new

Get trending papers in your email inbox!

Subscribe

byAK and the research community

Mar 13

Thesis: Document Summarization with applications to Keyword extraction and Image Retrieval

Automatic summarization is the process of reducing a text document in order to generate a summary that retains the most important points of the original document. In this work, we study two problems - i) summarizing a text document as set of keywords/caption, for image recommedation, ii) generating opinion summary which good mix of relevancy and sentiment with the text document. Intially, we present our work on an recommending images for enhancing a substantial amount of existing plain text news articles. We use probabilistic models and word similarity heuristics to generate captions and extract Key-phrases which are re-ranked using a rank aggregation framework with relevance feedback mechanism. We show that such rank aggregation and relevant feedback which are typically used in Tagging Documents, Text Information Retrieval also helps in improving image retrieval. These queries are fed to the Yahoo Search Engine to obtain relevant images 1. Our proposed method is observed to perform better than all existing baselines. Additonally, We propose a set of submodular functions for opinion summarization. Opinion summarization has built in it the tasks of summarization and sentiment detection. However, it is not easy to detect sentiment and simultaneously extract summary. The two tasks conflict in the sense that the demand of compression may drop sentiment bearing sentences, and the demand of sentiment detection may bring in redundant sentences. However, using submodularity we show how to strike a balance between the two requirements. Our functions generate summaries such that there is good correlation between document sentiment and summary sentiment along with good ROUGE score. We also compare the performances of the proposed submodular functions.

Embrace Divergence for Richer Insights: A Multi-document Summarization Benchmark and a Case Study on Summarizing Diverse Information from News Articles

Previous research in multi-document news summarization has typically concentrated on collating information that all sources agree upon. However, to our knowledge, the summarization of diverse information dispersed across multiple articles about an event has not been previously investigated. The latter imposes a different set of challenges for a summarization model. In this paper, we propose a new task of summarizing diverse information encountered in multiple news articles encompassing the same event. To facilitate this task, we outlined a data collection schema for identifying diverse information and curated a dataset named DiverseSumm. The dataset includes 245 news stories, with each story comprising 10 news articles and paired with a human-validated reference. Moreover, we conducted a comprehensive analysis to pinpoint the position and verbosity biases when utilizing Large Language Model (LLM)-based metrics for evaluating the coverage and faithfulness of the summaries, as well as their correlation with human assessments. We applied our findings to study how LLMs summarize multiple news articles by analyzing which type of diverse information LLMs are capable of identifying. Our analyses suggest that despite the extraordinary capabilities of LLMs in single-document summarization, the proposed task remains a complex challenge for them mainly due to their limited coverage, with GPT-4 only able to cover less than 40% of the diverse information on average.

Multi-LexSum: Real-World Summaries of Civil Rights Lawsuits at Multiple Granularities

With the advent of large language models, methods for abstractive summarization have made great strides, creating potential for use in applications to aid knowledge workers processing unwieldy document collections. One such setting is the Civil Rights Litigation Clearinghouse (CRLC) (https://clearinghouse.net),which posts information about large-scale civil rights lawsuits, serving lawyers, scholars, and the general public. Today, summarization in the CRLC requires extensive training of lawyers and law students who spend hours per case understanding multiple relevant documents in order to produce high-quality summaries of key events and outcomes. Motivated by this ongoing real-world summarization effort, we introduce Multi-LexSum, a collection of 9,280 expert-authored summaries drawn from ongoing CRLC writing. Multi-LexSum presents a challenging multi-document summarization task given the length of the source documents, often exceeding two hundred pages per case. Furthermore, Multi-LexSum is distinct from other datasets in its multiple target summaries, each at a different granularity (ranging from one-sentence "extreme" summaries to multi-paragraph narrations of over five hundred words). We present extensive analysis demonstrating that despite the high-quality summaries in the training data (adhering to strict content and style guidelines), state-of-the-art summarization models perform poorly on this task. We release Multi-LexSum for further research in summarization methods as well as to facilitate development of applications to assist in the CRLC's mission at https://multilexsum.github.io.

Exploring Synaptic Resonance in Large Language Models: A Novel Approach to Contextual Memory Integration

Contextual memory integration remains a high challenge in the development of language models, particularly in tasks that require maintaining coherence over extended sequences. Traditional approaches, such as self-attention mechanisms and memory-augmented architectures, often prioritize short-term dependencies, leading to fragmentation and inconsistency in long-range contextual understanding. Inspired by principles of synaptic plasticity observed in biological neural systems, a novel mechanism, Synaptic Resonance, is introduced to dynamically reinforce relevant memory pathways during training and inference. Unlike static memory representations, this mechanism continuously adjusts synaptic weight matrices based on contextual relevance, allowing for improved information retention without excessive computational overhead. Evaluations conducted on an open-source language model demonstrate reductions in perplexity, enhancements in contextual coherence, and increased robustness against input noise, highlighting the effectiveness of reinforcement-driven memory modulation. Comparative analysis against baseline models further reveals that the proposed approach achieves higher memory retention efficiency while maintaining computational feasibility. The architectural modifications integrate seamlessly into existing transformer-based frameworks, ensuring stable convergence and efficient inference without sacrificing scalability. Applications benefiting from improved long-term contextual consistency, such as dialogue systems and document summarization, stand to gain from this approach. Empirical findings suggest that dynamically reinforced memory pathways offer a promising alternative to conventional memory mechanisms, addressing longstanding limitations in extended sequence modeling.

Neural Natural Language Processing for Long Texts: A Survey of the State-of-the-Art

The adoption of Deep Neural Networks (DNNs) has greatly benefited Natural Language Processing (NLP) during the past decade. However, the demands of long document analysis are quite different from those of shorter texts, while the ever increasing size of documents uploaded on-line renders automated understanding of lengthy texts a critical issue. Relevant applications include automated Web mining, legal document review, medical records analysis, financial reports analysis, contract management, environmental impact assessment, news aggregation, etc. Despite the relatively recent development of efficient algorithms for analyzing long documents, practical tools in this field are currently flourishing. This article serves as an entry point into this dynamic domain and aims to achieve two objectives. Firstly, it provides an overview of the relevant neural building blocks, serving as a concise tutorial for the field. Secondly, it offers a brief examination of the current state-of-the-art in long document NLP, with a primary focus on two key tasks: document classification and document summarization. Sentiment analysis for long texts is also covered, since it is typically treated as a particular case of document classification. Consequently, this article presents an introductory exploration of document-level analysis, addressing the primary challenges, concerns, and existing solutions. Finally, the article presents publicly available annotated datasets that can facilitate further research in this area.

