Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeRandomized Positional Encodings Boost Length Generalization of Transformers
Transformers have impressive generalization capabilities on tasks with a fixed context length. However, they fail to generalize to sequences of arbitrary length, even for seemingly simple tasks such as duplicating a string. Moreover, simply training on longer sequences is inefficient due to the quadratic computation complexity of the global attention mechanism. In this work, we demonstrate that this failure mode is linked to positional encodings being out-of-distribution for longer sequences (even for relative encodings) and introduce a novel family of positional encodings that can overcome this problem. Concretely, our randomized positional encoding scheme simulates the positions of longer sequences and randomly selects an ordered subset to fit the sequence's length. Our large-scale empirical evaluation of 6000 models across 15 algorithmic reasoning tasks shows that our method allows Transformers to generalize to sequences of unseen length (increasing test accuracy by 12.0% on average).
TULIP: Token-length Upgraded CLIP
We address the challenge of representing long captions in vision-language models, such as CLIP. By design these models are limited by fixed, absolute positional encodings, restricting inputs to a maximum of 77 tokens and hindering performance on tasks requiring longer descriptions. Although recent work has attempted to overcome this limit, their proposed approaches struggle to model token relationships over longer distances and simply extend to a fixed new token length. Instead, we propose a generalizable method, named TULIP, able to upgrade the token length to any length for CLIP-like models. We do so by improving the architecture with relative position encodings, followed by a training procedure that (i) distills the original CLIP text encoder into an encoder with relative position encodings and (ii) enhances the model for aligning longer captions with images. By effectively encoding captions longer than the default 77 tokens, our model outperforms baselines on cross-modal tasks such as retrieval and text-to-image generation.
Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context
Transformers have a potential of learning longer-term dependency, but are limited by a fixed-length context in the setting of language modeling. We propose a novel neural architecture Transformer-XL that enables learning dependency beyond a fixed length without disrupting temporal coherence. It consists of a segment-level recurrence mechanism and a novel positional encoding scheme. Our method not only enables capturing longer-term dependency, but also resolves the context fragmentation problem. As a result, Transformer-XL learns dependency that is 80% longer than RNNs and 450% longer than vanilla Transformers, achieves better performance on both short and long sequences, and is up to 1,800+ times faster than vanilla Transformers during evaluation. Notably, we improve the state-of-the-art results of bpc/perplexity to 0.99 on enwiki8, 1.08 on text8, 18.3 on WikiText-103, 21.8 on One Billion Word, and 54.5 on Penn Treebank (without finetuning). When trained only on WikiText-103, Transformer-XL manages to generate reasonably coherent, novel text articles with thousands of tokens. Our code, pretrained models, and hyperparameters are available in both Tensorflow and PyTorch.
Byte-Level Recursive Convolutional Auto-Encoder for Text
This article proposes to auto-encode text at byte-level using convolutional networks with a recursive architecture. The motivation is to explore whether it is possible to have scalable and homogeneous text generation at byte-level in a non-sequential fashion through the simple task of auto-encoding. We show that non-sequential text generation from a fixed-length representation is not only possible, but also achieved much better auto-encoding results than recurrent networks. The proposed model is a multi-stage deep convolutional encoder-decoder framework using residual connections, containing up to 160 parameterized layers. Each encoder or decoder contains a shared group of modules that consists of either pooling or upsampling layers, making the network recursive in terms of abstraction levels in representation. Results for 6 large-scale paragraph datasets are reported, in 3 languages including Arabic, Chinese and English. Analyses are conducted to study several properties of the proposed model.
Padding Tone: A Mechanistic Analysis of Padding Tokens in T2I Models
Text-to-image (T2I) diffusion models rely on encoded prompts to guide the image generation process. Typically, these prompts are extended to a fixed length by adding padding tokens before text encoding. Despite being a default practice, the influence of padding tokens on the image generation process has not been investigated. In this work, we conduct the first in-depth analysis of the role padding tokens play in T2I models. We develop two causal techniques to analyze how information is encoded in the representation of tokens across different components of the T2I pipeline. Using these techniques, we investigate when and how padding tokens impact the image generation process. Our findings reveal three distinct scenarios: padding tokens may affect the model's output during text encoding, during the diffusion process, or be effectively ignored. Moreover, we identify key relationships between these scenarios and the model's architecture (cross or self-attention) and its training process (frozen or trained text encoder). These insights contribute to a deeper understanding of the mechanisms of padding tokens, potentially informing future model design and training practices in T2I systems.
Cramming 1568 Tokens into a Single Vector and Back Again: Exploring the Limits of Embedding Space Capacity
A range of recent works addresses the problem of compression of sequence of tokens into a shorter sequence of real-valued vectors to be used as inputs instead of token embeddings or key-value cache. These approaches allow to reduce the amount of compute in existing language models. Despite relying on powerful models as encoders, the maximum attainable lossless compression ratio is typically not higher than x10. This fact is highly intriguing because, in theory, the maximum information capacity of large real-valued vectors is far beyond the presented rates even for 16-bit precision and a modest vector size. In this work, we explore the limits of compression by replacing the encoder with a per-sample optimization procedure. We show that vectors with compression ratios up to x1500 exist, which highlights two orders of magnitude gap between existing and practically attainable solutions. Furthermore, we empirically show that the compression limits are determined not by the length of the input but by the amount of uncertainty to be reduced, namely, the cross-entropy loss on this sequence without any conditioning. The obtained limits highlight the substantial gap between the theoretical capacity of input embeddings and their practical utilization, suggesting significant room for optimization in model design.
Efficient Sequence Packing without Cross-contamination: Accelerating Large Language Models without Impacting Performance
Effective training of today's large language models (LLMs) depends on large batches and long sequences for throughput and accuracy. To handle variable-length sequences on hardware accelerators, it is common practice to introduce padding tokens, so that all sequences in a batch have the same length. We show in this paper that the variation in sequence lengths in common NLP datasets is such that up to 50% of all tokens can be padding. In less common, but not extreme, cases (e.g. GLUE-cola with sequence length 128), the ratio is up to 89%. Existing methods to address the resulting inefficiency are complicated by the need to avoid cross-contamination in self-attention, by a reduction in accuracy when sequence ordering information is lost, or by customized kernel implementations only valid for specific accelerators. This paper introduces a new formalization of sequence packing in the context of the well-studied bin packing problem, and presents new algorithms based on this formulation which, for example, confer a 2x speedup for phase 2 pre-training in BERT. We show how existing models can be adapted to ensure mathematical equivalence between the original and packed models, meaning that packed models can be trained with existing pre-training and fine-tuning practices.
Precise Length Control in Large Language Models
Large Language Models (LLMs) are increasingly used in production systems, powering applications such as chatbots, summarization, and question answering. Despite their success, controlling the length of their response remains a significant challenge, particularly for tasks requiring structured outputs or specific levels of detail. In this work, we propose a method to adapt pre-trained decoder-only LLMs for precise control of response length. Our approach incorporates a secondary length-difference positional encoding (LDPE) into the input embeddings, which counts down to a user-set response termination length. Fine-tuning with LDPE allows the model to learn to terminate responses coherently at the desired length, achieving mean token errors of less than 3 tokens. We also introduce Max New Tokens++, an extension that enables flexible upper-bound length control, rather than an exact target. Experimental results on tasks such as question answering and document summarization demonstrate that our method enables precise length control without compromising response quality.
LM-Infinite: Simple On-the-Fly Length Generalization for Large Language Models
In recent years, there have been remarkable advancements in the performance of Transformer-based Large Language Models (LLMs) across various domains. As these LLMs are deployed for increasingly complex tasks, they often face the needs to conduct longer reasoning processes or understanding larger contexts. In these situations, the length generalization failure of LLMs on long sequences become more prominent. Most pre-training schemes truncate training sequences to a fixed length (such as 2048 for LLaMa). LLMs often struggle to generate fluent texts, let alone carry out downstream tasks, after longer contexts, even with relative positional encoding which is designed to cope with this problem. Common solutions such as finetuning on longer corpora often involves daunting hardware and time costs and requires careful training process design. To more efficiently leverage the generation capacity of existing LLMs, we theoretically and empirically investigate the main out-of-distribution (OOD) factors contributing to this problem. Inspired by this diagnosis, we propose a simple yet effective solution for on-the-fly length generalization, LM-Infinite, which involves only a Lambda-shaped attention mask and a distance limit while requiring no parameter updates or learning. We find it applicable to a variety of LLMs using relative-position encoding methods. LM-Infinite is computational efficient with O(n) time and space, and demonstrates consistent fluency and generation quality to as long as 32k tokens on ArXiv and OpenWebText2 datasets, with 2.72x decoding speedup. On downstream task such as passkey retrieval, it continues to work on inputs much longer than training lengths where vanilla models fail immediately.
Learn Your Tokens: Word-Pooled Tokenization for Language Modeling
Language models typically tokenize text into subwords, using a deterministic, hand-engineered heuristic of combining characters into longer surface-level strings such as 'ing' or whole words. Recent literature has repeatedly shown the limitations of such a tokenization strategy, particularly for documents not written in English and for representing numbers. On the other extreme, byte/character-level language models are much less restricted but suffer from increased sequence description lengths and a subsequent quadratic expansion in self-attention computation. Recent attempts to compress and limit these context lengths with fixed size convolutions is helpful but completely ignores the word boundary. This paper considers an alternative 'learn your tokens' scheme which utilizes the word boundary to pool bytes/characters into word representations, which are fed to the primary language model, before again decoding individual characters/bytes per word in parallel. We find that our moderately expressive and moderately fast end-to-end tokenizer outperform by over 300% both subwords and byte/character models over the intrinsic language modeling metric of next-word prediction across datasets. It particularly outshines on rare words, outperforming by a factor of 30! We extensively study the language modeling setup for all three categories of tokenizers and theoretically analyze how our end-to-end models can also be a strong trade-off in efficiency and robustness.
FP8 Formats for Deep Learning
FP8 is a natural progression for accelerating deep learning training inference beyond the 16-bit formats common in modern processors. In this paper we propose an 8-bit floating point (FP8) binary interchange format consisting of two encodings - E4M3 (4-bit exponent and 3-bit mantissa) and E5M2 (5-bit exponent and 2-bit mantissa). While E5M2 follows IEEE 754 conventions for representatio of special values, E4M3's dynamic range is extended by not representing infinities and having only one mantissa bit-pattern for NaNs. We demonstrate the efficacy of the FP8 format on a variety of image and language tasks, effectively matching the result quality achieved by 16-bit training sessions. Our study covers the main modern neural network architectures - CNNs, RNNs, and Transformer-based models, leaving all the hyperparameters unchanged from the 16-bit baseline training sessions. Our training experiments include large, up to 175B parameter, language models. We also examine FP8 post-training-quantization of language models trained using 16-bit formats that resisted fixed point int8 quantization.
PV-Tuning: Beyond Straight-Through Estimation for Extreme LLM Compression
There has been significant interest in "extreme" compression of large language models (LLMs), i.e., to 1-2 bits per parameter, which allows such models to be executed efficiently on resource-constrained devices. Existing work focused on improved one-shot quantization techniques and weight representations; yet, purely post-training approaches are reaching diminishing returns in terms of the accuracy-vs-bit-width trade-off. State-of-the-art quantization methods such as QuIP# and AQLM include fine-tuning (part of) the compressed parameters over a limited amount of calibration data; however, such fine-tuning techniques over compressed weights often make exclusive use of straight-through estimators (STE), whose performance is not well-understood in this setting. In this work, we question the use of STE for extreme LLM compression, showing that it can be sub-optimal, and perform a systematic study of quantization-aware fine-tuning strategies for LLMs. We propose PV-Tuning - a representation-agnostic framework that generalizes and improves upon existing fine-tuning strategies, and provides convergence guarantees in restricted cases. On the practical side, when used for 1-2 bit vector quantization, PV-Tuning outperforms prior techniques for highly-performant models such as Llama and Mistral. Using PV-Tuning, we achieve the first Pareto-optimal quantization for Llama 2 family models at 2 bits per parameter.
Are Decoder-Only Large Language Models the Silver Bullet for Code Search?
Code search is crucial for code reuse, enabling developers to efficiently locate relevant snippets. Current methods rely on encoder-based models, which suffer from limitations such as poor generalization and restricted input lengths. Decoder-only large language models (LLMs), with their extensive pre-training, larger size, and longer input capabilities, offer potential solutions to these issues, yet their effectiveness in code search remains underexplored. To fill this gap, our study presents the first systematic exploration of decoder-only LLMs for code search. We evaluate nine state-of-the-art decoder-only models using two fine-tuning methods, two datasets (CSN and CoSQA^+), and three model sizes. Our findings reveal that fine-tuned CodeGemma significantly outperforms encoder-only models like UniXcoder, achieving a 5.57% improvement in MRR on CSN and a 49.6% increase in MAP on CoSQA^+ compared to zero-shot UniXcoder. These results highlight the superior performance and adaptability of decoder-only models. Additionally, we provide valuable insights into optimizing these models for code search, covering aspects such as model selection, fine-tuning methods, training data, and model size, and discussing their strengths and limitations.
Data-Free Quantization Through Weight Equalization and Bias Correction
We introduce a data-free quantization method for deep neural networks that does not require fine-tuning or hyperparameter selection. It achieves near-original model performance on common computer vision architectures and tasks. 8-bit fixed-point quantization is essential for efficient inference on modern deep learning hardware. However, quantizing models to run in 8-bit is a non-trivial task, frequently leading to either significant performance reduction or engineering time spent on training a network to be amenable to quantization. Our approach relies on equalizing the weight ranges in the network by making use of a scale-equivariance property of activation functions. In addition the method corrects biases in the error that are introduced during quantization. This improves quantization accuracy performance, and can be applied to many common computer vision architectures with a straight forward API call. For common architectures, such as the MobileNet family, we achieve state-of-the-art quantized model performance. We further show that the method also extends to other computer vision architectures and tasks such as semantic segmentation and object detection.
LVCHAT: Facilitating Long Video Comprehension
Enabling large language models (LLMs) to read videos is vital for multimodal LLMs. Existing works show promise on short videos whereas long video (longer than e.g.~1 minute) comprehension remains challenging. The major problem lies in the over-compression of videos, i.e., the encoded video representations are not enough to represent the whole video. To address this issue, we propose Long Video Chat (LVChat), where Frame-Scalable Encoding (FSE) is introduced to dynamically adjust the number of embeddings in alignment with the duration of the video to ensure long videos are not overly compressed into a few embeddings. To deal with long videos whose length is beyond videos seen during training, we propose Interleaved Frame Encoding (IFE), repeating positional embedding and interleaving multiple groups of videos to enable long video input, avoiding performance degradation due to overly long videos. Experimental results show that LVChat significantly outperforms existing methods by up to 27\% in accuracy on long-video QA datasets and long-video captioning benchmarks. Our code is published at https://github.com/wangyu-ustc/LVChat.
Giraffe: Adventures in Expanding Context Lengths in LLMs
Modern large language models (LLMs) that rely on attention mechanisms are typically trained with fixed context lengths which enforce upper limits on the length of input sequences that they can handle at evaluation time. To use these models on sequences longer than the train-time context length, one might employ techniques from the growing family of context length extrapolation methods -- most of which focus on modifying the system of positional encodings used in the attention mechanism to indicate where tokens or activations are located in the input sequence. We conduct a wide survey of existing methods of context length extrapolation on a base LLaMA or LLaMA 2 model, and introduce some of our own design as well -- in particular, a new truncation strategy for modifying the basis for the position encoding. We test these methods using three new evaluation tasks (FreeFormQA, AlteredNumericQA, and LongChat-Lines) as well as perplexity, which we find to be less fine-grained as a measure of long context performance of LLMs. We release the three tasks publicly as datasets on HuggingFace. We discover that linear scaling is the best method for extending context length, and show that further gains can be achieved by using longer scales at evaluation time. We also discover promising extrapolation capabilities in the truncated basis. To support further research in this area, we release three new 13B parameter long-context models which we call Giraffe: 4k and 16k context models trained from base LLaMA-13B, and a 32k context model trained from base LLaMA2-13B. We also release the code to replicate our results.
Let the Code LLM Edit Itself When You Edit the Code
In this work, we investigate a typical scenario in code generation where a developer edits existing code in real time and requests a code assistant, e.g., a large language model, to re-predict the next token or next line on the fly. Naively, the LLM needs to re-encode the entire KV cache to provide an accurate prediction. However, this process is computationally expensive, especially when the sequence length is long. Simply encoding the edited subsequence and integrating it to the original KV cache meets the temporal confusion problem, leading to significantly worse performance. We address this efficiency and accuracy trade-off by introducing \textbf{Positional \textbf{Integrity Encoding} (PIE). Building upon the rotary positional encoding, PIE first removes the rotary matrices in the Key cache that introduce temporal confusion and then reapplies the correct rotary matrices. This process ensures that positional relationships between tokens are correct and requires only a single round of matrix multiplication. We validate the effectiveness of PIE through extensive experiments on the RepoBench-C-8k dataset, utilizing DeepSeek-Coder models with 1.3B, 6.7B, and 33B parameters. Our evaluation includes three real-world coding tasks: code insertion, code deletion, and multi-place code editing. Results demonstrate that PIE reduces computational overhead by over 85% compared to the standard full recomputation approach across all model sizes and tasks while well approximating the model performance.
Extreme Compression of Large Language Models via Additive Quantization
The emergence of accurate open large language models (LLMs) has led to a race towards quantization techniques for such models enabling execution on end-user devices. In this paper, we revisit the problem of "extreme" LLM compression--defined as targeting extremely low bit counts, such as 2 to 3 bits per parameter, from the point of view of classic methods in Multi-Codebook Quantization (MCQ). Our work builds on top of Additive Quantization, a classic algorithm from the MCQ family, and adapts it to the quantization of language models. The resulting algorithm advances the state-of-the-art in LLM compression, outperforming all recently-proposed techniques in terms of accuracy at a given compression budget. For instance, when compressing Llama 2 models to 2 bits per parameter, our algorithm quantizes the 7B model to 6.93 perplexity (a 1.29 improvement relative to the best prior work, and 1.81 points from FP16), the 13B model to 5.70 perplexity (a .36 improvement) and the 70B model to 3.94 perplexity (a .22 improvement) on WikiText2. We release our implementation of Additive Quantization for Language Models AQLM as a baseline to facilitate future research in LLM quantization.
PAMS: Quantized Super-Resolution via Parameterized Max Scale
Deep convolutional neural networks (DCNNs) have shown dominant performance in the task of super-resolution (SR). However, their heavy memory cost and computation overhead significantly restrict their practical deployments on resource-limited devices, which mainly arise from the floating-point storage and operations between weights and activations. Although previous endeavors mainly resort to fixed-point operations, quantizing both weights and activations with fixed coding lengths may cause significant performance drop, especially on low bits. Specifically, most state-of-the-art SR models without batch normalization have a large dynamic quantization range, which also serves as another cause of performance drop. To address these two issues, we propose a new quantization scheme termed PArameterized Max Scale (PAMS), which applies the trainable truncated parameter to explore the upper bound of the quantization range adaptively. Finally, a structured knowledge transfer (SKT) loss is introduced to fine-tune the quantized network. Extensive experiments demonstrate that the proposed PAMS scheme can well compress and accelerate the existing SR models such as EDSR and RDN. Notably, 8-bit PAMS-EDSR improves PSNR on Set5 benchmark from 32.095dB to 32.124dB with 2.42times compression ratio, which achieves a new state-of-the-art.
More Tokens, Lower Precision: Towards the Optimal Token-Precision Trade-off in KV Cache Compression
As large language models (LLMs) process increasing context windows, the memory usage of KV cache has become a critical bottleneck during inference. The mainstream KV compression methods, including KV pruning and KV quantization, primarily focus on either token or precision dimension and seldom explore the efficiency of their combination. In this paper, we comprehensively investigate the token-precision trade-off in KV cache compression. Experiments demonstrate that storing more tokens in the KV cache with lower precision, i.e., quantized pruning, can significantly enhance the long-context performance of LLMs. Furthermore, in-depth analysis regarding token-precision trade-off from a series of key aspects exhibit that, quantized pruning achieves substantial improvements in retrieval-related tasks and consistently performs well across varying input lengths. Moreover, quantized pruning demonstrates notable stability across different KV pruning methods, quantization strategies, and model scales. These findings provide valuable insights into the token-precision trade-off in KV cache compression. We plan to release our code in the near future.
Bytes are All You Need: End-to-End Multilingual Speech Recognition and Synthesis with Bytes
We present two end-to-end models: Audio-to-Byte (A2B) and Byte-to-Audio (B2A), for multilingual speech recognition and synthesis. Prior work has predominantly used characters, sub-words or words as the unit of choice to model text. These units are difficult to scale to languages with large vocabularies, particularly in the case of multilingual processing. In this work, we model text via a sequence of Unicode bytes, specifically, the UTF-8 variable length byte sequence for each character. Bytes allow us to avoid large softmaxes in languages with large vocabularies, and share representations in multilingual models. We show that bytes are superior to grapheme characters over a wide variety of languages in monolingual end-to-end speech recognition. Additionally, our multilingual byte model outperform each respective single language baseline on average by 4.4% relatively. In Japanese-English code-switching speech, our multilingual byte model outperform our monolingual baseline by 38.6% relatively. Finally, we present an end-to-end multilingual speech synthesis model using byte representations which matches the performance of our monolingual baselines.
LBPE: Long-token-first Tokenization to Improve Large Language Models
The prevalent use of Byte Pair Encoding (BPE) in Large Language Models (LLMs) facilitates robust handling of subword units and avoids issues of out-of-vocabulary words. Despite its success, a critical challenge persists: long tokens, rich in semantic information, have fewer occurrences in tokenized datasets compared to short tokens, which can result in imbalanced learning issue across different tokens. To address that, we propose LBPE, which prioritizes long tokens during the encoding process. LBPE generates tokens according to their reverse ranks of token length rather than their ranks in the vocabulary, granting longer tokens higher priority during the encoding process. Consequently, LBPE smooths the frequency differences between short and long tokens, and thus mitigates the learning imbalance. Extensive experiments across diverse language modeling tasks demonstrate that LBPE consistently outperforms the original BPE, well demonstrating its effectiveness.
