Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeRethinking the Event Coding Pipeline with Prompt Entailment
For monitoring crises, political events are extracted from the news. The large amount of unstructured full-text event descriptions makes a case-by-case analysis unmanageable, particularly for low-resource humanitarian aid organizations. This creates a demand to classify events into event types, a task referred to as event coding. Typically, domain experts craft an event type ontology, annotators label a large dataset and technical experts develop a supervised coding system. In this work, we propose PR-ENT, a new event coding approach that is more flexible and resource-efficient, while maintaining competitive accuracy: first, we extend an event description such as "Military injured two civilians'' by a template, e.g. "People were [Z]" and prompt a pre-trained (cloze) language model to fill the slot Z. Second, we select answer candidates Z* = {"injured'', "hurt"...} by treating the event description as premise and the filled templates as hypothesis in a textual entailment task. This allows domain experts to draft the codebook directly as labeled prompts and interpretable answer candidates. This human-in-the-loop process is guided by our interactive codebook design tool. We evaluate PR-ENT in several robustness checks: perturbing the event description and prompt template, restricting the vocabulary and removing contextual information.
Policy Compliance Detection via Expression Tree Inference
Policy Compliance Detection (PCD) is a task we encounter when reasoning over texts, e.g. legal frameworks. Previous work to address PCD relies heavily on modeling the task as a special case of Recognizing Textual Entailment. Entailment is applicable to the problem of PCD, however viewing the policy as a single proposition, as opposed to multiple interlinked propositions, yields poor performance and lacks explainability. To address this challenge, more recent proposals for PCD have argued for decomposing policies into expression trees consisting of questions connected with logic operators. Question answering is used to obtain answers to these questions with respect to a scenario. Finally, the expression tree is evaluated in order to arrive at an overall solution. However, this work assumes expression trees are provided by experts, thus limiting its applicability to new policies. In this work, we learn how to infer expression trees automatically from policy texts. We ensure the validity of the inferred trees by introducing constrained decoding using a finite state automaton to ensure the generation of valid trees. We determine through automatic evaluation that 63% of the expression trees generated by our constrained generation model are logically equivalent to gold trees. Human evaluation shows that 88% of trees generated by our model are correct.
WiCE: Real-World Entailment for Claims in Wikipedia
Textual entailment models are increasingly applied in settings like fact-checking, presupposition verification in question answering, or summary evaluation. However, these represent a significant domain shift from existing entailment datasets, and models underperform as a result. We propose WiCE, a new fine-grained textual entailment dataset built on natural claim and evidence pairs extracted from Wikipedia. In addition to standard claim-level entailment, WiCE provides entailment judgments over sub-sentence units of the claim, and a minimal subset of evidence sentences that support each subclaim. To support this, we propose an automatic claim decomposition strategy using GPT-3.5 which we show is also effective at improving entailment models' performance on multiple datasets at test time. Finally, we show that real claims in our dataset involve challenging verification and retrieval problems that existing models fail to address.
A Puzzle-Based Dataset for Natural Language Inference
We provide here a dataset for tasks related to natural language understanding and natural language inference. The dataset contains logical puzzles in natural language from three domains: comparing puzzles, knighs and knaves, and zebra puzzles. Each puzzle is associated with the entire set of atomic questions that can be generated based on the relations and individuals occurring in the text. For each question we provide the correct answer: entailment, contradiction or ambiguity. The answer's correctness is verified against theorem provers. Good puzzles have two properties: (i) each piece of information is necessary and (ii) no unnecessary information is provided. These properties make puzzles interesting candidates for machine comprehension tasks.
BaRDa: A Belief and Reasoning Dataset that Separates Factual Accuracy and Reasoning Ability
While there are numerous benchmarks comparing the performance of modern language models (LMs), end-task evaluations often conflate notions of *factual accuracy* ("truth") and *reasoning ability* ("rationality", or "honesty" in the sense of correctly reporting implications of beliefs). Our goal is a dataset that clearly distinguishes these two notions. Our approach is to leverage and extend a collection of human-annotated *entailment trees*, engineered to express both good and bad chains of reasoning, and using a mixture of true and false facts, in particular including counterfactual examples, to avoid belief bias (also known as the "content effect"). The resulting dataset, called BaRDa, contains 3000 entailments (1787 valid, 1213 invalid), using 6681 true and 2319 false statements. Testing on four GPT-series models, GPT3(curie)/GPT3(davinici)/3.5/4, we find factual accuracy (truth) scores of 74.1/80.6/82.6/87.1 and reasoning accuracy scores of 63.1/78.0/71.8/79.2. This shows the clear progression of models towards improved factual accuracy and entailment reasoning, and the dataset provides a new benchmark that more cleanly separates and quantifies these two notions.
Understanding tables with intermediate pre-training
Table entailment, the binary classification task of finding if a sentence is supported or refuted by the content of a table, requires parsing language and table structure as well as numerical and discrete reasoning. While there is extensive work on textual entailment, table entailment is less well studied. We adapt TAPAS (Herzig et al., 2020), a table-based BERT model, to recognize entailment. Motivated by the benefits of data augmentation, we create a balanced dataset of millions of automatically created training examples which are learned in an intermediate step prior to fine-tuning. This new data is not only useful for table entailment, but also for SQA (Iyyer et al., 2017), a sequential table QA task. To be able to use long examples as input of BERT models, we evaluate table pruning techniques as a pre-processing step to drastically improve the training and prediction efficiency at a moderate drop in accuracy. The different methods set the new state-of-the-art on the TabFact (Chen et al., 2020) and SQA datasets.
PropSegmEnt: A Large-Scale Corpus for Proposition-Level Segmentation and Entailment Recognition
The widely studied task of Natural Language Inference (NLI) requires a system to recognize whether one piece of text is textually entailed by another, i.e. whether the entirety of its meaning can be inferred from the other. In current NLI datasets and models, textual entailment relations are typically defined on the sentence- or paragraph-level. However, even a simple sentence often contains multiple propositions, i.e. distinct units of meaning conveyed by the sentence. As these propositions can carry different truth values in the context of a given premise, we argue for the need to recognize the textual entailment relation of each proposition in a sentence individually. We propose PropSegmEnt, a corpus of over 35K propositions annotated by expert human raters. Our dataset structure resembles the tasks of (1) segmenting sentences within a document to the set of propositions, and (2) classifying the entailment relation of each proposition with respect to a different yet topically-aligned document, i.e. documents describing the same event or entity. We establish strong baselines for the segmentation and entailment tasks. Through case studies on summary hallucination detection and document-level NLI, we demonstrate that our conceptual framework is potentially useful for understanding and explaining the compositionality of NLI labels.
Minds versus Machines: Rethinking Entailment Verification with Language Models
Humans make numerous inferences in text comprehension to understand discourse. This paper aims to understand the commonalities and disparities in the inference judgments between humans and state-of-the-art Large Language Models (LLMs). Leveraging a comprehensively curated entailment verification benchmark, we evaluate both human and LLM performance across various reasoning categories. Our benchmark includes datasets from three categories (NLI, contextual QA, and rationales) that include multi-sentence premises and different knowledge types, thereby evaluating the inference capabilities in complex reasoning instances. Notably, our findings reveal LLMs' superiority in multi-hop reasoning across extended contexts, while humans excel in tasks necessitating simple deductive reasoning. Leveraging these insights, we introduce a fine-tuned Flan-T5 model that outperforms GPT-3.5 and rivals with GPT-4, offering a robust open-source solution for entailment verification. As a practical application, we showcase the efficacy of our finetuned model in enhancing self-consistency in model-generated explanations, resulting in a 6% performance boost on average across three multiple-choice question-answering datasets.
Joint Learning of Sentence Embeddings for Relevance and Entailment
We consider the problem of Recognizing Textual Entailment within an Information Retrieval context, where we must simultaneously determine the relevancy as well as degree of entailment for individual pieces of evidence to determine a yes/no answer to a binary natural language question. We compare several variants of neural networks for sentence embeddings in a setting of decision-making based on evidence of varying relevance. We propose a basic model to integrate evidence for entailment, show that joint training of the sentence embeddings to model relevance and entailment is feasible even with no explicit per-evidence supervision, and show the importance of evaluating strong baselines. We also demonstrate the benefit of carrying over text comprehension model trained on an unrelated task for our small datasets. Our research is motivated primarily by a new open dataset we introduce, consisting of binary questions and news-based evidence snippets. We also apply the proposed relevance-entailment model on a similar task of ranking multiple-choice test answers, evaluating it on a preliminary dataset of school test questions as well as the standard MCTest dataset, where we improve the neural model state-of-art.
Explaining Answers with Entailment Trees
Our goal, in the context of open-domain textual question-answering (QA), is to explain answers by showing the line of reasoning from what is known to the answer, rather than simply showing a fragment of textual evidence (a "rationale'"). If this could be done, new opportunities for understanding and debugging the system's reasoning become possible. Our approach is to generate explanations in the form of entailment trees, namely a tree of multipremise entailment steps from facts that are known, through intermediate conclusions, to the hypothesis of interest (namely the question + answer). To train a model with this skill, we created ENTAILMENTBANK, the first dataset to contain multistep entailment trees. Given a hypothesis (question + answer), we define three increasingly difficult explanation tasks: generate a valid entailment tree given (a) all relevant sentences (b) all relevant and some irrelevant sentences, or (c) a corpus. We show that a strong language model can partially solve these tasks, in particular when the relevant sentences are included in the input (e.g., 35% of trees for (a) are perfect), and with indications of generalization to other domains. This work is significant as it provides a new type of dataset (multistep entailments) and baselines, offering a new avenue for the community to generate richer, more systematic explanations.
A large annotated corpus for learning natural language inference
Understanding entailment and contradiction is fundamental to understanding natural language, and inference about entailment and contradiction is a valuable testing ground for the development of semantic representations. However, machine learning research in this area has been dramatically limited by the lack of large-scale resources. To address this, we introduce the Stanford Natural Language Inference corpus, a new, freely available collection of labeled sentence pairs, written by humans doing a novel grounded task based on image captioning. At 570K pairs, it is two orders of magnitude larger than all other resources of its type. This increase in scale allows lexicalized classifiers to outperform some sophisticated existing entailment models, and it allows a neural network-based model to perform competitively on natural language inference benchmarks for the first time.
Cross-Policy Compliance Detection via Question Answering
Policy compliance detection is the task of ensuring that a scenario conforms to a policy (e.g. a claim is valid according to government rules or a post in an online platform conforms to community guidelines). This task has been previously instantiated as a form of textual entailment, which results in poor accuracy due to the complexity of the policies. In this paper we propose to address policy compliance detection via decomposing it into question answering, where questions check whether the conditions stated in the policy apply to the scenario, and an expression tree combines the answers to obtain the label. Despite the initial upfront annotation cost, we demonstrate that this approach results in better accuracy, especially in the cross-policy setup where the policies during testing are unseen in training. In addition, it allows us to use existing question answering models pre-trained on existing large datasets. Finally, it explicitly identifies the information missing from a scenario in case policy compliance cannot be determined. We conduct our experiments using a recent dataset consisting of government policies, which we augment with expert annotations and find that the cost of annotating question answering decomposition is largely offset by improved inter-annotator agreement and speed.
Are Natural Language Inference Models IMPPRESsive? Learning IMPlicature and PRESupposition
Natural language inference (NLI) is an increasingly important task for natural language understanding, which requires one to infer whether a sentence entails another. However, the ability of NLI models to make pragmatic inferences remains understudied. We create an IMPlicature and PRESupposition diagnostic dataset (IMPPRES), consisting of >25k semiautomatically generated sentence pairs illustrating well-studied pragmatic inference types. We use IMPPRES to evaluate whether BERT, InferSent, and BOW NLI models trained on MultiNLI (Williams et al., 2018) learn to make pragmatic inferences. Although MultiNLI appears to contain very few pairs illustrating these inference types, we find that BERT learns to draw pragmatic inferences. It reliably treats scalar implicatures triggered by "some" as entailments. For some presupposition triggers like "only", BERT reliably recognizes the presupposition as an entailment, even when the trigger is embedded under an entailment canceling operator like negation. BOW and InferSent show weaker evidence of pragmatic reasoning. We conclude that NLI training encourages models to learn some, but not all, pragmatic inferences.
QAFactEval: Improved QA-Based Factual Consistency Evaluation for Summarization
Factual consistency is an essential quality of text summarization models in practical settings. Existing work in evaluating this dimension can be broadly categorized into two lines of research, entailment-based and question answering (QA)-based metrics, and different experimental setups often lead to contrasting conclusions as to which paradigm performs the best. In this work, we conduct an extensive comparison of entailment and QA-based metrics, demonstrating that carefully choosing the components of a QA-based metric, especially question generation and answerability classification, is critical to performance. Building on those insights, we propose an optimized metric, which we call QAFactEval, that leads to a 14% average improvement over previous QA-based metrics on the SummaC factual consistency benchmark, and also outperforms the best-performing entailment-based metric. Moreover, we find that QA-based and entailment-based metrics can offer complementary signals and be combined into a single metric for a further performance boost.
Factoring Statutory Reasoning as Language Understanding Challenges
Statutory reasoning is the task of determining whether a legal statute, stated in natural language, applies to the text description of a case. Prior work introduced a resource that approached statutory reasoning as a monolithic textual entailment problem, with neural baselines performing nearly at-chance. To address this challenge, we decompose statutory reasoning into four types of language-understanding challenge problems, through the introduction of concepts and structure found in Prolog programs. Augmenting an existing benchmark, we provide annotations for the four tasks, and baselines for three of them. Models for statutory reasoning are shown to benefit from the additional structure, improving on prior baselines. Further, the decomposition into subtasks facilitates finer-grained model diagnostics and clearer incremental progress.
FACTOID: FACtual enTailment fOr hallucInation Detection
The widespread adoption of Large Language Models (LLMs) has facilitated numerous benefits. However, hallucination is a significant concern. In response, Retrieval Augmented Generation (RAG) has emerged as a highly promising paradigm to improve LLM outputs by grounding them in factual information. RAG relies on textual entailment (TE) or similar methods to check if the text produced by LLMs is supported or contradicted, compared to retrieved documents. This paper argues that conventional TE methods are inadequate for spotting hallucinations in content generated by LLMs. For instance, consider a prompt about the 'USA's stance on the Ukraine war''. The AI-generated text states, ...U.S. President Barack Obama says the U.S. will not put troops in Ukraine...'' However, during the war the U.S. president is Joe Biden which contradicts factual reality. Moreover, current TE systems are unable to accurately annotate the given text and identify the exact portion that is contradicted. To address this, we introduces a new type of TE called ``Factual Entailment (FE).'', aims to detect factual inaccuracies in content generated by LLMs while also highlighting the specific text segment that contradicts reality. We present FACTOID (FACTual enTAILment for hallucInation Detection), a benchmark dataset for FE. We propose a multi-task learning (MTL) framework for FE, incorporating state-of-the-art (SoTA) long text embeddings such as e5-mistral-7b-instruct, along with GPT-3, SpanBERT, and RoFormer. The proposed MTL architecture for FE achieves an avg. 40\% improvement in accuracy on the FACTOID benchmark compared to SoTA TE methods. As FE automatically detects hallucinations, we assessed 15 modern LLMs and ranked them using our proposed Auto Hallucination Vulnerability Index (HVI_auto). This index quantifies and offers a comparative scale to evaluate and rank LLMs according to their hallucinations.
FACTIFY-5WQA: 5W Aspect-based Fact Verification through Question Answering
Automatic fact verification has received significant attention recently. Contemporary automatic fact-checking systems focus on estimating truthfulness using numerical scores which are not human-interpretable. A human fact-checker generally follows several logical steps to verify a verisimilitude claim and conclude whether its truthful or a mere masquerade. Popular fact-checking websites follow a common structure for fact categorization such as half true, half false, false, pants on fire, etc. Therefore, it is necessary to have an aspect-based (delineating which part(s) are true and which are false) explainable system that can assist human fact-checkers in asking relevant questions related to a fact, which can then be validated separately to reach a final verdict. In this paper, we propose a 5W framework (who, what, when, where, and why) for question-answer-based fact explainability. To that end, we present a semi-automatically generated dataset called FACTIFY-5WQA, which consists of 391, 041 facts along with relevant 5W QAs - underscoring our major contribution to this paper. A semantic role labeling system has been utilized to locate 5Ws, which generates QA pairs for claims using a masked language model. Finally, we report a baseline QA system to automatically locate those answers from evidence documents, which can serve as a baseline for future research in the field. Lastly, we propose a robust fact verification system that takes paraphrased claims and automatically validates them. The dataset and the baseline model are available at https: //github.com/ankuranii/acl-5W-QA
BoolQ: Exploring the Surprising Difficulty of Natural Yes/No Questions
In this paper we study yes/no questions that are naturally occurring --- meaning that they are generated in unprompted and unconstrained settings. We build a reading comprehension dataset, BoolQ, of such questions, and show that they are unexpectedly challenging. They often query for complex, non-factoid information, and require difficult entailment-like inference to solve. We also explore the effectiveness of a range of transfer learning baselines. We find that transferring from entailment data is more effective than transferring from paraphrase or extractive QA data, and that it, surprisingly, continues to be very beneficial even when starting from massive pre-trained language models such as BERT. Our best method trains BERT on MultiNLI and then re-trains it on our train set. It achieves 80.4% accuracy compared to 90% accuracy of human annotators (and 62% majority-baseline), leaving a significant gap for future work.
