and automatic evaluation results show the ontology's quality. Furthermore, we describe three distinct use cases that demonstrate the applicability of our ontology.

Emergence of psychopathological computations in large language models

Can large language models (LLMs) implement computations of psychopathology? An effective approach to the question hinges on addressing two factors. First, for conceptual validity, we require a general and computational account of psychopathology that is applicable to computational entities without biological embodiment or subjective experience. Second, mechanisms underlying LLM behaviors need to be studied for better methodological validity. Thus, we establish a computational-theoretical framework to provide an account of psychopathology applicable to LLMs. To ground the theory for empirical analysis, we also propose a novel mechanistic interpretability method alongside a tailored empirical analytic framework. Based on the frameworks, we conduct experiments demonstrating three key claims: first, that distinct dysfunctional and problematic representational states are implemented in LLMs; second, that their activations can spread and self-sustain to trap LLMs; and third, that dynamic, cyclic structural causal models encoded in the LLMs underpin these patterns. In concert, the empirical results corroborate our hypothesis that network-theoretic computations of psychopathology have already emerged in LLMs. This suggests that certain LLM behaviors mirroring psychopathology may not be a superficial mimicry but a feature of their internal processing. Thus, our work alludes to the possibility of AI systems with psychopathological behaviors in the near future.

ReflectDiffu:Reflect between Emotion-intent Contagion and Mimicry for Empathetic Response Generation via a RL-Diffusion Framework

Empathetic response generation necessitates the integration of emotional and intentional dynamics to foster meaningful interactions. Existing research either neglects the intricate interplay between emotion and intent, leading to suboptimal controllability of empathy, or resorts to large language models (LLMs), which incur significant computational overhead. In this paper, we introduce ReflectDiffu, a lightweight and comprehensive framework for empathetic response generation. This framework incorporates emotion contagion to augment emotional expressiveness and employs an emotion-reasoning mask to pinpoint critical emotional elements. Additionally, it integrates intent mimicry within reinforcement learning for refinement during diffusion. By harnessing an intent twice reflect the mechanism of Exploring-Sampling-Correcting, ReflectDiffu adeptly translates emotional decision-making into precise intent actions, thereby addressing empathetic response misalignments stemming from emotional misrecognition. Through reflection, the framework maps emotional states to intents, markedly enhancing both response empathy and flexibility. Comprehensive experiments reveal that ReflectDiffu outperforms existing models regarding relevance, controllability, and informativeness, achieving state-of-the-art results in both automatic and human evaluations.

Representation learning for improved interpretability and classification accuracy of clinical factors from EEG

Despite extensive standardization, diagnostic interviews for mental health disorders encompass substantial subjective judgment. Previous studies have demonstrated that EEG-based neural measures can function as reliable objective correlates of depression, or even predictors of depression and its course. However, their clinical utility has not been fully realized because of 1) the lack of automated ways to deal with the inherent noise associated with EEG data at scale, and 2) the lack of knowledge of which aspects of the EEG signal may be markers of a clinical disorder. Here we adapt an unsupervised pipeline from the recent deep representation learning literature to address these problems by 1) learning a disentangled representation using beta-VAE to denoise the signal, and 2) extracting interpretable features associated with a sparse set of clinical labels using a Symbol-Concept Association Network (SCAN). We demonstrate that our method is able to outperform the canonical hand-engineered baseline classification method on a number of factors, including participant age and depression diagnosis. Furthermore, our method recovers a representation that can be used to automatically extract denoised Event Related Potentials (ERPs) from novel, single EEG trajectories, and supports fast supervised re-mapping to various clinical labels, allowing clinicians to re-use a single EEG representation regardless of updates to the standardized diagnostic system. Finally, single factors of the learned disentangled representations often correspond to meaningful markers of clinical factors, as automatically detected by SCAN, allowing for human interpretability and post-hoc expert analysis of the recommendations made by the model.

Explainable Depression Symptom Detection in Social Media

Users of social platforms often perceive these sites as supportive spaces to post about their mental health issues. Those conversations contain important traces about individuals' health risks. Recently, researchers have exploited this online information to construct mental health detection models, which aim to identify users at risk on platforms like Twitter, Reddit or Facebook. Most of these models are centred on achieving good classification results, ignoring the explainability and interpretability of the decisions. Recent research has pointed out the importance of using clinical markers, such as the use of symptoms, to improve trust in the computational models by health professionals. In this paper, we propose using transformer-based architectures to detect and explain the appearance of depressive symptom markers in the users' writings. We present two approaches: i) train a model to classify, and another one to explain the classifier's decision separately and ii) unify the two tasks simultaneously using a single model. Additionally, for this latter manner, we also investigated the performance of recent conversational LLMs when using in-context learning. Our natural language explanations enable clinicians to interpret the models' decisions based on validated symptoms, enhancing trust in the automated process. We evaluate our approach using recent symptom-based datasets, employing both offline and expert-in-the-loop metrics to assess the quality of the explanations generated by our models. The experimental results show that it is possible to achieve good classification results while generating interpretable symptom-based explanations.