Context-aware Biases for Length Extrapolation
Transformers' ability to generalize to longer sequences than they have been trained on, known as length extrapolation, degrades as sequence length increases. Most of Relative Positional Encoding (RPE) methods address this problem by either adding constant linear biases or learning general biases, lacking the ability to specialize for different sequences. In this work, inspired by ALiBi, we propose Context-aware Biases for Length Extrapolation (Cable), that learns token-specific biases for each head in decoder-based transformers. Cable learns adaptive, context-aware biases, overcoming the limitations of fixed patterns by adding dynamic biases specific to each token in the sequence. Results show that when tested on a sequence length of 1024, a GPT-3 Medium (334M parameters) with our positional encoding, trained on a sequence length of 512, achieves better perplexity (-0.65) than a similar network with sinusoidal positional encoding trained on a sequence length of 1024. This is achieved with 48% lower memory usage, and only 3.5% higher training time. Furthermore, our method notably improves the extrapolation ability of existing RPE methods on the Edu-FineWeb10B and WikiText-103 datasets. Code is available at: https://github.com/axiomlab/Cable
Neural Machine Translation without Embeddings
Many NLP models operate over sequences of subword tokens produced by hand-crafted tokenization rules and heuristic subword induction algorithms. A simple universal alternative is to represent every computerized text as a sequence of bytes via UTF-8, obviating the need for an embedding layer since there are fewer token types (256) than dimensions. Surprisingly, replacing the ubiquitous embedding layer with one-hot representations of each byte does not hurt performance; experiments on byte-to-byte machine translation from English to 10 different languages show a consistent improvement in BLEU, rivaling character-level and even standard subword-level models. A deeper investigation reveals that the combination of embeddingless models with decoder-input dropout amounts to token dropout, which benefits byte-to-byte models in particular.
Overcoming a Theoretical Limitation of Self-Attention
Although transformers are remarkably effective for many tasks, there are some surprisingly easy-looking regular languages that they struggle with. Hahn shows that for languages where acceptance depends on a single input symbol, a transformer's classification decisions become less and less confident (that is, with cross-entropy approaching 1 bit per string) as input strings get longer and longer. We examine this limitation using two languages: PARITY, the language of bit strings with an odd number of 1s, and FIRST, the language of bit strings starting with a 1. We demonstrate three ways of overcoming the limitation suggested by Hahn's lemma. First, we settle an open question by constructing a transformer that recognizes PARITY with perfect accuracy, and similarly for FIRST. Second, we use layer normalization to bring the cross-entropy of both models arbitrarily close to zero. Third, when transformers need to focus on a single position, as for FIRST, we find that they can fail to generalize to longer strings; we offer a simple remedy to this problem that also improves length generalization in machine translation.
CacheGen: Fast Context Loading for Language Model Applications
As large language models (LLMs) take on more complex tasks, their inputs incorporate longer contexts to respond to questions that require domain knowledge or user-specific conversational histories. Yet, using long contexts poses a challenge for responsive LLM systems, as nothing can be generated until all the contexts are fetched to and processed by the LLM. Existing systems optimize only the computation delay in context processing (e.g., by caching intermediate key-value features of the text context) but often cause longer network delays in context fetching (e.g., key-value features consume orders of magnitude larger bandwidth than the text context). This paper presents CacheGen to minimize the delays in fetching and processing contexts for LLMs. CacheGen reduces the bandwidth needed for transmitting long contexts' key-value (KV) features through a novel encoder that compresses KV features into more compact bitstream representations. The encoder combines adaptive quantization with a tailored arithmetic coder, taking advantage of the KV features' distributional properties, such as locality across tokens. Furthermore, CacheGen minimizes the total delay in fetching and processing a context by using a controller that determines when to load the context as compressed KV features or raw text and picks the appropriate compression level if loaded as KV features. We test CacheGen on three models of various sizes and three datasets of different context lengths. Compared to recent methods that handle long contexts, CacheGen reduces bandwidth usage by 3.7-4.3x and the total delay in fetching and processing contexts by 2.7-3x while maintaining similar LLM performance on various tasks as loading the text contexts.
Byte Pair Encoding for Symbolic Music
When used with deep learning, the symbolic music modality is often coupled with language model architectures. To do so, the music needs to be tokenized, i.e. converted into a sequence of discrete tokens. This can be achieved by different approaches, as music can be composed of simultaneous tracks, of simultaneous notes with several attributes. Until now, the proposed tokenizations rely on small vocabularies of tokens describing the note attributes and time events, resulting in fairly long token sequences, and a sub-optimal use of the embedding space of language models. Recent research has put efforts on reducing the overall sequence length by merging embeddings or combining tokens. In this paper, we show that Byte Pair Encoding, a compression technique widely used for natural language, significantly decreases the sequence length while increasing the vocabulary size. By doing so, we leverage the embedding capabilities of such models with more expressive tokens, resulting in both better results and faster inference in generation and classification tasks. The source code is shared on Github, along with a companion website. Finally, BPE is directly implemented in MidiTok, allowing the reader to easily benefit from this method.
Any-Precision LLM: Low-Cost Deployment of Multiple, Different-Sized LLMs
Recently, considerable efforts have been directed towards compressing Large Language Models (LLMs), which showcase groundbreaking capabilities across diverse applications but entail significant deployment costs due to their large sizes. Meanwhile, much less attention has been given to mitigating the costs associated with deploying multiple LLMs of varying sizes despite its practical significance. Thus, this paper introduces any-precision LLM, extending the concept of any-precision DNN to LLMs. Addressing challenges in any-precision LLM, we propose a lightweight method for any-precision quantization of LLMs, leveraging a post-training quantization framework, and develop a specialized software engine for its efficient serving. As a result, our solution significantly reduces the high costs of deploying multiple, different-sized LLMs by overlaying LLMs quantized to varying bit-widths, such as 3, 4, ..., n bits, into a memory footprint comparable to a single n-bit LLM. All the supported LLMs with varying bit-widths demonstrate state-of-the-art model quality and inference throughput, proving itself to be a compelling option for deployment of multiple, different-sized LLMs. The source code will be publicly available soon.
Training LLMs over Neurally Compressed Text
In this paper, we explore the idea of training large language models (LLMs) over highly compressed text. While standard subword tokenizers compress text by a small factor, neural text compressors can achieve much higher rates of compression. If it were possible to train LLMs directly over neurally compressed text, this would confer advantages in training and serving efficiency, as well as easier handling of long text spans. The main obstacle to this goal is that strong compression tends to produce opaque outputs that are not well-suited for learning. In particular, we find that text na\"ively compressed via Arithmetic Coding is not readily learnable by LLMs. To overcome this, we propose Equal-Info Windows, a novel compression technique whereby text is segmented into blocks that each compress to the same bit length. Using this method, we demonstrate effective learning over neurally compressed text that improves with scale, and outperforms byte-level baselines by a wide margin on perplexity and inference speed benchmarks. While our method delivers worse perplexity than subword tokenizers for models trained with the same parameter count, it has the benefit of shorter sequence lengths. Shorter sequence lengths require fewer autoregressive generation steps, and reduce latency. Finally, we provide extensive analysis of the properties that contribute to learnability, and offer concrete suggestions for how to further improve the performance of high-compression tokenizers.
Neural Machine Translation by Jointly Learning to Align and Translate
Neural machine translation is a recently proposed approach to machine translation. Unlike the traditional statistical machine translation, the neural machine translation aims at building a single neural network that can be jointly tuned to maximize the translation performance. The models proposed recently for neural machine translation often belong to a family of encoder-decoders and consists of an encoder that encodes a source sentence into a fixed-length vector from which a decoder generates a translation. In this paper, we conjecture that the use of a fixed-length vector is a bottleneck in improving the performance of this basic encoder-decoder architecture, and propose to extend this by allowing a model to automatically (soft-)search for parts of a source sentence that are relevant to predicting a target word, without having to form these parts as a hard segment explicitly. With this new approach, we achieve a translation performance comparable to the existing state-of-the-art phrase-based system on the task of English-to-French translation. Furthermore, qualitative analysis reveals that the (soft-)alignments found by the model agree well with our intuition.
Recursive Speculative Decoding: Accelerating LLM Inference via Sampling Without Replacement
Speculative decoding is an inference-acceleration method for large language models (LLMs) where a small language model generates a draft-token sequence which is further verified by the target LLM in parallel. Recent works have advanced this method by establishing a draft-token tree, achieving superior performance over a single-sequence speculative decoding. However, those works independently generate tokens at each level of the tree, not leveraging the tree's entire diversifiability. Besides, their empirical superiority has been shown for fixed length of sequences, implicitly granting more computational resource to LLM for the tree-based methods. None of the existing works has conducted empirical studies with fixed target computational budgets despite its importance to resource-bounded devices. We present Recursive Speculative Decoding (RSD), a novel tree-based method that samples draft tokens without replacement and maximizes the diversity of the tree. During RSD's drafting, the tree is built by either Gumbel-Top-k trick that draws tokens without replacement in parallel or Stochastic Beam Search that samples sequences without replacement while early-truncating unlikely draft sequences and reducing the computational cost of LLM. We empirically evaluate RSD with Llama 2 and OPT models, showing that RSD outperforms the baseline methods, consistently for fixed draft sequence length and in most cases for fixed computational budgets at LLM.
KV Cache is 1 Bit Per Channel: Efficient Large Language Model Inference with Coupled Quantization
Efficient deployment of Large Language Models (LLMs) requires batching multiple requests together to improve throughput. As the batch size, context length, or model size increases, the size of the key and value (KV) cache can quickly become the main contributor to GPU memory usage and the bottleneck of inference latency. Quantization has emerged as an effective technique for KV cache compression, but existing methods still fail at very low bit widths. We observe that distinct channels of a key/value activation embedding are highly inter-dependent, and the joint entropy of multiple channels grows at a slower rate than the sum of their marginal entropies. Based on this insight, we propose Coupled Quantization (CQ), which couples multiple key/value channels together to exploit their inter-dependency and encode the activations in a more information-efficient manner. Extensive experiments reveal that CQ outperforms or is competitive with existing baselines in preserving model quality. Furthermore, we demonstrate that CQ can preserve model quality with KV cache quantized down to 1-bit.
ParetoQ: Scaling Laws in Extremely Low-bit LLM Quantization
The optimal bit-width for achieving the best trade-off between quantized model size and accuracy has been a subject of ongoing debate. While some advocate for 4-bit quantization, others propose that 1.58-bit offers superior results. However, the lack of a cohesive framework for different bits has left such conclusions relatively tenuous. We present ParetoQ, the first unified framework that facilitates rigorous comparisons across 1-bit, 1.58-bit, 2-bit, 3-bit, and 4-bit quantization settings. Our findings reveal a notable learning transition between 2 and 3 bits: For 3-bits and above, the fine-tuned models stay close to their original pre-trained distributions, whereas for learning 2-bit networks or below, the representations change drastically. By optimizing training schemes and refining quantization functions, ParetoQ surpasses all previous methods tailored to specific bit widths. Remarkably, our ParetoQ ternary 600M-parameter model even outperforms the previous SoTA ternary 3B-parameter model in accuracy, using only one-fifth of the parameters. Extensive experimentation shows that ternary, 2-bit, and 3-bit quantization maintains comparable performance in the size-accuracy trade-off and generally exceeds 4-bit and binary quantization. Considering hardware constraints, 2-bit quantization offers promising potential for memory reduction and speedup.
The Impact of Positional Encoding on Length Generalization in Transformers
Length generalization, the ability to generalize from small training context sizes to larger ones, is a critical challenge in the development of Transformer-based language models. Positional encoding (PE) has been identified as a major factor influencing length generalization, but the exact impact of different PE schemes on extrapolation in downstream tasks remains unclear. In this paper, we conduct a systematic empirical study comparing the length generalization performance of decoder-only Transformers with five different position encoding approaches including Absolute Position Embedding (APE), T5's Relative PE, ALiBi, and Rotary, in addition to Transformers without positional encoding (NoPE). Our evaluation encompasses a battery of reasoning and mathematical tasks. Our findings reveal that the most commonly used positional encoding methods, such as ALiBi, Rotary, and APE, are not well suited for length generalization in downstream tasks. More importantly, NoPE outperforms other explicit positional encoding methods while requiring no additional computation. We theoretically demonstrate that NoPE can represent both absolute and relative PEs, but when trained with SGD, it mostly resembles T5's relative PE attention patterns. Finally, we find that scratchpad is not always helpful to solve length generalization and its format highly impacts the model's performance. Overall, our work suggests that explicit position embeddings are not essential for decoder-only Transformers to generalize well to longer sequences.
byteSteady: Fast Classification Using Byte-Level n-Gram Embeddings
This article introduces byteSteady -- a fast model for classification using byte-level n-gram embeddings. byteSteady assumes that each input comes as a sequence of bytes. A representation vector is produced using the averaged embedding vectors of byte-level n-grams, with a pre-defined set of n. The hashing trick is used to reduce the number of embedding vectors. This input representation vector is then fed into a linear classifier. A straightforward application of byteSteady is text classification. We also apply byteSteady to one type of non-language data -- DNA sequences for gene classification. For both problems we achieved competitive classification results against strong baselines, suggesting that byteSteady can be applied to both language and non-language data. Furthermore, we find that simple compression using Huffman coding does not significantly impact the results, which offers an accuracy-speed trade-off previously unexplored in machine learning.
Never Miss A Beat: An Efficient Recipe for Context Window Extension of Large Language Models with Consistent "Middle" Enhancement
Recently, many methods have been developed to extend the context length of pre-trained large language models (LLMs), but they often require fine-tuning at the target length (gg4K) and struggle to effectively utilize information from the middle part of the context. To address these issues, we propose Continuity-Relativity indExing with gAussian Middle (CREAM), which interpolates positional encodings by manipulating position indices. Apart from being simple, CREAM is training-efficient: it only requires fine-tuning at the pre-trained context window (eg, Llama 2-4K) and can extend LLMs to a much longer target context length (eg, 256K). To ensure that the model focuses more on the information in the middle, we introduce a truncated Gaussian to encourage sampling from the middle part of the context during fine-tuning, thus alleviating the ``Lost-in-the-Middle'' problem faced by long-context LLMs. Experimental results show that CREAM successfully extends LLMs to the target length for both Base and Chat versions of Llama2-7B with ``Never Miss A Beat''. Our code will be publicly available soon.
Samba: Simple Hybrid State Space Models for Efficient Unlimited Context Language Modeling
Efficiently modeling sequences with infinite context length has been a long-standing problem. Past works suffer from either the quadratic computation complexity or the limited extrapolation ability on length generalization. In this work, we present Samba, a simple hybrid architecture that layer-wise combines Mamba, a selective State Space Model (SSM), with Sliding Window Attention (SWA). Samba selectively compresses a given sequence into recurrent hidden states while still maintaining the ability to precisely recall memories with the attention mechanism. We scale Samba up to 3.8B parameters with 3.2T training tokens and show that Samba substantially outperforms the state-of-the-art models based on pure attention or SSMs on a wide range of benchmarks. When trained on 4K length sequences, Samba can be efficiently extrapolated to 256K context length with perfect memory recall and show improved token predictions up to 1M context length. As a linear-time sequence model, Samba enjoys a 3.73x higher throughput compared to Transformers with grouped-query attention when processing user prompts of 128K length, and 3.64x speedup when generating 64K tokens with unlimited streaming. A sample implementation of Samba is publicly available in https://github.com/microsoft/Samba.
Fewer Truncations Improve Language Modeling
In large language model training, input documents are typically concatenated together and then split into sequences of equal length to avoid padding tokens. Despite its efficiency, the concatenation approach compromises data integrity -- it inevitably breaks many documents into incomplete pieces, leading to excessive truncations that hinder the model from learning to compose logically coherent and factually consistent content that is grounded on the complete context. To address the issue, we propose Best-fit Packing, a scalable and efficient method that packs documents into training sequences through length-aware combinatorial optimization. Our method completely eliminates unnecessary truncations while retaining the same training efficiency as concatenation. Empirical results from both text and code pre-training show that our method achieves superior performance (e.g., relatively +4.7% on reading comprehension; +16.8% in context following; and +9.2% on program synthesis), and reduces closed-domain hallucination effectively by up to 58.3%.
Understanding and Mitigating Tokenization Bias in Language Models
State-of-the-art language models are autoregressive and operate on subword units known as tokens. Specifically, one must encode the conditioning string into a list of tokens before passing to the language models for next-token prediction. We show that popular encoding schemes, such as maximum prefix encoding (MPE) and byte-pair-encoding (BPE), induce a sampling bias that cannot be mitigated with more training or data. To counter this universal problem, for each encoding scheme above, we propose a novel algorithm to obtain unbiased estimates from any language model trained on tokenized data. Our methods do not require finetuning the model, and the complexity, defined as the number of model runs, scales linearly with the sequence length in the case of MPE. As a result, we show that one can simulate token-free behavior from a tokenized language model. We empirically verify the correctness of our method through a Markov-chain setup, where it accurately recovers the transition probabilities, as opposed to the conventional method of directly prompting tokens into the language model.
Cache Me If You Must: Adaptive Key-Value Quantization for Large Language Models
Efficient real-world deployments of large language models (LLMs) rely on Key-Value (KV) caching for processing and generating long outputs, reducing the need for repetitive computation. For large contexts, Key-Value caches can take up tens of gigabytes of device memory, as they store vector representations for each token and layer. Recent work has shown that the cached vectors can be compressed through quantization, pruning or merging, but these techniques often compromise quality towards higher compression rates. In this work, we aim to improve Key & Value compression by exploiting two observations: 1) the inherent dependencies between keys and values across different layers, and 2) high-compression mechanisms for internal network states. We propose AQUA-KV, an adaptive quantization for Key-Value caches that relies on compact adapters to exploit existing dependencies between Keys and Values, and aims to "optimally" compress the information that cannot be predicted. AQUA-KV significantly improves compression rates, while maintaining high accuracy on state-of-the-art LLM families. On Llama 3.2 LLMs, we achieve near-lossless inference at 2-2.5 bits per value with under 1% relative error in perplexity and LongBench scores. AQUA-KV is one-shot, simple, and efficient: it can be calibrated on a single GPU within 1-6 hours, even for 70B models.
Self-Infilling Code Generation
This work introduces a general code generation framework that incorporates infilling operations into auto-regressive decoding. Our approach capitalizes on the observation that recent code language models with infilling capabilities can perform self-infilling: whereas infilling operations aim to fill in the middle based on a predefined prefix and suffix, self-infilling sequentially generates both such surrounding context and the infilled content. We utilize this feature to develop an infilling-augmented decoding process that facilitates non-monotonic generation. This approach allows for postponing the generation of uncertain code snippets until a definitive suffix is established, leading to improved control over the generation sequence. In addition, it facilitates a looping mechanism, which can iteratively update and synchronize each piece of generation in a cyclic manner. Extensive experiments are conducted to demonstrate that our proposed decoding process is effective in enhancing regularity and quality across several code generation benchmarks.
How to Train Long-Context Language Models (Effectively)
We study continued training and supervised fine-tuning (SFT) of a language model (LM) to make effective use of long-context information. We first establish a reliable evaluation protocol to guide model development -- Instead of perplexity or simple needle-in-a-haystack (NIAH) tests, we use a broad set of long-context tasks, and we evaluate models after SFT with instruction data as this better reveals long-context abilities. Supported by our robust evaluations, we run thorough experiments to decide the data mix for continued pre-training, the instruction tuning dataset, and many other design choices. We find that (1) code repositories and books are excellent sources of long data, but it is crucial to combine them with high-quality short data; (2) training with a sequence length beyond the evaluation length boosts long-context performance; (3) for SFT, using only short instruction datasets yields strong performance on long-context tasks. Our final model, ProLong-8B, which is initialized from Llama-3 and trained on 40B tokens, demonstrates state-of-the-art long-context performance among similarly sized models at a length of 128K. ProLong outperforms Llama-3.18B-Instruct on the majority of long-context tasks despite having seen only 5% as many tokens during long-context training. Additionally, ProLong can effectively process up to 512K tokens, one of the longest context windows of publicly available LMs.
LCIRC: A Recurrent Compression Approach for Efficient Long-form Context and Query Dependent Modeling in LLMs
While large language models (LLMs) excel in generating coherent and contextually rich outputs, their capacity to efficiently handle long-form contexts is limited by fixed-length position embeddings. Additionally, the computational cost of processing long sequences increases quadratically, making it challenging to extend context length. To address these challenges, we propose Long-form Context Injection with Recurrent Compression (LCIRC), a method that enables the efficient processing long-form sequences beyond the model's length limit through recurrent compression without retraining the entire model. We further introduce query dependent context modeling, which selectively compresses query-relevant information, ensuring that the model retains the most pertinent content. Our empirical results demonstrate that Query Dependent LCIRC (QD-LCIRC) significantly improves LLM's ability to manage extended contexts, making it well-suited for tasks that require both comprehensive context understanding and query relevance.
LLM-FP4: 4-Bit Floating-Point Quantized Transformers
We propose LLM-FP4 for quantizing both weights and activations in large language models (LLMs) down to 4-bit floating-point values, in a post-training manner. Existing post-training quantization (PTQ) solutions are primarily integer-based and struggle with bit widths below 8 bits. Compared to integer quantization, floating-point (FP) quantization is more flexible and can better handle long-tail or bell-shaped distributions, and it has emerged as a default choice in many hardware platforms. One characteristic of FP quantization is that its performance largely depends on the choice of exponent bits and clipping range. In this regard, we construct a strong FP-PTQ baseline by searching for the optimal quantization parameters. Furthermore, we observe a high inter-channel variance and low intra-channel variance pattern in activation distributions, which adds activation quantization difficulty. We recognize this pattern to be consistent across a spectrum of transformer models designed for diverse tasks, such as LLMs, BERT, and Vision Transformer models. To tackle this, we propose per-channel activation quantization and show that these additional scaling factors can be reparameterized as exponential biases of weights, incurring a negligible cost. Our method, for the first time, can quantize both weights and activations in the LLaMA-13B to only 4-bit and achieves an average score of 63.1 on the common sense zero-shot reasoning tasks, which is only 5.8 lower than the full-precision model, significantly outperforming the previous state-of-the-art by 12.7 points. Code is available at: https://github.com/nbasyl/LLM-FP4.
Improving Joint Speech-Text Representations Without Alignment
The last year has seen astonishing progress in text-prompted image generation premised on the idea of a cross-modal representation space in which the text and image domains are represented jointly. In ASR, this idea has found application as joint speech-text encoders that can scale to the capacities of very large parameter models by being trained on both unpaired speech and text. While these methods show promise, they have required special treatment of the sequence-length mismatch inherent in speech and text, either by up-sampling heuristics or an explicit alignment model. In this work, we offer evidence that joint speech-text encoders naturally achieve consistent representations across modalities by disregarding sequence length, and argue that consistency losses could forgive length differences and simply assume the best alignment. We show that such a loss improves downstream WER in both a large-parameter monolingual and multilingual system.
QuIP#: Even Better LLM Quantization with Hadamard Incoherence and Lattice Codebooks
Post-training quantization (PTQ) reduces the memory footprint of LLMs by quantizing their weights to low-precision. In this work, we introduce QuIP#, a weight-only PTQ method that achieves state-of-the-art results in extreme compression regimes (le 4 bits per weight) using three novel techniques. First, QuIP# improves the incoherence processing from QuIP by using the randomized Hadamard transform, which is faster and has better theoretical properties. Second, QuIP# uses vector quantization techniques to take advantage of the ball-shaped sub-Gaussian distribution that incoherent weights possess: specifically, we introduce a set of hardware-efficient codebooks based on the highly symmetric E_8 lattice, which achieves the optimal 8-dimension unit ball packing. Third, QuIP# uses fine-tuning to improve fidelity to the original model. Our experiments show that QuIP# outperforms existing PTQ methods, enables new behaviors in PTQ scaling, and supports fast inference.