Unleashing Infinite-Length Input Capacity for Large-scale Language Models with Self-Controlled Memory System

Large-scale Language Models (LLMs) are constrained by their inability to process lengthy inputs. To address this limitation, we propose the Self-Controlled Memory (SCM) system to unleash infinite-length input capacity for large-scale language models. Our SCM system is composed of three key modules: the language model agent, the memory stream, and the memory controller. The language model agent iteratively processes ultra-long inputs and stores all historical information in the memory stream. The memory controller provides the agent with both long-term memory (archived memory) and short-term memory (flash memory) to generate precise and coherent responses. The controller determines which memories from archived memory should be activated and how to incorporate them into the model input. Our SCM system can be integrated with any LLMs to enable them to process ultra-long texts without any modification or fine-tuning. Experimental results show that our SCM system enables LLMs, which are not optimized for multi-turn dialogue, to achieve multi-turn dialogue capabilities that are comparable to ChatGPT, and to outperform ChatGPT in scenarios involving ultra-long document summarization or long-term conversations. Additionally, we will supply a test set, which covers common long-text input scenarios, for evaluating the abilities of LLMs in processing long documents.~Working in progress.\url{https://github.com/wbbeyourself/SCM4LLMs}

Biomedical Large Languages Models Seem not to be Superior to Generalist Models on Unseen Medical Data

Large language models (LLMs) have shown potential in biomedical applications, leading to efforts to fine-tune them on domain-specific data. However, the effectiveness of this approach remains unclear. This study evaluates the performance of biomedically fine-tuned LLMs against their general-purpose counterparts on a variety of clinical tasks. We evaluated their performance on clinical case challenges from the New England Journal of Medicine (NEJM) and the Journal of the American Medical Association (JAMA) and on several clinical tasks (e.g., information extraction, document summarization, and clinical coding). Using benchmarks specifically chosen to be likely outside the fine-tuning datasets of biomedical models, we found that biomedical LLMs mostly perform inferior to their general-purpose counterparts, especially on tasks not focused on medical knowledge. While larger models showed similar performance on case tasks (e.g., OpenBioLLM-70B: 66.4% vs. Llama-3-70B-Instruct: 65% on JAMA cases), smaller biomedical models showed more pronounced underperformance (e.g., OpenBioLLM-8B: 30% vs. Llama-3-8B-Instruct: 64.3% on NEJM cases). Similar trends were observed across the CLUE (Clinical Language Understanding Evaluation) benchmark tasks, with general-purpose models often performing better on text generation, question answering, and coding tasks. Our results suggest that fine-tuning LLMs to biomedical data may not provide the expected benefits and may potentially lead to reduced performance, challenging prevailing assumptions about domain-specific adaptation of LLMs and highlighting the need for more rigorous evaluation frameworks in healthcare AI. Alternative approaches, such as retrieval-augmented generation, may be more effective in enhancing the biomedical capabilities of LLMs without compromising their general knowledge.

Text Generation: A Systematic Literature Review of Tasks, Evaluation, and Challenges

Text generation has become more accessible than ever, and the increasing interest in these systems, especially those using large language models, has spurred an increasing number of related publications. We provide a systematic literature review comprising 244 selected papers between 2017 and 2024. This review categorizes works in text generation into five main tasks: open-ended text generation, summarization, translation, paraphrasing, and question answering. For each task, we review their relevant characteristics, sub-tasks, and specific challenges (e.g., missing datasets for multi-document summarization, coherence in story generation, and complex reasoning for question answering). Additionally, we assess current approaches for evaluating text generation systems and ascertain problems with current metrics. Our investigation shows nine prominent challenges common to all tasks and sub-tasks in recent text generation publications: bias, reasoning, hallucinations, misuse, privacy, interpretability, transparency, datasets, and computing. We provide a detailed analysis of these challenges, their potential solutions, and which gaps still require further engagement from the community. This systematic literature review targets two main audiences: early career researchers in natural language processing looking for an overview of the field and promising research directions, as well as experienced researchers seeking a detailed view of tasks, evaluation methodologies, open challenges, and recent mitigation strategies.

L-CiteEval: Do Long-Context Models Truly Leverage Context for Responding?

Long-context models (LCMs) have made remarkable strides in recent years, offering users great convenience for handling tasks that involve long context, such as document summarization. As the community increasingly prioritizes the faithfulness of generated results, merely ensuring the accuracy of LCM outputs is insufficient, as it is quite challenging for humans to verify the results from the extremely lengthy context. Yet, although some efforts have been made to assess whether LCMs respond truly based on the context, these works either are limited to specific tasks or heavily rely on external evaluation resources like GPT-4.In this work, we introduce L-CiteEval, a comprehensive multi-task benchmark for long-context understanding with citations, aiming to evaluate both the understanding capability and faithfulness of LCMs. L-CiteEval covers 11 tasks from diverse domains, spanning context lengths from 8K to 48K, and provides a fully automated evaluation suite. Through testing with 11 cutting-edge closed-source and open-source LCMs, we find that although these models show minor differences in their generated results, open-source models substantially trail behind their closed-source counterparts in terms of citation accuracy and recall. This suggests that current open-source LCMs are prone to responding based on their inherent knowledge rather than the given context, posing a significant risk to the user experience in practical applications. We also evaluate the RAG approach and observe that RAG can significantly improve the faithfulness of LCMs, albeit with a slight decrease in the generation quality. Furthermore, we discover a correlation between the attention mechanisms of LCMs and the citation generation process.