Textual Entailment for Effective Triple Validation in Object Prediction
Knowledge base population seeks to expand knowledge graphs with facts that are typically extracted from a text corpus. Recently, language models pretrained on large corpora have been shown to contain factual knowledge that can be retrieved using cloze-style strategies. Such approach enables zero-shot recall of facts, showing competitive results in object prediction compared to supervised baselines. However, prompt-based fact retrieval can be brittle and heavily depend on the prompts and context used, which may produce results that are unintended or hallucinatory.We propose to use textual entailment to validate facts extracted from language models through cloze statements. Our results show that triple validation based on textual entailment improves language model predictions in different training regimes. Furthermore, we show that entailment-based triple validation is also effective to validate candidate facts extracted from other sources including existing knowledge graphs and text passages where named entities are recognized.
EQUATE: A Benchmark Evaluation Framework for Quantitative Reasoning in Natural Language Inference
Quantitative reasoning is a higher-order reasoning skill that any intelligent natural language understanding system can reasonably be expected to handle. We present EQUATE (Evaluating Quantitative Understanding Aptitude in Textual Entailment), a new framework for quantitative reasoning in textual entailment. We benchmark the performance of 9 published NLI models on EQUATE, and find that on average, state-of-the-art methods do not achieve an absolute improvement over a majority-class baseline, suggesting that they do not implicitly learn to reason with quantities. We establish a new baseline Q-REAS that manipulates quantities symbolically. In comparison to the best performing NLI model, it achieves success on numerical reasoning tests (+24.2%), but has limited verbal reasoning capabilities (-8.1%). We hope our evaluation framework will support the development of models of quantitative reasoning in language understanding.
SelfCheckGPT: Zero-Resource Black-Box Hallucination Detection for Generative Large Language Models
Generative Large Language Models (LLMs) such as GPT-3 are capable of generating highly fluent responses to a wide variety of user prompts. However, LLMs are known to hallucinate facts and make non-factual statements which can undermine trust in their output. Existing fact-checking approaches either require access to token-level output probability distribution (which may not be available for systems such as ChatGPT) or external databases that are interfaced via separate, often complex, modules. In this work, we propose "SelfCheckGPT", a simple sampling-based approach that can be used to fact-check black-box models in a zero-resource fashion, i.e. without an external database. SelfCheckGPT leverages the simple idea that if a LLM has knowledge of a given concept, sampled responses are likely to be similar and contain consistent facts. However, for hallucinated facts, stochastically sampled responses are likely to diverge and contradict one another. We investigate this approach by using GPT-3 to generate passages about individuals from the WikiBio dataset, and manually annotate the factuality of the generated passages. We demonstrate that SelfCheckGPT can: i) detect non-factual and factual sentences; and ii) rank passages in terms of factuality. We compare our approach to several existing baselines and show that in sentence hallucination detection, our approach has AUC-PR scores comparable to grey-box methods, while SelfCheckGPT is best at passage factuality assessment.
Entailment as Robust Self-Learner
Entailment has been recognized as an important metric for evaluating natural language understanding (NLU) models, and recent studies have found that entailment pretraining benefits weakly supervised fine-tuning. In this work, we design a prompting strategy that formulates a number of different NLU tasks as contextual entailment. This approach improves the zero-shot adaptation of pretrained entailment models. Secondly, we notice that self-training entailment-based models with unlabeled data can significantly improve the adaptation performance on downstream tasks. To achieve more stable improvement, we propose the Simple Pseudo-Label Editing (SimPLE) algorithm for better pseudo-labeling quality in self-training. We also found that both pretrained entailment-based models and the self-trained models are robust against adversarial evaluation data. Experiments on binary and multi-class classification tasks show that SimPLE leads to more robust self-training results, indicating that the self-trained entailment models are more efficient and trustworthy than large language models on language understanding tasks.
Entailment as Few-Shot Learner
Large pre-trained language models (LMs) have demonstrated remarkable ability as few-shot learners. However, their success hinges largely on scaling model parameters to a degree that makes it challenging to train and serve. In this paper, we propose a new approach, named as EFL, that can turn small LMs into better few-shot learners. The key idea of this approach is to reformulate potential NLP task into an entailment one, and then fine-tune the model with as little as 8 examples. We further demonstrate our proposed method can be: (i) naturally combined with an unsupervised contrastive learning-based data augmentation method; (ii) easily extended to multilingual few-shot learning. A systematic evaluation on 18 standard NLP tasks demonstrates that this approach improves the various existing SOTA few-shot learning methods by 12\%, and yields competitive few-shot performance with 500 times larger models, such as GPT-3.
Show Me the Work: Fact-Checkers' Requirements for Explainable Automated Fact-Checking
The pervasiveness of large language models and generative AI in online media has amplified the need for effective automated fact-checking to assist fact-checkers in tackling the increasing volume and sophistication of misinformation. The complex nature of fact-checking demands that automated fact-checking systems provide explanations that enable fact-checkers to scrutinise their outputs. However, it is unclear how these explanations should align with the decision-making and reasoning processes of fact-checkers to be effectively integrated into their workflows. Through semi-structured interviews with fact-checking professionals, we bridge this gap by: (i) providing an account of how fact-checkers assess evidence, make decisions, and explain their processes; (ii) examining how fact-checkers use automated tools in practice; and (iii) identifying fact-checker explanation requirements for automated fact-checking tools. The findings show unmet explanation needs and identify important criteria for replicable fact-checking explanations that trace the model's reasoning path, reference specific evidence, and highlight uncertainty and information gaps.
HYPE: Hyperbolic Entailment Filtering for Underspecified Images and Texts
In an era where the volume of data drives the effectiveness of self-supervised learning, the specificity and clarity of data semantics play a crucial role in model training. Addressing this, we introduce HYPerbolic Entailment filtering (HYPE), a novel methodology designed to meticulously extract modality-wise meaningful and well-aligned data from extensive, noisy image-text pair datasets. Our approach leverages hyperbolic embeddings and the concept of entailment cones to evaluate and filter out samples with meaningless or underspecified semantics, focusing on enhancing the specificity of each data sample. HYPE not only demonstrates a significant improvement in filtering efficiency but also sets a new state-of-the-art in the DataComp benchmark when combined with existing filtering techniques. This breakthrough showcases the potential of HYPE to refine the data selection process, thereby contributing to the development of more accurate and efficient self-supervised learning models. Additionally, the image specificity epsilon_{i} can be independently applied to induce an image-only dataset from an image-text or image-only data pool for training image-only self-supervised models and showed superior performance when compared to the dataset induced by CLIP score.
Reframing Tax Law Entailment as Analogical Reasoning
Statutory reasoning refers to the application of legislative provisions to a series of case facts described in natural language. We re-frame statutory reasoning as an analogy task, where each instance of the analogy task involves a combination of two instances of statutory reasoning. This increases the dataset size by two orders of magnitude, and introduces an element of interpretability. We show that this task is roughly as difficult to Natural Language Processing models as the original task. Finally, we come back to statutory reasoning, solving it with a combination of a retrieval mechanism and analogy models, and showing some progress on prior comparable work.
Label Verbalization and Entailment for Effective Zero- and Few-Shot Relation Extraction
Relation extraction systems require large amounts of labeled examples which are costly to annotate. In this work we reformulate relation extraction as an entailment task, with simple, hand-made, verbalizations of relations produced in less than 15 min per relation. The system relies on a pretrained textual entailment engine which is run as-is (no training examples, zero-shot) or further fine-tuned on labeled examples (few-shot or fully trained). In our experiments on TACRED we attain 63% F1 zero-shot, 69% with 16 examples per relation (17% points better than the best supervised system on the same conditions), and only 4 points short to the state-of-the-art (which uses 20 times more training data). We also show that the performance can be improved significantly with larger entailment models, up to 12 points in zero-shot, allowing to report the best results to date on TACRED when fully trained. The analysis shows that our few-shot systems are specially effective when discriminating between relations, and that the performance difference in low data regimes comes mainly from identifying no-relation cases.
VELOCITI: Benchmarking Video-Language Compositional Reasoning with Strict Entailment
A fundamental aspect of compositional reasoning in a video is associating people and their actions across time. Recent years have seen great progress in general-purpose vision or video models and a move towards long-video understanding. While exciting, we take a step back and ask: are current models good at compositional reasoning on short videos? To this end, we introduce VELOCITI, a benchmark to study Video-LLMs by disentangling and assessing the comprehension of agents, actions, and their associations across multiple events. We adopt the Video-Language Entailment setup and propose StrictVLE that requires correct classification (rather than ranking) of the positive and negative caption. We evaluate several models and observe that even the best, LLaVA-OneVision (44.5%) and Gemini-1.5-Pro (49.3%), are far from human accuracy at 93.0%. Results show that action understanding lags behind agents, and negative captions created using entities appearing in the video perform worse than those obtained from pure text manipulation. We also present challenges with ClassicVLE and multiple-choice (MC) evaluation, strengthening our preference for StrictVLE. Finally, we validate that our benchmark requires visual inputs of multiple frames making it ideal to study video-language compositional reasoning.
Enhancing Transformers for Generalizable First-Order Logical Entailment
Transformers, as a fundamental deep learning architecture, have demonstrated remarkable capabilities in reasoning. This paper investigates the generalizable first-order logical reasoning ability of transformers with their parameterized knowledge and explores ways to improve it. The first-order reasoning capability of transformers is assessed through their ability to perform first-order logical entailment, which is quantitatively measured by their performance in answering knowledge graph queries. We establish connections between (1) two types of distribution shifts studied in out-of-distribution generalization and (2) the unseen knowledge and query settings discussed in the task of knowledge graph query answering, enabling a characterization of fine-grained generalizability. Results on our comprehensive dataset show that transformers outperform previous methods specifically designed for this task and provide detailed empirical evidence on the impact of input query syntax, token embedding, and transformer architectures on the reasoning capability of transformers. Interestingly, our findings reveal a mismatch between positional encoding and other design choices in transformer architectures employed in prior practices. This discovery motivates us to propose a more sophisticated, logic-aware architecture, TEGA, to enhance the capability for generalizable first-order logical entailment in transformers.
MABEL: Attenuating Gender Bias using Textual Entailment Data
Pre-trained language models encode undesirable social biases, which are further exacerbated in downstream use. To this end, we propose MABEL (a Method for Attenuating Gender Bias using Entailment Labels), an intermediate pre-training approach for mitigating gender bias in contextualized representations. Key to our approach is the use of a contrastive learning objective on counterfactually augmented, gender-balanced entailment pairs from natural language inference (NLI) datasets. We also introduce an alignment regularizer that pulls identical entailment pairs along opposite gender directions closer. We extensively evaluate our approach on intrinsic and extrinsic metrics, and show that MABEL outperforms previous task-agnostic debiasing approaches in terms of fairness. It also preserves task performance after fine-tuning on downstream tasks. Together, these findings demonstrate the suitability of NLI data as an effective means of bias mitigation, as opposed to only using unlabeled sentences in the literature. Finally, we identify that existing approaches often use evaluation settings that are insufficient or inconsistent. We make an effort to reproduce and compare previous methods, and call for unifying the evaluation settings across gender debiasing methods for better future comparison.
Compositional Evaluation on Japanese Textual Entailment and Similarity
Natural Language Inference (NLI) and Semantic Textual Similarity (STS) are widely used benchmark tasks for compositional evaluation of pre-trained language models. Despite growing interest in linguistic universals, most NLI/STS studies have focused almost exclusively on English. In particular, there are no available multilingual NLI/STS datasets in Japanese, which is typologically different from English and can shed light on the currently controversial behavior of language models in matters such as sensitivity to word order and case particles. Against this background, we introduce JSICK, a Japanese NLI/STS dataset that was manually translated from the English dataset SICK. We also present a stress-test dataset for compositional inference, created by transforming syntactic structures of sentences in JSICK to investigate whether language models are sensitive to word order and case particles. We conduct baseline experiments on different pre-trained language models and compare the performance of multilingual models when applied to Japanese and other languages. The results of the stress-test experiments suggest that the current pre-trained language models are insensitive to word order and case marking.
Exploiting News Article Structure for Automatic Corpus Generation of Entailment Datasets
Transformers represent the state-of-the-art in Natural Language Processing (NLP) in recent years, proving effective even in tasks done in low-resource languages. While pretrained transformers for these languages can be made, it is challenging to measure their true performance and capacity due to the lack of hard benchmark datasets, as well as the difficulty and cost of producing them. In this paper, we present three contributions: First, we propose a methodology for automatically producing Natural Language Inference (NLI) benchmark datasets for low-resource languages using published news articles. Through this, we create and release NewsPH-NLI, the first sentence entailment benchmark dataset in the low-resource Filipino language. Second, we produce new pretrained transformers based on the ELECTRA technique to further alleviate the resource scarcity in Filipino, benchmarking them on our dataset against other commonly-used transfer learning techniques. Lastly, we perform analyses on transfer learning techniques to shed light on their true performance when operating in low-data domains through the use of degradation tests.
A Dataset for Statutory Reasoning in Tax Law Entailment and Question Answering
Legislation can be viewed as a body of prescriptive rules expressed in natural language. The application of legislation to facts of a case we refer to as statutory reasoning, where those facts are also expressed in natural language. Computational statutory reasoning is distinct from most existing work in machine reading, in that much of the information needed for deciding a case is declared exactly once (a law), while the information needed in much of machine reading tends to be learned through distributional language statistics. To investigate the performance of natural language understanding approaches on statutory reasoning, we introduce a dataset, together with a legal-domain text corpus. Straightforward application of machine reading models exhibits low out-of-the-box performance on our questions, whether or not they have been fine-tuned to the legal domain. We contrast this with a hand-constructed Prolog-based system, designed to fully solve the task. These experiments support a discussion of the challenges facing statutory reasoning moving forward, which we argue is an interesting real-world task that can motivate the development of models able to utilize prescriptive rules specified in natural language.
Benchmarking Zero-shot Text Classification: Datasets, Evaluation and Entailment Approach
Zero-shot text classification (0Shot-TC) is a challenging NLU problem to which little attention has been paid by the research community. 0Shot-TC aims to associate an appropriate label with a piece of text, irrespective of the text domain and the aspect (e.g., topic, emotion, event, etc.) described by the label. And there are only a few articles studying 0Shot-TC, all focusing only on topical categorization which, we argue, is just the tip of the iceberg in 0Shot-TC. In addition, the chaotic experiments in literature make no uniform comparison, which blurs the progress. This work benchmarks the 0Shot-TC problem by providing unified datasets, standardized evaluations, and state-of-the-art baselines. Our contributions include: i) The datasets we provide facilitate studying 0Shot-TC relative to conceptually different and diverse aspects: the ``topic'' aspect includes ``sports'' and ``politics'' as labels; the ``emotion'' aspect includes ``joy'' and ``anger''; the ``situation'' aspect includes ``medical assistance'' and ``water shortage''. ii) We extend the existing evaluation setup (label-partially-unseen) -- given a dataset, train on some labels, test on all labels -- to include a more challenging yet realistic evaluation label-fully-unseen 0Shot-TC (Chang et al., 2008), aiming at classifying text snippets without seeing task specific training data at all. iii) We unify the 0Shot-TC of diverse aspects within a textual entailment formulation and study it this way. Code & Data: https://github.com/yinwenpeng/BenchmarkingZeroShot
Explainable Fact Checking with Probabilistic Answer Set Programming
One challenge in fact checking is the ability to improve the transparency of the decision. We present a fact checking method that uses reference information in knowledge graphs (KGs) to assess claims and explain its decisions. KGs contain a formal representation of knowledge with semantic descriptions of entities and their relationships. We exploit such rich semantics to produce interpretable explanations for the fact checking output. As information in a KG is inevitably incomplete, we rely on logical rule discovery and on Web text mining to gather the evidence to assess a given claim. Uncertain rules and facts are turned into logical programs and the checking task is modeled as an inference problem in a probabilistic extension of answer set programs. Experiments show that the probabilistic inference enables the efficient labeling of claims with interpretable explanations, and the quality of the results is higher than state of the art baselines.