Optimizing Large Language Models through Quantization: A Comparative Analysis of PTQ and QAT Techniques
This paper presents a comprehensive analysis of quantization techniques for optimizing Large Language Models (LLMs), specifically focusing on Post-Training Quantization (PTQ) and Quantization-Aware Training (QAT). Through empirical evaluation across models ranging from 10M to 1B parameters, we demonstrate that quantization can achieve up to 68% reduction in model size while maintaining performance within 6% of full-precision baselines when utilizing our proposed scaling factor {\gamma}. Our experiments show that INT8 quantization delivers a 40% reduction in computational cost and power consumption, while INT4 quantization further improves these metrics by 60%. We introduce a novel theoretical framework for mixed-precision quantization, deriving optimal bit allocation strategies based on layer sensitivity and weight variance. Hardware efficiency evaluations on edge devices reveal that our quantization approach enables up to 2.4x throughput improvement for INT8 and 3x for INT4, with 60% power reduction compared to full-precision models.
Prepacking: A Simple Method for Fast Prefilling and Increased Throughput in Large Language Models
During inference for transformer-based large language models (LLM), prefilling is the computation of the key-value (KV) cache for input tokens in the prompt prior to autoregressive generation. For longer input prompt lengths, prefilling will incur a significant overhead on decoding time. In this work, we highlight the following pitfall of prefilling: for batches containing high-varying prompt lengths, significant computation is wasted by the standard practice of padding sequences to the maximum length. As LLMs increasingly support longer context lengths, potentially up to 10 million tokens, variations in prompt lengths within a batch become more pronounced. To address this, we propose Prepacking, a simple yet effective method to optimize prefilling computation. To avoid redundant computation on pad tokens, prepacking combines prompts of varying lengths into a sequence and packs multiple sequences into a compact batch using a bin-packing algorithm. It then modifies the attention mask and positional encoding to compute multiple prefilled KV-caches for multiple prompts within a single sequence. On standard curated dataset containing prompts with varying lengths, we obtain a significant speed and memory efficiency improvements as compared to the default padding-based prefilling computation within Huggingface across a range of base model configurations and inference serving scenarios.
LoCoCo: Dropping In Convolutions for Long Context Compression
This paper tackles the memory hurdle of processing long context sequences in Large Language Models (LLMs), by presenting a novel approach, Dropping In Convolutions for Long Context Compression (LoCoCo). LoCoCo employs only a fixed-size Key-Value (KV) cache, and can enhance efficiency in both inference and fine-tuning stages. Diverging from prior methods that selectively drop KV pairs based on heuristics, LoCoCo leverages a data-driven adaptive fusion technique, blending previous KV pairs with incoming tokens to minimize the loss of contextual information and ensure accurate attention modeling. This token integration is achieved through injecting one-dimensional convolutional kernels that dynamically calculate mixing weights for each KV cache slot. Designed for broad compatibility with existing LLM frameworks, LoCoCo allows for straightforward "drop-in" integration without needing architectural modifications, while incurring minimal tuning overhead. Experiments demonstrate that LoCoCo maintains consistently outstanding performance across various context lengths and can achieve a high context compression rate during both inference and fine-tuning phases. During inference, we successfully compressed up to 3482 tokens into a 128-size KV cache, while retaining comparable performance to the full sequence - an accuracy improvement of up to 0.2791 compared to baselines at the same cache size. During post-training tuning, we also effectively extended the context length from 4K to 32K using a KV cache of fixed size 512, achieving performance similar to fine-tuning with entire sequences.
DNABERT-2: Efficient Foundation Model and Benchmark For Multi-Species Genome
Decoding the linguistic intricacies of the genome is a crucial problem in biology, and pre-trained foundational models such as DNABERT and Nucleotide Transformer have made significant strides in this area. Existing works have largely hinged on k-mer, fixed-length permutations of A, T, C, and G, as the token of the genome language due to its simplicity. However, we argue that the computation and sample inefficiencies introduced by k-mer tokenization are primary obstacles in developing large genome foundational models. We provide conceptual and empirical insights into genome tokenization, building on which we propose to replace k-mer tokenization with Byte Pair Encoding (BPE), a statistics-based data compression algorithm that constructs tokens by iteratively merging the most frequent co-occurring genome segment in the corpus. We demonstrate that BPE not only overcomes the limitations of k-mer tokenization but also benefits from the computational efficiency of non-overlapping tokenization. Based on these insights, we introduce DNABERT-2, a refined genome foundation model that adapts an efficient tokenizer and employs multiple strategies to overcome input length constraints, reduce time and memory expenditure, and enhance model capability. Furthermore, we identify the absence of a comprehensive and standardized benchmark for genome understanding as another significant impediment to fair comparative analysis. In response, we propose the Genome Understanding Evaluation (GUE), a comprehensive multi-species genome classification dataset that amalgamates 28 distinct datasets across 7 tasks, with input lengths ranging from 70 to 1000. Through comprehensive experiments on the GUE benchmark, we demonstrate that DNABERT-2 achieves comparable performance to the state-of-the-art model with 21 times fewer parameters and approximately 56 times less GPU time in pre-training.
Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation
In this paper, we propose a novel neural network model called RNN Encoder-Decoder that consists of two recurrent neural networks (RNN). One RNN encodes a sequence of symbols into a fixed-length vector representation, and the other decodes the representation into another sequence of symbols. The encoder and decoder of the proposed model are jointly trained to maximize the conditional probability of a target sequence given a source sequence. The performance of a statistical machine translation system is empirically found to improve by using the conditional probabilities of phrase pairs computed by the RNN Encoder-Decoder as an additional feature in the existing log-linear model. Qualitatively, we show that the proposed model learns a semantically and syntactically meaningful representation of linguistic phrases.
Draft Model Knows When to Stop: A Self-Verification Length Policy for Speculative Decoding
Speculative Decoding (SD) has become an important technique in accelerating the inference speed of large language models. Conventional SD methods employ a fixed draft length, which ignores the token generation difficulty across tasks. Consequently, in this paper, we address such an issue and introduce SVIP - a difficulty-aware dynamic draft length policy for speculative decoding systems. Based on a theoretical lower bound of draft token acceptance rate and its inference-time approximation, SVIP adaptively determines the lengths of draft sequences based on the entropy of each draft token distribution. Experimental results on mainstream SD benchmarks and frameworks demonstrate the superior performance of SVIP, achieving up to 20\% walltime speedup on SpecBench over baseline SD methods and 60\% speedup on MT-Bench for long-form generation of up to 8K tokens. Moreover, SVIP is totally training-free and compatible with any existing SD methods that generate draft tokens autoregressively. Experimental results also show that SVIP yields consistent walltime improvement on top of GliDe & CaPE and EAGLE-2.
LLMZip: Lossless Text Compression using Large Language Models
We provide new estimates of an asymptotic upper bound on the entropy of English using the large language model LLaMA-7B as a predictor for the next token given a window of past tokens. This estimate is significantly smaller than currently available estimates in cover1978convergent, lutati2023focus. A natural byproduct is an algorithm for lossless compression of English text which combines the prediction from the large language model with a lossless compression scheme. Preliminary results from limited experiments suggest that our scheme outperforms state-of-the-art text compression schemes such as BSC, ZPAQ, and paq8h.
Farewell to Length Extrapolation, a Training-Free Infinite Context with Finite Attention Scope
The maximum supported context length is a critical bottleneck limiting the practical application of the Large Language Model (LLM). Although existing length extrapolation methods can extend the context of LLMs to millions of tokens, these methods all have an explicit upper bound. In this work, we propose LongCache, a training-free approach that enables LLM to support an infinite context with finite context scope, through full-context cache selection and training-free integration. This effectively frees LLMs from the length extrapolation issue. We validate LongCache on the LongBench and L-Eval and demonstrate its performance is on par with traditional full-attention mechanisms. Furthermore, we have applied LongCache on mainstream LLMs, including LLaMA3 and Mistral-v0.3, enabling them to support context lengths of at least 400K in Needle-In-A-Haystack tests. We will improve the efficiency of LongCache by GPU-aware optimization soon.
Improving Long-Text Alignment for Text-to-Image Diffusion Models
The rapid advancement of text-to-image (T2I) diffusion models has enabled them to generate unprecedented results from given texts. However, as text inputs become longer, existing encoding methods like CLIP face limitations, and aligning the generated images with long texts becomes challenging. To tackle these issues, we propose LongAlign, which includes a segment-level encoding method for processing long texts and a decomposed preference optimization method for effective alignment training. For segment-level encoding, long texts are divided into multiple segments and processed separately. This method overcomes the maximum input length limits of pretrained encoding models. For preference optimization, we provide decomposed CLIP-based preference models to fine-tune diffusion models. Specifically, to utilize CLIP-based preference models for T2I alignment, we delve into their scoring mechanisms and find that the preference scores can be decomposed into two components: a text-relevant part that measures T2I alignment and a text-irrelevant part that assesses other visual aspects of human preference. Additionally, we find that the text-irrelevant part contributes to a common overfitting problem during fine-tuning. To address this, we propose a reweighting strategy that assigns different weights to these two components, thereby reducing overfitting and enhancing alignment. After fine-tuning 512 times 512 Stable Diffusion (SD) v1.5 for about 20 hours using our method, the fine-tuned SD outperforms stronger foundation models in T2I alignment, such as PixArt-alpha and Kandinsky v2.2. The code is available at https://github.com/luping-liu/LongAlign.
MiniCache: KV Cache Compression in Depth Dimension for Large Language Models
A critical approach for efficiently deploying computationally demanding large language models (LLMs) is Key-Value (KV) caching. The KV cache stores key-value states of previously generated tokens, significantly reducing the need for repetitive computations and thereby lowering latency in autoregressive generation. However, the size of the KV cache grows linearly with sequence length, posing challenges for applications requiring long context input and extensive sequence generation. In this paper, we present a simple yet effective approach, called MiniCache, to compress the KV cache across layers from a novel depth perspective, significantly reducing the memory footprint for LLM inference. Our approach is based on the observation that KV cache states exhibit high similarity between the adjacent layers in the middle-to-deep portion of LLMs. To facilitate merging, we propose disentangling the states into the magnitude and direction components, interpolating the directions of the state vectors while preserving their lengths unchanged. Furthermore, we introduce a token retention strategy to keep highly distinct state pairs unmerged, thus preserving the information with minimal additional storage overhead. Our MiniCache is training-free and general, complementing existing KV cache compression strategies, such as quantization and sparsity. We conduct a comprehensive evaluation of MiniCache utilizing various models including LLaMA-2, LLaMA-3, Phi-3, Mistral, and Mixtral across multiple benchmarks, demonstrating its exceptional performance in achieving superior compression ratios and high throughput. On the ShareGPT dataset, LLaMA-2-7B with 4-bit MiniCache achieves a remarkable compression ratio of up to 5.02x, enhances inference throughput by approximately 5x, and reduces the memory footprint by 41% compared to the FP16 full cache baseline, all while maintaining near-lossless performance.
Automatic Classification of Object Code Using Machine Learning
Recent research has repeatedly shown that machine learning techniques can be applied to either whole files or file fragments to classify them for analysis. We build upon these techniques to show that for samples of un-labeled compiled computer object code, one can apply the same type of analysis to classify important aspects of the code, such as its target architecture and endianess. We show that using simple byte-value histograms we retain enough information about the opcodes within a sample to classify the target architecture with high accuracy, and then discuss heuristic-based features that exploit information within the operands to determine endianess. We introduce a dataset with over 16000 code samples from 20 architectures and experimentally show that by using our features, classifiers can achieve very high accuracy with relatively small sample sizes.
BitStack: Fine-Grained Size Control for Compressed Large Language Models in Variable Memory Environments
Large language models (LLMs) have revolutionized numerous applications, yet their deployment remains challenged by memory constraints on local devices. While scaling laws have enhanced LLM capabilities, the primary bottleneck has shifted from capability to availability, emphasizing the need for efficient memory management. Traditional compression methods, such as quantization, often require predefined compression ratios and separate compression processes for each setting, complicating deployment in variable memory environments. In this paper, we introduce BitStack, a novel, training-free weight compression approach that enables megabyte-level trade-offs between memory usage and model performance. By leveraging weight decomposition, BitStack can dynamically adjust the model size with minimal transmission between running memory and storage devices. Our approach iteratively decomposes weight matrices while considering the significance of each parameter, resulting in an approximately 1-bit per parameter residual block in each decomposition iteration. These blocks are sorted and stacked in storage as basic transmission units, with different quantities loaded based on current memory availability. Extensive experiments across a wide range of tasks demonstrate that, despite offering fine-grained size control, BitStack consistently matches or surpasses strong quantization baselines, particularly at extreme compression ratios. To the best of our knowledge, this is the first decomposition-based method that effectively bridges the gap to practical compression techniques like quantization. Code is available at https://github.com/xinghaow99/BitStack.
GEAR: An Efficient KV Cache Compression Recipefor Near-Lossless Generative Inference of LLM
Key-value (KV) caching has become the de-facto to accelerate generation speed for large language models (LLMs) inference. However, the growing cache demand with increasing sequence length has transformed LLM inference to be a memory bound problem, significantly constraining the system throughput. Existing methods rely on dropping unimportant tokens or quantizing all entries uniformly. Such methods, however, often incur high approximation errors to represent the compressed matrices. The autoregressive decoding process further compounds the error of each step, resulting in critical deviation in model generation and deterioration of performance. To tackle this challenge, we propose GEAR, an efficient KV cache compression framework that achieves near-lossless high-ratio compression. GEAR first applies quantization to majority of entries of similar magnitudes to ultra-low precision. It then employs a low rank matrix to approximate the quantization error, and a sparse matrix to remedy individual errors from outlier entries. By adeptly integrating three techniques, GEAR is able to fully exploit their synergistic potentials. Our experiments demonstrate that compared to alternatives, GEAR achieves near-lossless 4-bit KV cache compression with up to 2.38x throughput improvement, while reducing peak-memory size up to 2.29x. Our code is publicly available at https://github.com/HaoKang-Timmy/GEAR.
PICARD: Parsing Incrementally for Constrained Auto-Regressive Decoding from Language Models
Large pre-trained language models for textual data have an unconstrained output space; at each decoding step, they can produce any of 10,000s of sub-word tokens. When fine-tuned to target constrained formal languages like SQL, these models often generate invalid code, rendering it unusable. We propose PICARD (code and trained models available at https://github.com/ElementAI/picard), a method for constraining auto-regressive decoders of language models through incremental parsing. PICARD helps to find valid output sequences by rejecting inadmissible tokens at each decoding step. On the challenging Spider and CoSQL text-to-SQL translation tasks, we show that PICARD transforms fine-tuned T5 models with passable performance into state-of-the-art solutions.
Compressing Tabular Data via Latent Variable Estimation
Data used for analytics and machine learning often take the form of tables with categorical entries. We introduce a family of lossless compression algorithms for such data that proceed in four steps: (i) Estimate latent variables associated to rows and columns; (ii) Partition the table in blocks according to the row/column latents; (iii) Apply a sequential (e.g. Lempel-Ziv) coder to each of the blocks; (iv) Append a compressed encoding of the latents. We evaluate it on several benchmark datasets, and study optimal compression in a probabilistic model for that tabular data, whereby latent values are independent and table entries are conditionally independent given the latent values. We prove that the model has a well defined entropy rate and satisfies an asymptotic equipartition property. We also prove that classical compression schemes such as Lempel-Ziv and finite-state encoders do not achieve this rate. On the other hand, the latent estimation strategy outlined above achieves the optimal rate.
ByT5: Towards a token-free future with pre-trained byte-to-byte models
Most widely-used pre-trained language models operate on sequences of tokens corresponding to word or subword units. By comparison, token-free models that operate directly on raw text (bytes or characters) have many benefits: they can process text in any language out of the box, they are more robust to noise, and they minimize technical debt by removing complex and error-prone text preprocessing pipelines. Since byte or character sequences are longer than token sequences, past work on token-free models has often introduced new model architectures designed to amortize the cost of operating directly on raw text. In this paper, we show that a standard Transformer architecture can be used with minimal modifications to process byte sequences. We characterize the trade-offs in terms of parameter count, training FLOPs, and inference speed, and show that byte-level models are competitive with their token-level counterparts. We also demonstrate that byte-level models are significantly more robust to noise and perform better on tasks that are sensitive to spelling and pronunciation. As part of our contribution, we release a new set of pre-trained byte-level Transformer models based on the T5 architecture, as well as all code and data used in our experiments.
DB-LLM: Accurate Dual-Binarization for Efficient LLMs
Large language models (LLMs) have significantly advanced the field of natural language processing, while the expensive memory and computation consumption impede their practical deployment. Quantization emerges as one of the most effective methods for improving the computational efficiency of LLMs. However, existing ultra-low-bit quantization always causes severe accuracy drops. In this paper, we empirically relieve the micro and macro characteristics of ultra-low bit quantization and present a novel Dual-Binarization method for LLMs, namely DB-LLM. For the micro-level, we take both the accuracy advantage of 2-bit-width and the efficiency advantage of binarization into account, introducing Flexible Dual Binarization (FDB). By splitting 2-bit quantized weights into two independent sets of binaries, FDB ensures the accuracy of representations and introduces flexibility, utilizing the efficient bitwise operations of binarization while retaining the inherent high sparsity of ultra-low bit quantization. For the macro-level, we find the distortion that exists in the prediction of LLM after quantization, which is specified as the deviations related to the ambiguity of samples. We propose the Deviation-Aware Distillation (DAD) method, enabling the model to focus differently on various samples. Comprehensive experiments show that our DB-LLM not only significantly surpasses the current State-of-The-Art (SoTA) in ultra-low bit quantization (eg, perplexity decreased from 9.64 to 7.23), but also achieves an additional 20\% reduction in computational consumption compared to the SOTA method under the same bit-width. Our code will be released soon.
A Simple and Effective L_2 Norm-Based Strategy for KV Cache Compression
The deployment of large language models (LLMs) is often hindered by the extensive memory requirements of the Key-Value (KV) cache, especially as context lengths increase. Existing approaches to reduce the KV cache size involve either fine-tuning the model to learn a compression strategy or leveraging attention scores to reduce the sequence length. We analyse the attention distributions in decoder-only Transformers-based models and observe that attention allocation patterns stay consistent across most layers. Surprisingly, we find a clear correlation between the L_2 and the attention scores over cached KV pairs, where a low L_2 of a key embedding usually leads to a high attention score during decoding. This finding indicates that the influence of a KV pair is potentially determined by the key embedding itself before being queried. Based on this observation, we compress the KV cache based on the L_2 of key embeddings. Our experimental results show that this simple strategy can reduce the KV cache size by 50% on language modelling and needle-in-a-haystack tasks and 90% on passkey retrieval tasks without losing accuracy.
Lossless Compression with Probabilistic Circuits
Despite extensive progress on image generation, common deep generative model architectures are not easily applied to lossless compression. For example, VAEs suffer from a compression cost overhead due to their latent variables. This overhead can only be partially eliminated with elaborate schemes such as bits-back coding, often resulting in poor single-sample compression rates. To overcome such problems, we establish a new class of tractable lossless compression models that permit efficient encoding and decoding: Probabilistic Circuits (PCs). These are a class of neural networks involving |p| computational units that support efficient marginalization over arbitrary subsets of the D feature dimensions, enabling efficient arithmetic coding. We derive efficient encoding and decoding schemes that both have time complexity O (log(D) cdot |p|), where a naive scheme would have linear costs in D and |p|, making the approach highly scalable. Empirically, our PC-based (de)compression algorithm runs 5-40 times faster than neural compression algorithms that achieve similar bitrates. By scaling up the traditional PC structure learning pipeline, we achieve state-of-the-art results on image datasets such as MNIST. Furthermore, PCs can be naturally integrated with existing neural compression algorithms to improve the performance of these base models on natural image datasets. Our results highlight the potential impact that non-standard learning architectures may have on neural data compression.
ByteTransformer: A High-Performance Transformer Boosted for Variable-Length Inputs
Transformers have become keystone models in natural language processing over the past decade. They have achieved great popularity in deep learning applications, but the increasing sizes of the parameter spaces required by transformer models generate a commensurate need to accelerate performance. Natural language processing problems are also routinely faced with variable-length sequences, as word counts commonly vary among sentences. Existing deep learning frameworks pad variable-length sequences to a maximal length, which adds significant memory and computational overhead. In this paper, we present ByteTransformer, a high-performance transformer boosted for variable-length inputs. We propose a padding-free algorithm that liberates the entire transformer from redundant computations on zero padded tokens. In addition to algorithmic-level optimization, we provide architecture-aware optimizations for transformer functional modules, especially the performance-critical algorithm Multi-Head Attention (MHA). Experimental results on an NVIDIA A100 GPU with variable-length sequence inputs validate that our fused MHA outperforms PyTorch by 6.13x. The end-to-end performance of ByteTransformer for a forward BERT transformer surpasses state-of-the-art transformer frameworks, such as PyTorch JIT, TensorFlow XLA, Tencent TurboTransformer, Microsoft DeepSpeed-Inference and NVIDIA FasterTransformer, by 87\%, 131\%, 138\%, 74\% and 55\%, respectively. We also demonstrate the general applicability of our optimization methods to other BERT-like models, including ALBERT, DistilBERT, and DeBERTa.
MonoCoder: Domain-Specific Code Language Model for HPC Codes and Tasks
With easier access to powerful compute resources, there is a growing trend in AI for software development to develop large language models (LLMs) to address a variety of programming tasks. Even LLMs applied to tasks from the high-performance computing (HPC) domain are huge in size and demand expensive compute resources for training. This is partly because LLMs for HPC tasks are obtained by finetuning existing LLMs that support several natural and/or programming languages. We found this design choice confusing - why do we need LLMs trained on natural languages and programming languages unrelated to HPC for HPC-specific tasks? In this line of work, we aim to question choices made by existing LLMs by developing smaller language models (LMs) for specific domains - we call them domain-specific LMs. Specifically, we start with HPC as a domain and build an HPC-specific LM, named MonoCoder, which is orders of magnitude smaller than existing LMs but delivers better performance on non-HPC and HPC codes. Specifically, we pre-trained MonoCoder on an HPC-specific dataset (named HPCorpus) of C and C++ programs mined from GitHub. We evaluated the performance of MonoCoder against state-of-the-art multi-lingual LLMs. Results demonstrate that MonoCoder, although much smaller than existing LMs, outperforms other LLMs on normalized-perplexity tests (in relation to model size) while also delivering competing CodeBLEU scores for high-performance and parallel code generations. In other words, results suggest that MonoCoder understands HPC code better than state-of-the-art LLMs.