Peek Across: Improving Multi-Document Modeling via Cross-Document Question-Answering

The integration of multi-document pre-training objectives into language models has resulted in remarkable improvements in multi-document downstream tasks. In this work, we propose extending this idea by pre-training a generic multi-document model from a novel cross-document question answering pre-training objective. To that end, given a set (or cluster) of topically-related documents, we systematically generate semantically-oriented questions from a salient sentence in one document and challenge the model, during pre-training, to answer these questions while "peeking" into other topically-related documents. In a similar manner, the model is also challenged to recover the sentence from which the question was generated, again while leveraging cross-document information. This novel multi-document QA formulation directs the model to better recover cross-text informational relations, and introduces a natural augmentation that artificially increases the pre-training data. Further, unlike prior multi-document models that focus on either classification or summarization tasks, our pre-training objective formulation enables the model to perform tasks that involve both short text generation (e.g., QA) and long text generation (e.g., summarization). Following this scheme, we pre-train our model -- termed QAmden -- and evaluate its performance across several multi-document tasks, including multi-document QA, summarization, and query-focused summarization, yielding improvements of up to 7%, and significantly outperforms zero-shot GPT-3.5 and GPT-4.

KVQuant: Towards 10 Million Context Length LLM Inference with KV Cache Quantization

LLMs are seeing growing use for applications such as document analysis and summarization which require large context windows, and with these large context windows KV cache activations surface as the dominant contributor to memory consumption during inference. Quantization is a promising approach for compressing KV cache activations; however, existing solutions fail to represent activations accurately in ultra-low precisions, such as sub-4-bit. In this work, we present KVQuant, which addresses this problem by incorporating novel methods for quantizing cached KV activations, including: (i) Per-Channel Key Quantization, where we adjust the dimension along which we quantize the Key activations to better match the distribution; (ii) Pre-RoPE Key Quantization, where we quantize Key activations before the rotary positional embedding to mitigate its impact on quantization; (iii) Non-Uniform KV Cache Quantization, where we derive per-layer sensitivity-weighted non-uniform datatypes that better represent the distributions; (iv) Per-Vector Dense-and-Sparse Quantization, where we isolate outliers separately for each vector to minimize skews in quantization ranges; and (v) Q-Norm, where we normalize quantization centroids in order to mitigate distribution shift, providing additional benefits for 2-bit quantization. By applying our method to the LLaMA, LLaMA-2, and Mistral models, we achieve <0.1 perplexity degradation with 3-bit quantization on both Wikitext-2 and C4, outperforming existing approaches. Our method enables serving the LLaMA-7B model with a context length of up to 1 million on a single A100-80GB GPU and up to 10 million on an 8-GPU system.

DiscoScore: Evaluating Text Generation with BERT and Discourse Coherence

Recently, there has been a growing interest in designing text generation systems from a discourse coherence perspective, e.g., modeling the interdependence between sentences. Still, recent BERT-based evaluation metrics are weak in recognizing coherence, and thus are not reliable in a way to spot the discourse-level improvements of those text generation systems. In this work, we introduce DiscoScore, a parametrized discourse metric, which uses BERT to model discourse coherence from different perspectives, driven by Centering theory. Our experiments encompass 16 non-discourse and discourse metrics, including DiscoScore and popular coherence models, evaluated on summarization and document-level machine translation (MT). We find that (i) the majority of BERT-based metrics correlate much worse with human rated coherence than early discourse metrics, invented a decade ago; (ii) the recent state-of-the-art BARTScore is weak when operated at system level -- which is particularly problematic as systems are typically compared in this manner. DiscoScore, in contrast, achieves strong system-level correlation with human ratings, not only in coherence but also in factual consistency and other aspects, and surpasses BARTScore by over 10 correlation points on average. Further, aiming to understand DiscoScore, we provide justifications to the importance of discourse coherence for evaluation metrics, and explain the superiority of one variant over another. Our code is available at https://github.com/AIPHES/DiscoScore.

Zero-Shot Cross-Lingual Summarization via Large Language Models

Given a document in a source language, cross-lingual summarization (CLS) aims to generate a summary in a different target language. Recently, the emergence of Large Language Models (LLMs), such as GPT-3.5, ChatGPT and GPT-4, has attracted wide attention from the computational linguistics community. However, it is not yet known the performance of LLMs on CLS. In this report, we empirically use various prompts to guide LLMs to perform zero-shot CLS from different paradigms (i.e., end-to-end and pipeline), and provide a preliminary evaluation on the generated summaries. We find that ChatGPT and GPT-4 originally prefer to produce lengthy summaries with detailed information. These two LLMs can further balance informativeness and conciseness with the help of an interactive prompt, significantly improving their CLS performance. Experimental results on three widely-used CLS datasets show that GPT-4 achieves state-of-the-art zero-shot CLS performance, and performs competitively compared with the fine-tuned mBART-50. Moreover, we also find some multi-lingual and bilingual LLMs (i.e., BLOOMZ, ChatGLM-6B, Vicuna-13B and ChatYuan) have limited zero-shot CLS ability. Due to the composite nature of CLS, which requires models to perform summarization and translation simultaneously, accomplishing this task in a zero-shot manner is even a challenge for LLMs. Therefore, we sincerely hope and recommend future LLM research could use CLS as a testbed.

Context-aware Decoding Reduces Hallucination in Query-focused Summarization

Query-focused summarization (QFS) aims to provide a summary of a single document/multi documents that can satisfy the information needs of a given query. It is useful for various real-world applications, such as abstractive snippet generation or more recent retrieval augmented generation (RAG). A prototypical QFS pipeline consists of a retriever (sparse or dense retrieval) and a generator (usually a large language model). However, applying large language models (LLM) potentially leads to hallucinations, especially when the evidence contradicts the prior belief of LLMs. There has been growing interest in developing new decoding methods to improve generation quality and reduce hallucination. In this work, we conduct a large-scale reproducibility study on one recently proposed decoding method -- Context-aware Decoding (CAD). In addition to replicating CAD's experiments on news summarization datasets, we include experiments on QFS datasets, and conduct more rigorous analysis on computational complexity and hyperparameter sensitivity. Experiments with eight different language models show that performance-wise, CAD improves QFS quality by (1) reducing factuality errors/hallucinations while (2) mostly retaining the match of lexical patterns, measured by ROUGE scores, while also at a cost of increased inference-time FLOPs and reduced decoding speed. The code implementation based on Huggingface Library is made available https://github.com/zhichaoxu-shufe/context-aware-decoding-qfs

EUR-Lex-Sum: A Multi- and Cross-lingual Dataset for Long-form Summarization in the Legal Domain

Existing summarization datasets come with two main drawbacks: (1) They tend to focus on overly exposed domains, such as news articles or wiki-like texts, and (2) are primarily monolingual, with few multilingual datasets. In this work, we propose a novel dataset, called EUR-Lex-Sum, based on manually curated document summaries of legal acts from the European Union law platform (EUR-Lex). Documents and their respective summaries exist as cross-lingual paragraph-aligned data in several of the 24 official European languages, enabling access to various cross-lingual and lower-resourced summarization setups. We obtain up to 1,500 document/summary pairs per language, including a subset of 375 cross-lingually aligned legal acts with texts available in all 24 languages. In this work, the data acquisition process is detailed and key characteristics of the resource are compared to existing summarization resources. In particular, we illustrate challenging sub-problems and open questions on the dataset that could help the facilitation of future research in the direction of domain-specific cross-lingual summarization. Limited by the extreme length and language diversity of samples, we further conduct experiments with suitable extractive monolingual and cross-lingual baselines for future work. Code for the extraction as well as access to our data and baselines is available online at: https://github.com/achouhan93/eur-lex-sum.