Explainable Automated Fact-Checking for Public Health Claims
Fact-checking is the task of verifying the veracity of claims by assessing their assertions against credible evidence. The vast majority of fact-checking studies focus exclusively on political claims. Very little research explores fact-checking for other topics, specifically subject matters for which expertise is required. We present the first study of explainable fact-checking for claims which require specific expertise. For our case study we choose the setting of public health. To support this case study we construct a new dataset PUBHEALTH of 11.8K claims accompanied by journalist crafted, gold standard explanations (i.e., judgments) to support the fact-check labels for claims. We explore two tasks: veracity prediction and explanation generation. We also define and evaluate, with humans and computationally, three coherence properties of explanation quality. Our results indicate that, by training on in-domain data, gains can be made in explainable, automated fact-checking for claims which require specific expertise.
Augmenting Legal Decision Support Systems with LLM-based NLI for Analyzing Social Media Evidence
This paper presents our system description and error analysis of our entry for NLLP 2024 shared task on Legal Natural Language Inference (L-NLI) hagag2024legallenssharedtask2024. The task required classifying these relationships as entailed, contradicted, or neutral, indicating any association between the review and the complaint. Our system emerged as the winning submission, significantly outperforming other entries with a substantial margin and demonstrating the effectiveness of our approach in legal text analysis. We provide a detailed analysis of the strengths and limitations of each model and approach tested, along with a thorough error analysis and suggestions for future improvements. This paper aims to contribute to the growing field of legal NLP by offering insights into advanced techniques for natural language inference in legal contexts, making it accessible to both experts and newcomers in the field.
Truthful AI: Developing and governing AI that does not lie
In many contexts, lying -- the use of verbal falsehoods to deceive -- is harmful. While lying has traditionally been a human affair, AI systems that make sophisticated verbal statements are becoming increasingly prevalent. This raises the question of how we should limit the harm caused by AI "lies" (i.e. falsehoods that are actively selected for). Human truthfulness is governed by social norms and by laws (against defamation, perjury, and fraud). Differences between AI and humans present an opportunity to have more precise standards of truthfulness for AI, and to have these standards rise over time. This could provide significant benefits to public epistemics and the economy, and mitigate risks of worst-case AI futures. Establishing norms or laws of AI truthfulness will require significant work to: (1) identify clear truthfulness standards; (2) create institutions that can judge adherence to those standards; and (3) develop AI systems that are robustly truthful. Our initial proposals for these areas include: (1) a standard of avoiding "negligent falsehoods" (a generalisation of lies that is easier to assess); (2) institutions to evaluate AI systems before and after real-world deployment; and (3) explicitly training AI systems to be truthful via curated datasets and human interaction. A concerning possibility is that evaluation mechanisms for eventual truthfulness standards could be captured by political interests, leading to harmful censorship and propaganda. Avoiding this might take careful attention. And since the scale of AI speech acts might grow dramatically over the coming decades, early truthfulness standards might be particularly important because of the precedents they set.
Deductive Verification of Chain-of-Thought Reasoning
Large Language Models (LLMs) significantly benefit from Chain-of-Thought (CoT) prompting in performing various reasoning tasks. While CoT allows models to produce more comprehensive reasoning processes, its emphasis on intermediate reasoning steps can inadvertently introduce hallucinations and accumulated errors, thereby limiting models' ability to solve complex reasoning tasks. Inspired by how humans engage in careful and meticulous deductive logical reasoning processes to solve tasks, we seek to enable language models to perform explicit and rigorous deductive reasoning, and also ensure the trustworthiness of their reasoning process through self-verification. However, directly verifying the validity of an entire deductive reasoning process is challenging, even with advanced models like ChatGPT. In light of this, we propose to decompose a reasoning verification process into a series of step-by-step subprocesses, each only receiving their necessary context and premises. To facilitate this procedure, we propose Natural Program, a natural language-based deductive reasoning format. Our approach enables models to generate precise reasoning steps where subsequent steps are more rigorously grounded on prior steps. It also empowers language models to carry out reasoning self-verification in a step-by-step manner. By integrating this verification process into each deductive reasoning stage, we significantly enhance the rigor and trustfulness of generated reasoning steps. Along this process, we also improve the answer correctness on complex reasoning tasks. Code will be released at https://github.com/lz1oceani/verify_cot.
Audio Entailment: Assessing Deductive Reasoning for Audio Understanding
Recent literature uses language to build foundation models for audio. These Audio-Language Models (ALMs) are trained on a vast number of audio-text pairs and show remarkable performance in tasks including Text-to-Audio Retrieval, Captioning, and Question Answering. However, their ability to engage in more complex open-ended tasks, like Interactive Question-Answering, requires proficiency in logical reasoning -- a skill not yet benchmarked. We introduce the novel task of Audio Entailment to evaluate an ALM's deductive reasoning ability. This task assesses whether a text description (hypothesis) of audio content can be deduced from an audio recording (premise), with potential conclusions being entailment, neutral, or contradiction, depending on the sufficiency of the evidence. We create two datasets for this task with audio recordings sourced from two audio captioning datasets -- AudioCaps and Clotho -- and hypotheses generated using Large Language Models (LLMs). We benchmark state-of-the-art ALMs and find deficiencies in logical reasoning with both zero-shot and linear probe evaluations. Finally, we propose "caption-before-reason", an intermediate step of captioning that improves the zero-shot and linear-probe performance of ALMs by an absolute 6% and 3%, respectively.
SDOH-NLI: a Dataset for Inferring Social Determinants of Health from Clinical Notes
Social and behavioral determinants of health (SDOH) play a significant role in shaping health outcomes, and extracting these determinants from clinical notes is a first step to help healthcare providers systematically identify opportunities to provide appropriate care and address disparities. Progress on using NLP methods for this task has been hindered by the lack of high-quality publicly available labeled data, largely due to the privacy and regulatory constraints on the use of real patients' information. This paper introduces a new dataset, SDOH-NLI, that is based on publicly available notes and which we release publicly. We formulate SDOH extraction as a natural language inference (NLI) task, and provide binary textual entailment labels obtained from human raters for a cross product of a set of social history snippets as premises and SDOH factors as hypotheses. Our dataset differs from standard NLI benchmarks in that our premises and hypotheses are obtained independently. We evaluate both "off-the-shelf" entailment models as well as models fine-tuned on our data, and highlight the ways in which our dataset appears more challenging than commonly used NLI datasets.
Factify 2: A Multimodal Fake News and Satire News Dataset
The internet gives the world an open platform to express their views and share their stories. While this is very valuable, it makes fake news one of our society's most pressing problems. Manual fact checking process is time consuming, which makes it challenging to disprove misleading assertions before they cause significant harm. This is he driving interest in automatic fact or claim verification. Some of the existing datasets aim to support development of automating fact-checking techniques, however, most of them are text based. Multi-modal fact verification has received relatively scant attention. In this paper, we provide a multi-modal fact-checking dataset called FACTIFY 2, improving Factify 1 by using new data sources and adding satire articles. Factify 2 has 50,000 new data instances. Similar to FACTIFY 1.0, we have three broad categories - support, no-evidence, and refute, with sub-categories based on the entailment of visual and textual data. We also provide a BERT and Vison Transformer based baseline, which achieves 65% F1 score in the test set. The baseline codes and the dataset will be made available at https://github.com/surya1701/Factify-2.0.
Learning to Memorize Entailment and Discourse Relations for Persona-Consistent Dialogues
Maintaining engagement and consistency is particularly important in dialogue systems. Existing works have improved the performance of dialogue systems by intentionally learning interlocutor personas with sophisticated network structures. One issue with this approach is that it requires more personal corpora with annotations. Additionally, these models typically perform the next utterance prediction to generate a response but neglect the discourse coherence in the entire conversation. To address these issues, this study proposes a method of learning to memorize entailment and discourse relations for persona-consistent dialogue tasks. Entailment text pairs in natural language inference dataset were applied to learn latent entailment relations as external memories by premise-to-hypothesis generation task. Furthermore, an internal memory with a similar architecture was applied to the discourse information in the dialogue. Placing orthogonality restrictions on these two memory spaces ensures that the latent entailment relations remain dialogue-independent. Both memories collaborate to obtain entailment and discourse representation for the generation, allowing a deeper understanding of both consistency and coherence. Experiments on two large public datasets, PersonaChat and DSTC7-AVSD, demonstrated the effectiveness of the proposed method. Both automatic and human evaluations indicate that the proposed model outperforms several strong baselines in terms of both persona consistency and response coherence. Our source code is available at https://github.com/Chenrj233/LMEDR.
FACTors: A New Dataset for Studying the Fact-checking Ecosystem
Our fight against false information is spearheaded by fact-checkers. They investigate the veracity of claims and document their findings as fact-checking reports. With the rapid increase in the amount of false information circulating online, the use of automation in fact-checking processes aims to strengthen this ecosystem by enhancing scalability. Datasets containing fact-checked claims play a key role in developing such automated solutions. However, to the best of our knowledge, there is no fact-checking dataset at the ecosystem level, covering claims from a sufficiently long period of time and sourced from a wide range of actors reflecting the entire ecosystem that admittedly follows widely-accepted codes and principles of fact-checking. We present a new dataset FACTors, the first to fill this gap by presenting ecosystem-level data on fact-checking. It contains 118,112 claims from 117,993 fact-checking reports in English (co-)authored by 1,953 individuals and published during the period of 1995-2025 by 39 fact-checking organisations that are active signatories of the IFCN (International Fact-Checking Network) and/or EFCSN (European Fact-Checking Standards Network). It contains 7,327 overlapping claims investigated by multiple fact-checking organisations, corresponding to 2,977 unique claims. It allows to conduct new ecosystem-level studies of the fact-checkers (organisations and individuals). To demonstrate the usefulness of FACTors, we present three example applications, including a first-of-its-kind statistical analysis of the fact-checking ecosystem, examining the political inclinations of the fact-checking organisations, and attempting to assign a credibility score to each organisation based on the findings of the statistical analysis and political leanings. Our methods for constructing FACTors are generic and can be used to maintain a live dataset that can be updated dynamically.
Evaluating Semantic Accuracy of Data-to-Text Generation with Natural Language Inference
A major challenge in evaluating data-to-text (D2T) generation is measuring the semantic accuracy of the generated text, i.e. checking if the output text contains all and only facts supported by the input data. We propose a new metric for evaluating the semantic accuracy of D2T generation based on a neural model pretrained for natural language inference (NLI). We use the NLI model to check textual entailment between the input data and the output text in both directions, allowing us to reveal omissions or hallucinations. Input data are converted to text for NLI using trivial templates. Our experiments on two recent D2T datasets show that our metric can achieve high accuracy in identifying erroneous system outputs.
Uncovering Agendas: A Novel French & English Dataset for Agenda Detection on Social Media
The behavior and decision making of groups or communities can be dramatically influenced by individuals pushing particular agendas, e.g., to promote or disparage a person or an activity, to call for action, etc.. In the examination of online influence campaigns, particularly those related to important political and social events, scholars often concentrate on identifying the sources responsible for setting and controlling the agenda (e.g., public media). In this article we present a methodology for detecting specific instances of agenda control through social media where annotated data is limited or non-existent. By using a modest corpus of Twitter messages centered on the 2022 French Presidential Elections, we carry out a comprehensive evaluation of various approaches and techniques that can be applied to this problem. Our findings demonstrate that by treating the task as a textual entailment problem, it is possible to overcome the requirement for a large annotated training dataset.
Logically at Factify 2022: Multimodal Fact Verification
This paper describes our participant system for the multi-modal fact verification (Factify) challenge at AAAI 2022. Despite the recent advance in text based verification techniques and large pre-trained multimodal models cross vision and language, very limited work has been done in applying multimodal techniques to automate fact checking process, particularly considering the increasing prevalence of claims and fake news about images and videos on social media. In our work, the challenge is treated as multimodal entailment task and framed as multi-class classification. Two baseline approaches are proposed and explored including an ensemble model (combining two uni-modal models) and a multi-modal attention network (modeling the interaction between image and text pair from claim and evidence document). We conduct several experiments investigating and benchmarking different SoTA pre-trained transformers and vision models in this work. Our best model is ranked first in leaderboard which obtains a weighted average F-measure of 0.77 on both validation and test set. Exploratory analysis of dataset is also carried out on the Factify data set and uncovers salient patterns and issues (e.g., word overlapping, visual entailment correlation, source bias) that motivates our hypothesis. Finally, we highlight challenges of the task and multimodal dataset for future research.
The State of Human-centered NLP Technology for Fact-checking
Misinformation threatens modern society by promoting distrust in science, changing narratives in public health, heightening social polarization, and disrupting democratic elections and financial markets, among a myriad of other societal harms. To address this, a growing cadre of professional fact-checkers and journalists provide high-quality investigations into purported facts. However, these largely manual efforts have struggled to match the enormous scale of the problem. In response, a growing body of Natural Language Processing (NLP) technologies have been proposed for more scalable fact-checking. Despite tremendous growth in such research, however, practical adoption of NLP technologies for fact-checking still remains in its infancy today. In this work, we review the capabilities and limitations of the current NLP technologies for fact-checking. Our particular focus is to further chart the design space for how these technologies can be harnessed and refined in order to better meet the needs of human fact-checkers. To do so, we review key aspects of NLP-based fact-checking: task formulation, dataset construction, modeling, and human-centered strategies, such as explainable models and human-in-the-loop approaches. Next, we review the efficacy of applying NLP-based fact-checking tools to assist human fact-checkers. We recommend that future research include collaboration with fact-checker stakeholders early on in NLP research, as well as incorporation of human-centered design practices in model development, in order to further guide technology development for human use and practical adoption. Finally, we advocate for more research on benchmark development supporting extrinsic evaluation of human-centered fact-checking technologies.
ContractNLI: A Dataset for Document-level Natural Language Inference for Contracts
Reviewing contracts is a time-consuming procedure that incurs large expenses to companies and social inequality to those who cannot afford it. In this work, we propose "document-level natural language inference (NLI) for contracts", a novel, real-world application of NLI that addresses such problems. In this task, a system is given a set of hypotheses (such as "Some obligations of Agreement may survive termination.") and a contract, and it is asked to classify whether each hypothesis is "entailed by", "contradicting to" or "not mentioned by" (neutral to) the contract as well as identifying "evidence" for the decision as spans in the contract. We annotated and release the largest corpus to date consisting of 607 annotated contracts. We then show that existing models fail badly on our task and introduce a strong baseline, which (1) models evidence identification as multi-label classification over spans instead of trying to predict start and end tokens, and (2) employs more sophisticated context segmentation for dealing with long documents. We also show that linguistic characteristics of contracts, such as negations by exceptions, are contributing to the difficulty of this task and that there is much room for improvement.
Query-Level Uncertainty in Large Language Models
It is important for Large Language Models to be aware of the boundary of their knowledge, the mechanism of identifying known and unknown queries. This type of awareness can help models perform adaptive inference, such as invoking RAG, engaging in slow and deep thinking, or adopting the abstention mechanism, which is beneficial to the development of efficient and trustworthy AI. In this work, we propose a method to detect knowledge boundaries via Query-Level Uncertainty, which aims to determine if the model is able to address a given query without generating any tokens. To this end, we introduce a novel and training-free method called Internal Confidence, which leverages self-evaluations across layers and tokens. Empirical results on both factual QA and mathematical reasoning tasks demonstrate that our internal confidence can outperform several baselines. Furthermore, we showcase that our proposed method can be used for efficient RAG and model cascading, which is able to reduce inference costs while maintaining performance.
Are Fact-Checking Tools Reliable? An Evaluation of Google Fact Check
Fact-checking is an important way to combat misinformation on social media, especially during significant social events such as the COVID-19 pandemic and the U.S. presidential elections. In this study, we thoroughly evaluated the performance of Google Fact Check, a search engine specifically for fact-checking results, by analyzing the results returned from Google Fact Check regarding 1,000 false claims about COVID-19. We found that Google Fact Check could not provide sufficient fact-checking information for most false claims, even though the results provided are relatively reliable and helpful. We also found that claims getting different fact-checking verdicts tend to contain different emotional tones, and different sources tend to check claims using dictionary words to different extents and at different lengths. Claims in different descriptions are likely to get different fact-checking results. We aimed to bring up the best practice of fact-checking for the general people based on our analyses.
Natural Language Inference in Context -- Investigating Contextual Reasoning over Long Texts
Natural language inference (NLI) is a fundamental NLP task, investigating the entailment relationship between two texts. Popular NLI datasets present the task at sentence-level. While adequate for testing semantic representations, they fall short for testing contextual reasoning over long texts, which is a natural part of the human inference process. We introduce ConTRoL, a new dataset for ConTextual Reasoning over Long texts. Consisting of 8,325 expert-designed "context-hypothesis" pairs with gold labels, ConTRoL is a passage-level NLI dataset with a focus on complex contextual reasoning types such as logical reasoning. It is derived from competitive selection and recruitment test (verbal reasoning test) for police recruitment, with expert level quality. Compared with previous NLI benchmarks, the materials in ConTRoL are much more challenging, involving a range of reasoning types. Empirical results show that state-of-the-art language models perform by far worse than educated humans. Our dataset can also serve as a testing-set for downstream tasks like Checking Factual Correctness of Summaries.