Influence Scores at Scale for Efficient Language Data Sampling

Modern ML systems ingest data aggregated from diverse sources, such as synthetic, human-annotated, and live customer traffic. Understanding which examples are important to the performance of a learning algorithm is crucial for efficient model training. Recently, a growing body of literature has given rise to various "influence scores," which use training artifacts such as model confidence or checkpointed gradients to identify important subsets of data. However, these methods have primarily been developed in computer vision settings, and it remains unclear how well they generalize to language-based tasks using pretrained models. In this paper, we explore the applicability of influence scores in language classification tasks. We evaluate a diverse subset of these scores on the SNLI dataset by quantifying accuracy changes in response to pruning training data through random and influence-score-based sampling. We then stress-test one of the scores -- "variance of gradients" (VoG) from Agarwal et al. (2022) -- in an NLU model stack that was exposed to dynamic user speech patterns in a voice assistant type of setting. Our experiments demonstrate that in many cases, encoder-based language models can be finetuned on roughly 50% of the original data without degradation in performance metrics. Along the way, we summarize lessons learned from applying out-of-the-box implementations of influence scores, quantify the effects of noisy and class-imbalanced data, and offer recommendations on score-based sampling for better accuracy and training efficiency.

Personality Style Recognition via Machine Learning: Identifying Anaclitic and Introjective Personality Styles from Patients' Speech

In disentangling the heterogeneity observed in psychopathology, personality of the patients is considered crucial. While it has been demonstrated that personality traits are reflected in the language used by a patient, we hypothesize that this enables automatic inference of the personality type directly from speech utterances, potentially more accurately than through a traditional questionnaire-based approach explicitly designed for personality classification. To validate this hypothesis, we adopt natural language processing (NLP) and standard machine learning tools for classification. We test this on a dataset of recorded clinical diagnostic interviews (CDI) on a sample of 79 patients diagnosed with major depressive disorder (MDD) -- a condition for which differentiated treatment based on personality styles has been advocated -- and classified into anaclitic and introjective personality styles. We start by analyzing the interviews to see which linguistic features are associated with each style, in order to gain a better understanding of the styles. Then, we develop automatic classifiers based on (a) standardized questionnaire responses; (b) basic text features, i.e., TF-IDF scores of words and word sequences; (c) more advanced text features, using LIWC (linguistic inquiry and word count) and context-aware features using BERT (bidirectional encoder representations from transformers); (d) audio features. We find that automated classification with language-derived features (i.e., based on LIWC) significantly outperforms questionnaire-based classification models. Furthermore, the best performance is achieved by combining LIWC with the questionnaire features. This suggests that more work should be put into developing linguistically based automated techniques for characterizing personality, however questionnaires still to some extent complement such methods.

EmotionIC: Emotional Inertia and Contagion-driven Dependency Modelling for Emotion Recognition in Conversation

Emotion Recognition in Conversation (ERC) has attracted growing attention in recent years as a result of the advancement and implementation of human-computer interface technologies. However, previous approaches to modeling global and local context dependencies lost the diversity of dependency information and do not take the context dependency into account at the classification level. In this paper, we propose a novel approach to dependency modeling driven by Emotional Inertia and Contagion (EmotionIC) for conversational emotion recognition at the feature extraction and classification levels. At the feature extraction level, our designed Identity Masked Multi-head Attention (IM-MHA) captures the identity-based long-distant context in the dialogue to contain the diverse influence of different participants and construct the global emotional atmosphere, while the devised Dialogue-based Gate Recurrent Unit (DialogGRU) that aggregates the emotional tendencies of dyadic dialogue is applied to refine the contextual features with inter- and intra-speaker dependencies. At the classification level, by introducing skip connections in Conditional Random Field (CRF), we elaborate the Skip-chain CRF (SkipCRF) to capture the high-order dependencies within and between speakers, and to emulate the emotional flow of distant participants. Experimental results show that our method can significantly outperform the state-of-the-art models on four benchmark datasets. The ablation studies confirm that our modules can effectively model emotional inertia and contagion.