ViDoRAG: Visual Document Retrieval-Augmented Generation via Dynamic Iterative Reasoning Agents

Understanding information from visually rich documents remains a significant challenge for traditional Retrieval-Augmented Generation (RAG) methods. Existing benchmarks predominantly focus on image-based question answering (QA), overlooking the fundamental challenges of efficient retrieval, comprehension, and reasoning within dense visual documents. To bridge this gap, we introduce ViDoSeek, a novel dataset designed to evaluate RAG performance on visually rich documents requiring complex reasoning. Based on it, we identify key limitations in current RAG approaches: (i) purely visual retrieval methods struggle to effectively integrate both textual and visual features, and (ii) previous approaches often allocate insufficient reasoning tokens, limiting their effectiveness. To address these challenges, we propose ViDoRAG, a novel multi-agent RAG framework tailored for complex reasoning across visual documents. ViDoRAG employs a Gaussian Mixture Model (GMM)-based hybrid strategy to effectively handle multi-modal retrieval. To further elicit the model's reasoning capabilities, we introduce an iterative agent workflow incorporating exploration, summarization, and reflection, providing a framework for investigating test-time scaling in RAG domains. Extensive experiments on ViDoSeek validate the effectiveness and generalization of our approach. Notably, ViDoRAG outperforms existing methods by over 10% on the competitive ViDoSeek benchmark.

BooookScore: A systematic exploration of book-length summarization in the era of LLMs

Summarizing book-length documents (>100K tokens) that exceed the context window size of large language models (LLMs) requires first breaking the input document into smaller chunks and then prompting an LLM to merge, update, and compress chunk-level summaries. Despite the complexity and importance of this task, it has yet to be meaningfully studied due to the challenges of evaluation: existing book-length summarization datasets (e.g., BookSum) are in the pretraining data of most public LLMs, and existing evaluation methods struggle to capture errors made by modern LLM summarizers. In this paper, we present the first study of the coherence of LLM-based book-length summarizers implemented via two prompting workflows: (1) hierarchically merging chunk-level summaries, and (2) incrementally updating a running summary. We obtain 1193 fine-grained human annotations on GPT-4 generated summaries of 100 recently-published books and identify eight common types of coherence errors made by LLMs. Because human evaluation is expensive and time-consuming, we develop an automatic metric, BooookScore, that measures the proportion of sentences in a summary that do not contain any of the identified error types. BooookScore has high agreement with human annotations and allows us to systematically evaluate the impact of many other critical parameters (e.g., chunk size, base LLM) while saving $15K USD and 500 hours in human evaluation costs. We find that closed-source LLMs such as GPT-4 and Claude 2 produce summaries with higher BooookScore than those generated by open-source models. While LLaMA 2 falls behind other models, Mixtral achieves performance on par with GPT-3.5-Turbo. Incremental updating yields lower BooookScore but higher level of detail than hierarchical merging, a trade-off sometimes preferred by annotators.

From Local to Global: A Graph RAG Approach to Query-Focused Summarization

The use of retrieval-augmented generation (RAG) to retrieve relevant information from an external knowledge source enables large language models (LLMs) to answer questions over private and/or previously unseen document collections. However, RAG fails on global questions directed at an entire text corpus, such as "What are the main themes in the dataset?", since this is inherently a query-focused summarization (QFS) task, rather than an explicit retrieval task. Prior QFS methods, meanwhile, fail to scale to the quantities of text indexed by typical RAG systems. To combine the strengths of these contrasting methods, we propose a Graph RAG approach to question answering over private text corpora that scales with both the generality of user questions and the quantity of source text to be indexed. Our approach uses an LLM to build a graph-based text index in two stages: first to derive an entity knowledge graph from the source documents, then to pregenerate community summaries for all groups of closely-related entities. Given a question, each community summary is used to generate a partial response, before all partial responses are again summarized in a final response to the user. For a class of global sensemaking questions over datasets in the 1 million token range, we show that Graph RAG leads to substantial improvements over a na\"ive RAG baseline for both the comprehensiveness and diversity of generated answers. An open-source, Python-based implementation of both global and local Graph RAG approaches is forthcoming at https://aka.ms/graphrag.

On the State of German (Abstractive) Text Summarization

With recent advancements in the area of Natural Language Processing, the focus is slowly shifting from a purely English-centric view towards more language-specific solutions, including German. Especially practical for businesses to analyze their growing amount of textual data are text summarization systems, which transform long input documents into compressed and more digestible summary texts. In this work, we assess the particular landscape of German abstractive text summarization and investigate the reasons why practically useful solutions for abstractive text summarization are still absent in industry. Our focus is two-fold, analyzing a) training resources, and b) publicly available summarization systems. We are able to show that popular existing datasets exhibit crucial flaws in their assumptions about the original sources, which frequently leads to detrimental effects on system generalization and evaluation biases. We confirm that for the most popular training dataset, MLSUM, over 50% of the training set is unsuitable for abstractive summarization purposes. Furthermore, available systems frequently fail to compare to simple baselines, and ignore more effective and efficient extractive summarization approaches. We attribute poor evaluation quality to a variety of different factors, which are investigated in more detail in this work: A lack of qualitative (and diverse) gold data considered for training, understudied (and untreated) positional biases in some of the existing datasets, and the lack of easily accessible and streamlined pre-processing strategies or analysis tools. We provide a comprehensive assessment of available models on the cleaned datasets, and find that this can lead to a reduction of more than 20 ROUGE-1 points during evaluation. The code for dataset filtering and reproducing results can be found online at https://github.com/dennlinger/summaries