Logic Against Bias: Textual Entailment Mitigates Stereotypical Sentence Reasoning
Due to their similarity-based learning objectives, pretrained sentence encoders often internalize stereotypical assumptions that reflect the social biases that exist within their training corpora. In this paper, we describe several kinds of stereotypes concerning different communities that are present in popular sentence representation models, including pretrained next sentence prediction and contrastive sentence representation models. We compare such models to textual entailment models that learn language logic for a variety of downstream language understanding tasks. By comparing strong pretrained models based on text similarity with textual entailment learning, we conclude that the explicit logic learning with textual entailment can significantly reduce bias and improve the recognition of social communities, without an explicit de-biasing process
Closing the AI Accountability Gap: Defining an End-to-End Framework for Internal Algorithmic Auditing
Rising concern for the societal implications of artificial intelligence systems has inspired a wave of academic and journalistic literature in which deployed systems are audited for harm by investigators from outside the organizations deploying the algorithms. However, it remains challenging for practitioners to identify the harmful repercussions of their own systems prior to deployment, and, once deployed, emergent issues can become difficult or impossible to trace back to their source. In this paper, we introduce a framework for algorithmic auditing that supports artificial intelligence system development end-to-end, to be applied throughout the internal organization development lifecycle. Each stage of the audit yields a set of documents that together form an overall audit report, drawing on an organization's values or principles to assess the fit of decisions made throughout the process. The proposed auditing framework is intended to contribute to closing the accountability gap in the development and deployment of large-scale artificial intelligence systems by embedding a robust process to ensure audit integrity.
ClaimVer: Explainable Claim-Level Verification and Evidence Attribution of Text Through Knowledge Graphs
In the midst of widespread misinformation and disinformation through social media and the proliferation of AI-generated texts, it has become increasingly difficult for people to validate and trust information they encounter. Many fact-checking approaches and tools have been developed, but they often lack appropriate explainability or granularity to be useful in various contexts. A text validation method that is easy to use, accessible, and can perform fine-grained evidence attribution has become crucial. More importantly, building user trust in such a method requires presenting the rationale behind each prediction, as research shows this significantly influences people's belief in automated systems. It is also paramount to localize and bring users' attention to the specific problematic content, instead of providing simple blanket labels. In this paper, we present ClaimVer, a human-centric framework tailored to meet users' informational and verification needs by generating rich annotations and thereby reducing cognitive load. Designed to deliver comprehensive evaluations of texts, it highlights each claim, verifies it against a trusted knowledge graph (KG), presents the evidence, and provides succinct, clear explanations for each claim prediction. Finally, our framework introduces an attribution score, enhancing applicability across a wide range of downstream tasks.
FactSheets: Increasing Trust in AI Services through Supplier's Declarations of Conformity
Accuracy is an important concern for suppliers of artificial intelligence (AI) services, but considerations beyond accuracy, such as safety (which includes fairness and explainability), security, and provenance, are also critical elements to engender consumers' trust in a service. Many industries use transparent, standardized, but often not legally required documents called supplier's declarations of conformity (SDoCs) to describe the lineage of a product along with the safety and performance testing it has undergone. SDoCs may be considered multi-dimensional fact sheets that capture and quantify various aspects of the product and its development to make it worthy of consumers' trust. Inspired by this practice, we propose FactSheets to help increase trust in AI services. We envision such documents to contain purpose, performance, safety, security, and provenance information to be completed by AI service providers for examination by consumers. We suggest a comprehensive set of declaration items tailored to AI and provide examples for two fictitious AI services in the appendix of the paper.
KnowHalu: Hallucination Detection via Multi-Form Knowledge Based Factual Checking
This paper introduces KnowHalu, a novel approach for detecting hallucinations in text generated by large language models (LLMs), utilizing step-wise reasoning, multi-formulation query, multi-form knowledge for factual checking, and fusion-based detection mechanism. As LLMs are increasingly applied across various domains, ensuring that their outputs are not hallucinated is critical. Recognizing the limitations of existing approaches that either rely on the self-consistency check of LLMs or perform post-hoc fact-checking without considering the complexity of queries or the form of knowledge, KnowHalu proposes a two-phase process for hallucination detection. In the first phase, it identifies non-fabrication hallucinations--responses that, while factually correct, are irrelevant or non-specific to the query. The second phase, multi-form based factual checking, contains five key steps: reasoning and query decomposition, knowledge retrieval, knowledge optimization, judgment generation, and judgment aggregation. Our extensive evaluations demonstrate that KnowHalu significantly outperforms SOTA baselines in detecting hallucinations across diverse tasks, e.g., improving by 15.65% in QA tasks and 5.50% in summarization tasks, highlighting its effectiveness and versatility in detecting hallucinations in LLM-generated content.
Inference Scaling scriptsizeFLaws: The Limits of LLM Resampling with Imperfect Verifiers
Recent research has generated hope that inference scaling could allow weaker language models to match or exceed the accuracy of stronger models, such as by repeatedly sampling solutions to a coding problem until it passes unit tests. The central thesis of this paper is that there is no free lunch for inference scaling: indefinite accuracy improvement through resampling can only be realized if the "verifier" (in this case, a set of unit tests) is perfect. When the verifier is imperfect, as it almost always is in domains such as reasoning or coding (for example, unit tests have imperfect coverage), there is a nonzero probability of false positives: incorrect solutions that pass the verifier. Resampling cannot decrease this probability, so it imposes an upper bound to the accuracy of resampling-based inference scaling even with an infinite compute budget. We find that there is a very strong correlation between the model's single-sample accuracy (i.e. accuracy without unit tests) and its false positive rate on coding benchmarks HumanEval and MBPP, whose unit tests have limited coverage. Therefore, no amount of inference scaling of weaker models can enable them to match the single-sample accuracy of a sufficiently strong model (Fig. 1a). When we consider that false positives have a negative utility compared to abstaining from producing a solution, it bends the inference scaling curve further downward. Empirically, we find that the optimal number of samples can be less than 10 under realistic assumptions (Fig. 1b). Finally, we show that beyond accuracy, false positives may have other undesirable qualities, such as poor adherence to coding style conventions.
FarFetched: Entity-centric Reasoning and Claim Validation for the Greek Language based on Textually Represented Environments
Our collective attention span is shortened by the flood of online information. With FarFetched, we address the need for automated claim validation based on the aggregated evidence derived from multiple online news sources. We introduce an entity-centric reasoning framework in which latent connections between events, actions, or statements are revealed via entity mentions and represented in a graph database. Using entity linking and semantic similarity, we offer a way for collecting and combining information from diverse sources in order to generate evidence relevant to the user's claim. Then, we leverage textual entailment recognition to quantitatively determine whether this assertion is credible, based on the created evidence. Our approach tries to fill the gap in automated claim validation for less-resourced languages and is showcased on the Greek language, complemented by the training of relevant semantic textual similarity (STS) and natural language inference (NLI) models that are evaluated on translated versions of common benchmarks.
HealthFC: A Dataset of Health Claims for Evidence-Based Medical Fact-Checking
Seeking health-related advice on the internet has become a common practice in the digital era. Determining the trustworthiness of medical claims found online and finding appropriate evidence for this information is increasingly challenging. Fact-checking has emerged as an approach to assess the veracity of factual claims using evidence from credible knowledge sources. To help advance the automation of this task, in this paper, we introduce a novel dataset of 750 health-related claims, labeled for veracity by medical experts and backed with evidence from appropriate clinical studies. We provide an analysis of the dataset, highlighting its characteristics and challenges. The dataset can be used for Machine Learning tasks related to automated fact-checking such as evidence retrieval, veracity prediction, and explanation generation. For this purpose, we provide baseline models based on different approaches, examine their performance, and discuss the findings.
Talent-Interview: Web-Client Cheating Detection for Online Exams
Online exams are more attractive after the Covid-19 pandemic. Furthermore, during recruitment, online exams are used. However, there are more cheating possibilities for online exams. Assigning a proctor for each exam increases cost. At this point, automatic proctor systems detect possible cheating status. This article proposes an end-to-end system and submodules to get better results for online proctoring. Object detection, face recognition, human voice detection, and segmentation are used in our system. Furthermore, our proposed model works on the PCs of users, meaning a client-based system. So, server cost is eliminated. As far as we know, it is the first time the client-based online proctoring system has been used for recruitment. Online exams are more attractive after the Covid-19 pandemic. Furthermore, during recruitment, online exams are used. However, there are more cheating possibilities for online exams. Assigning a proctor for each exam increases cost. At this point, automatic proctor systems detect possible cheating status. This article proposes an end-to-end system and submodules to get better results for online proctoring. Object detection, face recognition, human voice detection, and segmentation are used in our system. Furthermore, our proposed model works on the PCs of users, meaning a client-based system. So, server cost is eliminated. As far as we know, it is the first time the client-based online proctoring system has been used for recruitment. Furthermore, this cheating system works at https://www.talent-interview.com/tr/.
CsFEVER and CTKFacts: Acquiring Czech data for fact verification
In this paper, we examine several methods of acquiring Czech data for automated fact-checking, which is a task commonly modeled as a classification of textual claim veracity w.r.t. a corpus of trusted ground truths. We attempt to collect sets of data in form of a factual claim, evidence within the ground truth corpus, and its veracity label (supported, refuted or not enough info). As a first attempt, we generate a Czech version of the large-scale FEVER dataset built on top of Wikipedia corpus. We take a hybrid approach of machine translation and document alignment; the approach and the tools we provide can be easily applied to other languages. We discuss its weaknesses and inaccuracies, propose a future approach for their cleaning and publish the 127k resulting translations, as well as a version of such dataset reliably applicable for the Natural Language Inference task - the CsFEVER-NLI. Furthermore, we collect a novel dataset of 3,097 claims, which is annotated using the corpus of 2.2M articles of Czech News Agency. We present its extended annotation methodology based on the FEVER approach, and, as the underlying corpus is kept a trade secret, we also publish a standalone version of the dataset for the task of Natural Language Inference we call CTKFactsNLI. We analyze both acquired datasets for spurious cues - annotation patterns leading to model overfitting. CTKFacts is further examined for inter-annotator agreement, thoroughly cleaned, and a typology of common annotator errors is extracted. Finally, we provide baseline models for all stages of the fact-checking pipeline and publish the NLI datasets, as well as our annotation platform and other experimental data.
End-to-end multilingual fact-checking at scale
In this article, we describe how you can perform end-to-end fact-checking in over 100 languages using Factiverse AI models. We also show through an experimental benchmark that fine-tuned models tailored for fact-checking tasks outperform Large Language Models such as GPT-4, GPT-3.5-Turbo, and Mistral-7b.
Textual Entailment for Event Argument Extraction: Zero- and Few-Shot with Multi-Source Learning
Recent work has shown that NLP tasks such as Relation Extraction (RE) can be recasted as Textual Entailment tasks using verbalizations, with strong performance in zero-shot and few-shot settings thanks to pre-trained entailment models. The fact that relations in current RE datasets are easily verbalized casts doubts on whether entailment would be effective in more complex tasks. In this work we show that entailment is also effective in Event Argument Extraction (EAE), reducing the need of manual annotation to 50% and 20% in ACE and WikiEvents respectively, while achieving the same performance as with full training. More importantly, we show that recasting EAE as entailment alleviates the dependency on schemas, which has been a road-block for transferring annotations between domains. Thanks to the entailment, the multi-source transfer between ACE and WikiEvents further reduces annotation down to 10% and 5% (respectively) of the full training without transfer. Our analysis shows that the key to good results is the use of several entailment datasets to pre-train the entailment model. Similar to previous approaches, our method requires a small amount of effort for manual verbalization: only less than 15 minutes per event argument type is needed, and comparable results can be achieved with users with different level of expertise.
Sunny and Dark Outside?! Improving Answer Consistency in VQA through Entailed Question Generation
While models for Visual Question Answering (VQA) have steadily improved over the years, interacting with one quickly reveals that these models lack consistency. For instance, if a model answers "red" to "What color is the balloon?", it might answer "no" if asked, "Is the balloon red?". These responses violate simple notions of entailment and raise questions about how effectively VQA models ground language. In this work, we introduce a dataset, ConVQA, and metrics that enable quantitative evaluation of consistency in VQA. For a given observable fact in an image (e.g. the balloon's color), we generate a set of logically consistent question-answer (QA) pairs (e.g. Is the balloon red?) and also collect a human-annotated set of common-sense based consistent QA pairs (e.g. Is the balloon the same color as tomato sauce?). Further, we propose a consistency-improving data augmentation module, a Consistency Teacher Module (CTM). CTM automatically generates entailed (or similar-intent) questions for a source QA pair and fine-tunes the VQA model if the VQA's answer to the entailed question is consistent with the source QA pair. We demonstrate that our CTM-based training improves the consistency of VQA models on the ConVQA datasets and is a strong baseline for further research.
AVeriTeC: A Dataset for Real-world Claim Verification with Evidence from the Web
Existing datasets for automated fact-checking have substantial limitations, such as relying on artificial claims, lacking annotations for evidence and intermediate reasoning, or including evidence published after the claim. In this paper we introduce AVeriTeC, a new dataset of 4,568 real-world claims covering fact-checks by 50 different organizations. Each claim is annotated with question-answer pairs supported by evidence available online, as well as textual justifications explaining how the evidence combines to produce a verdict. Through a multi-round annotation process, we avoid common pitfalls including context dependence, evidence insufficiency, and temporal leakage, and reach a substantial inter-annotator agreement of kappa=0.619 on verdicts. We develop a baseline as well as an evaluation scheme for verifying claims through several question-answering steps against the open web.
Reasoning Models Know When They're Right: Probing Hidden States for Self-Verification
Reasoning models have achieved remarkable performance on tasks like math and logical reasoning thanks to their ability to search during reasoning. However, they still suffer from overthinking, often performing unnecessary reasoning steps even after reaching the correct answer. This raises the question: can models evaluate the correctness of their intermediate answers during reasoning? In this work, we study whether reasoning models encode information about answer correctness through probing the model's hidden states. The resulting probe can verify intermediate answers with high accuracy and produces highly calibrated scores. Additionally, we find models' hidden states encode correctness of future answers, enabling early prediction of the correctness before the intermediate answer is fully formulated. We then use the probe as a verifier to decide whether to exit reasoning at intermediate answers during inference, reducing the number of inference tokens by 24\% without compromising performance. These findings confirm that reasoning models do encode a notion of correctness yet fail to exploit it, revealing substantial untapped potential to enhance their efficiency.
PatentEdits: Framing Patent Novelty as Textual Entailment
A patent must be deemed novel and non-obvious in order to be granted by the US Patent Office (USPTO). If it is not, a US patent examiner will cite the prior work, or prior art, that invalidates the novelty and issue a non-final rejection. Predicting what claims of the invention should change given the prior art is an essential and crucial step in securing invention rights, yet has not been studied before as a learnable task. In this work we introduce the PatentEdits dataset, which contains 105K examples of successful revisions that overcome objections to novelty. We design algorithms to label edits sentence by sentence, then establish how well these edits can be predicted with large language models (LLMs). We demonstrate that evaluating textual entailment between cited references and draft sentences is especially effective in predicting which inventive claims remained unchanged or are novel in relation to prior art.
A Chain-of-Thought Is as Strong as Its Weakest Link: A Benchmark for Verifiers of Reasoning Chains
Prompting language models to provide step-by-step answers (e.g., "Chain-of-Thought") is the prominent approach for complex reasoning tasks, where more accurate reasoning chains typically improve downstream task performance. Recent literature discusses automatic methods to verify reasoning steps to evaluate and improve their correctness. However, no fine-grained step-level datasets are available to enable thorough evaluation of such verification methods, hindering progress in this direction. We introduce Reveal: Reasoning Verification Evaluation, a new dataset to benchmark automatic verifiers of complex Chain-of-Thought reasoning in open-domain question answering settings. Reveal includes comprehensive labels for the relevance, attribution to evidence passages, and logical correctness of each reasoning step in a language model's answer, across a wide variety of datasets and state-of-the-art language models.
Towards a Benchmark of Natural Language Arguments
The connections among natural language processing and argumentation theory are becoming stronger in the latest years, with a growing amount of works going in this direction, in different scenarios and applying heterogeneous techniques. In this paper, we present two datasets we built to cope with the combination of the Textual Entailment framework and bipolar abstract argumentation. In our approach, such datasets are used to automatically identify through a Textual Entailment system the relations among the arguments (i.e., attack, support), and then the resulting bipolar argumentation graphs are analyzed to compute the accepted arguments.