Towards Fine-tuning Pre-trained Language Models with Integer Forward and Backward Propagation
The large number of parameters of some prominent language models, such as BERT, makes their fine-tuning on downstream tasks computationally intensive and energy hungry. Previously researchers were focused on lower bit-width integer data types for the forward propagation of language models to save memory and computation. As for the backward propagation, however, only 16-bit floating-point data type has been used for the fine-tuning of BERT. In this work, we use integer arithmetic for both forward and back propagation in the fine-tuning of BERT. We study the effects of varying the integer bit-width on the model's metric performance. Our integer fine-tuning uses integer arithmetic to perform forward propagation and gradient computation of linear, layer-norm, and embedding layers of BERT. We fine-tune BERT using our integer training method on SQuAD v1.1 and SQuAD v2., and GLUE benchmark. We demonstrate that metric performance of fine-tuning 16-bit integer BERT matches both 16-bit and 32-bit floating-point baselines. Furthermore, using the faster and more memory efficient 8-bit integer data type, integer fine-tuning of BERT loses an average of 3.1 points compared to the FP32 baseline.
A Survey of Low-bit Large Language Models: Basics, Systems, and Algorithms
Large language models (LLMs) have achieved remarkable advancements in natural language processing, showcasing exceptional performance across various tasks. However, the expensive memory and computational requirements present significant challenges for their practical deployment. Low-bit quantization has emerged as a critical approach to mitigate these challenges by reducing the bit-width of model parameters, activations, and gradients, thus decreasing memory usage and computational demands. This paper presents a comprehensive survey of low-bit quantization methods tailored for LLMs, covering the fundamental principles, system implementations, and algorithmic strategies. An overview of basic concepts and new data formats specific to low-bit LLMs is first introduced, followed by a review of frameworks and systems that facilitate low-bit LLMs across various hardware platforms. Then, we categorize and analyze techniques and toolkits for efficient low-bit training and inference of LLMs. Finally, we conclude with a discussion of future trends and potential advancements of low-bit LLMs. Our systematic overview from basic, system, and algorithm perspectives can offer valuable insights and guidelines for future works to enhance the efficiency and applicability of LLMs through low-bit quantization.
Scaling Granite Code Models to 128K Context
This paper introduces long-context Granite code models that support effective context windows of up to 128K tokens. Our solution for scaling context length of Granite 3B/8B code models from 2K/4K to 128K consists of a light-weight continual pretraining by gradually increasing its RoPE base frequency with repository-level file packing and length-upsampled long-context data. Additionally, we also release instruction-tuned models with long-context support which are derived by further finetuning the long context base models on a mix of permissively licensed short and long-context instruction-response pairs. While comparing to the original short-context Granite code models, our long-context models achieve significant improvements on long-context tasks without any noticeable performance degradation on regular code completion benchmarks (e.g., HumanEval). We release all our long-context Granite code models under an Apache 2.0 license for both research and commercial use.
Vcc: Scaling Transformers to 128K Tokens or More by Prioritizing Important Tokens
Transformer models are foundational to natural language processing (NLP) and computer vision. Despite various recent works devoted to reducing the quadratic cost of such models (as a function of the sequence length n), dealing with ultra long sequences efficiently (e.g., with more than 16K tokens) remains challenging. Applications such as answering questions based on an entire book or summarizing a scientific article are inefficient or infeasible. In this paper, we propose to significantly reduce the dependency of a Transformer model's complexity on n, by compressing the input into a representation whose size r is independent of n at each layer. Specifically, by exploiting the fact that in many tasks, only a small subset of special tokens (we call VIP-tokens) are most relevant to the final prediction, we propose a VIP-token centric compression (Vcc) scheme which selectively compresses the input sequence based on their impact on approximating the representation of these VIP-tokens. Compared with competitive baselines, the proposed algorithm not only is efficient (achieving more than 3times efficiency improvement compared to baselines on 4K and 16K lengths), but also achieves competitive or better performance on a large number of tasks. Further, we show that our algorithm can be scaled to 128K tokens (or more) while consistently offering accuracy improvement.
LServe: Efficient Long-sequence LLM Serving with Unified Sparse Attention
Large language models (LLMs) have shown remarkable potential in processing long sequences, yet efficiently serving these long-context models remains challenging due to the quadratic computational complexity of attention in the prefilling stage and the large memory footprint of the KV cache in the decoding stage. To address these issues, we introduce LServe, an efficient system that accelerates long-sequence LLM serving via hybrid sparse attention. This method unifies different hardware-friendly, structured sparsity patterns for both prefilling and decoding attention into a single framework, where computations on less important tokens are skipped block-wise. LServe demonstrates the compatibility of static and dynamic sparsity in long-context LLM attention. This design enables multiplicative speedups by combining these optimizations. Specifically, we convert half of the attention heads to nearly free streaming heads in both the prefilling and decoding stages. Additionally, we find that only a constant number of KV pages is required to preserve long-context capabilities, irrespective of context length. We then design a hierarchical KV page selection policy that dynamically prunes KV pages based on query-centric similarity. On average, LServe accelerates LLM prefilling by up to 2.9x and decoding by 1.3-2.1x over vLLM, maintaining long-context accuracy. Code is released at https://github.com/mit-han-lab/omniserve.
Length Generalization of Causal Transformers without Position Encoding
Generalizing to longer sentences is important for recent Transformer-based language models. Besides algorithms manipulating explicit position features, the success of Transformers without position encodings (NoPE) provides a new way to overcome the challenge. In this paper, we study the length generalization property of NoPE. We find that although NoPE can extend to longer sequences than the commonly used explicit position encodings, it still has a limited context length. We identify a connection between the failure of NoPE's generalization and the distraction of attention distributions. We propose a parameter-efficient tuning for searching attention heads' best temperature hyper-parameters, which substantially expands NoPE's context size. Experiments on long sequence language modeling, the synthetic passkey retrieval task and real-world long context tasks show that NoPE can achieve competitive performances with state-of-the-art length generalization algorithms. The source code is publicly accessible
LongAlign: A Recipe for Long Context Alignment of Large Language Models
Extending large language models to effectively handle long contexts requires instruction fine-tuning on input sequences of similar length. To address this, we present LongAlign -- a recipe of the instruction data, training, and evaluation for long context alignment. First, we construct a long instruction-following dataset using Self-Instruct. To ensure the data diversity, it covers a broad range of tasks from various long context sources. Second, we adopt the packing and sorted batching strategies to speed up supervised fine-tuning on data with varied length distributions. Additionally, we develop a loss weighting method to balance the contribution to the loss across different sequences during packing training. Third, we introduce the LongBench-Chat benchmark for evaluating instruction-following capabilities on queries of 10k-100k in length. Experiments show that LongAlign outperforms existing recipes for LLMs in long context tasks by up to 30\%, while also maintaining their proficiency in handling short, generic tasks. The code, data, and long-aligned models are open-sourced at https://github.com/THUDM/LongAlign.
Which Encoding is the Best for Text Classification in Chinese, English, Japanese and Korean?
This article offers an empirical study on the different ways of encoding Chinese, Japanese, Korean (CJK) and English languages for text classification. Different encoding levels are studied, including UTF-8 bytes, characters, words, romanized characters and romanized words. For all encoding levels, whenever applicable, we provide comparisons with linear models, fastText and convolutional networks. For convolutional networks, we compare between encoding mechanisms using character glyph images, one-hot (or one-of-n) encoding, and embedding. In total there are 473 models, using 14 large-scale text classification datasets in 4 languages including Chinese, English, Japanese and Korean. Some conclusions from these results include that byte-level one-hot encoding based on UTF-8 consistently produces competitive results for convolutional networks, that word-level n-grams linear models are competitive even without perfect word segmentation, and that fastText provides the best result using character-level n-gram encoding but can overfit when the features are overly rich.
SpecDec++: Boosting Speculative Decoding via Adaptive Candidate Lengths
Speculative decoding reduces the inference latency of a target large language model via utilizing a smaller and faster draft model. Its performance depends on a hyperparameter K -- the candidate length, i.e., the number of candidate tokens for the target model to verify in each round. However, previous methods often use simple heuristics to choose K, which may result in sub-optimal performance. We study the choice of the candidate length K and formulate it as a Markov Decision Process. We theoretically show that the optimal policy of this Markov decision process takes the form of a threshold policy, i.e., the current speculation should stop and be verified when the probability of getting a rejection exceeds a threshold value. Motivated by this theory, we propose SpecDec++, an enhanced version of speculative decoding that adaptively determines the candidate length on the fly. We augment the draft model with a trained acceptance prediction head to predict the conditional acceptance probability of the candidate tokens. SpecDec++ will stop the current speculation when the predicted probability that at least one token gets rejected exceeds a threshold. We implement SpecDec++ and apply it to the llama-2-chat 7B & 70B model pair. Our adaptive method achieves a 2.04x speedup on the Alpaca dataset (an additional 7.2% improvement over the baseline speculative decoding). On the GSM8K and HumanEval datasets, our method achieves a 2.26x speedup (9.4% improvement) and 2.23x speedup (11.1% improvement), respectively.
Monotonic Location Attention for Length Generalization
We explore different ways to utilize position-based cross-attention in seq2seq networks to enable length generalization in algorithmic tasks. We show that a simple approach of interpolating the original and reversed encoded representations combined with relative attention allows near-perfect length generalization for both forward and reverse lookup tasks or copy tasks that had been generally hard to tackle. We also devise harder diagnostic tasks where the relative distance of the ideal attention position varies with timestep. In such settings, the simple interpolation trick with relative attention is not sufficient. We introduce novel variants of location attention building on top of Dubois et al. (2020) to address the new diagnostic tasks. We also show the benefits of our approaches for length generalization in SCAN (Lake & Baroni, 2018) and CFQ (Keysers et al., 2020). Our code is available on GitHub.
CodeBPE: Investigating Subtokenization Options for Large Language Model Pretraining on Source Code
Recent works have widely adopted large language model pretraining for source code, suggested source code-specific pretraining objectives and investigated the applicability of various Transformer-based language model architectures for source code. This work investigates another important aspect of such models, namely the effect of different subtokenization options, and aims at identifying most effective and length-efficient subtokenizations, taking into account code specifics. We propose subtokenziation that reduces average length by 17% without downstream performance drop, and show that a carefully chosen subtokenization may improve quality by 0.5-2%, possibly with some length increase.
Exploring Transformer Extrapolation
Length extrapolation has attracted considerable attention recently since it allows transformers to be tested on longer sequences than those used in training. Previous research has shown that this property can be attained by using carefully designed Relative Positional Encodings (RPEs). While these methods perform well on a variety of corpora, the conditions for length extrapolation have yet to be investigated. This paper attempts to determine what types of RPEs allow for length extrapolation through a thorough mathematical and empirical analysis. We discover that a transformer is certain to possess this property as long as the series that corresponds to the RPE's exponential converges. Two practices are derived from the conditions and examined in language modeling tasks on a variety of corpora. As a bonus from the conditions, we derive a new Theoretical Receptive Field (TRF) to measure the receptive field of RPEs without taking any training steps. Extensive experiments are conducted on the Wikitext-103, Books, Github, and WikiBook datasets to demonstrate the viability of our discovered conditions. We also compare TRF to Empirical Receptive Field (ERF) across different models, showing consistently matched trends on the aforementioned datasets. The code is available at https://github.com/OpenNLPLab/Rpe.
Dataset Decomposition: Faster LLM Training with Variable Sequence Length Curriculum
Large language models (LLMs) are commonly trained on datasets consisting of fixed-length token sequences. These datasets are created by randomly concatenating documents of various lengths and then chunking them into sequences of a predetermined target length. However, this method of concatenation can lead to cross-document attention within a sequence, which is neither a desirable learning signal nor computationally efficient. Additionally, training on long sequences becomes computationally prohibitive due to the quadratic cost of attention. In this study, we introduce dataset decomposition, a novel variable sequence length training technique, to tackle these challenges. We decompose a dataset into a union of buckets, each containing sequences of the same size extracted from a unique document. During training, we use variable sequence length and batch size, sampling simultaneously from all buckets with a curriculum. In contrast to the concat-and-chunk baseline, which incurs a fixed attention cost at every step of training, our proposed method incurs a penalty proportional to the actual document lengths at each step, resulting in significant savings in training time. We train an 8k context-length 1B model at the same cost as a 2k context-length model trained with the baseline approach. Experiments on a web-scale corpus demonstrate that our approach significantly enhances performance on standard language evaluations and long-context benchmarks, reaching target accuracy 3x faster compared to the baseline. Our method not only enables efficient pretraining on long sequences but also scales effectively with dataset size. Lastly, we shed light on a critical yet less studied aspect of training large language models: the distribution and curriculum of sequence lengths, which results in a non-negligible difference in performance.
Getting the most out of your tokenizer for pre-training and domain adaptation
Tokenization is an understudied and often neglected component of modern LLMs. Most published works use a single tokenizer for all experiments, often borrowed from another model, without performing ablations or analysis to optimize tokenization. Moreover, the tokenizer is generally kept unchanged when fine-tuning a base model. In this paper, we show that the size, pre-tokenization regular expression, and training data of a tokenizer can significantly impact the model's generation speed, effective context size, memory usage, and downstream performance. We train specialized Byte-Pair Encoding code tokenizers, and conduct extensive ablations on the impact of tokenizer design on the performance of LLMs for code generation tasks such as HumanEval and MBPP, and provide recommendations for tokenizer hyper-parameters selection and switching the tokenizer in a pre-trained LLM. We perform our experiments on models trained from scratch and from pre-trained models, verifying their applicability to a wide range of use-cases. We find that when fine-tuning on more than 50 billion tokens, we can specialize the tokenizer of a pre-trained LLM to obtain large gains in generation speed and effective context size.
Finch: Prompt-guided Key-Value Cache Compression
Recent large language model applications, such as Retrieval-Augmented Generation and chatbots, have led to an increased need to process longer input contexts. However, this requirement is hampered by inherent limitations. Architecturally, models are constrained by a context window defined during training. Additionally, processing extensive texts requires substantial GPU memory. We propose a novel approach, Finch, to compress the input context by leveraging the pre-trained model weights of the self-attention. Given a prompt and a long text, Finch iteratively identifies the most relevant Key (K) and Value (V) pairs over chunks of the text conditioned on the prompt. Only such pairs are stored in the KV cache, which, within the space constrained by the context window, ultimately contains a compressed version of the long text. Our proposal enables models to consume large inputs even with high compression (up to 93x) while preserving semantic integrity without the need for fine-tuning.
A Formal Perspective on Byte-Pair Encoding
Byte-Pair Encoding (BPE) is a popular algorithm used for tokenizing data in NLP, despite being devised initially as a compression method. BPE appears to be a greedy algorithm at face value, but the underlying optimization problem that BPE seeks to solve has not yet been laid down. We formalize BPE as a combinatorial optimization problem. Via submodular functions, we prove that the iterative greedy version is a 1{{sigma(mu^star)}}(1-e^{-{sigma(mu^star)}})-approximation of an optimal merge sequence, where {sigma(mu^star)} is the total backward curvature with respect to the optimal merge sequence mu^star. Empirically the lower bound of the approximation is approx 0.37. We provide a faster implementation of BPE which improves the runtime complexity from Oleft(N Mright) to Oleft(N log Mright), where N is the sequence length and M is the merge count. Finally, we optimize the brute-force algorithm for optimal BPE using memoization.
Code Completion using Neural Attention and Byte Pair Encoding
In this paper, we aim to do code completion based on implementing a Neural Network from Li et. al.. Our contribution is that we use an encoding that is in-between character and word encoding called Byte Pair Encoding (BPE). We use this on the source code files treating them as natural text without first going through the abstract syntax tree (AST). We have implemented two models: an attention-enhanced LSTM and a pointer network, where the pointer network was originally introduced to solve out of vocabulary problems. We are interested to see if BPE can replace the need for the pointer network for code completion.
Lexinvariant Language Models
Token embeddings, a mapping from discrete lexical symbols to continuous vectors, are at the heart of any language model (LM). However, lexical symbol meanings can also be determined and even redefined by their structural role in a long context. In this paper, we ask: is it possible for a language model to be performant without any fixed token embeddings? Such a language model would have to rely entirely on the co-occurence and repetition of tokens in the context rather than the a priori identity of any token. To answer this, we study lexinvariantlanguage models that are invariant to lexical symbols and therefore do not need fixed token embeddings in practice. First, we prove that we can construct a lexinvariant LM to converge to the true language model at a uniform rate that is polynomial in terms of the context length, with a constant factor that is sublinear in the vocabulary size. Second, to build a lexinvariant LM, we simply encode tokens using random Gaussian vectors, such that each token maps to the same representation within each sequence but different representations across sequences. Empirically, we demonstrate that it can indeed attain perplexity comparable to that of a standard language model, given a sufficiently long context. We further explore two properties of the lexinvariant language models: First, given text generated from a substitution cipher of English, it implicitly implements Bayesian in-context deciphering and infers the mapping to the underlying real tokens with high accuracy. Second, it has on average 4X better accuracy over synthetic in-context reasoning tasks. Finally, we discuss regularizing standard language models towards lexinvariance and potential practical applications.
Extending Input Contexts of Language Models through Training on Segmented Sequences
Effectively training language models on long inputs poses many technical challenges. As a cost consideration, languages models are pretrained on a fixed sequence length before being adapted to longer sequences. We explore various methods for adapting models to longer inputs by training on segmented sequences and an interpolation-based method for extending absolute positional embeddings. We develop a training procedure to extend the input context size of pretrained models with no architectural changes and no additional memory costs than training on the original input lengths. By sub-sampling segments from long inputs while maintaining their original position the model is able to learn new positional interactions. Our method benefits both models trained with absolute positional embeddings, by extending their input contexts, as well as popular relative positional embedding methods showing a reduced perplexity on sequences longer than they were trained on. We demonstrate our method can extend input contexts by a factor of 4x while improving perplexity.
Rethinking Addressing in Language Models via Contexualized Equivariant Positional Encoding
Transformers rely on both content-based and position-based addressing mechanisms to make predictions, but existing positional encoding techniques often diminish the effectiveness of position-based addressing. Many current methods enforce rigid patterns in attention maps, limiting the ability to model long-range dependencies and adapt to diverse tasks. Additionally, most positional encodings are learned as general biases, lacking the specialization required for different instances within a dataset. To address this, we propose conTextualized equivariAnt Position Embedding (TAPE), a novel framework that enhances positional embeddings by incorporating sequence content across layers. TAPE introduces dynamic, context-aware positional encodings, overcoming the constraints of traditional fixed patterns. By enforcing permutation and orthogonal equivariance, TAPE ensures the stability of positional encodings during updates, improving robustness and adaptability. Our method can be easily integrated into pre-trained transformers, offering parameter-efficient fine-tuning with minimal overhead. Extensive experiments shows that TAPE achieves superior performance in language modeling, arithmetic reasoning, and long-context retrieval tasks compared to existing positional embedding techniques.
CodeT5+: Open Code Large Language Models for Code Understanding and Generation
Large language models (LLMs) pretrained on vast source code have achieved prominent progress in code intelligence. However, existing code LLMs have two main limitations in terms of architecture and pretraining tasks. First, they often adopt a specific architecture (encoder-only or decoder-only) or rely on a unified encoder-decoder network for different downstream tasks. The former paradigm is limited by inflexibility in applications while in the latter, the model is treated as a single system for all tasks, leading to suboptimal performance on a subset of tasks. Secondly, they often employ a limited set of pretraining objectives which might not be relevant to some downstream tasks and hence result in substantial performance degrade. To address these limitations, we propose ``CodeT5+'', a family of encoder-decoder LLMs for code in which component modules can be flexibly combined to suit a wide range of downstream code tasks. Such flexibility is enabled by our proposed mixture of pretraining objectives to mitigate the pretrain-finetune discrepancy. These objectives cover span denoising, contrastive learning, text-code matching, and causal LM pretraining tasks, on both unimodal and bimodal multilingual code corpora. Furthermore, we propose to initialize CodeT5+ with frozen off-the-shelf LLMs without training from scratch to efficiently scale up our models, and explore instruction-tuning to align with natural language instructions. We extensively evaluate CodeT5+ on over 20 code-related benchmarks in different settings, including zero-shot, finetuning, and instruction-tuning. We observe state-of-the-art (SoTA) model performance on various code-related tasks, such as code generation and completion, math programming, and text-to-code retrieval tasks. Particularly, our instruction-tuned CodeT5+ 16B achieves new SoTA results on HumanEval code generation task against other open code LLMs.
The Hyperfitting Phenomenon: Sharpening and Stabilizing LLMs for Open-Ended Text Generation
This paper introduces the counter-intuitive generalization results of overfitting pre-trained large language models (LLMs) on very small datasets. In the setting of open-ended text generation, it is well-documented that LLMs tend to generate repetitive and dull sequences, a phenomenon that is especially apparent when generating using greedy decoding. This issue persists even with state-of-the-art LLMs containing billions of parameters, trained via next-token prediction on large datasets. We find that by further fine-tuning these models to achieve a near-zero training loss on a small set of samples -- a process we refer to as hyperfitting -- the long-sequence generative capabilities are greatly enhanced. Greedy decoding with these Hyperfitted models even outperform Top-P sampling over long-sequences, both in terms of diversity and human preferences. This phenomenon extends to LLMs of various sizes, different domains, and even autoregressive image generation. We further find this phenomena to be distinctly different from that of Grokking and double descent. Surprisingly, our experiments indicate that hyperfitted models rarely fall into repeating sequences they were trained on, and even explicitly blocking these sequences results in high-quality output. All hyperfitted models produce extremely low-entropy predictions, often allocating nearly all probability to a single token.
ChunkKV: Semantic-Preserving KV Cache Compression for Efficient Long-Context LLM Inference
To reduce memory costs in long-context inference with Large Language Models (LLMs), many recent works focus on compressing the key-value (KV) cache of different tokens. However, we identify that the previous KV cache compression methods measure token importance individually, neglecting the dependency between different tokens in the real-world language characterics. In light of this, we introduce ChunkKV, grouping the tokens in a chunk as a basic compressing unit, and retaining the most informative semantic chunks while discarding the less important ones. Furthermore, observing that ChunkKV exhibits higher similarity in the preserved indices across different layers, we propose layer-wise index reuse to further reduce computational overhead. We evaluated ChunkKV on cutting-edge long-context benchmarks including LongBench and Needle-In-A-HayStack, as well as the GSM8K and JailbreakV in-context learning benchmark. Our experiments with instruction tuning and multi-step reasoning (O1 and R1) LLMs, achieve up to 10\% performance improvement under aggressive compression ratios compared to existing methods.
Long-Context Language Modeling with Parallel Context Encoding
Extending large language models (LLMs) to process longer inputs is crucial for numerous applications. However, the considerable computational cost of transformers, coupled with limited generalization of positional encoding, restricts the size of their context window. We introduce Context Expansion with Parallel Encoding (CEPE), a framework that can be applied to any existing decoder-only LLMs to extend their context window. CEPE adopts a small encoder to process long inputs chunk by chunk and enables the frozen decoder to leverage additional contexts via cross-attention. CEPE is efficient, generalizable, and versatile: trained with 8K-token documents, CEPE extends the context window of LLAMA-2 to 128K tokens, offering 10x the throughput with only 1/6 of the memory. CEPE yields strong performance on language modeling and in-context learning. CEPE also excels in retrieval-augmented applications, while existing long-context models degenerate with retrieved contexts. We further introduce a CEPE variant that can extend the context window of instruction-tuned models with only unlabeled data, and showcase its effectiveness on LLAMA-2-CHAT, leading to a strong instruction-following model that can leverage very long context on downstream tasks.