MusER: Musical Element-Based Regularization for Generating Symbolic Music with Emotion

Generating music with emotion is an important task in automatic music generation, in which emotion is evoked through a variety of musical elements (such as pitch and duration) that change over time and collaborate with each other. However, prior research on deep learning-based emotional music generation has rarely explored the contribution of different musical elements to emotions, let alone the deliberate manipulation of these elements to alter the emotion of music, which is not conducive to fine-grained element-level control over emotions. To address this gap, we present a novel approach employing musical element-based regularization in the latent space to disentangle distinct elements, investigate their roles in distinguishing emotions, and further manipulate elements to alter musical emotions. Specifically, we propose a novel VQ-VAE-based model named MusER. MusER incorporates a regularization loss to enforce the correspondence between the musical element sequences and the specific dimensions of latent variable sequences, providing a new solution for disentangling discrete sequences. Taking advantage of the disentangled latent vectors, a two-level decoding strategy that includes multiple decoders attending to latent vectors with different semantics is devised to better predict the elements. By visualizing latent space, we conclude that MusER yields a disentangled and interpretable latent space and gain insights into the contribution of distinct elements to the emotional dimensions (i.e., arousal and valence). Experimental results demonstrate that MusER outperforms the state-of-the-art models for generating emotional music in both objective and subjective evaluation. Besides, we rearrange music through element transfer and attempt to alter the emotion of music by transferring emotion-distinguishable elements.

"I'm Not Sure, But...": Examining the Impact of Large Language Models' Uncertainty Expression on User Reliance and Trust

Widely deployed large language models (LLMs) can produce convincing yet incorrect outputs, potentially misleading users who may rely on them as if they were correct. To reduce such overreliance, there have been calls for LLMs to communicate their uncertainty to end users. However, there has been little empirical work examining how users perceive and act upon LLMs' expressions of uncertainty. We explore this question through a large-scale, pre-registered, human-subject experiment (N=404) in which participants answer medical questions with or without access to responses from a fictional LLM-infused search engine. Using both behavioral and self-reported measures, we examine how different natural language expressions of uncertainty impact participants' reliance, trust, and overall task performance. We find that first-person expressions (e.g., "I'm not sure, but...") decrease participants' confidence in the system and tendency to agree with the system's answers, while increasing participants' accuracy. An exploratory analysis suggests that this increase can be attributed to reduced (but not fully eliminated) overreliance on incorrect answers. While we observe similar effects for uncertainty expressed from a general perspective (e.g., "It's not clear, but..."), these effects are weaker and not statistically significant. Our findings suggest that using natural language expressions of uncertainty may be an effective approach for reducing overreliance on LLMs, but that the precise language used matters. This highlights the importance of user testing before deploying LLMs at scale.

Can ChatGPT Assess Human Personalities? A General Evaluation Framework

Large Language Models (LLMs) especially ChatGPT have produced impressive results in various areas, but their potential human-like psychology is still largely unexplored. Existing works study the virtual personalities of LLMs but rarely explore the possibility of analyzing human personalities via LLMs. This paper presents a generic evaluation framework for LLMs to assess human personalities based on Myers Briggs Type Indicator (MBTI) tests. Specifically, we first devise unbiased prompts by randomly permuting options in MBTI questions and adopt the average testing result to encourage more impartial answer generation. Then, we propose to replace the subject in question statements to enable flexible queries and assessments on different subjects from LLMs. Finally, we re-formulate the question instructions in a manner of correctness evaluation to facilitate LLMs to generate clearer responses. The proposed framework enables LLMs to flexibly assess personalities of different groups of people. We further propose three evaluation metrics to measure the consistency, robustness, and fairness of assessment results from state-of-the-art LLMs including ChatGPT and InstructGPT. Our experiments reveal ChatGPT's ability to assess human personalities, and the average results demonstrate that it can achieve more consistent and fairer assessments in spite of lower robustness against prompt biases compared with InstructGPT.

StressPrompt: Does Stress Impact Large Language Models and Human Performance Similarly?