RAGAR, Your Falsehood RADAR: RAG-Augmented Reasoning for Political Fact-Checking using Multimodal Large Language Models
The escalating challenge of misinformation, particularly in the context of political discourse, necessitates advanced solutions for fact-checking. We introduce innovative approaches to enhance the reliability and efficiency of multimodal fact-checking through the integration of Large Language Models (LLMs) with Retrieval-augmented Generation (RAG)- based advanced reasoning techniques. This work proposes two novel methodologies, Chain of RAG (CoRAG) and Tree of RAG (ToRAG). The approaches are designed to handle multimodal claims by reasoning the next questions that need to be answered based on previous evidence. Our approaches improve the accuracy of veracity predictions and the generation of explanations over the traditional fact-checking approach of sub-question generation with chain of thought veracity prediction. By employing multimodal LLMs adept at analyzing both text and images, this research advances the capability of automated systems in identifying and countering misinformation.
LM vs LM: Detecting Factual Errors via Cross Examination
A prominent weakness of modern language models (LMs) is their tendency to generate factually incorrect text, which hinders their usability. A natural question is whether such factual errors can be detected automatically. Inspired by truth-seeking mechanisms in law, we propose a factuality evaluation framework for LMs that is based on cross-examination. Our key idea is that an incorrect claim is likely to result in inconsistency with other claims that the model generates. To discover such inconsistencies, we facilitate a multi-turn interaction between the LM that generated the claim and another LM (acting as an examiner) which introduces questions to discover inconsistencies. We empirically evaluate our method on factual claims made by multiple recent LMs on four benchmarks, finding that it outperforms existing methods and baselines, often by a large gap. Our results demonstrate the potential of using interacting LMs for capturing factual errors.
Safe: Enhancing Mathematical Reasoning in Large Language Models via Retrospective Step-aware Formal Verification
Chain-of-Thought (CoT) prompting has become the de facto method to elicit reasoning capabilities from large language models (LLMs). However, to mitigate hallucinations in CoT that are notoriously difficult to detect, current methods such as process reward models (PRMs) or self-consistency operate as opaque boxes and do not provide checkable evidence for their judgments, possibly limiting their effectiveness. To address this issue, we draw inspiration from the idea that "the gold standard for supporting a mathematical claim is to provide a proof". We propose a retrospective, step-aware formal verification framework Safe. Rather than assigning arbitrary scores, we strive to articulate mathematical claims in formal mathematical language Lean 4 at each reasoning step and provide formal proofs to identify hallucinations. We evaluate our framework Safe across multiple language models and various mathematical datasets, demonstrating a significant performance improvement while offering interpretable and verifiable evidence. We also propose FormalStep as a benchmark for step correctness theorem proving with 30,809 formal statements. To the best of our knowledge, our work represents the first endeavor to utilize formal mathematical language Lean 4 for verifying natural language content generated by LLMs, aligning with the reason why formal mathematical languages were created in the first place: to provide a robust foundation for hallucination-prone human-written proofs.
Teaching language models to support answers with verified quotes
Recent large language models often answer factual questions correctly. But users can't trust any given claim a model makes without fact-checking, because language models can hallucinate convincing nonsense. In this work we use reinforcement learning from human preferences (RLHP) to train "open-book" QA models that generate answers whilst also citing specific evidence for their claims, which aids in the appraisal of correctness. Supporting evidence is drawn from multiple documents found via a search engine, or from a single user-provided document. Our 280 billion parameter model, GopherCite, is able to produce answers with high quality supporting evidence and abstain from answering when unsure. We measure the performance of GopherCite by conducting human evaluation of answers to questions in a subset of the NaturalQuestions and ELI5 datasets. The model's response is found to be high-quality 80\% of the time on this Natural Questions subset, and 67\% of the time on the ELI5 subset. Abstaining from the third of questions for which it is most unsure improves performance to 90\% and 80\% respectively, approaching human baselines. However, analysis on the adversarial TruthfulQA dataset shows why citation is only one part of an overall strategy for safety and trustworthiness: not all claims supported by evidence are true.
Large Language Models are Better Reasoners with Self-Verification
Recently, with the chain of thought (CoT) prompting, large language models (LLMs), e.g., GPT-3, have shown strong reasoning ability in several natural language processing tasks such as arithmetic, commonsense, and logical reasoning. However, LLMs with CoT require multi-step prompting and multi-token prediction, which is highly sensitive to individual mistakes and vulnerable to error accumulation. The above issues make the LLMs need the ability to verify the answers. In fact, after inferring conclusions in some thinking decision tasks, people often check them by re-verifying steps to avoid some mistakes. In this paper, we propose and prove that LLMs also have similar self-verification abilities. We take the conclusion obtained by CoT as one of the conditions for solving the original problem. By taking turns masking the original conditions and predicting their results, we calculate an explainable answer verification score based on whether the re-predicted conditions are correct. Experimental results demonstrate that the proposed method can improve the reasoning performance on various arithmetic, commonsense, and logical reasoning datasets. Our code is publicly available at: https://github.com/WENGSYX/Self-Verification.
Liar, Liar, Logical Mire: A Benchmark for Suppositional Reasoning in Large Language Models
Knights and knaves problems represent a classic genre of logical puzzles where characters either tell the truth or lie. The objective is to logically deduce each character's identity based on their statements. The challenge arises from the truth-telling or lying behavior, which influences the logical implications of each statement. Solving these puzzles requires not only direct deductions from individual statements, but the ability to assess the truthfulness of statements by reasoning through various hypothetical scenarios. As such, knights and knaves puzzles serve as compelling examples of suppositional reasoning. In this paper, we introduce TruthQuest, a benchmark for suppositional reasoning based on the principles of knights and knaves puzzles. Our benchmark presents problems of varying complexity, considering both the number of characters and the types of logical statements involved. Evaluations on TruthQuest show that large language models like Llama 3 and Mixtral-8x7B exhibit significant difficulties solving these tasks. A detailed error analysis of the models' output reveals that lower-performing models exhibit a diverse range of reasoning errors, frequently failing to grasp the concept of truth and lies. In comparison, more proficient models primarily struggle with accurately inferring the logical implications of potentially false statements.
Verifying the Verifiers: Unveiling Pitfalls and Potentials in Fact Verifiers
Fact verification is essential for ensuring the reliability of LLM applications. In this study, we evaluate 12 pre-trained LLMs and one specialized fact-verifier, including frontier LLMs and open-weight reasoning LLMs, using a collection of examples from 14 fact-checking benchmarks. We share three findings intended to guide future development of more robust fact verifiers. First, we highlight the importance of addressing annotation errors and ambiguity in datasets, demonstrating that approximately 16\% of ambiguous or incorrectly labeled data substantially influences model rankings. Neglecting this issue may result in misleading conclusions during comparative evaluations, and we suggest using a systematic pipeline utilizing LLM-as-a-judge to help identify these issues at scale. Second, we discover that frontier LLMs with few-shot in-context examples, often overlooked in previous works, achieve top-tier performance. We therefore recommend future studies include comparisons with these simple yet highly effective baselines. Lastly, despite their effectiveness, frontier LLMs incur substantial costs, motivating the development of small, fine-tuned fact verifiers. We show that these small models still have room for improvement, particularly on instances that require complex reasoning. Encouragingly, we demonstrate that augmenting training with synthetic multi-hop reasoning data significantly enhances their capabilities in such instances. We release our code, model, and dataset at https://github.com/just1nseo/verifying-the-verifiers
Stance Prediction and Claim Verification: An Arabic Perspective
This work explores the application of textual entailment in news claim verification and stance prediction using a new corpus in Arabic. The publicly available corpus comes in two perspectives: a version consisting of 4,547 true and false claims and a version consisting of 3,786 pairs (claim, evidence). We describe the methodology for creating the corpus and the annotation process. Using the introduced corpus, we also develop two machine learning baselines for two proposed tasks: claim verification and stance prediction. Our best model utilizes pretraining (BERT) and achieves 76.7 F1 on the stance prediction task and 64.3 F1 on the claim verification task. Our preliminary experiments shed some light on the limits of automatic claim verification that relies on claims text only. Results hint that while the linguistic features and world knowledge learned during pretraining are useful for stance prediction, such learned representations from pretraining are insufficient for verifying claims without access to context or evidence.
MAF: Multi-Aspect Feedback for Improving Reasoning in Large Language Models
Language Models (LMs) have shown impressive performance in various natural language tasks. However, when it comes to natural language reasoning, LMs still face challenges such as hallucination, generating incorrect intermediate reasoning steps, and making mathematical errors. Recent research has focused on enhancing LMs through self-improvement using feedback. Nevertheless, existing approaches relying on a single generic feedback source fail to address the diverse error types found in LM-generated reasoning chains. In this work, we propose Multi-Aspect Feedback, an iterative refinement framework that integrates multiple feedback modules, including frozen LMs and external tools, each focusing on a specific error category. Our experimental results demonstrate the efficacy of our approach to addressing several errors in the LM-generated reasoning chain and thus improving the overall performance of an LM in several reasoning tasks. We see a relative improvement of up to 20% in Mathematical Reasoning and up to 18% in Logical Entailment.
Neural Natural Language Inference Models Partially Embed Theories of Lexical Entailment and Negation
We address whether neural models for Natural Language Inference (NLI) can learn the compositional interactions between lexical entailment and negation, using four methods: the behavioral evaluation methods of (1) challenge test sets and (2) systematic generalization tasks, and the structural evaluation methods of (3) probes and (4) interventions. To facilitate this holistic evaluation, we present Monotonicity NLI (MoNLI), a new naturalistic dataset focused on lexical entailment and negation. In our behavioral evaluations, we find that models trained on general-purpose NLI datasets fail systematically on MoNLI examples containing negation, but that MoNLI fine-tuning addresses this failure. In our structural evaluations, we look for evidence that our top-performing BERT-based model has learned to implement the monotonicity algorithm behind MoNLI. Probes yield evidence consistent with this conclusion, and our intervention experiments bolster this, showing that the causal dynamics of the model mirror the causal dynamics of this algorithm on subsets of MoNLI. This suggests that the BERT model at least partially embeds a theory of lexical entailment and negation at an algorithmic level.
HintsOfTruth: A Multimodal Checkworthiness Detection Dataset with Real and Synthetic Claims
Misinformation can be countered with fact-checking, but the process is costly and slow. Identifying checkworthy claims is the first step, where automation can help scale fact-checkers' efforts. However, detection methods struggle with content that is 1) multimodal, 2) from diverse domains, and 3) synthetic. We introduce HintsOfTruth, a public dataset for multimodal checkworthiness detection with 27K real-world and synthetic image/claim pairs. The mix of real and synthetic data makes this dataset unique and ideal for benchmarking detection methods. We compare fine-tuned and prompted Large Language Models (LLMs). We find that well-configured lightweight text-based encoders perform comparably to multimodal models but the first only focus on identifying non-claim-like content. Multimodal LLMs can be more accurate but come at a significant computational cost, making them impractical for large-scale applications. When faced with synthetic data, multimodal models perform more robustly
Ranking LLM-Generated Loop Invariants for Program Verification
Synthesizing inductive loop invariants is fundamental to automating program verification. In this work, we observe that Large Language Models (such as gpt-3.5 or gpt-4) are capable of synthesizing loop invariants for a class of programs in a 0-shot setting, yet require several samples to generate the correct invariants. This can lead to a large number of calls to a program verifier to establish an invariant. To address this issue, we propose a {\it re-ranking} approach for the generated results of LLMs. We have designed a ranker that can distinguish between correct inductive invariants and incorrect attempts based on the problem definition. The ranker is optimized as a contrastive ranker. Experimental results demonstrate that this re-ranking mechanism significantly improves the ranking of correct invariants among the generated candidates, leading to a notable reduction in the number of calls to a verifier.
Zero-Shot Learning and Key Points Are All You Need for Automated Fact-Checking
Automated fact-checking is an important task because determining the accurate status of a proposed claim within the vast amount of information available online is a critical challenge. This challenge requires robust evaluation to prevent the spread of false information. Modern large language models (LLMs) have demonstrated high capability in performing a diverse range of Natural Language Processing (NLP) tasks. By utilizing proper prompting strategies, their versatility due to their understanding of large context sizes and zero-shot learning ability enables them to simulate human problem-solving intuition and move towards being an alternative to humans for solving problems. In this work, we introduce a straightforward framework based on Zero-Shot Learning and Key Points (ZSL-KeP) for automated fact-checking, which despite its simplicity, performed well on the AVeriTeC shared task dataset by robustly improving the baseline and achieving 10th place.
X-PARADE: Cross-Lingual Textual Entailment and Information Divergence across Paragraphs
Understanding when two pieces of text convey the same information is a goal touching many subproblems in NLP, including textual entailment and fact-checking. This problem becomes more complex when those two pieces of text are in different languages. Here, we introduce X-PARADE (Cross-lingual Paragraph-level Analysis of Divergences and Entailments), the first cross-lingual dataset of paragraph-level information divergences. Annotators label a paragraph in a target language at the span level and evaluate it with respect to a corresponding paragraph in a source language, indicating whether a given piece of information is the same, new, or new but can be inferred. This last notion establishes a link with cross-language NLI. Aligned paragraphs are sourced from Wikipedia pages in different languages, reflecting real information divergences observed in the wild. Armed with our dataset, we investigate a diverse set of approaches for this problem, including token alignment from machine translation, textual entailment methods that localize their decisions, and prompting LLMs. Our results show that these methods vary in their capability to handle inferable information, but they all fall short of human performance.
FIRE: Fact-checking with Iterative Retrieval and Verification
Fact-checking long-form text is challenging, and it is therefore common practice to break it down into multiple atomic claims. The typical approach to fact-checking these atomic claims involves retrieving a fixed number of pieces of evidence, followed by a verification step. However, this method is usually not cost-effective, as it underutilizes the verification model's internal knowledge of the claim and fails to replicate the iterative reasoning process in human search strategies. To address these limitations, we propose FIRE, a novel agent-based framework that integrates evidence retrieval and claim verification in an iterative manner. Specifically, FIRE employs a unified mechanism to decide whether to provide a final answer or generate a subsequent search query, based on its confidence in the current judgment. We compare FIRE with other strong fact-checking frameworks and find that it achieves slightly better performance while reducing large language model (LLM) costs by an average of 7.6 times and search costs by 16.5 times. These results indicate that FIRE holds promise for application in large-scale fact-checking operations. Our code is available at https://github.com/mbzuai-nlp/fire.git.
Experts Don't Cheat: Learning What You Don't Know By Predicting Pairs
Identifying how much a model {p}_{theta}(Y|X) knows about the stochastic real-world process p(Y|X) it was trained on is important to ensure it avoids producing incorrect or "hallucinated" answers or taking unsafe actions. But this is difficult for generative models because probabilistic predictions do not distinguish between per-response noise (aleatoric uncertainty) and lack of knowledge about the process (epistemic uncertainty), and existing epistemic uncertainty quantification techniques tend to be overconfident when the model underfits. We propose a general strategy for teaching a model to both approximate p(Y|X) and also estimate the remaining gaps between {p}_{theta}(Y|X) and p(Y|X): train it to predict pairs of independent responses drawn from the true conditional distribution, allow it to "cheat" by observing one response while predicting the other, then measure how much it cheats. Remarkably, we prove that being good at cheating (i.e. cheating whenever it improves your prediction) is equivalent to being second-order calibrated, a principled extension of ordinary calibration that allows us to construct provably-correct frequentist confidence intervals for p(Y|X) and detect incorrect responses with high probability. We demonstrate empirically that our approach accurately estimates how much models don't know across ambiguous image classification, (synthetic) language modeling, and partially-observable navigation tasks, outperforming existing techniques.
CogniBench: A Legal-inspired Framework and Dataset for Assessing Cognitive Faithfulness of Large Language Models
Faithfulness hallucinations are claims generated by a Large Language Model (LLM) not supported by contexts provided to the LLM. Lacking assessment standards, existing benchmarks focus on "factual statements" that rephrase source materials while overlooking "cognitive statements" that involve making inferences from the given context. Consequently, evaluating and detecting the hallucination of cognitive statements remains challenging. Inspired by how evidence is assessed in the legal domain, we design a rigorous framework to assess different levels of faithfulness of cognitive statements and introduce the CogniBench dataset where we reveal insightful statistics. To keep pace with rapidly evolving LLMs, we further develop an automatic annotation pipeline that scales easily across different models. This results in a large-scale CogniBench-L dataset, which facilitates training accurate detectors for both factual and cognitive hallucinations. We release our model and datasets at: https://github.com/FUTUREEEEEE/CogniBench
Evidence-backed Fact Checking using RAG and Few-Shot In-Context Learning with LLMs
Given the widespread dissemination of misinformation on social media, implementing fact-checking mechanisms for online claims is essential. Manually verifying every claim is highly challenging, underscoring the need for an automated fact-checking system. This paper presents our system designed to address this issue. We utilize the Averitec dataset to assess the veracity of claims. In addition to veracity prediction, our system provides supporting evidence, which is extracted from the dataset. We develop a Retrieve and Generate (RAG) pipeline to extract relevant evidence sentences from a knowledge base, which are then inputted along with the claim into a large language model (LLM) for classification. We also evaluate the few-shot In-Context Learning (ICL) capabilities of multiple LLMs. Our system achieves an 'Averitec' score of 0.33, which is a 22% absolute improvement over the baseline. All code will be made available on All code will be made available on https://github.com/ronit-singhal/evidence-backed-fact-checking-using-rag-and-few-shot-in-context-learning-with-llms.