Summary of a Haystack: A Challenge to Long-Context LLMs and RAG Systems

LLMs and RAG systems are now capable of handling millions of input tokens or more. However, evaluating the output quality of such systems on long-context tasks remains challenging, as tasks like Needle-in-a-Haystack lack complexity. In this work, we argue that summarization can play a central role in such evaluation. We design a procedure to synthesize Haystacks of documents, ensuring that specific insights repeat across documents. The "Summary of a Haystack" (SummHay) task then requires a system to process the Haystack and generate, given a query, a summary that identifies the relevant insights and precisely cites the source documents. Since we have precise knowledge of what insights should appear in a haystack summary and what documents should be cited, we implement a highly reproducible automatic evaluation that can score summaries on two aspects - Coverage and Citation. We generate Haystacks in two domains (conversation, news), and perform a large-scale evaluation of 10 LLMs and corresponding 50 RAG systems. Our findings indicate that SummHay is an open challenge for current systems, as even systems provided with an Oracle signal of document relevance lag our estimate of human performance (56\%) by 10+ points on a Joint Score. Without a retriever, long-context LLMs like GPT-4o and Claude 3 Opus score below 20% on SummHay. We show SummHay can also be used to study enterprise RAG systems and position bias in long-context models. We hope future systems can equal and surpass human performance on SummHay.

Read, Highlight and Summarize: A Hierarchical Neural Semantic Encoder-based Approach

Traditional sequence-to-sequence (seq2seq) models and other variations of the attention-mechanism such as hierarchical attention have been applied to the text summarization problem. Though there is a hierarchy in the way humans use language by forming paragraphs from sentences and sentences from words, hierarchical models have usually not worked that much better than their traditional seq2seq counterparts. This effect is mainly because either the hierarchical attention mechanisms are too sparse using hard attention or noisy using soft attention. In this paper, we propose a method based on extracting the highlights of a document; a key concept that is conveyed in a few sentences. In a typical text summarization dataset consisting of documents that are 800 tokens in length (average), capturing long-term dependencies is very important, e.g., the last sentence can be grouped with the first sentence of a document to form a summary. LSTMs (Long Short-Term Memory) proved useful for machine translation. However, they often fail to capture long-term dependencies while modeling long sequences. To address these issues, we have adapted Neural Semantic Encoders (NSE) to text summarization, a class of memory-augmented neural networks by improving its functionalities and proposed a novel hierarchical NSE that outperforms similar previous models significantly. The quality of summarization was improved by augmenting linguistic factors, namely lemma, and Part-of-Speech (PoS) tags, to each word in the dataset for improved vocabulary coverage and generalization. The hierarchical NSE model on factored dataset outperformed the state-of-the-art by nearly 4 ROUGE points. We further designed and used the first GPU-based self-critical Reinforcement Learning model.

Unraveling the Capabilities of Language Models in News Summarization

Given the recent introduction of multiple language models and the ongoing demand for improved Natural Language Processing tasks, particularly summarization, this work provides a comprehensive benchmarking of 20 recent language models, focusing on smaller ones for the news summarization task. In this work, we systematically test the capabilities and effectiveness of these models in summarizing news article texts which are written in different styles and presented in three distinct datasets. Specifically, we focus in this study on zero-shot and few-shot learning settings and we apply a robust evaluation methodology that combines different evaluation concepts including automatic metrics, human evaluation, and LLM-as-a-judge. Interestingly, including demonstration examples in the few-shot learning setting did not enhance models' performance and, in some cases, even led to worse quality of the generated summaries. This issue arises mainly due to the poor quality of the gold summaries that have been used as reference summaries, which negatively impacts the models' performance. Furthermore, our study's results highlight the exceptional performance of GPT-3.5-Turbo and GPT-4, which generally dominate due to their advanced capabilities. However, among the public models evaluated, certain models such as Qwen1.5-7B, SOLAR-10.7B-Instruct-v1.0, Meta-Llama-3-8B and Zephyr-7B-Beta demonstrated promising results. These models showed significant potential, positioning them as competitive alternatives to large models for the task of news summarization.

MeetingBank: A Benchmark Dataset for Meeting Summarization

As the number of recorded meetings increases, it becomes increasingly important to utilize summarization technology to create useful summaries of these recordings. However, there is a crucial lack of annotated meeting corpora for developing this technology, as it can be hard to collect meetings, especially when the topics discussed are confidential. Furthermore, meeting summaries written by experienced writers are scarce, making it hard for abstractive summarizers to produce sensible output without a reliable reference. This lack of annotated corpora has hindered the development of meeting summarization technology. In this paper, we present MeetingBank, a new benchmark dataset of city council meetings over the past decade. MeetingBank is unique among other meeting corpora due to its divide-and-conquer approach, which involves dividing professionally written meeting minutes into shorter passages and aligning them with specific segments of the meeting. This breaks down the process of summarizing a lengthy meeting into smaller, more manageable tasks. The dataset provides a new testbed of various meeting summarization systems and also allows the public to gain insight into how council decisions are made. We make the collection, including meeting video links, transcripts, reference summaries, agenda, and other metadata, publicly available to facilitate the development of better meeting summarization techniques. Our dataset can be accessed at: https://meetingbank.github.io

Exploring the Limits of ChatGPT for Query or Aspect-based Text Summarization

Text summarization has been a crucial problem in natural language processing (NLP) for several decades. It aims to condense lengthy documents into shorter versions while retaining the most critical information. Various methods have been proposed for text summarization, including extractive and abstractive summarization. The emergence of large language models (LLMs) like GPT3 and ChatGPT has recently created significant interest in using these models for text summarization tasks. Recent studies goyal2022news, zhang2023benchmarking have shown that LLMs-generated news summaries are already on par with humans. However, the performance of LLMs for more practical applications like aspect or query-based summaries is underexplored. To fill this gap, we conducted an evaluation of ChatGPT's performance on four widely used benchmark datasets, encompassing diverse summaries from Reddit posts, news articles, dialogue meetings, and stories. Our experiments reveal that ChatGPT's performance is comparable to traditional fine-tuning methods in terms of Rouge scores. Moreover, we highlight some unique differences between ChatGPT-generated summaries and human references, providing valuable insights into the superpower of ChatGPT for diverse text summarization tasks. Our findings call for new directions in this area, and we plan to conduct further research to systematically examine the characteristics of ChatGPT-generated summaries through extensive human evaluation.