Human beings often experience stress, which can significantly influence their performance. This study explores whether Large Language Models (LLMs) exhibit stress responses similar to those of humans and whether their performance fluctuates under different stress-inducing prompts. To investigate this, we developed a novel set of prompts, termed StressPrompt, designed to induce varying levels of stress. These prompts were derived from established psychological frameworks and carefully calibrated based on ratings from human participants. We then applied these prompts to several LLMs to assess their responses across a range of tasks, including instruction-following, complex reasoning, and emotional intelligence. The findings suggest that LLMs, like humans, perform optimally under moderate stress, consistent with the Yerkes-Dodson law. Notably, their performance declines under both low and high-stress conditions. Our analysis further revealed that these StressPrompts significantly alter the internal states of LLMs, leading to changes in their neural representations that mirror human responses to stress. This research provides critical insights into the operational robustness and flexibility of LLMs, demonstrating the importance of designing AI systems capable of maintaining high performance in real-world scenarios where stress is prevalent, such as in customer service, healthcare, and emergency response contexts. Moreover, this study contributes to the broader AI research community by offering a new perspective on how LLMs handle different scenarios and their similarities to human cognition.

Reliable and Efficient Amortized Model-based Evaluation

Comprehensive evaluations of language models (LM) during both development and deployment phases are necessary because these models possess numerous capabilities (e.g., mathematical reasoning, legal support, or medical diagnostic) as well as safety risks (e.g., racial bias, toxicity, or misinformation). The average score across a wide range of benchmarks provides a signal that helps guide the use of these LMs in practice. Currently, holistic evaluations are costly due to the large volume of benchmark questions, making frequent evaluations impractical. A popular attempt to lower the cost is to compute the average score on a subset of the benchmark. This approach, unfortunately, often renders an unreliable measure of LM performance because the average score is often confounded with the difficulty of the questions in the benchmark subset. Item response theory (IRT) was designed to address this challenge, providing a reliable measurement by careful controlling for question difficulty. Unfortunately, question difficulty is expensive to estimate. Facing this challenge, we train a model that predicts question difficulty from its content, enabling a reliable measurement at a fraction of the cost. In addition, we leverage this difficulty predictor to further improve the evaluation efficiency through training a question generator given a difficulty level. This question generator is essential in adaptive testing, where, instead of using a random subset of the benchmark questions, informative questions are adaptively chosen based on the current estimation of LLM performance. Experiments on 22 common natural language benchmarks and 172 LMs show that this approach is more reliable and efficient compared to current common practice.

Textualized and Feature-based Models for Compound Multimodal Emotion Recognition in the Wild

Systems for multimodal emotion recognition (ER) are commonly trained to extract features from different modalities (e.g., visual, audio, and textual) that are combined to predict individual basic emotions. However, compound emotions often occur in real-world scenarios, and the uncertainty of recognizing such complex emotions over diverse modalities is challenging for feature-based models As an alternative, emerging multimodal large language models (LLMs) like BERT and LLaMA rely on explicit non-verbal cues that may be translated from different non-textual modalities (e.g., audio and visual) into text. Textualization of modalities augments data with emotional cues to help the LLM encode the interconnections between all modalities in a shared text space. In such text-based models, prior knowledge of ER tasks is leveraged to textualize relevant nonverbal cues such as audio tone from vocal expressions, and action unit intensity from facial expressions. Since the pre-trained weights are publicly available for many LLMs, training on large-scale datasets is unnecessary, allowing fine-tuning for downstream tasks such as compound ER (CER). This paper compares the potential of text- and feature-based approaches for compound multimodal ER in videos. Experiments were conducted on the challenging C-EXPR-DB dataset in the wild for CER, and contrasted with results on the MELD dataset for basic ER. Our results indicate that multimodal textualization provides lower accuracy than feature-based models on C-EXPR-DB, where text transcripts are captured in the wild. However, higher accuracy can be achieved when the video data has rich transcripts. Our code is available.

Primary and Secondary Factor Consistency as Domain Knowledge to Guide Happiness Computing in Online Assessment

Happiness computing based on large-scale online web data and machine learning methods is an emerging research topic that underpins a range of issues, from personal growth to social stability. Many advanced Machine Learning (ML) models with explanations are used to compute the happiness online assessment while maintaining high accuracy of results. However, domain knowledge constraints, such as the primary and secondary relations of happiness factors, are absent from these models, which limits the association between computing results and the right reasons for why they occurred. This article attempts to provide new insights into the explanation consistency from an empirical study perspective. Then we study how to represent and introduce domain knowledge constraints to make ML models more trustworthy. We achieve this through: (1) proving that multiple prediction models with additive factor attributions will have the desirable property of primary and secondary relations consistency, and (2) showing that factor relations with quantity can be represented as an importance distribution for encoding domain knowledge. Factor explanation difference is penalized by the Kullback-Leibler divergence-based loss among computing models. Experimental results using two online web datasets show that domain knowledge of stable factor relations exists. Using this knowledge not only improves happiness computing accuracy but also reveals more significative happiness factors for assisting decisions well.