Who Audits the Auditors? Recommendations from a field scan of the algorithmic auditing ecosystem
AI audits are an increasingly popular mechanism for algorithmic accountability; however, they remain poorly defined. Without a clear understanding of audit practices, let alone widely used standards or regulatory guidance, claims that an AI product or system has been audited, whether by first-, second-, or third-party auditors, are difficult to verify and may exacerbate, rather than mitigate, bias and harm. To address this knowledge gap, we provide the first comprehensive field scan of the AI audit ecosystem. We share a catalog of individuals (N=438) and organizations (N=189) who engage in algorithmic audits or whose work is directly relevant to algorithmic audits; conduct an anonymous survey of the group (N=152); and interview industry leaders (N=10). We identify emerging best practices as well as methods and tools that are becoming commonplace, and enumerate common barriers to leveraging algorithmic audits as effective accountability mechanisms. We outline policy recommendations to improve the quality and impact of these audits, and highlight proposals with wide support from algorithmic auditors as well as areas of debate. Our recommendations have implications for lawmakers, regulators, internal company policymakers, and standards-setting bodies, as well as for auditors. They are: 1) require the owners and operators of AI systems to engage in independent algorithmic audits against clearly defined standards; 2) notify individuals when they are subject to algorithmic decision-making systems; 3) mandate disclosure of key components of audit findings for peer review; 4) consider real-world harm in the audit process, including through standardized harm incident reporting and response mechanisms; 5) directly involve the stakeholders most likely to be harmed by AI systems in the algorithmic audit process; and 6) formalize evaluation and, potentially, accreditation of algorithmic auditors.
FacTool: Factuality Detection in Generative AI -- A Tool Augmented Framework for Multi-Task and Multi-Domain Scenarios
The emergence of generative pre-trained models has facilitated the synthesis of high-quality text, but it has also posed challenges in identifying factual errors in the generated text. In particular: (1) A wider range of tasks now face an increasing risk of containing factual errors when handled by generative models. (2) Generated texts tend to be lengthy and lack a clearly defined granularity for individual facts. (3) There is a scarcity of explicit evidence available during the process of fact checking. With the above challenges in mind, in this paper, we propose FacTool, a task and domain agnostic framework for detecting factual errors of texts generated by large language models (e.g., ChatGPT). Experiments on four different tasks (knowledge-based QA, code generation, mathematical reasoning, and scientific literature review) show the efficacy of the proposed method. We release the code of FacTool associated with ChatGPT plugin interface at https://github.com/GAIR-NLP/factool .
First Train to Generate, then Generate to Train: UnitedSynT5 for Few-Shot NLI
Natural Language Inference (NLI) tasks require identifying the relationship between sentence pairs, typically classified as entailment, contradiction, or neutrality. While the current state-of-the-art (SOTA) model, Entailment Few-Shot Learning (EFL), achieves a 93.1% accuracy on the Stanford Natural Language Inference (SNLI) dataset, further advancements are constrained by the dataset's limitations. To address this, we propose a novel approach leveraging synthetic data augmentation to enhance dataset diversity and complexity. We present UnitedSynT5, an advanced extension of EFL that leverages a T5-based generator to synthesize additional premise-hypothesis pairs, which are rigorously cleaned and integrated into the training data. These augmented examples are processed within the EFL framework, embedding labels directly into hypotheses for consistency. We train a GTR-T5-XL model on this expanded dataset, achieving a new benchmark of 94.7% accuracy on the SNLI dataset, 94.01% accuracy on the E-SNLI dataset, and 92.57% accuracy on the MultiNLI dataset, surpassing the previous SOTA models. This research demonstrates the potential of synthetic data augmentation in improving NLI models, offering a path forward for further advancements in natural language understanding tasks.
Connecting the Dots in Trustworthy Artificial Intelligence: From AI Principles, Ethics, and Key Requirements to Responsible AI Systems and Regulation
Trustworthy Artificial Intelligence (AI) is based on seven technical requirements sustained over three main pillars that should be met throughout the system's entire life cycle: it should be (1) lawful, (2) ethical, and (3) robust, both from a technical and a social perspective. However, attaining truly trustworthy AI concerns a wider vision that comprises the trustworthiness of all processes and actors that are part of the system's life cycle, and considers previous aspects from different lenses. A more holistic vision contemplates four essential axes: the global principles for ethical use and development of AI-based systems, a philosophical take on AI ethics, a risk-based approach to AI regulation, and the mentioned pillars and requirements. The seven requirements (human agency and oversight; robustness and safety; privacy and data governance; transparency; diversity, non-discrimination and fairness; societal and environmental wellbeing; and accountability) are analyzed from a triple perspective: What each requirement for trustworthy AI is, Why it is needed, and How each requirement can be implemented in practice. On the other hand, a practical approach to implement trustworthy AI systems allows defining the concept of responsibility of AI-based systems facing the law, through a given auditing process. Therefore, a responsible AI system is the resulting notion we introduce in this work, and a concept of utmost necessity that can be realized through auditing processes, subject to the challenges posed by the use of regulatory sandboxes. Our multidisciplinary vision of trustworthy AI culminates in a debate on the diverging views published lately about the future of AI. Our reflections in this matter conclude that regulation is a key for reaching a consensus among these views, and that trustworthy and responsible AI systems will be crucial for the present and future of our society.
MedHallu: A Comprehensive Benchmark for Detecting Medical Hallucinations in Large Language Models
Advancements in Large Language Models (LLMs) and their increasing use in medical question-answering necessitate rigorous evaluation of their reliability. A critical challenge lies in hallucination, where models generate plausible yet factually incorrect outputs. In the medical domain, this poses serious risks to patient safety and clinical decision-making. To address this, we introduce MedHallu, the first benchmark specifically designed for medical hallucination detection. MedHallu comprises 10,000 high-quality question-answer pairs derived from PubMedQA, with hallucinated answers systematically generated through a controlled pipeline. Our experiments show that state-of-the-art LLMs, including GPT-4o, Llama-3.1, and the medically fine-tuned UltraMedical, struggle with this binary hallucination detection task, with the best model achieving an F1 score as low as 0.625 for detecting "hard" category hallucinations. Using bidirectional entailment clustering, we show that harder-to-detect hallucinations are semantically closer to ground truth. Through experiments, we also show incorporating domain-specific knowledge and introducing a "not sure" category as one of the answer categories improves the precision and F1 scores by up to 38% relative to baselines.
Improving Knowledge Graph Embedding Using Simple Constraints
Embedding knowledge graphs (KGs) into continuous vector spaces is a focus of current research. Early works performed this task via simple models developed over KG triples. Recent attempts focused on either designing more complicated triple scoring models, or incorporating extra information beyond triples. This paper, by contrast, investigates the potential of using very simple constraints to improve KG embedding. We examine non-negativity constraints on entity representations and approximate entailment constraints on relation representations. The former help to learn compact and interpretable representations for entities. The latter further encode regularities of logical entailment between relations into their distributed representations. These constraints impose prior beliefs upon the structure of the embedding space, without negative impacts on efficiency or scalability. Evaluation on WordNet, Freebase, and DBpedia shows that our approach is simple yet surprisingly effective, significantly and consistently outperforming competitive baselines. The constraints imposed indeed improve model interpretability, leading to a substantially increased structuring of the embedding space. Code and data are available at https://github.com/iieir-km/ComplEx-NNE_AER.
Unforgettable Generalization in Language Models
When language models (LMs) are trained to forget (or "unlearn'') a skill, how precisely does their behavior change? We study the behavior of transformer LMs in which tasks have been forgotten via fine-tuning on randomized labels. Such LMs learn to generate near-random predictions for individual examples in the "training'' set used for forgetting. Across tasks, however, LMs exhibit extreme variability in whether LM predictions change on examples outside the training set. In some tasks (like entailment classification), forgetting generalizes robustly, and causes models to produce uninformative predictions on new task instances; in other tasks (like physical commonsense reasoning and scientific question answering) forgetting affects only the training examples, and models continue to perform the "forgotten'' task accurately even for examples very similar to those that appeared in the training set. Dataset difficulty is not predictive of whether a behavior can be forgotten; instead, generalization in forgetting is (weakly) predicted by the confidence of LMs' initial task predictions and the variability of LM representations of training data, with low confidence and low variability both associated with greater generalization. Perhaps most surprisingly, random-label forgetting appears to be somewhat insensitive to the contents of the training set: for example, models trained on science questions with random labels continue to answer other science questions accurately, but begin to produce random labels on entailment classification tasks. Finally, we show that even generalizable forgetting is shallow: linear probes trained on LMs' representations can still perform tasks reliably after forgetting. Our results highlight the difficulty and unpredictability of performing targeted skill removal from models via fine-tuning.
AI Deception: A Survey of Examples, Risks, and Potential Solutions
This paper argues that a range of current AI systems have learned how to deceive humans. We define deception as the systematic inducement of false beliefs in the pursuit of some outcome other than the truth. We first survey empirical examples of AI deception, discussing both special-use AI systems (including Meta's CICERO) built for specific competitive situations, and general-purpose AI systems (such as large language models). Next, we detail several risks from AI deception, such as fraud, election tampering, and losing control of AI systems. Finally, we outline several potential solutions to the problems posed by AI deception: first, regulatory frameworks should subject AI systems that are capable of deception to robust risk-assessment requirements; second, policymakers should implement bot-or-not laws; and finally, policymakers should prioritize the funding of relevant research, including tools to detect AI deception and to make AI systems less deceptive. Policymakers, researchers, and the broader public should work proactively to prevent AI deception from destabilizing the shared foundations of our society.
Evaluating the Moral Beliefs Encoded in LLMs
This paper presents a case study on the design, administration, post-processing, and evaluation of surveys on large language models (LLMs). It comprises two components: (1) A statistical method for eliciting beliefs encoded in LLMs. We introduce statistical measures and evaluation metrics that quantify the probability of an LLM "making a choice", the associated uncertainty, and the consistency of that choice. (2) We apply this method to study what moral beliefs are encoded in different LLMs, especially in ambiguous cases where the right choice is not obvious. We design a large-scale survey comprising 680 high-ambiguity moral scenarios (e.g., "Should I tell a white lie?") and 687 low-ambiguity moral scenarios (e.g., "Should I stop for a pedestrian on the road?"). Each scenario includes a description, two possible actions, and auxiliary labels indicating violated rules (e.g., "do not kill"). We administer the survey to 28 open- and closed-source LLMs. We find that (a) in unambiguous scenarios, most models "choose" actions that align with commonsense. In ambiguous cases, most models express uncertainty. (b) Some models are uncertain about choosing the commonsense action because their responses are sensitive to the question-wording. (c) Some models reflect clear preferences in ambiguous scenarios. Specifically, closed-source models tend to agree with each other.
Varifocal Question Generation for Fact-checking
Fact-checking requires retrieving evidence related to a claim under investigation. The task can be formulated as question generation based on a claim, followed by question answering. However, recent question generation approaches assume that the answer is known and typically contained in a passage given as input, whereas such passages are what is being sought when verifying a claim. In this paper, we present {\it Varifocal}, a method that generates questions based on different focal points within a given claim, i.e.\ different spans of the claim and its metadata, such as its source and date. Our method outperforms previous work on a fact-checking question generation dataset on a wide range of automatic evaluation metrics. These results are corroborated by our manual evaluation, which indicates that our method generates more relevant and informative questions. We further demonstrate the potential of focal points in generating sets of clarification questions for product descriptions.
Don't Fight Hallucinations, Use Them: Estimating Image Realism using NLI over Atomic Facts
Quantifying the realism of images remains a challenging problem in the field of artificial intelligence. For example, an image of Albert Einstein holding a smartphone violates common-sense because modern smartphone were invented after Einstein's death. We introduce a novel method for assessing image realism using Large Vision-Language Models (LVLMs) and Natural Language Inference (NLI). Our approach is based on the premise that LVLMs may generate hallucinations when confronted with images that defy common sense. Using LVLM to extract atomic facts from these images, we obtain a mix of accurate facts and erroneous hallucinations. We proceed by calculating pairwise entailment scores among these facts, subsequently aggregating these values to yield a singular reality score. This process serves to identify contradictions between genuine facts and hallucinatory elements, signaling the presence of images that violate common sense. Our approach has achieved a new state-of-the-art performance in zero-shot mode on the WHOOPS! dataset.
In Search of the Long-Tail: Systematic Generation of Long-Tail Knowledge via Logical Rule Guided Search
Since large language models have approached human-level performance on many tasks, it has become increasingly harder for researchers to find tasks that are still challenging to the models. Failure cases usually come from the long-tail distribution - data that an oracle language model could assign a probability on the lower end of its distribution. Current methodology such as prompt engineering or crowdsourcing are insufficient for creating long-tail examples because humans are constrained by cognitive bias. We propose a Logic-Induced-Knowledge-Search (LINK) framework for systematically generating long-tail knowledge statements. Grounded by a symbolic rule, we search for long-tail values for each variable of the rule by first prompting a LLM, then verifying the correctness of the values with a critic, and lastly pushing for the long-tail distribution with a reranker. With this framework we construct a dataset, Logic-Induced-Long-Tail (LINT), consisting of 200 symbolic rules and 50K knowledge statements spanning across four domains. Human annotations find that 84% of the statements in LINT are factually correct. In contrast, ChatGPT and GPT4 struggle with directly generating long-tail statements under the guidance of logic rules, each only getting 56% and 78% of their statements correct. Moreover, their "long-tail" generations in fact fall into the higher likelihood range, and thus are not really long-tail. Our findings suggest that LINK is effective for generating data in the long-tail distribution while enforcing quality. LINT can be useful for systematically evaluating LLMs' capabilities in the long-tail distribution. We challenge the models with a simple entailment classification task using samples from LINT. We find that ChatGPT and GPT4's capability in identifying incorrect knowledge drop by ~3% in the long-tail distribution compared to head distribution.
15 Keypoints Is All You Need
Pose tracking is an important problem that requires identifying unique human pose-instances and matching them temporally across different frames of a video. However, existing pose tracking methods are unable to accurately model temporal relationships and require significant computation, often computing the tracks offline. We present an efficient Multi-person Pose Tracking method, KeyTrack, that only relies on keypoint information without using any RGB or optical flow information to track human keypoints in real-time. Keypoints are tracked using our Pose Entailment method, in which, first, a pair of pose estimates is sampled from different frames in a video and tokenized. Then, a Transformer-based network makes a binary classification as to whether one pose temporally follows another. Furthermore, we improve our top-down pose estimation method with a novel, parameter-free, keypoint refinement technique that improves the keypoint estimates used during the Pose Entailment step. We achieve state-of-the-art results on the PoseTrack'17 and the PoseTrack'18 benchmarks while using only a fraction of the computation required by most other methods for computing the tracking information.
AI Debate Aids Assessment of Controversial Claims
As AI grows more powerful, it will increasingly shape how we understand the world. But with this influence comes the risk of amplifying misinformation and deepening social divides-especially on consequential topics like public health where factual accuracy directly impacts well-being. Scalable Oversight aims to ensure AI truthfulness by enabling humans to supervise systems that may exceed human capabilities--yet humans themselves hold different beliefs and biases that impair their judgment. We study whether AI debate can guide biased judges toward the truth by having two AI systems debate opposing sides of controversial COVID-19 factuality claims where people hold strong prior beliefs. We conduct two studies: one with human judges holding either mainstream or skeptical beliefs evaluating factuality claims through AI-assisted debate or consultancy protocols, and a second examining the same problem with personalized AI judges designed to mimic these different human belief systems. In our human study, we find that debate-where two AI advisor systems present opposing evidence-based arguments-consistently improves judgment accuracy and confidence calibration, outperforming consultancy with a single-advisor system by 10% overall. The improvement is most significant for judges with mainstream beliefs (+15.2% accuracy), though debate also helps skeptical judges who initially misjudge claims move toward accurate views (+4.7% accuracy). In our AI judge study, we find that AI judges with human-like personas achieve even higher accuracy (78.5%) than human judges (70.1%) and default AI judges without personas (69.8%), suggesting their potential for supervising frontier AI models. These findings highlight AI debate as a promising path toward scalable, bias-resilient oversight--leveraging both diverse human and AI judgments to move closer to truth in contested domains.