Generating Structured Outputs from Language Models: Benchmark and Studies
Reliably generating structured outputs has become a critical capability for modern language model (LM) applications. Constrained decoding has emerged as the dominant technology across sectors for enforcing structured outputs during generation. Despite its growing adoption, little has been done with the systematic evaluation of the behaviors and performance of constrained decoding. Constrained decoding frameworks have standardized around JSON Schema as a structured data format, with most uses guaranteeing constraint compliance given a schema. However, there is poor understanding of the effectiveness of the methods in practice. We present an evaluation framework to assess constrained decoding approaches across three critical dimensions: efficiency in generating constraint-compliant outputs, coverage of diverse constraint types, and quality of the generated outputs. To facilitate this evaluation, we introduce JSONSchemaBench, a benchmark for constrained decoding comprising 10K real-world JSON schemas that encompass a wide range of constraints with varying complexity. We pair the benchmark with the existing official JSON Schema Test Suite and evaluate six state-of-the-art constrained decoding frameworks, including Guidance, Outlines, Llamacpp, XGrammar, OpenAI, and Gemini. Through extensive experiments, we gain insights into the capabilities and limitations of constrained decoding on structured generation with real-world JSON schemas. Our work provides actionable insights for improving constrained decoding frameworks and structured generation tasks, setting a new standard for evaluating constrained decoding and structured generation. We release JSONSchemaBench at https://github.com/guidance-ai/jsonschemabench
ResQ: Mixed-Precision Quantization of Large Language Models with Low-Rank Residuals
Post-training quantization (PTQ) of large language models (LLMs) holds the promise in reducing the prohibitive computational cost at inference time. Quantization of all weight, activation and key-value (KV) cache tensors to 4-bit without significantly degrading generalizability is challenging, due to the high quantization error caused by extreme outliers in activations. To tackle this problem, we propose ResQ, a PTQ method that pushes further the state-of-the-art. By means of principal component analysis (PCA), it identifies a low-rank subspace (in practice 1/8 of the hidden dimension) in which activation variances are highest, and keep the coefficients within this subspace in high precision, e.g. 8-bit, while quantizing the rest to 4-bit. Within each subspace, invariant random rotation is applied to further suppress outliers. We show that this is a provably optimal mixed precision quantization scheme that minimizes error. With the Llama and Qwen2.5 families of models, we demonstrate that ResQ outperforms recent uniform and mixed precision PTQ methods on a variety of benchmarks, achieving up to 33\% lower perplexity on Wikitext than the next best method SpinQuant, and upto 3\times speedup over 16-bit baseline. Code is available at https://github.com/utkarsh-dmx/project-resq.
Nugget: Neural Agglomerative Embeddings of Text
Embedding text sequences is a widespread requirement in modern language understanding. Existing approaches focus largely on constant-size representations. This is problematic, as the amount of information contained in text often varies with the length of the input. We propose a solution called Nugget, which encodes language into a representation based on a dynamically selected subset of input tokens. These nuggets are learned through tasks like autoencoding and machine translation, and intuitively segment language into meaningful units. We demonstrate Nugget outperforms related approaches in tasks involving semantic comparison. Finally, we illustrate these compact units allow for expanding the contextual window of a language model (LM), suggesting new future LMs that can condition on significantly larger amounts of content.
Neural networks behave as hash encoders: An empirical study
The input space of a neural network with ReLU-like activations is partitioned into multiple linear regions, each corresponding to a specific activation pattern of the included ReLU-like activations. We demonstrate that this partition exhibits the following encoding properties across a variety of deep learning models: (1) {\it determinism}: almost every linear region contains at most one training example. We can therefore represent almost every training example by a unique activation pattern, which is parameterized by a {\it neural code}; and (2) {\it categorization}: according to the neural code, simple algorithms, such as K-Means, K-NN, and logistic regression, can achieve fairly good performance on both training and test data. These encoding properties surprisingly suggest that {\it normal neural networks well-trained for classification behave as hash encoders without any extra efforts.} In addition, the encoding properties exhibit variability in different scenarios. {Further experiments demonstrate that {\it model size}, {\it training time}, {\it training sample size}, {\it regularization}, and {\it label noise} contribute in shaping the encoding properties, while the impacts of the first three are dominant.} We then define an {\it activation hash phase chart} to represent the space expanded by {model size}, training time, training sample size, and the encoding properties, which is divided into three canonical regions: {\it under-expressive regime}, {\it critically-expressive regime}, and {\it sufficiently-expressive regime}. The source code package is available at https://github.com/LeavesLei/activation-code.
Distributed Representations of Sentences and Documents
Many machine learning algorithms require the input to be represented as a fixed-length feature vector. When it comes to texts, one of the most common fixed-length features is bag-of-words. Despite their popularity, bag-of-words features have two major weaknesses: they lose the ordering of the words and they also ignore semantics of the words. For example, "powerful," "strong" and "Paris" are equally distant. In this paper, we propose Paragraph Vector, an unsupervised algorithm that learns fixed-length feature representations from variable-length pieces of texts, such as sentences, paragraphs, and documents. Our algorithm represents each document by a dense vector which is trained to predict words in the document. Its construction gives our algorithm the potential to overcome the weaknesses of bag-of-words models. Empirical results show that Paragraph Vectors outperform bag-of-words models as well as other techniques for text representations. Finally, we achieve new state-of-the-art results on several text classification and sentiment analysis tasks.
Robust Multi-bit Text Watermark with LLM-based Paraphrasers
We propose an imperceptible multi-bit text watermark embedded by paraphrasing with LLMs. We fine-tune a pair of LLM paraphrasers that are designed to behave differently so that their paraphrasing difference reflected in the text semantics can be identified by a trained decoder. To embed our multi-bit watermark, we use two paraphrasers alternatively to encode the pre-defined binary code at the sentence level. Then we use a text classifier as the decoder to decode each bit of the watermark. Through extensive experiments, we show that our watermarks can achieve over 99.99\% detection AUC with small (1.1B) text paraphrasers while keeping the semantic information of the original sentence. More importantly, our pipeline is robust under word substitution and sentence paraphrasing perturbations and generalizes well to out-of-distributional data. We also show the stealthiness of our watermark with LLM-based evaluation. We open-source the code: https://github.com/xiaojunxu/multi-bit-text-watermark.
No Token Left Behind: Reliable KV Cache Compression via Importance-Aware Mixed Precision Quantization
Key-Value (KV) Caching has become an essential technique for accelerating the inference speed and throughput of generative Large Language Models~(LLMs). However, the memory footprint of the KV cache poses a critical bottleneck in LLM deployment as the cache size grows with batch size and sequence length, often surpassing even the size of the model itself. Although recent methods were proposed to select and evict unimportant KV pairs from the cache to reduce memory consumption, the potential ramifications of eviction on the generative process are yet to be thoroughly examined. In this paper, we examine the detrimental impact of cache eviction and observe that unforeseen risks arise as the information contained in the KV pairs is exhaustively discarded, resulting in safety breaches, hallucinations, and context loss. Surprisingly, we find that preserving even a small amount of information contained in the evicted KV pairs via reduced precision quantization substantially recovers the incurred degradation. On the other hand, we observe that the important KV pairs must be kept at a relatively higher precision to safeguard the generation quality. Motivated by these observations, we propose Mixed-precision KV cache~(MiKV), a reliable cache compression method that simultaneously preserves the context details by retaining the evicted KV pairs in low-precision and ensure generation quality by keeping the important KV pairs in high-precision. Experiments on diverse benchmarks and LLM backbones show that our proposed method offers a state-of-the-art trade-off between compression ratio and performance, compared to other baselines.
FPTQ: Fine-grained Post-Training Quantization for Large Language Models
In the era of large-scale language models, the substantial parameter size poses significant challenges for deployment. Being a prevalent compression technique, quantization has emerged as the mainstream practice to tackle this issue, which is mainly centered on two recipes W8A8 and W4A16 (i.e. weights and activations in such bit widths). In this study, we propose a novel W4A8 post-training quantization method for the available open-sourced LLMs, which combines the advantages of both two recipes. Therefore, we can leverage the benefit in the I/O utilization of 4-bit weight quantization and the acceleration due to 8-bit matrix computation. Nevertheless, the W4A8 faces notorious performance degradation. As a remedy, we involve layerwise activation quantization strategies which feature a novel logarithmic equalization for most intractable layers, and we combine them with fine-grained weight quantization. Without whistles and bells, we eliminate the necessity for further fine-tuning and obtain the state-of-the-art W4A8 quantized performance on BLOOM, LLaMA, and LLaMA-2 on standard benchmarks. We confirm that the W4A8 quantization is achievable for the deployment of large language models, fostering their wide-spreading real-world applications.
SubGen: Token Generation in Sublinear Time and Memory
Despite the significant success of large language models (LLMs), their extensive memory requirements pose challenges for deploying them in long-context token generation. The substantial memory footprint of LLM decoders arises from the necessity to store all previous tokens in the attention module, a requirement imposed by key-value (KV) caching. In this work, our focus is on developing an efficient compression technique for the KV cache. Empirical evidence indicates a significant clustering tendency within key embeddings in the attention module. Building on this key insight, we have devised a novel caching method with sublinear complexity, employing online clustering on key tokens and online ell_2 sampling on values. The result is a provably accurate and efficient attention decoding algorithm, termed SubGen. Not only does this algorithm ensure a sublinear memory footprint and sublinear time complexity, but we also establish a tight error bound for our approach. Empirical evaluations on long-context question-answering tasks demonstrate that SubGen significantly outperforms existing and state-of-the-art KV cache compression methods in terms of performance and efficiency.
A Comprehensive Survey of Compression Algorithms for Language Models
How can we compress language models without sacrificing accuracy? The number of compression algorithms for language models is rapidly growing to benefit from remarkable advances of recent language models without side effects due to the gigantic size of language models, such as increased carbon emissions and expensive maintenance fees. While numerous compression algorithms have shown remarkable progress in compressing language models, it ironically becomes challenging to capture emerging trends and identify the fundamental concepts underlying them due to the excessive number of algorithms. In this paper, we survey and summarize diverse compression algorithms including pruning, quantization, knowledge distillation, low-rank approximation, parameter sharing, and efficient architecture design. We not only summarize the overall trend of diverse compression algorithms but also select representative algorithms and provide in-depth analyses of them. We discuss the value of each category of compression algorithms, and the desired properties of low-cost compression algorithms which have a significant impact due to the emergence of large language models. Finally, we introduce promising future research topics based on our survey results.
The case for 4-bit precision: k-bit Inference Scaling Laws
Quantization methods reduce the number of bits required to represent each parameter in a model, trading accuracy for smaller memory footprints and inference latencies. However, the final model size depends on both the number of parameters of the original model and the rate of compression. For example, a 30B 8-bit model and a 60B 4-bit model have the same number of bits but may have very different zero-shot accuracies. In this work, we study this trade-off by developing inference scaling laws of zero-shot performance in Large Language Models (LLMs) to determine the bit-precision and model size that maximizes zero-shot performance. We run more than 35,000 experiments with 16-bit inputs and k-bit parameters to examine which zero-shot quantization methods improve scaling for 3 to 8-bit precision at scales of 19M to 176B parameters across the LLM families BLOOM, OPT, NeoX/Pythia, and GPT-2. We find that it is challenging to improve the bit-level scaling trade-off, with the only improvements being the use of a small block size -- splitting the parameters into small independently quantized blocks -- and the quantization data type being used (e.g., Int vs Float). Overall, our findings show that {4-bit} precision is almost universally optimal for total model bits and zero-shot accuracy.
Rethinking Positional Encoding
It is well noted that coordinate based MLPs benefit -- in terms of preserving high-frequency information -- through the encoding of coordinate positions as an array of Fourier features. Hitherto, the rationale for the effectiveness of these positional encodings has been solely studied through a Fourier lens. In this paper, we strive to broaden this understanding by showing that alternative non-Fourier embedding functions can indeed be used for positional encoding. Moreover, we show that their performance is entirely determined by a trade-off between the stable rank of the embedded matrix and the distance preservation between embedded coordinates. We further establish that the now ubiquitous Fourier feature mapping of position is a special case that fulfills these conditions. Consequently, we present a more general theory to analyze positional encoding in terms of shifted basis functions. To this end, we develop the necessary theoretical formulae and empirically verify that our theoretical claims hold in practice. Codes available at https://github.com/osiriszjq/Rethinking-positional-encoding.
Memory Efficient Optimizers with 4-bit States
Optimizer states are a major source of memory consumption for training neural networks, limiting the maximum trainable model within given memory budget. Compressing the optimizer states from 32-bit floating points to lower bitwidth is promising to reduce the training memory footprint, while the current lowest achievable bitwidth is 8-bit. In this work, we push optimizer states bitwidth down to 4-bit through a detailed empirical analysis of first and second moments. Specifically, we find that moments have complicated outlier patterns, that current block-wise quantization cannot accurately approximate. We use a smaller block size and propose to utilize both row-wise and column-wise information for better quantization. We further identify a zero point problem of quantizing the second moment, and solve this problem with a linear quantizer that excludes the zero point. Our 4-bit optimizers are evaluated on a wide variety of benchmarks including natural language understanding, machine translation, image classification, and instruction tuning. On all the tasks our optimizers can achieve comparable accuracy with their full-precision counterparts, while enjoying better memory efficiency.
MrT5: Dynamic Token Merging for Efficient Byte-level Language Models
Models that rely on subword tokenization have significant drawbacks, such as sensitivity to character-level noise like spelling errors and inconsistent compression rates across different languages and scripts. While character- or byte-level models like ByT5 attempt to address these concerns, they have not gained widespread adoption -- processing raw byte streams without tokenization results in significantly longer sequence lengths, making training and inference inefficient. This work introduces MrT5 (MergeT5), a more efficient variant of ByT5 that integrates a token deletion mechanism in its encoder to dynamically shorten the input sequence length. After processing through a fixed number of encoder layers, a learnt delete gate determines which tokens are to be removed and which are to be retained for subsequent layers. MrT5 effectively ``merges'' critical information from deleted tokens into a more compact sequence, leveraging contextual information from the remaining tokens. In continued pre-training experiments, we find that MrT5 can achieve significant gains in inference runtime with minimal effect on performance. When trained on English text, MrT5 demonstrates the capability to transfer its deletion feature zero-shot across several languages, with significant additional improvements following multilingual training. Furthermore, MrT5 shows comparable accuracy to ByT5 on downstream evaluations such as XNLI and character-level tasks while reducing sequence lengths by up to 80%. Our approach presents a solution to the practical limitations of existing byte-level models.
LongSSM: On the Length Extension of State-space Models in Language Modelling
In this paper, we investigate the length-extension of state-space models (SSMs) in language modeling. Length extension involves training models on short sequences and testing them on longer ones. We show that state-space models trained with zero hidden states initialization have difficulty doing length extension. We explain this difficulty by pointing out the length extension is equivalent to polynomial extrapolation. Based on the theory, we propose a simple yet effective method - changing the hidden states initialization scheme - to improve the length extension. Moreover, our method shows that using long training sequence length is beneficial but not necessary to length extension. Changing the hidden state initialization enables the efficient training of long-memory model with a smaller training context length.
Squeezed Attention: Accelerating Long Context Length LLM Inference
Emerging Large Language Model (LLM) applications require long input prompts to perform complex downstream tasks like document analysis and code generation. For these long context length applications, the length of the input prompt poses a significant challenge in terms of inference efficiency since the inference costs increase linearly with sequence length. However, for many of these applications, much of the context in the prompt is fixed across different user inputs, thereby providing the opportunity to perform offline optimizations to process user inputs quickly, as they are received. In this work, we propose Squeezed Attention as a mechanism to accelerate LLM applications where a large portion of the input prompt is fixed. We first leverage K-means clustering offline to group the keys for the fixed context based on semantic similarity and represent each cluster with a single centroid value. During inference, we compare query tokens from the user input with the centroids to predict which of the keys from the fixed context are semantically relevant and need to be loaded during inference. We then compute exact attention using only these important keys from the fixed context, thereby reducing bandwidth and computational costs. We also extend our method to use a hierarchical centroid lookup to identify important keys, which can reduce the complexity of attention from linear to logarithmic with respect to the context length. We implement optimized Triton kernels for centroid comparison and sparse FlashAttention with important keys, achieving more than 4x speedups during both the prefill and generation phases for long-context inference. Furthermore, we have extensively evaluated our method on various long-context benchmarks including LongBench, where it achieves a 3x reduction in KV cache budget without accuracy loss and up to an 8x reduction with <0.5 point accuracy gap for various models.
CSKV: Training-Efficient Channel Shrinking for KV Cache in Long-Context Scenarios
Large Language Models (LLMs) have been widely adopted to process long-context tasks. However, the large memory overhead of the key-value (KV) cache poses significant challenges in long-context scenarios. Existing training-free KV cache compression methods typically focus on quantization and token pruning, which have compression limits, and excessive sparsity can lead to severe performance degradation. Other methods design new architectures with less KV overhead but require significant training overhead. To address the above two drawbacks, we further explore the redundancy in the channel dimension and apply an architecture-level design with minor training costs. Therefore, we introduce CSKV, a training-efficient Channel Shrinking technique for KV cache compression: (1) We first analyze the singular value distribution of the KV cache, revealing significant redundancy and compression potential along the channel dimension. Based on this observation, we propose using low-rank decomposition for key and value layers and storing the low-dimension features. (2) To preserve model performance, we introduce a bi-branch KV cache, including a window-based full-precision KV cache and a low-precision compressed KV cache. (3) To reduce the training costs, we minimize the layer-wise reconstruction loss for the compressed KV cache instead of retraining the entire LLMs. Extensive experiments show that CSKV can reduce the memory overhead of the KV cache by 80% while maintaining the model's long-context capability. Moreover, we show that our method can be seamlessly combined with quantization to further reduce the memory overhead, achieving a compression ratio of up to 95%.
Language-Codec: Reducing the Gaps Between Discrete Codec Representation and Speech Language Models
In recent years, large language models have achieved significant success in generative tasks (e.g., speech cloning and audio generation) related to speech, audio, music, and other signal domains. A crucial element of these models is the discrete acoustic codecs, which serves as an intermediate representation replacing the mel-spectrogram. However, there exist several gaps between discrete codecs and downstream speech language models. Specifically, 1) most codec models are trained on only 1,000 hours of data, whereas most speech language models are trained on 60,000 hours; 2) Achieving good reconstruction performance requires the utilization of numerous codebooks, which increases the burden on downstream speech language models; 3) The initial channel of the codebooks contains excessive information, making it challenging to directly generate acoustic tokens from weakly supervised signals such as text in downstream tasks. Consequently, leveraging the characteristics of speech language models, we propose Language-Codec. In the Language-Codec, we introduce a Mask Channel Residual Vector Quantization (MCRVQ) mechanism along with improved Fourier transform structures and larger training datasets to address the aforementioned gaps. We compare our method with competing audio compression algorithms and observe significant outperformance across extensive evaluations. Furthermore, we also validate the efficiency of the Language-Codec on downstream speech language models. The source code and pre-trained models can be accessed at https://github.com/jishengpeng/languagecodec .
Functional Interpolation for Relative Positions Improves Long Context Transformers
Preventing the performance decay of Transformers on inputs longer than those used for training has been an important challenge in extending the context length of these models. Though the Transformer architecture has fundamentally no limits on the input sequence lengths it can process, the choice of position encoding used during training can limit the performance of these models on longer inputs. We propose a novel functional relative position encoding with progressive interpolation, FIRE, to improve Transformer generalization to longer contexts. We theoretically prove that this can represent some of the popular relative position encodings, such as T5's RPE, Alibi, and Kerple. We next empirically show that FIRE models have better generalization to longer contexts on both zero-shot language modeling and long text benchmarks.
Stuffed Mamba: State Collapse and State Capacity of RNN-Based Long-Context Modeling
One essential advantage of recurrent neural networks (RNNs) over transformer-based language models is their linear computational complexity concerning the sequence length, which makes them much faster in handling long sequences during inference. However, most publicly available RNNs (e.g., Mamba and RWKV) are trained on sequences with less than 10K tokens, and their effectiveness in longer contexts remains largely unsatisfying so far. In this paper, we study the cause of the inability to process long context for RNNs and suggest critical mitigations. We examine two practical concerns when applying state-of-the-art RNNs to long contexts: (1) the inability to extrapolate to inputs longer than the training length and (2) the upper bound of memory capacity. Addressing the first concern, we first investigate *state collapse* (SC), a phenomenon that causes severe performance degradation on sequence lengths not encountered during training. With controlled experiments, we attribute this to overfitting due to the recurrent state being overparameterized for the training length. For the second concern, we train a series of Mamba-2 models on long documents to empirically estimate the recurrent state capacity in language modeling and passkey retrieval. Then, three SC mitigation methods are proposed to improve Mamba-2's length generalizability, allowing the model to process more than 1M tokens without SC. We also find that the recurrent state capacity in passkey retrieval scales exponentially to the state size, and we empirically train a Mamba-2 370M with near-perfect passkey retrieval accuracy on 256K context length. This suggests a promising future for RNN-based long-context modeling.
Get More with LESS: Synthesizing Recurrence with KV Cache Compression for Efficient LLM Inference
Many computational factors limit broader deployment of large language models. In this paper, we focus on a memory bottleneck imposed by the key-value (KV) cache, a computational shortcut that requires storing previous KV pairs during decoding. While existing KV cache methods approach this problem by pruning or evicting large swaths of relatively less important KV pairs to dramatically reduce the memory footprint of the cache, they can have limited success in tasks that require recollecting a majority of previous tokens. To alleviate this issue, we propose LESS, a simple integration of a (nearly free) constant sized cache with eviction-based cache methods, such that all tokens can be queried at later decoding steps. Its ability to retain information throughout time shows merit on a variety of tasks where we demonstrate LESS can help reduce the performance gap from caching everything, sometimes even matching it, all while being efficient.
NUPES : Non-Uniform Post-Training Quantization via Power Exponent Search
Deep neural network (DNN) deployment has been confined to larger hardware devices due to their expensive computational requirements. This challenge has recently reached another scale with the emergence of large language models (LLMs). In order to reduce both their memory footprint and latency, a promising technique is quantization. It consists in converting floating point representations to low bit-width fixed point representations, usually by assuming a uniform mapping onto a regular grid. This process, referred to in the literature as uniform quantization, may however be ill-suited as most DNN weights and activations follow a bell-shaped distribution. This is even worse on LLMs whose weight distributions are known to exhibit large, high impact, outlier values. In this work, we propose an improvement over the most commonly adopted way to tackle this limitation in deep learning models quantization, namely, non-uniform quantization. NUPES leverages automorphisms to preserve the scalar multiplications. Such transformations are derived from power functions. However, the optimization of the exponent parameter and weight values remains a challenging and novel problem which could not be solved with previous post training optimization techniques which only learn to round up or down weight values in order to preserve the predictive function. We circumvent this limitation with a new paradigm: learning new quantized weights over the entire quantized space. Similarly, we enable the optimization of the power exponent, i.e. the optimization of the quantization operator itself during training by alleviating all the numerical instabilities. The resulting predictive function is compatible with integer-only low-bit inference. We show the ability of the method to achieve state-of-the-art compression rates in both, data-free and data-driven configurations.