Automated speech- and text-based classification of neuropsychiatric conditions in a multidiagnostic setting

Speech patterns have been identified as potential diagnostic markers for neuropsychiatric conditions. However, most studies only compare a single clinical group to healthy controls, whereas clinical practice often requires differentiating between multiple potential diagnoses (multiclass settings). To address this, we assembled a dataset of repeated recordings from 420 participants (67 with major depressive disorder, 106 with schizophrenia and 46 with autism, as well as matched controls), and tested the performance of a range of conventional machine learning models and advanced Transformer models on both binary and multiclass classification, based on voice and text features. While binary models performed comparably to previous research (F1 scores between 0.54-0.75 for autism spectrum disorder, ASD; 0.67-0.92 for major depressive disorder, MDD; and 0.71-0.83 for schizophrenia); when differentiating between multiple diagnostic groups performance decreased markedly (F1 scores between 0.35-0.44 for ASD, 0.57-0.75 for MDD, 0.15-0.66 for schizophrenia, and 0.38-0.52 macro F1). Combining voice and text-based models yielded increased performance, suggesting that they capture complementary diagnostic information. Our results indicate that models trained on binary classification may learn to rely on markers of generic differences between clinical and non-clinical populations, or markers of clinical features that overlap across conditions, rather than identifying markers specific to individual conditions. We provide recommendations for future research in the field, suggesting increased focus on developing larger transdiagnostic datasets that include more fine-grained clinical features, and that can support the development of models that better capture the complexity of neuropsychiatric conditions and naturalistic diagnostic assessment.

Emotional RAG: Enhancing Role-Playing Agents through Emotional Retrieval

As LLMs exhibit a high degree of human-like capability, increasing attention has been paid to role-playing research areas in which responses generated by LLMs are expected to mimic human replies. This has promoted the exploration of role-playing agents in various applications, such as chatbots that can engage in natural conversations with users and virtual assistants that can provide personalized support and guidance. The crucial factor in the role-playing task is the effective utilization of character memory, which stores characters' profiles, experiences, and historical dialogues. Retrieval Augmented Generation (RAG) technology is used to access the related memory to enhance the response generation of role-playing agents. Most existing studies retrieve related information based on the semantic similarity of memory to maintain characters' personalized traits, and few attempts have been made to incorporate the emotional factor in the retrieval argument generation (RAG) of LLMs. Inspired by the Mood-Dependent Memory theory, which indicates that people recall an event better if they somehow reinstate during recall the original emotion they experienced during learning, we propose a novel emotion-aware memory retrieval framework, termed Emotional RAG, which recalls the related memory with consideration of emotional state in role-playing agents. Specifically, we design two kinds of retrieval strategies, i.e., combination strategy and sequential strategy, to incorporate both memory semantic and emotional states during the retrieval process. Extensive experiments on three representative role-playing datasets demonstrate that our Emotional RAG framework outperforms the method without considering the emotional factor in maintaining the personalities of role-playing agents. This provides evidence to further reinforce the Mood-Dependent Memory theory in psychology.

DCR-Consistency: Divide-Conquer-Reasoning for Consistency Evaluation and Improvement of Large Language Models

Evaluating the quality and variability of text generated by Large Language Models (LLMs) poses a significant, yet unresolved research challenge. Traditional evaluation methods, such as ROUGE and BERTScore, which measure token similarity, often fail to capture the holistic semantic equivalence. This results in a low correlation with human judgments and intuition, which is especially problematic in high-stakes applications like healthcare and finance where reliability, safety, and robust decision-making are highly critical. This work proposes DCR, an automated framework for evaluating and improving the consistency of LLM-generated texts using a divide-conquer-reasoning approach. Unlike existing LLM-based evaluators that operate at the paragraph level, our method employs a divide-and-conquer evaluator (DCE) that breaks down the paragraph-to-paragraph comparison between two generated responses into individual sentence-to-paragraph comparisons, each evaluated based on predefined criteria. To facilitate this approach, we introduce an automatic metric converter (AMC) that translates the output from DCE into an interpretable numeric score. Beyond the consistency evaluation, we further present a reason-assisted improver (RAI) that leverages the analytical reasons with explanations identified by DCE to generate new responses aimed at reducing these inconsistencies. Through comprehensive and systematic empirical analysis, we show that our approach outperforms state-of-the-art methods by a large margin (e.g., +19.3% and +24.3% on the SummEval dataset) in evaluating the consistency of LLM generation across multiple benchmarks in semantic, factual, and summarization consistency tasks. Our approach also substantially reduces nearly 90% of output inconsistencies, showing promise for effective hallucination mitigation.