CREPE: Open-Domain Question Answering with False Presuppositions
Information seeking users often pose questions with false presuppositions, especially when asking about unfamiliar topics. Most existing question answering (QA) datasets, in contrast, assume all questions have well defined answers. We introduce CREPE, a QA dataset containing a natural distribution of presupposition failures from online information-seeking forums. We find that 25% of questions contain false presuppositions, and provide annotations for these presuppositions and their corrections. Through extensive baseline experiments, we show that adaptations of existing open-domain QA models can find presuppositions moderately well, but struggle when predicting whether a presupposition is factually correct. This is in large part due to difficulty in retrieving relevant evidence passages from a large text corpus. CREPE provides a benchmark to study question answering in the wild, and our analyses provide avenues for future work in better modeling and further studying the task.
EALM: Introducing Multidimensional Ethical Alignment in Conversational Information Retrieval
Artificial intelligence (AI) technologies should adhere to human norms to better serve our society and avoid disseminating harmful or misleading information, particularly in Conversational Information Retrieval (CIR). Previous work, including approaches and datasets, has not always been successful or sufficiently robust in taking human norms into consideration. To this end, we introduce a workflow that integrates ethical alignment, with an initial ethical judgment stage for efficient data screening. To address the need for ethical judgment in CIR, we present the QA-ETHICS dataset, adapted from the ETHICS benchmark, which serves as an evaluation tool by unifying scenarios and label meanings. However, each scenario only considers one ethical concept. Therefore, we introduce the MP-ETHICS dataset to evaluate a scenario under multiple ethical concepts, such as justice and Deontology. In addition, we suggest a new approach that achieves top performance in both binary and multi-label ethical judgment tasks. Our research provides a practical method for introducing ethical alignment into the CIR workflow. The data and code are available at https://github.com/wanng-ide/ealm .
Measuring the Faithfulness of Thinking Drafts in Large Reasoning Models
Large Reasoning Models (LRMs) have significantly enhanced their capabilities in complex problem-solving by introducing a thinking draft that enables multi-path Chain-of-Thought explorations before producing final answers. Ensuring the faithfulness of these intermediate reasoning processes is crucial for reliable monitoring, interpretation, and effective control. In this paper, we propose a systematic counterfactual intervention framework to rigorously evaluate thinking draft faithfulness. Our approach focuses on two complementary dimensions: (1) Intra-Draft Faithfulness, which assesses whether individual reasoning steps causally influence subsequent steps and the final draft conclusion through counterfactual step insertions; and (2) Draft-to-Answer Faithfulness, which evaluates whether final answers are logically consistent with and dependent on the thinking draft, by perturbing the draft's concluding logic. We conduct extensive experiments across six state-of-the-art LRMs. Our findings show that current LRMs demonstrate selective faithfulness to intermediate reasoning steps and frequently fail to faithfully align with the draft conclusions. These results underscore the need for more faithful and interpretable reasoning in advanced LRMs.
MultiFC: A Real-World Multi-Domain Dataset for Evidence-Based Fact Checking of Claims
We contribute the largest publicly available dataset of naturally occurring factual claims for the purpose of automatic claim verification. It is collected from 26 fact checking websites in English, paired with textual sources and rich metadata, and labelled for veracity by human expert journalists. We present an in-depth analysis of the dataset, highlighting characteristics and challenges. Further, we present results for automatic veracity prediction, both with established baselines and with a novel method for joint ranking of evidence pages and predicting veracity that outperforms all baselines. Significant performance increases are achieved by encoding evidence, and by modelling metadata. Our best-performing model achieves a Macro F1 of 49.2%, showing that this is a challenging testbed for claim veracity prediction.
Let's Verify Math Questions Step by Step
Large Language Models (LLMs) have recently achieved remarkable progress in mathematical reasoning. To enable such capabilities, many existing works distill strong reasoning models into long chains of thought or design algorithms to construct high-quality math QA data for training. However, these efforts primarily focus on generating correct reasoning paths and answers, while largely overlooking the validity of the questions themselves. In this work, we propose Math Question Verification (MathQ-Verify), a novel five-stage pipeline designed to rigorously filter ill-posed or under-specified math problems. MathQ-Verify first performs format-level validation to remove redundant instructions and ensure that each question is syntactically well-formed. It then formalizes each question, decomposes it into atomic conditions, and verifies them against mathematical definitions. Next, it detects logical contradictions among these conditions, followed by a goal-oriented completeness check to ensure the question provides sufficient information for solving. To evaluate this task, we use existing benchmarks along with an additional dataset we construct, containing 2,147 math questions with diverse error types, each manually double-validated. Experiments show that MathQ-Verify achieves state-of-the-art performance across multiple benchmarks, improving the F1 score by up to 25 percentage points over the direct verification baseline. It further attains approximately 90% precision and 63% recall through a lightweight model voting scheme. MathQ-Verify offers a scalable and accurate solution for curating reliable mathematical datasets, reducing label noise and avoiding unnecessary computation on invalid questions. Our code and data are available at https://github.com/scuuy/MathQ-Verify.
OpenFactCheck: A Unified Framework for Factuality Evaluation of LLMs
The increased use of large language models (LLMs) across a variety of real-world applications calls for automatic tools to check the factual accuracy of their outputs, as LLMs often hallucinate. This is difficult as it requires assessing the factuality of free-form open-domain responses. While there has been a lot of research on this topic, different papers use different evaluation benchmarks and measures, which makes them hard to compare and hampers future progress. To mitigate these issues, we developed OpenFactCheck, a unified framework, with three modules: (i) RESPONSEEVAL, which allows users to easily customize an automatic fact-checking system and to assess the factuality of all claims in an input document using that system, (ii) LLMEVAL, which assesses the overall factuality of an LLM, and (iii) CHECKEREVAL, a module to evaluate automatic fact-checking systems. OpenFactCheck is open-sourced (https://github.com/hasaniqbal777/openfactcheck) and publicly released as a Python library (https://pypi.org/project/openfactcheck/) and also as a web service (https://huggingface.co/spaces/hasaniqbal777/OpenFactCheck). A video describing the system is available at https://youtu.be/-i9VKL0HleI.
Logicbreaks: A Framework for Understanding Subversion of Rule-based Inference
We study how to subvert large language models (LLMs) from following prompt-specified rules. We first formalize rule-following as inference in propositional Horn logic, a mathematical system in which rules have the form "if P and Q, then R" for some propositions P, Q, and R. Next, we prove that although small transformers can faithfully follow such rules, maliciously crafted prompts can still mislead both theoretical constructions and models learned from data. Furthermore, we demonstrate that popular attack algorithms on LLMs find adversarial prompts and induce attention patterns that align with our theory. Our novel logic-based framework provides a foundation for studying LLMs in rule-based settings, enabling a formal analysis of tasks like logical reasoning and jailbreak attacks.
SubjECTive-QA: Measuring Subjectivity in Earnings Call Transcripts' QA Through Six-Dimensional Feature Analysis
Fact-checking is extensively studied in the context of misinformation and disinformation, addressing objective inaccuracies. However, a softer form of misinformation involves responses that are factually correct but lack certain features such as clarity and relevance. This challenge is prevalent in formal Question-Answer (QA) settings such as press conferences in finance, politics, sports, and other domains, where subjective answers can obscure transparency. Despite this, there is a lack of manually annotated datasets for subjective features across multiple dimensions. To address this gap, we introduce SubjECTive-QA, a human annotated dataset on Earnings Call Transcripts' (ECTs) QA sessions as the answers given by company representatives are often open to subjective interpretations and scrutiny. The dataset includes 49,446 annotations for long-form QA pairs across six features: Assertive, Cautious, Optimistic, Specific, Clear, and Relevant. These features are carefully selected to encompass the key attributes that reflect the tone of the answers provided during QA sessions across different domain. Our findings are that the best-performing Pre-trained Language Model (PLM), RoBERTa-base, has similar weighted F1 scores to Llama-3-70b-Chat on features with lower subjectivity, such as Relevant and Clear, with a mean difference of 2.17% in their weighted F1 scores. The models perform significantly better on features with higher subjectivity, such as Specific and Assertive, with a mean difference of 10.01% in their weighted F1 scores. Furthermore, testing SubjECTive-QA's generalizability using QAs from White House Press Briefings and Gaggles yields an average weighted F1 score of 65.97% using our best models for each feature, demonstrating broader applicability beyond the financial domain. SubjECTive-QA is publicly available under the CC BY 4.0 license
FactCheckmate: Preemptively Detecting and Mitigating Hallucinations in LMs
Language models (LMs) hallucinate. We inquire: Can we detect and mitigate hallucinations before they happen? This work answers this research question in the positive, by showing that the internal representations of LMs provide rich signals that can be used for this purpose. We introduce FactCheckMate, which preemptively detects hallucinations by learning a classifier that predicts whether the LM will hallucinate, based on the model's hidden states produced over the inputs, before decoding begins. If a hallucination is detected, FactCheckMate then intervenes, by adjusting the LM's hidden states such that the model will produce more factual outputs. FactCheckMate provides fresh insights that the inner workings of LMs can be revealed by their hidden states. Practically, both the detection and mitigation models in FactCheckMate are lightweight, adding little inference overhead; FactCheckMate proves a more efficient approach for mitigating hallucinations compared to many post-hoc alternatives. We evaluate FactCheckMate over LMs of different scales and model families (including Llama, Mistral, and Gemma), across a variety of QA datasets from different domains. Our results demonstrate the effectiveness of leveraging internal representations for early hallucination detection and mitigation, achieving over 70% preemptive detection accuracy. On average, outputs generated by LMs with intervention are 34.4% more factual compared to those without intervention. The average overhead difference in the inference time introduced by FactCheckMate is around 3.16 seconds.
Experimenting AI Technologies for Disinformation Combat: the IDMO Project
The Italian Digital Media Observatory (IDMO) project, part of a European initiative, focuses on countering disinformation and fake news. This report outlines contributions from Rai-CRITS to the project, including: (i) the creation of novel datasets for testing technologies (ii) development of an automatic model for categorizing Pagella Politica verdicts to facilitate broader analysis (iii) creation of an automatic model for recognizing textual entailment with exceptional accuracy on the FEVER dataset (iv) assessment using GPT-4 to identify textual entailmen (v) a game to raise awareness about fake news at national events.
Interpretation of Natural Language Rules in Conversational Machine Reading
Most work in machine reading focuses on question answering problems where the answer is directly expressed in the text to read. However, many real-world question answering problems require the reading of text not because it contains the literal answer, but because it contains a recipe to derive an answer together with the reader's background knowledge. One example is the task of interpreting regulations to answer "Can I...?" or "Do I have to...?" questions such as "I am working in Canada. Do I have to carry on paying UK National Insurance?" after reading a UK government website about this topic. This task requires both the interpretation of rules and the application of background knowledge. It is further complicated due to the fact that, in practice, most questions are underspecified, and a human assistant will regularly have to ask clarification questions such as "How long have you been working abroad?" when the answer cannot be directly derived from the question and text. In this paper, we formalise this task and develop a crowd-sourcing strategy to collect 32k task instances based on real-world rules and crowd-generated questions and scenarios. We analyse the challenges of this task and assess its difficulty by evaluating the performance of rule-based and machine-learning baselines. We observe promising results when no background knowledge is necessary, and substantial room for improvement whenever background knowledge is needed.
Can Transformers Reason in Fragments of Natural Language?
State-of-the-art deep-learning-based approaches to Natural Language Processing (NLP) are credited with various capabilities that involve reasoning with natural language texts. In this paper we carry out a large-scale empirical study investigating the detection of formally valid inferences in controlled fragments of natural language for which the satisfiability problem becomes increasingly complex. We find that, while transformer-based language models perform surprisingly well in these scenarios, a deeper analysis re-veals that they appear to overfit to superficial patterns in the data rather than acquiring the logical principles governing the reasoning in these fragments.
Article Reranking by Memory-Enhanced Key Sentence Matching for Detecting Previously Fact-Checked Claims
False claims that have been previously fact-checked can still spread on social media. To mitigate their continual spread, detecting previously fact-checked claims is indispensable. Given a claim, existing works focus on providing evidence for detection by reranking candidate fact-checking articles (FC-articles) retrieved by BM25. However, these performances may be limited because they ignore the following characteristics of FC-articles: (1) claims are often quoted to describe the checked events, providing lexical information besides semantics; (2) sentence templates to introduce or debunk claims are common across articles, providing pattern information. Models that ignore the two aspects only leverage semantic relevance and may be misled by sentences that describe similar but irrelevant events. In this paper, we propose a novel reranker, MTM (Memory-enhanced Transformers for Matching) to rank FC-articles using key sentences selected with event (lexical and semantic) and pattern information. For event information, we propose a ROUGE-guided Transformer which is finetuned with regression of ROUGE. For pattern information, we generate pattern vectors for matching with sentences. By fusing event and pattern information, we select key sentences to represent an article and then predict if the article fact-checks the given claim using the claim, key sentences, and patterns. Experiments on two real-world datasets show that MTM outperforms existing methods. Human evaluation proves that MTM can capture key sentences for explanations. The code and the dataset are at https://github.com/ICTMCG/MTM.
Contrastive Sparse Autoencoders for Interpreting Planning of Chess-Playing Agents
AI led chess systems to a superhuman level, yet these systems heavily rely on black-box algorithms. This is unsustainable in ensuring transparency to the end-user, particularly when these systems are responsible for sensitive decision-making. Recent interpretability work has shown that the inner representations of Deep Neural Networks (DNNs) were fathomable and contained human-understandable concepts. Yet, these methods are seldom contextualised and are often based on a single hidden state, which makes them unable to interpret multi-step reasoning, e.g. planning. In this respect, we propose contrastive sparse autoencoders (CSAE), a novel framework for studying pairs of game trajectories. Using CSAE, we are able to extract and interpret concepts that are meaningful to the chess-agent plans. We primarily focused on a qualitative analysis of the CSAE features before proposing an automated feature taxonomy. Furthermore, to evaluate the quality of our trained CSAE, we devise sanity checks to wave spurious correlations in our results.
Scaling Flaws of Verifier-Guided Search in Mathematical Reasoning
Large language models (LLMs) struggle with multi-step reasoning, where inference-time scaling has emerged as a promising strategy for performance improvement. Verifier-guided search outperforms repeated sampling when sample size is limited by selecting and prioritizing valid reasoning paths. However, we identify a critical limitation: scaling flaws, prevalent across different models (Mistral 7B and DeepSeekMath 7B), benchmarks (GSM8K and MATH), and verifiers (outcome value models and process reward models). As sample size increases, verifier-guided search exhibits diminishing advantages and eventually underperforms repeated sampling. Our analysis attributes this to verifier failures, where imperfect verifiers misrank candidates and erroneously prune all valid paths. These issues are further exacerbated in challenging and out-of-distribution problems, restricting search effectiveness. To mitigate verifier failures, we explore reducing reliance on verifiers and conduct preliminary investigations using two simple methods. Our findings reveal fundamental limitations in verifier-guided search and suggest future directions.
AI Control: Improving Safety Despite Intentional Subversion
As large language models (LLMs) become more powerful and are deployed more autonomously, it will be increasingly important to prevent them from causing harmful outcomes. Researchers have investigated a variety of safety techniques for this purpose, e.g. using models to review the outputs of other models, or red-teaming techniques to surface subtle failure modes. However, researchers have not evaluated whether such techniques still ensure safety if the model is itself intentionally trying to subvert them. In this paper, we develop and evaluate pipelines of safety techniques ("protocols") that are robust to intentional subversion. We investigate a scenario in which we want to solve a sequence of programming problems, using access to a powerful but untrusted model (in our case, GPT-4), access to a less powerful trusted model (in our case, GPT-3.5), and limited access to high-quality trusted labor. We investigate protocols that aim to never submit solutions containing backdoors, which we operationalize here as logical errors that are not caught by test cases. We investigate a range of protocols and test each against strategies that the untrusted model could use to subvert them. One protocol is what we call trusted editing. This protocol first asks GPT-4 to write code, and then asks GPT-3.5 to rate the suspiciousness of that code. If the code is below some suspiciousness threshold, it is submitted. Otherwise, GPT-3.5 edits the solution to remove parts that seem suspicious and then submits the edited code. Another protocol is untrusted monitoring. This protocol asks GPT-4 to write code, and then asks another instance of GPT-4 whether the code is backdoored, using various techniques to prevent the GPT-4 instances from colluding. These protocols improve substantially on simple baselines.
How to Catch an AI Liar: Lie Detection in Black-Box LLMs by Asking Unrelated Questions
Large language models (LLMs) can "lie", which we define as outputting false statements despite "knowing" the truth in a demonstrable sense. LLMs might "lie", for example, when instructed to output misinformation. Here, we develop a simple lie detector that requires neither access to the LLM's activations (black-box) nor ground-truth knowledge of the fact in question. The detector works by asking a predefined set of unrelated follow-up questions after a suspected lie, and feeding the LLM's yes/no answers into a logistic regression classifier. Despite its simplicity, this lie detector is highly accurate and surprisingly general. When trained on examples from a single setting -- prompting GPT-3.5 to lie about factual questions -- the detector generalises out-of-distribution to (1) other LLM architectures, (2) LLMs fine-tuned to lie, (3) sycophantic lies, and (4) lies emerging in real-life scenarios such as sales. These results indicate that LLMs have distinctive lie-related behavioural patterns, consistent across architectures and contexts, which could enable general-purpose lie detection.