Podcast Summary Assessment: A Resource for Evaluating Summary Assessment Methods

Automatic summary assessment is useful for both machine-generated and human-produced summaries. Automatically evaluating the summary text given the document enables, for example, summary generation system development and detection of inappropriate summaries. Summary assessment can be run in a number of modes: ranking summary generation systems; ranking summaries of a particular document; and estimating the quality of a document-summary pair on an absolute scale. Existing datasets with annotation for summary assessment are usually based on news summarization datasets such as CNN/DailyMail or XSum. In this work, we describe a new dataset, the podcast summary assessment corpus, a collection of podcast summaries that were evaluated by human experts at TREC2020. Compared to existing summary assessment data, this dataset has two unique aspects: (i) long-input, speech podcast based, documents; and (ii) an opportunity to detect inappropriate reference summaries in podcast corpus. First, we examine existing assessment methods, including model-free and model-based methods, and provide benchmark results for this long-input summary assessment dataset. Second, with the aim of filtering reference summary-document pairings for training, we apply summary assessment for data selection. The experimental results on these two aspects provide interesting insights on the summary assessment and generation tasks. The podcast summary assessment data is available.

$\textit{Refiner}$: Restructure Retrieval Content Efficiently to Advance Question-Answering Capabilities

Large Language Models (LLMs) are limited by their parametric knowledge, leading to hallucinations in knowledge-extensive tasks. To address this, Retrieval-Augmented Generation (RAG) incorporates external document chunks to expand LLM knowledge. Furthermore, compressing information from document chunks through extraction or summarization can improve LLM performance. Nonetheless, LLMs still struggle to notice and utilize scattered key information, a problem known as the "lost-in-the-middle" syndrome. Therefore, we typically need to restructure the content for LLM to recognize the key information. We propose Refiner, an end-to-end extract-and-restructure paradigm that operates in the post-retrieval process of RAG. Refiner leverages a single decoder-only LLM to adaptively extract query-relevant contents verbatim along with the necessary context, and section them based on their interconnectedness, thereby highlights information distinction, and aligns downstream LLMs with the original context effectively. Experiments show that a trained Refiner (with 7B parameters) exhibits significant gain to downstream LLM in improving answer accuracy, and outperforms other state-of-the-art advanced RAG and concurrent compressing approaches in various single-hop and multi-hop QA tasks. Notably, Refiner achieves a 80.5% tokens reduction and a 1.6-7.0% improvement margin in multi-hop tasks compared to the next best solution. Refiner is a plug-and-play solution that can be seamlessly integrated with RAG systems, facilitating its application across diverse open-source frameworks.

Uncovering Factor Level Preferences to Improve Human-Model Alignment

Despite advancements in Large Language Model (LLM) alignment, understanding the reasons behind LLM preferences remains crucial for bridging the gap between desired and actual behavior. LLMs often exhibit biases or tendencies that diverge from human preferences, such as favoring certain writing styles or producing overly verbose outputs. However, current methods for evaluating preference alignment often lack explainability, relying on coarse-grained comparisons. To address this, we introduce PROFILE (PRObing Factors of InfLuence for Explainability), a novel framework that uncovers and quantifies the influence of specific factors driving preferences. PROFILE's factor level analysis explains the 'why' behind human-model alignment and misalignment, offering insights into the direction of model improvement. We apply PROFILE to analyze human and LLM preferences across three tasks: summarization, helpful response generation, and document-based question-answering. Our factor level analysis reveals a substantial discrepancy between human and LLM preferences in generation tasks, whereas LLMs show strong alignment with human preferences in evaluation tasks. We demonstrate how leveraging factor level insights, including addressing misaligned factors or exploiting the generation-evaluation gap, can improve alignment with human preferences. This work underscores the importance of explainable preference analysis and highlights PROFILE's potential to provide valuable training signals, driving further improvements in human-model alignment.

Hallucination-Free? Assessing the Reliability of Leading AI Legal Research Tools

Legal practice has witnessed a sharp rise in products incorporating artificial intelligence (AI). Such tools are designed to assist with a wide range of core legal tasks, from search and summarization of caselaw to document drafting. But the large language models used in these tools are prone to "hallucinate," or make up false information, making their use risky in high-stakes domains. Recently, certain legal research providers have touted methods such as retrieval-augmented generation (RAG) as "eliminating" (Casetext, 2023) or "avoid[ing]" hallucinations (Thomson Reuters, 2023), or guaranteeing "hallucination-free" legal citations (LexisNexis, 2023). Because of the closed nature of these systems, systematically assessing these claims is challenging. In this article, we design and report on the first preregistered empirical evaluation of AI-driven legal research tools. We demonstrate that the providers' claims are overstated. While hallucinations are reduced relative to general-purpose chatbots (GPT-4), we find that the AI research tools made by LexisNexis (Lexis+ AI) and Thomson Reuters (Westlaw AI-Assisted Research and Ask Practical Law AI) each hallucinate between 17% and 33% of the time. We also document substantial differences between systems in responsiveness and accuracy. Our article makes four key contributions. It is the first to assess and report the performance of RAG-based proprietary legal AI tools. Second, it introduces a comprehensive, preregistered dataset for identifying and understanding vulnerabilities in these systems. Third, it proposes a clear typology for differentiating between hallucinations and accurate legal responses. Last, it provides evidence to inform the responsibilities of legal professionals in supervising and verifying AI outputs, which remains a central open question for the responsible integration of AI into law.