Sequence Transduction with Recurrent Neural Networks
Many machine learning tasks can be expressed as the transformation---or transduction---of input sequences into output sequences: speech recognition, machine translation, protein secondary structure prediction and text-to-speech to name but a few. One of the key challenges in sequence transduction is learning to represent both the input and output sequences in a way that is invariant to sequential distortions such as shrinking, stretching and translating. Recurrent neural networks (RNNs) are a powerful sequence learning architecture that has proven capable of learning such representations. However RNNs traditionally require a pre-defined alignment between the input and output sequences to perform transduction. This is a severe limitation since finding the alignment is the most difficult aspect of many sequence transduction problems. Indeed, even determining the length of the output sequence is often challenging. This paper introduces an end-to-end, probabilistic sequence transduction system, based entirely on RNNs, that is in principle able to transform any input sequence into any finite, discrete output sequence. Experimental results for phoneme recognition are provided on the TIMIT speech corpus.
Split, Encode and Aggregate for Long Code Search
Code search with natural language plays a crucial role in reusing existing code snippets and accelerating software development. Thanks to the Transformer-based pretraining models, the performance of code search has been improved significantly compared to traditional information retrieval (IR) based models. However, due to the quadratic complexity of multi-head self-attention, there is a limit on the input token length. For efficient training on standard GPUs like V100, existing pretrained code models, including GraphCodeBERT, CodeBERT, RoBERTa (code), take the first 256 tokens by default, which makes them unable to represent the complete information of long code that is greater than 256 tokens. Unlike long text paragraph that can be regarded as a whole with complete semantics, the semantics of long code is discontinuous as a piece of long code may contain different code modules. Therefore, it is unreasonable to directly apply the long text processing methods to long code. To tackle the long code problem, we propose SEA (Split, Encode and Aggregate for Long Code Search), which splits long code into code blocks, encodes these blocks into embeddings, and aggregates them to obtain a comprehensive long code representation. With SEA, we could directly use Transformer-based pretraining models to model long code without changing their internal structure and repretraining. Leveraging abstract syntax tree (AST) based splitting and attention-based aggregation methods, SEA achieves significant improvements in long code search performance. We also compare SEA with two sparse Trasnformer methods. With GraphCodeBERT as the encoder, SEA achieves an overall mean reciprocal ranking score of 0.785, which is 10.1% higher than GraphCodeBERT on the CodeSearchNet benchmark.
Scaling Sparse Fine-Tuning to Large Language Models
Large Language Models (LLMs) are difficult to fully fine-tune (e.g., with instructions or human feedback) due to their sheer number of parameters. A family of parameter-efficient sparse fine-tuning (SFT) methods have proven promising in terms of performance but their memory requirements increase proportionally to the size of the LLMs. In this work, we scale sparse fine-tuning to state-of-the-art LLMs like LLaMA 2 7B and 13B. At any given time, for a desired density level, we maintain an array of parameter indices and the deltas of these parameters relative to their pretrained values. We iterate among: (a) updating the active deltas, (b) pruning indices (based on the change of magnitude of their deltas) and (c) regrowth of indices. For regrowth, we explore two criteria based on either the accumulated gradients of a few candidate parameters or their approximate momenta estimated using the efficient SM3 optimizer. We experiment with instruction-tuning of LLMs on standard dataset mixtures, finding that SFT is often superior to popular parameter-efficient fine-tuning methods like LoRA (low-rank adaptation) in terms of performance and comparable in terms of run time. We additionally show that SFT is compatible with both quantization and efficient optimizers, to facilitate scaling to ever-larger model sizes. We release the code for SFT at https://github.com/AlanAnsell/peft and for the instruction-tuning experiments at https://github.com/ducdauge/sft-llm.
RazorAttention: Efficient KV Cache Compression Through Retrieval Heads
The memory and computational demands of Key-Value (KV) cache present significant challenges for deploying long-context language models. Previous approaches attempt to mitigate this issue by selectively dropping tokens, which irreversibly erases critical information that might be needed for future queries. In this paper, we propose a novel compression technique for KV cache that preserves all token information. Our investigation reveals that: i) Most attention heads primarily focus on the local context; ii) Only a few heads, denoted as retrieval heads, can essentially pay attention to all input tokens. These key observations motivate us to use separate caching strategy for attention heads. Therefore, we propose RazorAttention, a training-free KV cache compression algorithm, which maintains a full cache for these crucial retrieval heads and discards the remote tokens in non-retrieval heads. Furthermore, we introduce a novel mechanism involving a "compensation token" to further recover the information in the dropped tokens. Extensive evaluations across a diverse set of large language models (LLMs) demonstrate that RazorAttention achieves a reduction in KV cache size by over 70% without noticeable impacts on performance. Additionally, RazorAttention is compatible with FlashAttention, rendering it an efficient and plug-and-play solution that enhances LLM inference efficiency without overhead or retraining of the original model.
SemantiCodec: An Ultra Low Bitrate Semantic Audio Codec for General Sound
Large language models (LLMs) have significantly advanced audio processing through audio codecs that convert audio into discrete tokens, enabling the application of language modelling techniques to audio data. However, traditional codecs often operate at high bitrates or within narrow domains such as speech and lack the semantic clues required for efficient language modelling. Addressing these challenges, we introduce SemantiCodec, a novel codec designed to compress audio into fewer than a hundred tokens per second across diverse audio types, including speech, general audio, and music, without compromising quality. SemantiCodec features a dual-encoder architecture: a semantic encoder using a self-supervised AudioMAE, discretized using k-means clustering on extensive audio data, and an acoustic encoder to capture the remaining details. The semantic and acoustic encoder outputs are used to reconstruct audio via a diffusion-model-based decoder. SemantiCodec is presented in three variants with token rates of 25, 50, and 100 per second, supporting a range of ultra-low bit rates between 0.31 kbps and 1.43 kbps. Experimental results demonstrate that SemantiCodec significantly outperforms the state-of-the-art Descript codec on reconstruction quality. Our results also suggest that SemantiCodec contains significantly richer semantic information than all evaluated audio codecs, even at significantly lower bitrates. Our code and demos are available at https://haoheliu.github.io/SemantiCodec/.
Memory Augmented Large Language Models are Computationally Universal
We show that transformer-based large language models are computationally universal when augmented with an external memory. Any deterministic language model that conditions on strings of bounded length is equivalent to a finite automaton, hence computationally limited. However, augmenting such models with a read-write memory creates the possibility of processing arbitrarily large inputs and, potentially, simulating any algorithm. We establish that an existing large language model, Flan-U-PaLM 540B, can be combined with an associative read-write memory to exactly simulate the execution of a universal Turing machine, U_{15,2}. A key aspect of the finding is that it does not require any modification of the language model weights. Instead, the construction relies solely on designing a form of stored instruction computer that can subsequently be programmed with a specific set of prompts.
code2seq: Generating Sequences from Structured Representations of Code
The ability to generate natural language sequences from source code snippets has a variety of applications such as code summarization, documentation, and retrieval. Sequence-to-sequence (seq2seq) models, adopted from neural machine translation (NMT), have achieved state-of-the-art performance on these tasks by treating source code as a sequence of tokens. We present {scriptsize CODE2SEQ}: an alternative approach that leverages the syntactic structure of programming languages to better encode source code. Our model represents a code snippet as the set of compositional paths in its abstract syntax tree (AST) and uses attention to select the relevant paths while decoding. We demonstrate the effectiveness of our approach for two tasks, two programming languages, and four datasets of up to 16M examples. Our model significantly outperforms previous models that were specifically designed for programming languages, as well as state-of-the-art NMT models. An interactive online demo of our model is available at http://code2seq.org. Our code, data and trained models are available at http://github.com/tech-srl/code2seq.
Local Byte Fusion for Neural Machine Translation
Subword tokenization schemes are the dominant technique used in current NLP models. However, such schemes can be rigid and tokenizers built on one corpus do not adapt well to other parallel corpora. It has also been observed that in multilingual corpora, subword tokenization schemes over-segment low-resource languages leading to a drop in translation performance. A simple alternative to subword tokenizers is byte-based methods i.e. tokenization into byte sequences using encoding schemes such as UTF-8. Byte tokens often represent inputs at a sub-character granularity i.e. one character can be represented by a sequence of multiple byte tokens. This results in byte sequences that are significantly longer than character sequences. Enforcing aggregation of local information in the lower layers can guide the model to build higher-level semantic information. We propose a Local Byte Fusion (LOBEF) method for byte-based machine translation -- utilizing byte n-gram and word boundaries -- to aggregate local semantic information. Extensive experiments on multilingual translation, zero-shot cross-lingual transfer, and domain adaptation reveal a consistent improvement over traditional byte-based models and even over subword techniques. Further analysis also indicates that our byte-based models are parameter-efficient and can be trained faster than subword models.
LLM-QAT: Data-Free Quantization Aware Training for Large Language Models
Several post-training quantization methods have been applied to large language models (LLMs), and have been shown to perform well down to 8-bits. We find that these methods break down at lower bit precision, and investigate quantization aware training for LLMs (LLM-QAT) to push quantization levels even further. We propose a data-free distillation method that leverages generations produced by the pre-trained model, which better preserves the original output distribution and allows quantizing any generative model independent of its training data, similar to post-training quantization methods. In addition to quantizing weights and activations, we also quantize the KV cache, which is critical for increasing throughput and support long sequence dependencies at current model sizes. We experiment with LLaMA models of sizes 7B, 13B, and 30B, at quantization levels down to 4-bits. We observe large improvements over training-free methods, especially in the low-bit settings.
A Comprehensive Evaluation of Quantization Strategies for Large Language Models
Increasing the number of parameters in large language models (LLMs) usually improves performance in downstream tasks but raises compute and memory costs, making deployment difficult in resource-limited settings. Quantization techniques, which reduce the bits needed for model weights or activations with minimal performance loss, have become popular due to the rise of LLMs. However, most quantization studies use pre-trained LLMs, and the impact of quantization on instruction-tuned LLMs and the relationship between perplexity and benchmark performance of quantized LLMs are not well understood. Evaluation of quantized LLMs is often limited to language modeling and a few classification tasks, leaving their performance on other benchmarks unclear. To address these gaps, we propose a structured evaluation framework consisting of three critical dimensions: (1) knowledge \& capacity, (2) alignment, and (3) efficiency, and conduct extensive experiments across ten diverse benchmarks. Our experimental results indicate that LLMs with 4-bit quantization can retain performance comparable to their non-quantized counterparts, and perplexity can serve as a proxy metric for quantized LLMs on most benchmarks. Furthermore, quantized LLMs with larger parameter scales can outperform smaller LLMs. Despite the memory savings achieved through quantization, it can also slow down the inference speed of LLMs. Consequently, substantial engineering efforts and hardware support are imperative to achieve a balanced optimization of decoding speed and memory consumption in the context of quantized LLMs.
Machine Perceptual Quality: Evaluating the Impact of Severe Lossy Compression on Audio and Image Models
In the field of neural data compression, the prevailing focus has been on optimizing algorithms for either classical distortion metrics, such as PSNR or SSIM, or human perceptual quality. With increasing amounts of data consumed by machines rather than humans, a new paradigm of machine-oriented compressionx2013which prioritizes the retention of features salient for machine perception over traditional human-centric criteriax2013has emerged, creating several new challenges to the development, evaluation, and deployment of systems utilizing lossy compression. In particular, it is unclear how different approaches to lossy compression will affect the performance of downstream machine perception tasks. To address this under-explored area, we evaluate various perception modelsx2013including image classification, image segmentation, speech recognition, and music source separationx2013under severe lossy compression. We utilize several popular codecs spanning conventional, neural, and generative compression architectures. Our results indicate three key findings: (1) using generative compression, it is feasible to leverage highly compressed data while incurring a negligible impact on machine perceptual quality; (2) machine perceptual quality correlates strongly with deep similarity metrics, indicating a crucial role of these metrics in the development of machine-oriented codecs; and (3) using lossy compressed datasets, (e.g. ImageNet) for pre-training can lead to counter-intuitive scenarios where lossy compression increases machine perceptual quality rather than degrading it. To encourage engagement on this growing area of research, our code and experiments are available at: https://github.com/danjacobellis/MPQ.
S^{3}: Increasing GPU Utilization during Generative Inference for Higher Throughput
Generating texts with a large language model (LLM) consumes massive amounts of memory. Apart from the already-large model parameters, the key/value (KV) cache that holds information about previous tokens in a sequence can grow to be even larger than the model itself. This problem is exacerbated in one of the current LLM serving frameworks which reserves the maximum sequence length of memory for the KV cache to guarantee generating a complete sequence as they do not know the output sequence length. This restricts us to use a smaller batch size leading to lower GPU utilization and above all, lower throughput. We argue that designing a system with a priori knowledge of the output sequence can mitigate this problem. To this end, we propose S^{3}, which predicts the output sequence length, schedules generation queries based on the prediction to increase device resource utilization and throughput, and handle mispredictions. Our proposed method achieves 6.49times throughput over those systems that assume the worst case for the output sequence length.
MC-MoE: Mixture Compressor for Mixture-of-Experts LLMs Gains More
Mixture-of-Experts large language models (MoE-LLMs) marks a significant step forward of language models, however, they encounter two critical challenges in practice: 1) expert parameters lead to considerable memory consumption and loading latency; and 2) the current activated experts are redundant, as many tokens may only require a single expert. Motivated by these issues, we investigate the MoE-LLMs and make two key observations: a) different experts exhibit varying behaviors on activation reconstruction error, routing scores, and activated frequencies, highlighting their differing importance, and b) not all tokens are equally important -- only a small subset is critical. Building on these insights, we propose MC-MoE, a training-free Mixture-Compressor for MoE-LLMs, which leverages the significance of both experts and tokens to achieve an extreme compression. First, to mitigate storage and loading overheads, we introduce Pre-Loading Mixed-Precision Quantization, which formulates the adaptive bit-width allocation as a Linear Programming problem, where the objective function balances multi-factors reflecting the importance of each expert. Additionally, we develop Online Dynamic Pruning, which identifies important tokens to retain and dynamically select activated experts for other tokens during inference to optimize efficiency while maintaining performance. Our MC-MoE integrates static quantization and dynamic pruning to collaboratively achieve extreme compression for MoE-LLMs with less accuracy loss, ensuring an optimal trade-off between performance and efficiency. Extensive experiments confirm the effectiveness of our approach. For instance, at 2.54 bits, MC-MoE compresses 76.6% of the model, with only a 3.8% average accuracy loss. During dynamic inference, we further reduce activated parameters by 15%, with a performance drop of less than 0.6%.
LongCoder: A Long-Range Pre-trained Language Model for Code Completion
In this paper, we introduce a new task for code completion that focuses on handling long code input and propose a sparse Transformer model, called LongCoder, to address this task. LongCoder employs a sliding window mechanism for self-attention and introduces two types of globally accessible tokens - bridge tokens and memory tokens - to improve performance and efficiency. Bridge tokens are inserted throughout the input sequence to aggregate local information and facilitate global interaction, while memory tokens are included to highlight important statements that may be invoked later and need to be memorized, such as package imports and definitions of classes, functions, or structures. We conduct experiments on a newly constructed dataset that contains longer code context and the publicly available CodeXGLUE benchmark. Experimental results demonstrate that LongCoder achieves superior performance on code completion tasks compared to previous models while maintaining comparable efficiency in terms of computational resources during inference. All the codes and data are available at https://github.com/microsoft/CodeBERT.
Extending Context Window of Large Language Models via Semantic Compression
Transformer-based Large Language Models (LLMs) often impose limitations on the length of the text input to ensure the generation of fluent and relevant responses. This constraint restricts their applicability in scenarios involving long texts. We propose a novel semantic compression method that enables generalization to texts that are 6-8 times longer, without incurring significant computational costs or requiring fine-tuning. Our proposed framework draws inspiration from source coding in information theory and employs a pre-trained model to reduce the semantic redundancy of long inputs before passing them to the LLMs for downstream tasks. Experimental results demonstrate that our method effectively extends the context window of LLMs across a range of tasks including question answering, summarization, few-shot learning, and information retrieval. Furthermore, the proposed semantic compression method exhibits consistent fluency in text generation while reducing the associated computational overhead.
Unlocking Efficient Large Inference Models: One-Bit Unrolling Tips the Scales
Recent advancements in Large Language Model (LLM) compression, such as BitNet and BitNet b1.58, have marked significant strides in reducing the computational demands of LLMs through innovative one-bit quantization techniques. We extend this frontier by looking at Large Inference Models (LIMs) that have become indispensable across various applications. However, their scale and complexity often come at a significant computational cost. We introduce a novel approach that leverages one-bit algorithm unrolling, effectively integrating information from the physical world in the model architecture. Our method achieves a bit-per-link rate significantly lower than the 1.58 bits reported in prior work, thanks to the natural sparsity that emerges in our network architectures. We numerically demonstrate that the proposed one-bit algorithm unrolling scheme can improve both training and test outcomes by effortlessly increasing the number of layers while substantially compressing the network. Additionally, we provide theoretical results on the generalization gap, convergence rate, stability, and sensitivity of our proposed one-bit algorithm unrolling.
Can LLMs Maintain Fundamental Abilities under KV Cache Compression?
This paper investigates an under-explored challenge in large language models (LLMs): the impact of KV cache compression methods on LLMs' fundamental capabilities. While existing methods achieve impressive compression ratios on long-context benchmarks, their effects on core model capabilities remain understudied. We present a comprehensive empirical study evaluating prominent KV cache compression methods across diverse tasks, spanning world knowledge, commonsense reasoning, arithmetic reasoning, code generation, safety, and long-context understanding and generation.Our analysis reveals that KV cache compression methods exhibit task-specific performance degradation. Arithmetic reasoning tasks prove particularly sensitive to aggressive compression, with different methods showing performance drops of 17.4%-43.3%. Notably, the DeepSeek R1 Distill model exhibits more robust compression tolerance compared to instruction-tuned models, showing only 9.67%-25.53% performance degradation. Based on our analysis of attention patterns and cross-task compression performance, we propose ShotKV, a novel compression approach that distinctly handles prefill and decoding phases while maintaining shot-level semantic coherence. Empirical results show that ShotKV achieves 9%-18% performance improvements on long-context generation tasks under aggressive compression ratios.
SAM Decoding: Speculative Decoding via Suffix Automaton
Large Language Models (LLMs) have revolutionized natural language processing by unifying tasks into text generation, yet their large parameter sizes and autoregressive nature limit inference speed. SAM-Decoding addresses this by introducing a novel retrieval-based speculative decoding method that uses a suffix automaton for efficient and accurate draft generation. Unlike n-gram matching used by the existing method, SAM-Decoding finds the longest suffix match in generating text and text corpuss, achieving an average time complexity of O(1) per generation step. SAM-Decoding constructs static and dynamic suffix automatons for the text corpus and input prompts, respectively, enabling fast and precise draft generation. Meanwhile, it is designed as an approach that can be combined with existing methods, allowing SAM-Decoding to adaptively select a draft generation strategy based on the matching length, thus increasing the inference speed of the LLM. When combined with Token Recycling, evaluations show SAM-Decoding outperforms existing model-free methods, achieving a speedup of 2.27times over autoregressive decoding on Spec-Bench. When combined with EAGLE2, it reaches a speedup of 2.49times, surpassing all current approaches. Our code is available at https://github.com/hyx1999/SAM-Decoding.
Efficient Storage of Fine-Tuned Models via Low-Rank Approximation of Weight Residuals
In this paper, we present an efficient method for storing fine-tuned models by leveraging the low-rank properties of weight residuals. Our key observation is that weight residuals in large overparameterized models exhibit even stronger low-rank characteristics. Based on this insight, we propose Efficient Residual Encoding (ERE), a novel approach that achieves efficient storage of fine-tuned model weights by approximating the low-rank weight residuals. Furthermore, we analyze the robustness of weight residuals and push the limit of storage efficiency by utilizing additional quantization and layer-wise rank allocation. Our experimental results demonstrate that our method significantly reduces memory footprint while preserving performance in various tasks and modalities. We release our code.
Recurrent Context Compression: Efficiently Expanding the Context Window of LLM
To extend the context length of Transformer-based large language models (LLMs) and improve comprehension capabilities, we often face limitations due to computational resources and bounded memory storage capacity. This work introduces a method called Recurrent Context Compression (RCC), designed to efficiently expand the context window length of LLMs within constrained storage space. We also investigate the issue of poor model responses when both instructions and context are compressed in downstream tasks, and propose an instruction reconstruction method to mitigate this problem. We validated the effectiveness of our approach on multiple tasks, achieving a compression rate of up to 32x on text reconstruction tasks with a BLEU4 score close to 0.95, and nearly 100\% accuracy on a passkey retrieval task with a sequence length of 1M. Finally, our method demonstrated competitive performance in long-text question-answering tasks compared to non-compressed methods, while significantly saving storage resources in long-text inference tasks. Our code, models, and demo are available at https://github.com/WUHU-G/RCC_Transformer
BitMoD: Bit-serial Mixture-of-Datatype LLM Acceleration
Large language models (LLMs) have demonstrated remarkable performance across various machine learning tasks. Yet the substantial memory footprint of LLMs significantly hinders their deployment. In this paper, we improve the accessibility of LLMs through BitMoD, an algorithm-hardware co-design solution that enables efficient LLM acceleration at low weight precision. On the algorithm side, BitMoD introduces fine-grained data type adaptation that uses a different numerical data type to quantize a group of (e.g., 128) weights. Through the careful design of these new data types, BitMoD is able to quantize LLM weights to very low precision (e.g., 4 bits and 3 bits) while maintaining high accuracy. On the hardware side, BitMoD employs a bit-serial processing element to easily support multiple numerical precisions and data types; our hardware design includes two key innovations: First, it employs a unified representation to process different weight data types, thus reducing the hardware cost. Second, it adopts a bit-serial dequantization unit to rescale the per-group partial sum with minimal hardware overhead. Our evaluation on six representative LLMs demonstrates that BitMoD significantly outperforms state-of-the-art LLM quantization and acceleration methods. For discriminative tasks, BitMoD can quantize LLM weights to 4-bit with <!0.5% accuracy loss on average. For generative tasks, BitMoD is able to quantize LLM weights to 3-bit while achieving better perplexity than prior LLM quantization scheme. Combining the superior model performance with an efficient accelerator design, BitMoD achieves an average of 1.69times and 1.48times speedups compared to prior LLM accelerators ANT and OliVe, respectively.