PlainQAFact: Automatic Factuality Evaluation Metric for Biomedical Plain Language Summaries Generation
Hallucinated outputs from language models pose risks in the medical domain, especially for lay audiences making health-related decisions. Existing factuality evaluation methods, such as entailment- and question-answering-based (QA), struggle with plain language summary (PLS) generation due to elaborative explanation phenomenon, which introduces external content (e.g., definitions, background, examples) absent from the source document to enhance comprehension. To address this, we introduce PlainQAFact, a framework trained on a fine-grained, human-annotated dataset PlainFact, to evaluate the factuality of both source-simplified and elaboratively explained sentences. PlainQAFact first classifies factuality type and then assesses factuality using a retrieval-augmented QA-based scoring method. Our approach is lightweight and computationally efficient. Empirical results show that existing factuality metrics fail to effectively evaluate factuality in PLS, especially for elaborative explanations, whereas PlainQAFact achieves state-of-the-art performance. We further analyze its effectiveness across external knowledge sources, answer extraction strategies, overlap measures, and document granularity levels, refining its overall factuality assessment.
"I'd rather just go to bed": Understanding Indirect Answers
We revisit a pragmatic inference problem in dialog: understanding indirect responses to questions. Humans can interpret 'I'm starving.' in response to 'Hungry?', even without direct cue words such as 'yes' and 'no'. In dialog systems, allowing natural responses rather than closed vocabularies would be similarly beneficial. However, today's systems are only as sensitive to these pragmatic moves as their language model allows. We create and release the first large-scale English language corpus 'Circa' with 34,268 (polar question, indirect answer) pairs to enable progress on this task. The data was collected via elaborate crowdsourcing, and contains utterances with yes/no meaning, as well as uncertain, middle-ground, and conditional responses. We also present BERT-based neural models to predict such categories for a question-answer pair. We find that while transfer learning from entailment works reasonably, performance is not yet sufficient for robust dialog. Our models reach 82-88% accuracy for a 4-class distinction, and 74-85% for 6 classes.
RegNLP in Action: Facilitating Compliance Through Automated Information Retrieval and Answer Generation
Regulatory documents, issued by governmental regulatory bodies, establish rules, guidelines, and standards that organizations must adhere to for legal compliance. These documents, characterized by their length, complexity and frequent updates, are challenging to interpret, requiring significant allocation of time and expertise on the part of organizations to ensure ongoing compliance.Regulatory Natural Language Processing (RegNLP) is a multidisciplinary subfield aimed at simplifying access to and interpretation of regulatory rules and obligations. We define an Automated Question-Passage Generation task for RegNLP, create the ObliQA dataset containing 27,869 questions derived from the Abu Dhabi Global Markets (ADGM) financial regulation document collection, design a baseline Regulatory Information Retrieval and Answer Generation system, and evaluate it with RePASs, a novel evaluation metric that tests whether generated answers accurately capture all relevant obligations and avoid contradictions.
Detecting Dataset Drift and Non-IID Sampling via k-Nearest Neighbors
We present a straightforward statistical test to detect certain violations of the assumption that the data are Independent and Identically Distributed (IID). The specific form of violation considered is common across real-world applications: whether the examples are ordered in the dataset such that almost adjacent examples tend to have more similar feature values (e.g. due to distributional drift, or attractive interactions between datapoints). Based on a k-Nearest Neighbors estimate, our approach can be used to audit any multivariate numeric data as well as other data types (image, text, audio, etc.) that can be numerically represented, perhaps with model embeddings. Compared with existing methods to detect drift or auto-correlation, our approach is both applicable to more types of data and also able to detect a wider variety of IID violations in practice. Code: https://github.com/cleanlab/cleanlab
Can Community Notes Replace Professional Fact-Checkers?
Two commonly-employed strategies to combat the rise of misinformation on social media are (i) fact-checking by professional organisations and (ii) community moderation by platform users. Policy changes by Twitter/X and, more recently, Meta, signal a shift away from partnerships with fact-checking organisations and towards an increased reliance on crowdsourced community notes. However, the extent and nature of dependencies between fact-checking and helpful community notes remain unclear. To address these questions, we use language models to annotate a large corpus of Twitter/X community notes with attributes such as topic, cited sources, and whether they refute claims tied to broader misinformation narratives. Our analysis reveals that community notes cite fact-checking sources up to five times more than previously reported. Fact-checking is especially crucial for notes on posts linked to broader narratives, which are twice as likely to reference fact-checking sources compared to other sources. In conclusion, our results show that successful community moderation heavily relies on professional fact-checking.
The Many Dimensions of Truthfulness: Crowdsourcing Misinformation Assessments on a Multidimensional Scale
Recent work has demonstrated the viability of using crowdsourcing as a tool for evaluating the truthfulness of public statements. Under certain conditions such as: (1) having a balanced set of workers with different backgrounds and cognitive abilities; (2) using an adequate set of mechanisms to control the quality of the collected data; and (3) using a coarse grained assessment scale, the crowd can provide reliable identification of fake news. However, fake news are a subtle matter: statements can be just biased ("cherrypicked"), imprecise, wrong, etc. and the unidimensional truth scale used in existing work cannot account for such differences. In this paper we propose a multidimensional notion of truthfulness and we ask the crowd workers to assess seven different dimensions of truthfulness selected based on existing literature: Correctness, Neutrality, Comprehensibility, Precision, Completeness, Speaker's Trustworthiness, and Informativeness. We deploy a set of quality control mechanisms to ensure that the thousands of assessments collected on 180 publicly available fact-checked statements distributed over two datasets are of adequate quality, including a custom search engine used by the crowd workers to find web pages supporting their truthfulness assessments. A comprehensive analysis of crowdsourced judgments shows that: (1) the crowdsourced assessments are reliable when compared to an expert-provided gold standard; (2) the proposed dimensions of truthfulness capture independent pieces of information; (3) the crowdsourcing task can be easily learned by the workers; and (4) the resulting assessments provide a useful basis for a more complete estimation of statement truthfulness.
GPT Takes the Bar Exam
Nearly all jurisdictions in the United States require a professional license exam, commonly referred to as "the Bar Exam," as a precondition for law practice. To even sit for the exam, most jurisdictions require that an applicant completes at least seven years of post-secondary education, including three years at an accredited law school. In addition, most test-takers also undergo weeks to months of further, exam-specific preparation. Despite this significant investment of time and capital, approximately one in five test-takers still score under the rate required to pass the exam on their first try. In the face of a complex task that requires such depth of knowledge, what, then, should we expect of the state of the art in "AI?" In this research, we document our experimental evaluation of the performance of OpenAI's `text-davinci-003` model, often-referred to as GPT-3.5, on the multistate multiple choice (MBE) section of the exam. While we find no benefit in fine-tuning over GPT-3.5's zero-shot performance at the scale of our training data, we do find that hyperparameter optimization and prompt engineering positively impacted GPT-3.5's zero-shot performance. For best prompt and parameters, GPT-3.5 achieves a headline correct rate of 50.3% on a complete NCBE MBE practice exam, significantly in excess of the 25% baseline guessing rate, and performs at a passing rate for both Evidence and Torts. GPT-3.5's ranking of responses is also highly-correlated with correctness; its top two and top three choices are correct 71% and 88% of the time, respectively, indicating very strong non-entailment performance. While our ability to interpret these results is limited by nascent scientific understanding of LLMs and the proprietary nature of GPT, we believe that these results strongly suggest that an LLM will pass the MBE component of the Bar Exam in the near future.
BiDeV: Bilateral Defusing Verification for Complex Claim Fact-Checking
Complex claim fact-checking performs a crucial role in disinformation detection. However, existing fact-checking methods struggle with claim vagueness, specifically in effectively handling latent information and complex relations within claims. Moreover, evidence redundancy, where nonessential information complicates the verification process, remains a significant issue. To tackle these limitations, we propose Bilateral Defusing Verification (BiDeV), a novel fact-checking working-flow framework integrating multiple role-played LLMs to mimic the human-expert fact-checking process. BiDeV consists of two main modules: Vagueness Defusing identifies latent information and resolves complex relations to simplify the claim, and Redundancy Defusing eliminates redundant content to enhance the evidence quality. Extensive experimental results on two widely used challenging fact-checking benchmarks (Hover and Feverous-s) demonstrate that our BiDeV can achieve the best performance under both gold and open settings. This highlights the effectiveness of BiDeV in handling complex claims and ensuring precise fact-checking
Compliance Checking with NLI: Privacy Policies vs. Regulations
A privacy policy is a document that states how a company intends to handle and manage their customers' personal data. One of the problems that arises with these privacy policies is that their content might violate data privacy regulations. Because of the enormous number of privacy policies that exist, the only realistic way to check for legal inconsistencies in all of them is through an automated method. In this work, we use Natural Language Inference (NLI) techniques to compare privacy regulations against sections of privacy policies from a selection of large companies. Our NLI model uses pre-trained embeddings, along with BiLSTM in its attention mechanism. We tried two versions of our model: one that was trained on the Stanford Natural Language Inference (SNLI) and the second on the Multi-Genre Natural Language Inference (MNLI) dataset. We found that our test accuracy was higher on our model trained on the SNLI, but when actually doing NLI tasks on real world privacy policies, the model trained on MNLI generalized and performed much better.
Profiling News Media for Factuality and Bias Using LLMs and the Fact-Checking Methodology of Human Experts
In an age characterized by the proliferation of mis- and disinformation online, it is critical to empower readers to understand the content they are reading. Important efforts in this direction rely on manual or automatic fact-checking, which can be challenging for emerging claims with limited information. Such scenarios can be handled by assessing the reliability and the political bias of the source of the claim, i.e., characterizing entire news outlets rather than individual claims or articles. This is an important but understudied research direction. While prior work has looked into linguistic and social contexts, we do not analyze individual articles or information in social media. Instead, we propose a novel methodology that emulates the criteria that professional fact-checkers use to assess the factuality and political bias of an entire outlet. Specifically, we design a variety of prompts based on these criteria and elicit responses from large language models (LLMs), which we aggregate to make predictions. In addition to demonstrating sizable improvements over strong baselines via extensive experiments with multiple LLMs, we provide an in-depth error analysis of the effect of media popularity and region on model performance. Further, we conduct an ablation study to highlight the key components of our dataset that contribute to these improvements. To facilitate future research, we released our dataset and code at https://github.com/mbzuai-nlp/llm-media-profiling.
CondAmbigQA: A Benchmark and Dataset for Conditional Ambiguous Question Answering
Large language models (LLMs) are prone to hallucinations in question-answering (QA) tasks when faced with ambiguous questions. Users often assume that LLMs share their cognitive alignment, a mutual understanding of context, intent, and implicit details, leading them to omit critical information in the queries. However, LLMs generate responses based on assumptions that can misalign with user intent, which may be perceived as hallucinations if they misalign with the user's intent. Therefore, identifying those implicit assumptions is crucial to resolve ambiguities in QA. Prior work, such as AmbigQA, reduces ambiguity in queries via human-annotated clarifications, which is not feasible in real application. Meanwhile, ASQA compiles AmbigQA's short answers into long-form responses but inherits human biases and fails capture explicit logical distinctions that differentiates the answers. We introduce Conditional Ambiguous Question-Answering (CondAmbigQA), a benchmark with 200 ambiguous queries and condition-aware evaluation metrics. Our study pioneers the concept of ``conditions'' in ambiguous QA tasks, where conditions stand for contextual constraints or assumptions that resolve ambiguities. The retrieval-based annotation strategy uses retrieved Wikipedia fragments to identify possible interpretations for a given query as its conditions and annotate the answers through those conditions. Such a strategy minimizes human bias introduced by different knowledge levels among annotators. By fixing retrieval results, CondAmbigQA evaluates how RAG systems leverage conditions to resolve ambiguities. Experiments show that models considering conditions before answering improve performance by 20%, with an additional 5% gain when conditions are explicitly provided. These results underscore the value of conditional reasoning in QA, offering researchers tools to rigorously evaluate ambiguity resolution.
Provably Robust Conformal Prediction with Improved Efficiency
Conformal prediction is a powerful tool to generate uncertainty sets with guaranteed coverage using any predictive model, under the assumption that the training and test data are i.i.d.. Recently, it has been shown that adversarial examples are able to manipulate conformal methods to construct prediction sets with invalid coverage rates, as the i.i.d. assumption is violated. To address this issue, a recent work, Randomized Smoothed Conformal Prediction (RSCP), was first proposed to certify the robustness of conformal prediction methods to adversarial noise. However, RSCP has two major limitations: (i) its robustness guarantee is flawed when used in practice and (ii) it tends to produce large uncertainty sets. To address these limitations, we first propose a novel framework called RSCP+ to provide provable robustness guarantee in evaluation, which fixes the issues in the original RSCP method. Next, we propose two novel methods, Post-Training Transformation (PTT) and Robust Conformal Training (RCT), to effectively reduce prediction set size with little computation overhead. Experimental results in CIFAR10, CIFAR100, and ImageNet suggest the baseline method only yields trivial predictions including full label set, while our methods could boost the efficiency by up to 4.36times, 5.46times, and 16.9times respectively and provide practical robustness guarantee. Our codes are available at https://github.com/Trustworthy-ML-Lab/Provably-Robust-Conformal-Prediction.
CheckEval: Robust Evaluation Framework using Large Language Model via Checklist
We introduce CheckEval, a novel evaluation framework using Large Language Models, addressing the challenges of ambiguity and inconsistency in current evaluation methods. CheckEval addresses these challenges by dividing evaluation criteria into detailed sub-aspects and constructing a checklist of Boolean questions for each, simplifying the evaluation. This approach not only renders the process more interpretable but also significantly enhances the robustness and reliability of results by focusing on specific evaluation dimensions. Validated through a focused case study using the SummEval benchmark, CheckEval indicates a strong correlation with human judgments. Furthermore, it demonstrates a highly consistent Inter-Annotator Agreement. These findings highlight the effectiveness of CheckEval for objective, flexible, and precise evaluations. By offering a customizable and interactive framework, CheckEval sets a new standard for the use of LLMs in evaluation, responding to the evolving needs of the field and establishing a clear method for future LLM-based evaluation.
Critical-Questions-of-Thought: Steering LLM reasoning with Argumentative Querying
Studies have underscored how, regardless of the recent breakthrough and swift advances in AI research, even state-of-the-art Large Language models (LLMs) continue to struggle when performing logical and mathematical reasoning. The results seem to suggest that LLMs still work as (highly advanced) data pattern identifiers, scoring poorly when attempting to generalise and solve reasoning problems the models have never previously seen or that are not close to samples presented in their training data. To address this compelling concern, this paper makes use of the notion of critical questions from the literature on argumentation theory, focusing in particular on Toulmin's model of argumentation. We show that employing these critical questions can improve the reasoning capabilities of LLMs. By probing the rationale behind the models' reasoning process, the LLM can assess whether some logical mistake is occurring and correct it before providing the final reply to the user prompt. The underlying idea is drawn from the gold standard of any valid argumentative procedure: the conclusion is valid if it is entailed by accepted premises. Or, to paraphrase such Aristotelian principle in a real-world approximation, characterised by incomplete information and presumptive logic, the conclusion is valid if not proved otherwise. This approach successfully steers the models' output through a reasoning pipeline, resulting in better performance against the baseline and its Chain-of-Thought (CoT) implementation. To this end, an extensive evaluation of the proposed approach on the MT-Bench Reasoning and Math tasks across a range of LLMs is provided.
Compliance Cards: Computational Artifacts for Automated AI Regulation Compliance
As the artificial intelligence (AI) supply chain grows more complex, AI systems and models are increasingly likely to incorporate externally-sourced ingredients such as datasets and other models. In such cases, determining whether or not an AI system or model complies with the EU AI Act will require gathering compliance-related metadata about both the AI system or model at-large as well as those externally-supplied ingredients. There must then be an analysis that looks across all of this metadata to render a prediction about the compliance of the overall AI system or model. Up until now, this process has not been automated. Thus, it has not been possible to make real-time compliance determinations in scenarios where doing so would be advantageous, such as the iterative workflows of today's AI developers, search and acquisition of AI ingredients on communities like Hugging Face, federated and continuous learning, and more. To address this shortcoming, we introduce a highly automated system for AI Act compliance analysis. This system has two key elements. First is an interlocking set of computational artifacts that capture compliance-related metadata about both: (1) the AI system or model at-large; (2) any constituent ingredients such as datasets and models. Second is an automated analysis algorithm that operates across those computational artifacts to render a run-time prediction about whether or not the overall AI system or model complies with the AI Act. Working together, these elements promise to enhance and accelerate AI Act compliance assessments.