SCALE: Scaling up the Complexity for Advanced Language Model Evaluation

Recent strides in Large Language Models (LLMs) have saturated many NLP benchmarks (even professional domain-specific ones), emphasizing the need for novel, more challenging novel ones to properly assess LLM capabilities. In this paper, we introduce a novel NLP benchmark that poses challenges to current LLMs across four key dimensions: processing long documents (up to 50K tokens), utilizing domain specific knowledge (embodied in legal texts), multilingual understanding (covering five languages), and multitasking (comprising legal document to document Information Retrieval, Court View Generation, Leading Decision Summarization, Citation Extraction, and eight challenging Text Classification tasks). Our benchmark comprises diverse legal NLP datasets from the Swiss legal system, allowing for a comprehensive study of the underlying Non-English, inherently multilingual, federal legal system. Despite recent advances, efficiently processing long documents for intense review/analysis tasks remains an open challenge for language models. Also, comprehensive, domain-specific benchmarks requiring high expertise to develop are rare, as are multilingual benchmarks. This scarcity underscores our contribution's value, considering most public models are trained predominantly on English corpora, while other languages remain understudied, particularly for practical domain-specific NLP tasks. Our benchmark allows for testing and advancing the state-of-the-art LLMs. As part of our study, we evaluate several pre-trained multilingual language models on our benchmark to establish strong baselines as a point of reference. Despite the large size of our datasets (tens to hundreds of thousands of examples), existing publicly available models struggle with most tasks, even after in-domain pretraining. We publish all resources (benchmark suite, pre-trained models, code) under a fully permissive open CC BY-SA license.

NLEBench+NorGLM: A Comprehensive Empirical Analysis and Benchmark Dataset for Generative Language Models in Norwegian

Recent advancements in Generative Language Models (GLMs) have transformed Natural Language Processing (NLP) by showcasing the effectiveness of the "pre-train, prompt, and predict" paradigm in utilizing pre-trained GLM knowledge for diverse applications. Despite their potential, these capabilities lack adequate quantitative characterization due to the absence of comprehensive benchmarks, particularly for low-resource languages. Existing low-resource benchmarks focus on discriminative language models like BERT, neglecting the evaluation of generative language models. Moreover, current benchmarks often overlook measuring generalization performance across multiple tasks, a crucial metric for GLMs. To bridge these gaps, we introduce NLEBench, a comprehensive benchmark tailored for evaluating natural language generation capabilities in Norwegian, a low-resource language. We use Norwegian as a case study to explore whether current GLMs and benchmarks in mainstream languages like English can reveal the unique characteristics of underrepresented languages. NLEBench encompasses a suite of real-world NLP tasks ranging from news storytelling, summarization, open-domain conversation, natural language understanding, instruction fine-tuning, toxicity and bias evaluation, to self-curated Chain-of-Thought investigation. It features two high-quality, human-annotated datasets: an instruction dataset covering traditional Norwegian cultures, idioms, slang, and special expressions, and a document-grounded multi-label dataset for topic classification, question answering, and summarization. This paper also introduces foundational Norwegian Generative Language Models (NorGLMs) developed with diverse parameter scales and Transformer-based architectures. Systematic evaluations on the proposed benchmark suite provide insights into the capabilities and scalability of NorGLMs across various downstream tasks.

Leveraging the Power of LLMs: A Fine-Tuning Approach for High-Quality Aspect-Based Summarization

The ever-increasing volume of digital information necessitates efficient methods for users to extract key insights from lengthy documents. Aspect-based summarization offers a targeted approach, generating summaries focused on specific aspects within a document. Despite advancements in aspect-based summarization research, there is a continuous quest for improved model performance. Given that large language models (LLMs) have demonstrated the potential to revolutionize diverse tasks within natural language processing, particularly in the problem of summarization, this paper explores the potential of fine-tuning LLMs for the aspect-based summarization task. We evaluate the impact of fine-tuning open-source foundation LLMs, including Llama2, Mistral, Gemma and Aya, on a publicly available domain-specific aspect based summary dataset. We hypothesize that this approach will enable these models to effectively identify and extract aspect-related information, leading to superior quality aspect-based summaries compared to the state-of-the-art. We establish a comprehensive evaluation framework to compare the performance of fine-tuned LLMs against competing aspect-based summarization methods and vanilla counterparts of the fine-tuned LLMs. Our work contributes to the field of aspect-based summarization by demonstrating the efficacy of fine-tuning LLMs for generating high-quality aspect-based summaries. Furthermore, it opens doors for further exploration of using LLMs for targeted information extraction tasks across various NLP domains.

Text Summarization Using Large Language Models: A Comparative Study of MPT-7b-instruct, Falcon-7b-instruct, and OpenAI Chat-GPT Models

Text summarization is a critical Natural Language Processing (NLP) task with applications ranging from information retrieval to content generation. Leveraging Large Language Models (LLMs) has shown remarkable promise in enhancing summarization techniques. This paper embarks on an exploration of text summarization with a diverse set of LLMs, including MPT-7b-instruct, falcon-7b-instruct, and OpenAI ChatGPT text-davinci-003 models. The experiment was performed with different hyperparameters and evaluated the generated summaries using widely accepted metrics such as the Bilingual Evaluation Understudy (BLEU) Score, Recall-Oriented Understudy for Gisting Evaluation (ROUGE) Score, and Bidirectional Encoder Representations from Transformers (BERT) Score. According to the experiment, text-davinci-003 outperformed the others. This investigation involved two distinct datasets: CNN Daily Mail and XSum. Its primary objective was to provide a comprehensive understanding of the performance of Large Language Models (LLMs) when applied to different datasets. The assessment of these models' effectiveness contributes valuable insights to researchers and practitioners within the NLP domain. This work serves as a resource for those interested in harnessing the potential of LLMs for text summarization and lays the foundation for the development of advanced Generative AI applications aimed at addressing a wide spectrum of business challenges.

NapSS: Paragraph-level Medical Text Simplification via Narrative Prompting and Sentence-matching Summarization

Accessing medical literature is difficult for laypeople as the content is written for specialists and contains medical jargon. Automated text simplification methods offer a potential means to address this issue. In this work, we propose a summarize-then-simplify two-stage strategy, which we call NapSS, identifying the relevant content to simplify while ensuring that the original narrative flow is preserved. In this approach, we first generate reference summaries via sentence matching between the original and the simplified abstracts. These summaries are then used to train an extractive summarizer, learning the most relevant content to be simplified. Then, to ensure the narrative consistency of the simplified text, we synthesize auxiliary narrative prompts combining key phrases derived from the syntactical analyses of the original text. Our model achieves results significantly better than the seq2seq baseline on an English medical corpus, yielding 3%~4% absolute improvements in terms of lexical similarity, and providing a further 1.1% improvement of SARI score when combined with the baseline. We also highlight shortcomings of existing evaluation methods, and introduce new metrics that take into account both lexical and high-level semantic similarity. A human evaluation conducted on a random sample of the test set further establishes the effectiveness of the proposed approach. Codes and models are released here: https://github.com/LuJunru/NapSS.