Prometheus: Inducing Fine-grained Evaluation Capability in Language Models

Recently, using a powerful proprietary Large Language Model (LLM) (e.g., GPT-4) as an evaluator for long-form responses has become the de facto standard. However, for practitioners with large-scale evaluation tasks and custom criteria in consideration (e.g., child-readability), using proprietary LLMs as an evaluator is unreliable due to the closed-source nature, uncontrolled versioning, and prohibitive costs. In this work, we propose Prometheus, a fully open-source LLM that is on par with GPT-4's evaluation capabilities when the appropriate reference materials (reference answer, score rubric) are accompanied. We first construct the Feedback Collection, a new dataset that consists of 1K fine-grained score rubrics, 20K instructions, and 100K responses and language feedback generated by GPT-4. Using the Feedback Collection, we train Prometheus, a 13B evaluator LLM that can assess any given long-form text based on customized score rubric provided by the user. Experimental results show that Prometheus scores a Pearson correlation of 0.897 with human evaluators when evaluating with 45 customized score rubrics, which is on par with GPT-4 (0.882), and greatly outperforms ChatGPT (0.392). Furthermore, measuring correlation with GPT-4 with 1222 customized score rubrics across four benchmarks (MT Bench, Vicuna Bench, Feedback Bench, Flask Eval) shows similar trends, bolstering Prometheus's capability as an evaluator LLM. Lastly, Prometheus achieves the highest accuracy on two human preference benchmarks (HHH Alignment & MT Bench Human Judgment) compared to open-sourced reward models explicitly trained on human preference datasets, highlighting its potential as an universal reward model. We open-source our code, dataset, and model at https://github.com/kaistAI/Prometheus.

Introducing CALMED: Multimodal Annotated Dataset for Emotion Detection in Children with Autism

Automatic Emotion Detection (ED) aims to build systems to identify users' emotions automatically. This field has the potential to enhance HCI, creating an individualised experience for the user. However, ED systems tend to perform poorly on people with Autism Spectrum Disorder (ASD). Hence, the need to create ED systems tailored to how people with autism express emotions. Previous works have created ED systems tailored for children with ASD but did not share the resulting dataset. Sharing annotated datasets is essential to enable the development of more advanced computer models for ED within the research community. In this paper, we describe our experience establishing a process to create a multimodal annotated dataset featuring children with a level 1 diagnosis of autism. In addition, we introduce CALMED (Children, Autism, Multimodal, Emotion, Detection), the resulting multimodal emotion detection dataset featuring children with autism aged 8-12. CALMED includes audio and video features extracted from recording files of study sessions with participants, together with annotations provided by their parents into four target classes. The generated dataset includes a total of 57,012 examples, with each example representing a time window of 200ms (0.2s). Our experience and methods described here, together with the dataset shared, aim to contribute to future research applications of affective computing in ASD, which has the potential to create systems to improve the lives of people with ASD.

Judging LLMs on a Simplex

Automated evaluation of free-form outputs from large language models (LLMs) is challenging because many distinct answers can be equally valid. A common practice is to use LLMs themselves as judges, but the theoretical properties of this approach are not yet well understood. We show that a geometric framework that represents both judges and candidates as points on a probability simplex can provide helpful insight on what is or is not identifiable using LLM judges. Our theoretical analysis uncovers a "phase transition" in ranking identifiability: for binary scoring systems, true rankings are identifiable even with weak judges under mild assumptions, while rankings become non-identifiable for three or more scoring levels even with infinite data, absent additional prior knowledge. This non-identifiability highlights how uncertainty in rankings stems from not only aleatoric uncertainty (i.e., inherent stochasticity in the data) but also epistemic uncertainty regarding which assumptions hold, an aspect that has received limited attention until now. To integrate both types of uncertainty, we use Bayesian inference to encode assumptions as priors and conduct sensitivity analysis of ranking estimates and credible intervals. Empirical evaluations across multiple benchmarks demonstrate that Bayesian inference yields more accurate rankings and substantially improves coverage rates. These results underscore the importance of taking a more holistic approach to uncertainty quantification when using LLMs as judges.