Flexible and Efficient Grammar-Constrained Decoding
Large Language Models (LLMs) are often asked to generate structured outputs that obey precise syntactic rules, such as code snippets or formatted data. Grammar-constrained decoding (GCD) can guarantee that LLM outputs matches such rules by masking out tokens that will provably lead to outputs that do not belong to a specified context-free grammar (CFG). To guarantee soundness, GCD algorithms have to compute how a given LLM subword tokenizer can align with the tokens used by a given context-free grammar and compute token masks based on this information. Doing so efficiently is challenging and existing GCD algorithms require tens of minutes to preprocess common grammars. We present a new GCD algorithm together with an implementation that offers 17.71x faster offline preprocessing than existing approaches while preserving state-of-the-art efficiency in online mask computation.
CLaM-TTS: Improving Neural Codec Language Model for Zero-Shot Text-to-Speech
With the emergence of neural audio codecs, which encode multiple streams of discrete tokens from audio, large language models have recently gained attention as a promising approach for zero-shot Text-to-Speech (TTS) synthesis. Despite the ongoing rush towards scaling paradigms, audio tokenization ironically amplifies the scalability challenge, stemming from its long sequence length and the complexity of modelling the multiple sequences. To mitigate these issues, we present CLaM-TTS that employs a probabilistic residual vector quantization to (1) achieve superior compression in the token length, and (2) allow a language model to generate multiple tokens at once, thereby eliminating the need for cascaded modeling to handle the number of token streams. Our experimental results demonstrate that CLaM-TTS is better than or comparable to state-of-the-art neural codec-based TTS models regarding naturalness, intelligibility, speaker similarity, and inference speed. In addition, we examine the impact of the pretraining extent of the language models and their text tokenization strategies on performances.
Adaptive Computation with Elastic Input Sequence
Humans have the ability to adapt the type of information they use, the procedure they employ, and the amount of time they spend when solving problems. However, most standard neural networks have a fixed function type and computation budget regardless of the sample's nature or difficulty. Adaptivity is a powerful paradigm as it not only imbues practitioners with flexibility pertaining to the downstream usage of these models but can also serve as a powerful inductive bias for solving certain challenging classes of problems. In this work, we introduce a new approach called AdaTape, which allows for dynamic computation in neural networks through adaptive tape tokens. AdaTape utilizes an elastic input sequence by equipping an architecture with a dynamic read-and-write tape. Specifically, we adaptively generate input sequences using tape tokens obtained from a tape bank which can be either trainable or derived from input data. We examine the challenges and requirements to obtain dynamic sequence content and length, and propose the Adaptive Tape Reading (ATR) algorithm to achieve both goals. Through extensive experiments on image recognition tasks, we show that AdaTape can achieve better performance while maintaining the computational cost. To facilitate further research, we have released code at https://github.com/google-research/scenic.
UniCode: Learning a Unified Codebook for Multimodal Large Language Models
In this paper, we propose UniCode, a novel approach within the domain of multimodal large language models (MLLMs) that learns a unified codebook to efficiently tokenize visual, text, and potentially other types of signals. This innovation addresses a critical limitation in existing MLLMs: their reliance on a text-only codebook, which restricts MLLM's ability to generate images and texts in a multimodal context. Towards this end, we propose a language-driven iterative training paradigm, coupled with an in-context pre-training task we term ``image decompression'', enabling our model to interpret compressed visual data and generate high-quality images.The unified codebook empowers our model to extend visual instruction tuning to non-linguistic generation tasks. Moreover, UniCode is adaptable to diverse stacked quantization approaches in order to compress visual signals into a more compact token representation. Despite using significantly fewer parameters and less data during training, Unicode demonstrates promising capabilities in visual reconstruction and generation. It also achieves performances comparable to leading MLLMs across a spectrum of VQA benchmarks.
Malware Detection by Eating a Whole EXE
In this work we introduce malware detection from raw byte sequences as a fruitful research area to the larger machine learning community. Building a neural network for such a problem presents a number of interesting challenges that have not occurred in tasks such as image processing or NLP. In particular, we note that detection from raw bytes presents a sequence problem with over two million time steps and a problem where batch normalization appear to hinder the learning process. We present our initial work in building a solution to tackle this problem, which has linear complexity dependence on the sequence length, and allows for interpretable sub-regions of the binary to be identified. In doing so we will discuss the many challenges in building a neural network to process data at this scale, and the methods we used to work around them.
Norm Tweaking: High-performance Low-bit Quantization of Large Language Models
As the size of large language models (LLMs) continues to grow, model compression without sacrificing accuracy has become a crucial challenge for deployment. While some quantization methods, such as GPTQ, have made progress in achieving acceptable 4-bit weight-only quantization, attempts at lower bit quantization often result in severe performance degradation. In this paper, we introduce a technique called norm tweaking, which can be used as a plugin in current PTQ methods to achieve high precision while being cost-efficient. Our approach is inspired by the observation that rectifying the quantized activation distribution to match its float counterpart can readily restore accuracy for LLMs. To achieve this, we carefully design a tweaking strategy that includes calibration data generation and channel-wise distance constraint to update the weights of normalization layers for better generalization. We conduct extensive experiments on various datasets using several open-sourced LLMs. Our method demonstrates significant improvements in both weight-only quantization and joint quantization of weights and activations, surpassing existing PTQ methods. On GLM-130B and OPT-66B, our method even achieves the same level of accuracy at 2-bit quantization as their float ones. Our simple and effective approach makes it more practical for real-world applications.
EvoPress: Towards Optimal Dynamic Model Compression via Evolutionary Search
The high computational costs of large language models (LLMs) have led to a flurry of research on LLM compression, via methods such as quantization, sparsification, or structured pruning. A new frontier in this area is given by dynamic, non-uniform compression methods, which adjust the compression levels (e.g., sparsity) per-block or even per-layer in order to minimize accuracy loss, while guaranteeing a global compression threshold. Yet, current methods rely on heuristics for identifying the "importance" of a given layer towards the loss, based on assumptions such as error monotonicity, i.e. that the end-to-end model compression error is proportional to the sum of layer-wise errors. In this paper, we revisit this area, and propose a new and general approach for dynamic compression that is provably optimal in a given input range. We begin from the motivating observation that, in general, error monotonicity does not hold for LLMs: compressed models with lower sum of per-layer errors can perform worse than models with higher error sums. To address this, we propose a new general evolutionary framework for dynamic LLM compression called EvoPress, which has provable convergence, and low sample and evaluation complexity. We show that these theoretical guarantees lead to highly competitive practical performance for dynamic compression of Llama, Mistral and Phi models. Via EvoPress, we set new state-of-the-art results across all compression approaches: structural pruning (block/layer dropping), unstructured sparsity, as well as quantization with dynamic bitwidths. Our code is available at https://github.com/IST-DASLab/EvoPress.
Understanding the Impact of Post-Training Quantization on Large Language Models
Large language models (LLMs) are rapidly increasing in size, with the number of parameters becoming a key factor in the success of many commercial models, such as ChatGPT, Claude, and Bard. Even the recently released publicly accessible models for commercial usage, such as Falcon and Llama2, come equipped with billions of parameters. This significant increase in the number of parameters makes deployment and operation very costly. The remarkable progress in the field of quantization for large neural networks in general and LLMs in particular, has made these models more accessible by enabling them to be deployed on consumer-grade GPUs. Quantized models generally demonstrate comparable performance levels to their unquantized base counterparts. Nonetheless, there exists a notable gap in our comprehensive understanding of how these quantized models respond to hyperparameters, such as temperature, max new tokens, and topk, particularly for next word prediction. The present analysis reveals that nf4 and fp4 are equally proficient 4-bit quantization techniques, characterized by similar attributes such as inference speed, memory consumption, and the quality of generated content. the study identifies nf4 as displaying greater resilience to temperature variations in the case of the llama2 series of models at lower temperature, while fp4 and fp4-dq proves to be a more suitable choice for falcon series of models. It is noteworthy that, in general, 4-bit quantized models of varying sizes exhibit higher sensitivity to temperature in the range of 0.5 to 0.8, unlike their unquantized counterparts. Additionally, int8 quantization is associated with significantly slower inference speeds, whereas unquantized bfloat16 models consistently yield the fastest inference speeds across models of all sizes.
Char2Subword: Extending the Subword Embedding Space Using Robust Character Compositionality
Byte-pair encoding (BPE) is a ubiquitous algorithm in the subword tokenization process of language models as it provides multiple benefits. However, this process is solely based on pre-training data statistics, making it hard for the tokenizer to handle infrequent spellings. On the other hand, though robust to misspellings, pure character-level models often lead to unreasonably long sequences and make it harder for the model to learn meaningful words. To alleviate these challenges, we propose a character-based subword module (char2subword) that learns the subword embedding table in pre-trained models like BERT. Our char2subword module builds representations from characters out of the subword vocabulary, and it can be used as a drop-in replacement of the subword embedding table. The module is robust to character-level alterations such as misspellings, word inflection, casing, and punctuation. We integrate it further with BERT through pre-training while keeping BERT transformer parameters fixed--and thus, providing a practical method. Finally, we show that incorporating our module to mBERT significantly improves the performance on the social media linguistic code-switching evaluation (LinCE) benchmark.
NIRVANA: Neural Implicit Representations of Videos with Adaptive Networks and Autoregressive Patch-wise Modeling
Implicit Neural Representations (INR) have recently shown to be powerful tool for high-quality video compression. However, existing works are limiting as they do not explicitly exploit the temporal redundancy in videos, leading to a long encoding time. Additionally, these methods have fixed architectures which do not scale to longer videos or higher resolutions. To address these issues, we propose NIRVANA, which treats videos as groups of frames and fits separate networks to each group performing patch-wise prediction. This design shares computation within each group, in the spatial and temporal dimensions, resulting in reduced encoding time of the video. The video representation is modeled autoregressively, with networks fit on a current group initialized using weights from the previous group's model. To further enhance efficiency, we perform quantization of the network parameters during training, requiring no post-hoc pruning or quantization. When compared with previous works on the benchmark UVG dataset, NIRVANA improves encoding quality from 37.36 to 37.70 (in terms of PSNR) and the encoding speed by 12X, while maintaining the same compression rate. In contrast to prior video INR works which struggle with larger resolution and longer videos, we show that our algorithm is highly flexible and scales naturally due to its patch-wise and autoregressive designs. Moreover, our method achieves variable bitrate compression by adapting to videos with varying inter-frame motion. NIRVANA achieves 6X decoding speed and scales well with more GPUs, making it practical for various deployment scenarios.
EMS: Adaptive Evict-then-Merge Strategy for Head-wise KV Cache Compression Based on Global-Local Importance
As large language models (LLMs) continue to advance, the demand for higher quality and faster processing of long contexts across various applications is growing. KV cache is widely adopted as it stores previously generated key and value tokens, effectively reducing redundant computations during inference. However, as memory overhead becomes a significant concern, efficient compression of KV cache has gained increasing attention. Most existing methods perform compression from two perspectives: identifying important tokens and designing compression strategies. However, these approaches often produce biased distributions of important tokens due to the influence of accumulated attention scores or positional encoding. Furthermore, they overlook the sparsity and redundancy across different heads, which leads to difficulties in preserving the most effective information at the head level. To this end, we propose EMS to overcome these limitations, while achieving better KV cache compression under extreme compression ratios. Specifically, we introduce a Global-Local score that combines accumulated attention scores from both global and local KV tokens to better identify the token importance. For the compression strategy, we design an adaptive and unified Evict-then-Merge framework that accounts for the sparsity and redundancy of KV tokens across different heads. Additionally, we implement the head-wise parallel compression through a zero-class mechanism to enhance efficiency. Extensive experiments demonstrate our SOTA performance even under extreme compression ratios. EMS consistently achieves the lowest perplexity, improves scores by over 1.28 points across four LLMs on LongBench under a 256 cache budget, and preserves 95% retrieval accuracy with a cache budget less than 2% of the context length in the Needle-in-a-Haystack task.
Dolphin: Long Context as a New Modality for Energy-Efficient On-Device Language Models
This paper presents Dolphin, a novel decoder-decoder architecture for energy-efficient processing of long contexts in language models. Our approach addresses the significant energy consumption and latency challenges inherent in on-device models. Dolphin employs a compact 0.5B parameter decoder to distill extensive contextual information into a memory embedding, substantially reducing the input length for the primary 7B parameter decoder model. Inspired by vision-language models, we repurpose the image embedding projector to encode long textual contexts, effectively treating extended context as a distinct modality. This innovative method enables processing of substantially longer contexts without the typical computational overhead associated with extended input sequences. Empirical evaluations demonstrate a 10-fold improvement in energy efficiency and a 5-fold reduction in latency compared to conventional full-length context processing methods without losing quality of the response. Our work contributes to the development of more sustainable and scalable language models for on-device applications, addressing the critical need for energy-efficient and responsive AI technologies in resource-constrained environments while maintaining the accuracy to understand long contexts. This research has implications for the broader field of natural language processing, particularly in the domain of efficient model design for resource-limited settings. By enabling more sophisticated AI capabilities on edge devices, Dolphin paves the way for advanced language processing in a wide range of applications where computational resources are at a premium. The Dolphin model is publicly available at https://huggingface.co/NexaAIDev/Dolphin.
LongWriter-V: Enabling Ultra-Long and High-Fidelity Generation in Vision-Language Models
Existing Large Vision-Language Models (LVLMs) can process inputs with context lengths up to 128k visual and text tokens, yet they struggle to generate coherent outputs beyond 1,000 words. We find that the primary limitation is the absence of long output examples during supervised fine-tuning (SFT). To tackle this issue, we introduce LongWriter-V-22k, a SFT dataset comprising 22,158 examples, each with multiple input images, an instruction, and corresponding outputs ranging from 0 to 10,000 words. Moreover, to achieve long outputs that maintain high-fidelity to the input images, we employ Direct Preference Optimization (DPO) to the SFT model. Given the high cost of collecting human feedback for lengthy outputs (e.g., 3,000 words), we propose IterDPO, which breaks long outputs into segments and uses iterative corrections to form preference pairs with the original outputs. Additionally, we develop MMLongBench-Write, a benchmark featuring six tasks to evaluate the long-generation capabilities of VLMs. Our 7B parameter model, trained with LongWriter-V-22k and IterDPO, achieves impressive performance on this benchmark, outperforming larger proprietary models like GPT-4o. Code and data: https://github.com/THU-KEG/LongWriter-V
Big Bird: Transformers for Longer Sequences
Transformers-based models, such as BERT, have been one of the most successful deep learning models for NLP. Unfortunately, one of their core limitations is the quadratic dependency (mainly in terms of memory) on the sequence length due to their full attention mechanism. To remedy this, we propose, BigBird, a sparse attention mechanism that reduces this quadratic dependency to linear. We show that BigBird is a universal approximator of sequence functions and is Turing complete, thereby preserving these properties of the quadratic, full attention model. Along the way, our theoretical analysis reveals some of the benefits of having O(1) global tokens (such as CLS), that attend to the entire sequence as part of the sparse attention mechanism. The proposed sparse attention can handle sequences of length up to 8x of what was previously possible using similar hardware. As a consequence of the capability to handle longer context, BigBird drastically improves performance on various NLP tasks such as question answering and summarization. We also propose novel applications to genomics data.
How Good Are Low-bit Quantized LLaMA3 Models? An Empirical Study
Meta's LLaMA family has become one of the most powerful open-source Large Language Model (LLM) series. Notably, LLaMA3 models have recently been released and achieve impressive performance across various with super-large scale pre-training on over 15T tokens of data. Given the wide application of low-bit quantization for LLMs in resource-limited scenarios, we explore LLaMA3's capabilities when quantized to low bit-width. This exploration holds the potential to unveil new insights and challenges for low-bit quantization of LLaMA3 and other forthcoming LLMs, especially in addressing performance degradation problems that suffer in LLM compression. Specifically, we evaluate the 10 existing post-training quantization and LoRA-finetuning methods of LLaMA3 on 1-8 bits and diverse datasets to comprehensively reveal LLaMA3's low-bit quantization performance. Our experiment results indicate that LLaMA3 still suffers non-negligent degradation in these scenarios, especially in ultra-low bit-width. This highlights the significant performance gap under low bit-width that needs to be bridged in future developments. We expect that this empirical study will prove valuable in advancing future models, pushing the LLMs to lower bit-width with higher accuracy for being practical. Our project is released on https://github.com/Macaronlin/LLaMA3-Quantization and quantized LLaMA3 models are released in https://huggingface.co/LLMQ.
Round and Round We Go! What makes Rotary Positional Encodings useful?
Positional Encodings (PEs) are a critical component of Transformer-based Large Language Models (LLMs), providing the attention mechanism with important sequence-position information. One of the most popular types of encoding used today in LLMs are Rotary Positional Encodings (RoPE), that rotate the queries and keys based on their relative distance. A common belief is that RoPE is useful because it helps to decay token dependency as relative distance increases. In this work, we argue that this is unlikely to be the core reason. We study the internals of a trained Gemma 7B model to understand how RoPE is being used at a mechanical level. We find that Gemma learns to use RoPE to construct robust "positional" attention patterns by exploiting the highest frequencies. We also find that, in general, Gemma greatly prefers to use the lowest frequencies of RoPE, which we suspect are used to carry semantic information. We mathematically prove interesting behaviours of RoPE and conduct experiments to verify our findings, proposing a modification of RoPE that fixes some highlighted issues and improves performance. We believe that this work represents an interesting step in better understanding PEs in LLMs, which we believe holds crucial value for scaling LLMs to large sizes and context lengths.
Language Model Tokenizers Introduce Unfairness Between Languages
Recent language models have shown impressive multilingual performance, even when not explicitly trained for it. Despite this, there are concerns about the quality of their outputs across different languages. In this paper, we show how disparity in the treatment of different languages arises at the tokenization stage, well before a model is even invoked. The same text translated into different languages can have drastically different tokenization lengths, with differences up to 15 times in some cases. These disparities persist even for tokenizers that are intentionally trained for multilingual support. Character-level and byte-level models also exhibit over 4 times the difference in the encoding length for some language pairs. This induces unfair treatment for some language communities in regard to the cost of accessing commercial language services, the processing time and latency, as well as the amount of content that can be provided as context to the models. Therefore, we make the case that we should train future language models using multilingually fair subword tokenizers.
You Only Cache Once: Decoder-Decoder Architectures for Language Models
We introduce a decoder-decoder architecture, YOCO, for large language models, which only caches key-value pairs once. It consists of two components, i.e., a cross-decoder stacked upon a self-decoder. The self-decoder efficiently encodes global key-value (KV) caches that are reused by the cross-decoder via cross-attention. The overall model behaves like a decoder-only Transformer, although YOCO only caches once. The design substantially reduces GPU memory demands, yet retains global attention capability. Additionally, the computation flow enables prefilling to early exit without changing the final output, thereby significantly speeding up the prefill stage. Experimental results demonstrate that YOCO achieves favorable performance compared to Transformer in various settings of scaling up model size and number of training tokens. We also extend YOCO to 1M context length with near-perfect needle retrieval accuracy. The profiling results show that YOCO improves inference memory, prefill latency, and throughput by orders of magnitude across context lengths and model sizes. Code is available at https://aka.ms/YOCO.
COMET: Towards Partical W4A4KV4 LLMs Serving
Quantization is a widely-used compression technology to reduce the overhead of serving large language models (LLMs) on terminal devices and in cloud data centers. However, prevalent quantization methods, such as 8-bit weight-activation or 4-bit weight-only quantization, achieve limited performance improvements due to poor support for low-precision (e.g., 4-bit) activation. This work, for the first time, realizes practical W4A4KV4 serving for LLMs, fully utilizing the INT4 tensor cores on modern GPUs and reducing the memory bottleneck caused by the KV cache. Specifically, we propose a novel fine-grained mixed-precision quantization algorithm (FMPQ) that compresses most activations into 4-bit with negligible accuracy loss. To support mixed-precision matrix multiplication for W4A4 and W4A8, we develop a highly optimized W4Ax kernel. Our approach introduces a novel mixed-precision data layout to facilitate access and fast dequantization for activation and weight tensors, utilizing the GPU's software pipeline to hide the overhead of data loading and conversion. Additionally, we propose fine-grained streaming multiprocessor (SM) scheduling to achieve load balance across different SMs. We integrate the optimized W4Ax kernel into our inference framework, COMET, and provide efficient management to support popular LLMs such as LLaMA-3-70B. Extensive evaluations demonstrate that, when running LLaMA family models on a single A100-80G-SMX4, COMET achieves a kernel-level speedup of 2.88times over cuBLAS and a 2.02 times throughput improvement compared to TensorRT-LLM from an end-to-end framework perspective.
VcLLM: Video Codecs are Secretly Tensor Codecs
As the parameter size of large language models (LLMs) continues to expand, the need for a large memory footprint and high communication bandwidth have become significant bottlenecks for the training and inference of LLMs. To mitigate these bottlenecks, various tensor compression techniques have been proposed to reduce the data size, thereby alleviating memory requirements and communication pressure. Our research found that video codecs, despite being originally designed for compressing videos, show excellent efficiency when compressing various types of tensors. We demonstrate that video codecs can be versatile and general-purpose tensor codecs while achieving the state-of-the-art compression efficiency in various tasks. We further make use of the hardware video encoding and decoding module available on GPUs to create a framework capable of both inference and training with video codecs repurposed as tensor codecs. This greatly reduces the requirement for memory capacity and communication bandwidth, enabling training and inference of large models on consumer-grade GPUs.
Polynomial Implicit Neural Representations For Large Diverse Datasets
Implicit neural representations (INR) have gained significant popularity for signal and image representation for many end-tasks, such as superresolution, 3D modeling, and more. Most INR architectures rely on sinusoidal positional encoding, which accounts for high-frequency information in data. However, the finite encoding size restricts the model's representational power. Higher representational power is needed to go from representing a single given image to representing large and diverse datasets. Our approach addresses this gap by representing an image with a polynomial function and eliminates the need for positional encodings. Therefore, to achieve a progressively higher degree of polynomial representation, we use element-wise multiplications between features and affine-transformed coordinate locations after every ReLU layer. The proposed method is evaluated qualitatively and quantitatively on large datasets like ImageNet. The proposed Poly-INR model performs comparably to state-of-the-art generative models without any convolution, normalization, or self-attention layers, and with far fewer trainable parameters. With much fewer training parameters and higher representative power, our approach paves the way for broader adoption of INR models for generative modeling tasks in complex domains. The code is available at https://github.com/Rajhans0/Poly_INR
On the Properties of Neural Machine Translation: Encoder-Decoder Approaches
Neural machine translation is a relatively new approach to statistical machine translation based purely on neural networks. The neural machine translation models often consist of an encoder and a decoder. The encoder extracts a fixed-length representation from a variable-length input sentence, and the decoder generates a correct translation from this representation. In this paper, we focus on analyzing the properties of the neural machine translation using two models; RNN Encoder--Decoder and a newly proposed gated recursive convolutional neural network. We show that the neural machine translation performs relatively well on short sentences without unknown words, but its performance degrades rapidly as the length of the sentence and the number of unknown words increase. Furthermore, we find that the proposed gated recursive convolutional network learns a grammatical structure of a sentence automatically.