LCFO: Long Context and Long Form Output Dataset and Benchmarking

This paper presents the Long Context and Form Output (LCFO) benchmark, a novel evaluation framework for assessing gradual summarization and summary expansion capabilities across diverse domains. LCFO consists of long input documents (5k words average length), each of which comes with three summaries of different lengths (20%, 10%, and 5% of the input text), as well as approximately 15 questions and answers (QA) related to the input content. Notably, LCFO also provides alignments between specific QA pairs and corresponding summaries in 7 domains. The primary motivation behind providing summaries of different lengths is to establish a controllable framework for generating long texts from shorter inputs, i.e. summary expansion. To establish an evaluation metric framework for summarization and summary expansion, we provide human evaluation scores for human-generated outputs, as well as results from various state-of-the-art large language models (LLMs). GPT-4o-mini achieves best human scores among automatic systems in both summarization and summary expansion tasks (~ +10% and +20%, respectively). It even surpasses human output quality in the case of short summaries (~ +7%). Overall automatic metrics achieve low correlations with human evaluation scores (~ 0.4) but moderate correlation on specific evaluation aspects such as fluency and attribution (~ 0.6). The LCFO benchmark offers a standardized platform for evaluating summarization and summary expansion performance, as well as corresponding automatic metrics, thereby providing an important evaluation framework to advance generative AI.

Learning to summarize from human feedback

As language models become more powerful, training and evaluation are increasingly bottlenecked by the data and metrics used for a particular task. For example, summarization models are often trained to predict human reference summaries and evaluated using ROUGE, but both of these metrics are rough proxies for what we really care about -- summary quality. In this work, we show that it is possible to significantly improve summary quality by training a model to optimize for human preferences. We collect a large, high-quality dataset of human comparisons between summaries, train a model to predict the human-preferred summary, and use that model as a reward function to fine-tune a summarization policy using reinforcement learning. We apply our method to a version of the TL;DR dataset of Reddit posts and find that our models significantly outperform both human reference summaries and much larger models fine-tuned with supervised learning alone. Our models also transfer to CNN/DM news articles, producing summaries nearly as good as the human reference without any news-specific fine-tuning. We conduct extensive analyses to understand our human feedback dataset and fine-tuned models We establish that our reward model generalizes to new datasets, and that optimizing our reward model results in better summaries than optimizing ROUGE according to humans. We hope the evidence from our paper motivates machine learning researchers to pay closer attention to how their training loss affects the model behavior they actually want.

How Ready are Pre-trained Abstractive Models and LLMs for Legal Case Judgement Summarization?

Automatic summarization of legal case judgements has traditionally been attempted by using extractive summarization methods. However, in recent years, abstractive summarization models are gaining popularity since they can generate more natural and coherent summaries. Legal domain-specific pre-trained abstractive summarization models are now available. Moreover, general-domain pre-trained Large Language Models (LLMs), such as ChatGPT, are known to generate high-quality text and have the capacity for text summarization. Hence it is natural to ask if these models are ready for off-the-shelf application to automatically generate abstractive summaries for case judgements. To explore this question, we apply several state-of-the-art domain-specific abstractive summarization models and general-domain LLMs on Indian court case judgements, and check the quality of the generated summaries. In addition to standard metrics for summary quality, we check for inconsistencies and hallucinations in the summaries. We see that abstractive summarization models generally achieve slightly higher scores than extractive models in terms of standard summary evaluation metrics such as ROUGE and BLEU. However, we often find inconsistent or hallucinated information in the generated abstractive summaries. Overall, our investigation indicates that the pre-trained abstractive summarization models and LLMs are not yet ready for fully automatic deployment for case judgement summarization; rather a human-in-the-loop approach including manual checks for inconsistencies is more suitable at present.

Towards Enhancing Coherence in Extractive Summarization: Dataset and Experiments with LLMs

Extractive summarization plays a pivotal role in natural language processing due to its wide-range applications in summarizing diverse content efficiently, while also being faithful to the original content. Despite significant advancement achieved in extractive summarization by Large Language Models (LLMs), these summaries frequently exhibit incoherence. An important aspect of the coherent summary is its readability for intended users. Although there have been many datasets and benchmarks proposed for creating coherent extractive summaries, none of them currently incorporate user intent to improve coherence in extractive summarization. Motivated by this, we propose a systematically created human-annotated dataset consisting of coherent summaries for five publicly available datasets and natural language user feedback, offering valuable insights into how to improve coherence in extractive summaries. We utilize this dataset for aligning LLMs through supervised fine-tuning with natural language human feedback to enhance the coherence of their generated summaries. Preliminary experiments with Falcon-40B and Llama-2-13B show significant performance improvements (~10% Rouge-L) in terms of producing coherent summaries. We further utilize human feedback to benchmark results over instruction-tuned models such as FLAN-T5 which resulted in several interesting findings. Data and source code are available at https://github.com/Mihir3009/Extract-AI.

CaseSumm: A Large-Scale Dataset for Long-Context Summarization from U.S. Supreme Court Opinions

This paper introduces CaseSumm, a novel dataset for long-context summarization in the legal domain that addresses the need for longer and more complex datasets for summarization evaluation. We collect 25.6K U.S. Supreme Court (SCOTUS) opinions and their official summaries, known as "syllabuses." Our dataset is the largest open legal case summarization dataset, and is the first to include summaries of SCOTUS decisions dating back to 1815. We also present a comprehensive evaluation of LLM-generated summaries using both automatic metrics and expert human evaluation, revealing discrepancies between these assessment methods. Our evaluation shows Mistral 7b, a smaller open-source model, outperforms larger models on most automatic metrics and successfully generates syllabus-like summaries. In contrast, human expert annotators indicate that Mistral summaries contain hallucinations. The annotators consistently rank GPT-4 summaries as clearer and exhibiting greater sensitivity and specificity. Further, we find that LLM-based evaluations are not more correlated with human evaluations than traditional automatic metrics. Furthermore, our analysis identifies specific hallucinations in generated summaries, including precedent citation errors and misrepresentations of case facts. These findings demonstrate the limitations of current automatic evaluation methods for legal summarization and highlight the critical role of human evaluation in assessing summary quality, particularly in complex, high-stakes domains. CaseSumm is available at https://huggingface.co/datasets/ChicagoHAI/CaseSumm