On the Robustness of Text Vectorizers
A fundamental issue in machine learning is the robustness of the model with respect to changes in the input. In natural language processing, models typically contain a first embedding layer, transforming a sequence of tokens into vector representations. While the robustness with respect to changes of continuous inputs is well-understood, the situation is less clear when considering discrete changes, for instance replacing a word by another in an input sentence. Our work formally proves that popular embedding schemes, such as concatenation, TF-IDF, and Paragraph Vector (a.k.a. doc2vec), exhibit robustness in the H\"older or Lipschitz sense with respect to the Hamming distance. We provide quantitative bounds for these schemes and demonstrate how the constants involved are affected by the length of the document. These findings are exemplified through a series of numerical examples.
COMQ: A Backpropagation-Free Algorithm for Post-Training Quantization
Post-training quantization (PTQ) has emerged as a practical approach to compress large neural networks, making them highly efficient for deployment. However, effectively reducing these models to their low-bit counterparts without compromising the original accuracy remains a key challenge. In this paper, we propose an innovative PTQ algorithm termed COMQ, which sequentially conducts coordinate-wise minimization of the layer-wise reconstruction errors. We consider the widely used integer quantization, where every quantized weight can be decomposed into a shared floating-point scalar and an integer bit-code. Within a fixed layer, COMQ treats all the scaling factor(s) and bit-codes as the variables of the reconstruction error. Every iteration improves this error along a single coordinate while keeping all other variables constant. COMQ is easy to use and requires no hyper-parameter tuning. It instead involves only dot products and rounding operations. We update these variables in a carefully designed greedy order, significantly enhancing the accuracy. COMQ achieves remarkable results in quantizing 4-bit Vision Transformers, with a negligible loss of less than 1% in Top-1 accuracy. In 4-bit INT quantization of convolutional neural networks, COMQ maintains near-lossless accuracy with a minimal drop of merely 0.3% in Top-1 accuracy.
SPoC: Search-based Pseudocode to Code
We consider the task of mapping pseudocode to long programs that are functionally correct. Given test cases as a mechanism to validate programs, we search over the space of possible translations of the pseudocode to find a program that passes the validation. However, without proper credit assignment to localize the sources of program failures, it is difficult to guide search toward more promising programs. We propose to perform credit assignment based on signals from compilation errors, which constitute 88.7% of program failures. Concretely, we treat the translation of each pseudocode line as a discrete portion of the program, and whenever a synthesized program fails to compile, an error localization method tries to identify the portion of the program responsible for the failure. We then focus search over alternative translations of the pseudocode for those portions. For evaluation, we collected the SPoC dataset (Search-based Pseudocode to Code) containing 18,356 programs with human-authored pseudocode and test cases. Under a budget of 100 program compilations, performing search improves the synthesis success rate over using the top-one translation of the pseudocode from 25.6% to 44.7%.
TEQ: Trainable Equivalent Transformation for Quantization of LLMs
As large language models (LLMs) become more prevalent, there is a growing need for new and improved quantization methods that can meet the computationalast layer demands of these modern architectures while maintaining the accuracy. In this paper, we present TEQ, a trainable equivalent transformation that preserves the FP32 precision of the model output while taking advantage of low-precision quantization, especially 3 and 4 bits weight-only quantization. The training process is lightweight, requiring only 1K steps and fewer than 0.1 percent of the original model's trainable parameters. Furthermore, the transformation does not add any computational overhead during inference. Our results are on-par with the state-of-the-art (SOTA) methods on typical LLMs. Our approach can be combined with other methods to achieve even better performance. The code is available at https://github.com/intel/neural-compressor.
IntactKV: Improving Large Language Model Quantization by Keeping Pivot Tokens Intact
Large language models (LLMs) excel in natural language processing but demand intensive computation. To mitigate this, various quantization methods have been explored, yet they compromise LLM performance. This paper unveils a previously overlooked type of outlier in LLMs. Such outliers are found to allocate most of the attention scores on initial tokens of input, termed as pivot tokens, which is crucial to the performance of quantized LLMs. Given that, we propose IntactKV to generate the KV cache of pivot tokens losslessly from the full-precision model. The approach is simple and easy to combine with existing quantization solutions. Besides, IntactKV can be calibrated as additional LLM parameters to boost the quantized LLMs further. Mathematical analysis also proves that IntactKV effectively reduces the upper bound of quantization error. Empirical results show that IntactKV brings consistent improvement and achieves lossless weight-only INT4 quantization on various downstream tasks, leading to the new state-of-the-art for LLM quantization.
LQ-LoRA: Low-rank Plus Quantized Matrix Decomposition for Efficient Language Model Finetuning
We propose a simple approach for memory-efficient adaptation of pretrained language models. Our approach uses an iterative algorithm to decompose each pretrained matrix into a high-precision low-rank component and a memory-efficient quantized component. During finetuning, the quantized component remains fixed and only the low-rank component is updated. We present an integer linear programming formulation of the quantization component which enables dynamic configuration of quantization parameters (e.g., bit-width, block size) for each matrix given an overall target memory budget. We further explore a data-aware version of the algorithm which uses an approximation of the Fisher information matrix to weight the reconstruction objective during matrix decomposition. Experiments on adapting RoBERTa and LLaMA-2 (7B and 70B) demonstrate that our low-rank plus quantized matrix decomposition approach (LQ-LoRA) outperforms strong QLoRA and GPTQ-LoRA baselines and moreover enables more aggressive quantization. For example, on the OpenAssistant benchmark LQ-LoRA is able to learn a 2.5-bit LLaMA-2 model that is competitive with a model finetuned with 4-bit QLoRA. When finetuned on a language modeling calibration dataset, LQ-LoRA can also be used for model compression; in this setting our 2.75-bit LLaMA-2-70B model (which has 2.85 bits on average when including the low-rank components and requires 27GB of GPU memory) is competitive with the original model in full precision.
CodecLM: Aligning Language Models with Tailored Synthetic Data
Instruction tuning has emerged as the key in aligning large language models (LLMs) with specific task instructions, thereby mitigating the discrepancy between the next-token prediction objective and users' actual goals. To reduce the labor and time cost to collect or annotate data by humans, researchers start to explore the use of LLMs to generate instruction-aligned synthetic data. Recent works focus on generating diverse instructions and applying LLM to increase instruction complexity, often neglecting downstream use cases. It remains unclear how to tailor high-quality data to elicit better instruction-following abilities in different target instruction distributions and LLMs. To this end, we introduce CodecLM, a general framework for adaptively generating high-quality synthetic data for LLM alignment with different downstream instruction distributions and LLMs. Drawing on the Encode-Decode principles, we use LLMs as codecs to guide the data generation process. We first encode seed instructions into metadata, which are concise keywords generated on-the-fly to capture the target instruction distribution, and then decode metadata to create tailored instructions. We also introduce Self-Rubrics and Contrastive Filtering during decoding to tailor data-efficient samples. Extensive experiments on four open-domain instruction following benchmarks validate the effectiveness of CodecLM over the current state-of-the-arts.
SpQR: A Sparse-Quantized Representation for Near-Lossless LLM Weight Compression
Recent advances in large language model (LLM) pretraining have led to high-quality LLMs with impressive abilities. By compressing such LLMs via quantization to 3-4 bits per parameter, they can fit into memory-limited devices such as laptops and mobile phones, enabling personalized use. However, quantization down to 3-4 bits per parameter usually leads to moderate-to-high accuracy losses, especially for smaller models in the 1-10B parameter range, which are well-suited for edge deployments. To address this accuracy issue, we introduce the Sparse-Quantized Representation (SpQR), a new compressed format and quantization technique which enables for the first time near-lossless compression of LLMs across model scales, while reaching similar compression levels to previous methods. SpQR works by identifying and isolating outlier weights, which cause particularly-large quantization errors, and storing them in higher precision, while compressing all other weights to 3-4 bits, and achieves relative accuracy losses of less than 1% in perplexity for highly-accurate LLaMA and Falcon LLMs. This makes it possible to run 33B parameter LLM on a single 24 GB consumer GPU without any performance degradation at 15% speedup thus making powerful LLMs available to consumer without any downsides. SpQR comes with efficient algorithms for both encoding weights into its format, as well as decoding them efficiently at runtime. Specifically, we provide an efficient GPU inference algorithm for SpQR which yields faster inference than 16-bit baselines at similar accuracy, while enabling memory compression gains of more than 4x.
DuoDecoding: Hardware-aware Heterogeneous Speculative Decoding with Dynamic Multi-Sequence Drafting
Large language models (LLMs) exhibit exceptional performance across a wide range of tasks; however, their token-by-token autoregressive generation process significantly hinders inference speed. Speculative decoding presents a promising draft-then-verify framework that reduces generation latency while maintaining output distribution fidelity. Nevertheless, the draft model introduces additional computational overhead, becoming a performance bottleneck and increasing the time to first token (TTFT). Previous approaches to mitigate draft model overhead have primarily relied on heuristics and generally failed to match the quality of the draft language models. To address these challenges, we propose DuoDecoding, a novel approach that strategically deploys the draft and target models on the CPU and GPU respectively, enabling parallel decoding while preserving draft quality. Our method incorporates a hardware-aware optimal draft budget to minimize idle times and employs dynamic multi-sequence drafting to enhance draft quality. Extensive experiments across seven tasks show that DuoDecoding achieves up to 2.61x speedup in generation latency, while reducing TTFT to 83% of that in conventional speculative decoding. The Code is available at https://github.com/KaiLv69/DuoDecoding.
Neural Machine Translation with Byte-Level Subwords
Almost all existing machine translation models are built on top of character-based vocabularies: characters, subwords or words. Rare characters from noisy text or character-rich languages such as Japanese and Chinese however can unnecessarily take up vocabulary slots and limit its compactness. Representing text at the level of bytes and using the 256 byte set as vocabulary is a potential solution to this issue. High computational cost has however prevented it from being widely deployed or used in practice. In this paper, we investigate byte-level subwords, specifically byte-level BPE (BBPE), which is compacter than character vocabulary and has no out-of-vocabulary tokens, but is more efficient than using pure bytes only is. We claim that contextualizing BBPE embeddings is necessary, which can be implemented by a convolutional or recurrent layer. Our experiments show that BBPE has comparable performance to BPE while its size is only 1/8 of that for BPE. In the multilingual setting, BBPE maximizes vocabulary sharing across many languages and achieves better translation quality. Moreover, we show that BBPE enables transferring models between languages with non-overlapping character sets.
VPTQ: Extreme Low-bit Vector Post-Training Quantization for Large Language Models
Scaling model size significantly challenges the deployment and inference of Large Language Models (LLMs). Due to the redundancy in LLM weights, recent research has focused on pushing weight-only quantization to extremely low-bit (even down to 2 bits). It reduces memory requirements, optimizes storage costs, and decreases memory bandwidth needs during inference. However, due to numerical representation limitations, traditional scalar-based weight quantization struggles to achieve such extreme low-bit. Recent research on Vector Quantization (VQ) for LLMs has demonstrated the potential for extremely low-bit model quantization by compressing vectors into indices using lookup tables. In this paper, we introduce Vector Post-Training Quantization (VPTQ) for extremely low-bit quantization of LLMs. We use Second-Order Optimization to formulate the LLM VQ problem and guide our quantization algorithm design by solving the optimization. We further refine the weights using Channel-Independent Second-Order Optimization for a granular VQ. In addition, by decomposing the optimization problem, we propose a brief and effective codebook initialization algorithm. We also extend VPTQ to support residual and outlier quantization, which enhances model accuracy and further compresses the model. Our experimental results show that VPTQ reduces model quantization perplexity by 0.01-0.34 on LLaMA-2, 0.38-0.68 on Mistral-7B, 4.41-7.34 on LLaMA-3 over SOTA at 2-bit, with an average accuracy improvement of 0.79-1.5% on LLaMA-2, 1% on Mistral-7B, 11-22% on LLaMA-3 on QA tasks on average. We only utilize 10.4-18.6% of the quantization algorithm execution time, resulting in a 1.6-1.8times increase in inference throughput compared to SOTA.
From Hours to Minutes: Lossless Acceleration of Ultra Long Sequence Generation up to 100K Tokens
Generating ultra-long sequences with large language models (LLMs) has become increasingly crucial but remains a highly time-intensive task, particularly for sequences up to 100K tokens. While traditional speculative decoding methods exist, simply extending their generation limits fails to accelerate the process and can be detrimental. Through an in-depth analysis, we identify three major challenges hindering efficient generation: frequent model reloading, dynamic key-value (KV) management and repetitive generation. To address these issues, we introduce TOKENSWIFT, a novel framework designed to substantially accelerate the generation process of ultra-long sequences while maintaining the target model's inherent quality. Experimental results demonstrate that TOKENSWIFT achieves over 3 times speedup across models of varying scales (1.5B, 7B, 8B, 14B) and architectures (MHA, GQA). This acceleration translates to hours of time savings for ultra-long sequence generation, establishing TOKENSWIFT as a scalable and effective solution at unprecedented lengths. Code can be found at https://github.com/bigai-nlco/TokenSwift.
Byte Latent Transformer: Patches Scale Better Than Tokens
We introduce the Byte Latent Transformer (BLT), a new byte-level LLM architecture that, for the first time, matches tokenization-based LLM performance at scale with significant improvements in inference efficiency and robustness. BLT encodes bytes into dynamically sized patches, which serve as the primary units of computation. Patches are segmented based on the entropy of the next byte, allocating more compute and model capacity where increased data complexity demands it. We present the first FLOP controlled scaling study of byte-level models up to 8B parameters and 4T training bytes. Our results demonstrate the feasibility of scaling models trained on raw bytes without a fixed vocabulary. Both training and inference efficiency improve due to dynamically selecting long patches when data is predictable, along with qualitative improvements on reasoning and long tail generalization. Overall, for fixed inference costs, BLT shows significantly better scaling than tokenization-based models, by simultaneously growing both patch and model size.
Adaptive Draft-Verification for Efficient Large Language Model Decoding
Large language model (LLM) decoding involves generating a sequence of tokens based on a given context, where each token is predicted one at a time using the model's learned probabilities. The typical autoregressive decoding method requires a separate forward pass through the model for each token generated, which is computationally inefficient and poses challenges for deploying LLMs in latency-sensitive scenarios. The main limitations of current decoding methods stem from their inefficiencies and resource demands. Existing approaches either necessitate fine-tuning smaller models, which is resource-intensive, or rely on fixed retrieval schemes to construct drafts for the next tokens, which lack adaptability and fail to generalize across different models and contexts. To address these issues, we introduce a novel methodology called ADED, which accelerates LLM decoding without requiring fine-tuning. Our approach involves an adaptive draft-verification process that evolves over time to improve efficiency. We utilize a tri-gram matrix-based LLM representation to dynamically approximate the output distribution of the LLM, allowing the model to adjust to changing token probabilities during the decoding process. Additionally, we implement a draft construction mechanism that effectively balances exploration and exploitation, ensuring that the drafts generated are both diverse and close to the true output distribution of the LLM. The importance of this design lies in its ability to optimize the draft distribution adaptively, leading to faster and more accurate decoding. Through extensive experiments on various benchmark datasets and LLM architectures, we demonstrate that ADED significantly accelerates the decoding process while maintaining high accuracy, making it suitable for deployment in a wide range of practical applications.
CODEPROMPTZIP: Code-specific Prompt Compression for Retrieval-Augmented Generation in Coding Tasks with LMs
Retrieval-Augmented Generation (RAG) enhances coding tasks by incorporating retrieved code examples into prompts. However, lengthy prompts, often exceeding tens of thousands of tokens, introduce challenges related to limited context windows of language models (LMs) and high computational costs. Existing prompt compression techniques focus on natural language, lacking tailored solutions for code. To address the gap, we propose CodePromptZip, a framework that compresses code examples before integrating into RAG workflows. Our framework employs a type-aware, priority-driven strategy to construct training samples for training code compression model. By using program analysis, we identify token types (e.g., Identifier) and perform ablation analysis to rank their removal priorities based on their impact on task performance. We then train a small LM as the compressor on these samples, enabling flexible compression conditioned on specified ratios while minimizing performance degradation. Specially, the compressor is augmented with a copy mechanism, allowing tokens to be directly copied from the original code snippets. Evaluation results show that CodePromptZip surpasses SOTA entropy-based and distillation-based baselines, improving by 23.4%, 28.7%, and 8.7% over the best baseline for Assertion Generation, Bugs2Fix, and Code Suggestion, respectively.
MYTE: Morphology-Driven Byte Encoding for Better and Fairer Multilingual Language Modeling
A major consideration in multilingual language modeling is how to best represent languages with diverse vocabularies and scripts. Although contemporary text encoding methods cover most of the world's writing systems, they exhibit bias towards the high-resource languages of the Global West. As a result, texts of underrepresented languages tend to be segmented into long sequences of linguistically meaningless units. To address the disparities, we introduce a new paradigm that encodes the same information with segments of consistent size across diverse languages. Our encoding convention (MYTE) is based on morphemes, as their inventories are more balanced across languages than characters, which are used in previous methods. We show that MYTE produces shorter encodings for all 99 analyzed languages, with the most notable improvements for non-European languages and non-Latin scripts. This, in turn, improves multilingual LM performance and diminishes the perplexity gap throughout diverse languages.
Optimizing Byte-level Representation for End-to-end ASR
We propose a novel approach to optimizing a byte-level representation for end-to-end automatic speech recognition (ASR). Byte-level representation is often used by large scale multilingual ASR systems when the character set of the supported languages is large. The compactness and universality of byte-level representation allow the ASR models to use smaller output vocabularies and therefore, provide more flexibility. UTF-8 is a commonly used byte-level representation for multilingual ASR, but it is not designed to optimize machine learning tasks directly. By using auto-encoder and vector quantization, we show that we can optimize a byte-level representation for ASR and achieve better accuracy. Our proposed framework can incorporate information from different modalities, and provides an error correction mechanism. In an English/Mandarin dictation task, we show that a bilingual ASR model built with this approach can outperform UTF-8 representation by 5% relative in error rate.
Discovering Useful Sentence Representations from Large Pretrained Language Models
Despite the extensive success of pretrained language models as encoders for building NLP systems, they haven't seen prominence as decoders for sequence generation tasks. We explore the question of whether these models can be adapted to be used as universal decoders. To be considered "universal," a decoder must have an implicit representation for any target sentence s, such that it can recover that sentence exactly when conditioned on its representation. For large transformer-based language models trained on vast amounts of English text, we investigate whether such representations can be easily discovered using standard optimization methods. We present and compare three representation injection techniques for transformer-based models and three accompanying methods which map sentences to and from this representation space. Experiments show that not only do representations exist for sentences from a variety of genres. More importantly, without needing complex optimization algorithms, our methods recover these sentences almost perfectly without fine-tuning the underlying language model at all.
KodCode: A Diverse, Challenging, and Verifiable Synthetic Dataset for Coding
We introduce KodCode, a synthetic dataset that addresses the persistent challenge of acquiring high-quality, verifiable training data across diverse difficulties and domains for training Large Language Models for coding. Existing code-focused resources typically fail to ensure either the breadth of coverage (e.g., spanning simple coding tasks to advanced algorithmic problems) or verifiable correctness (e.g., unit tests). In contrast, KodCode comprises question-solution-test triplets that are systematically validated via a self-verification procedure. Our pipeline begins by synthesizing a broad range of coding questions, then generates solutions and test cases with additional attempts allocated to challenging problems. Finally, post-training data synthesis is done by rewriting questions into diverse formats and generating responses under a test-based reject sampling procedure from a reasoning model (DeepSeek R1). This pipeline yields a large-scale, robust and diverse coding dataset. KodCode is suitable for supervised fine-tuning and the paired unit tests also provide great potential for RL tuning. Fine-tuning experiments on coding benchmarks (HumanEval(+), MBPP(+), BigCodeBench, and LiveCodeBench) demonstrate that KodCode-tuned models achieve state-of-the-art performance, surpassing models like Qwen2.5-Coder-32B-Instruct and DeepSeek-R1-Distill-Llama-70B.
ThinK: Thinner Key Cache by Query-Driven Pruning
Large Language Models (LLMs) have revolutionized the field of natural language processing, achieving unprecedented performance across a variety of applications by leveraging increased model sizes and sequence lengths. However, the associated rise in computational and memory costs poses significant challenges, particularly in managing long sequences due to the quadratic complexity of the transformer attention mechanism. This paper focuses on the long-context scenario, addressing the inefficiencies in KV cache memory consumption during inference. Unlike existing approaches that optimize the memory based on the sequence lengths, we uncover that the channel dimension of the KV cache exhibits significant redundancy, characterized by unbalanced magnitude distribution and low-rank structure in attention weights. Based on these observations, we propose ThinK, a novel query-dependent KV cache pruning method designed to minimize attention weight loss while selectively pruning the least significant channels. Our approach not only maintains or enhances model accuracy but also achieves a reduction in memory costs by over 20% compared with vanilla KV cache eviction methods. Extensive evaluations on the LLaMA3 and Mistral models across various long-sequence datasets confirm the efficacy of ThinK, setting a new precedent for efficient LLM deployment without compromising performance. We also outline the potential of extending our method to value cache pruning, demonstrating ThinK's versatility and broad applicability in reducing both memory and computational overheads.
A Bit of a Problem: Measurement Disparities in Dataset Sizes Across Languages
How should text dataset sizes be compared across languages? Even for content-matched (parallel) corpora, UTF-8 encoded text can require a dramatically different number of bytes for different languages. In our work, we define the byte premium between two languages as the ratio of bytes used to encode content-matched text in those languages. We compute byte premiums for 1155 languages, and we use linear regressions to estimate byte premiums for other languages. We release a tool to obtain byte premiums for any two languages, enabling comparisons of dataset sizes across languages for more equitable multilingual model development and data practices.
Toucan: Token-Aware Character Level Language Modeling
Character-level language models obviate the need for separately trained tokenizers, but efficiency suffers from longer sequence lengths. Learning to combine character representations into tokens has made training these models more efficient, but they still require decoding characters individually. We propose Toucan, an augmentation to character-level models to make them "token-aware". Comparing our method to prior work, we demonstrate significant speed-ups in character generation without a loss in language modeling performance. We then explore differences between our learned dynamic tokenization of character sequences with popular fixed vocabulary solutions such as Byte-Pair Encoding and WordPiece, finding our approach leads to a greater amount of longer sequences tokenized as single items. Our project and code are available at https://nlp.jhu.edu/nuggets/.
LoMA: Lossless Compressed Memory Attention
The ability to handle long texts is one of the most important capabilities of Large Language Models (LLMs), but as the text length increases, the consumption of resources also increases dramatically. At present, reducing resource consumption by compressing the KV cache is a common approach. Although there are many existing compression methods, they share a common drawback: the compression is not lossless. That is, information is inevitably lost during the compression process. If the compression rate is high, the probability of losing important information increases dramatically. We propose a new method, Lossless Compressed Memory Attention (LoMA), which allows for lossless compression of information into special memory token KV pairs according to a set compression ratio. Our experiments have achieved remarkable results, demonstrating that LoMA can be efficiently trained and has very effective performance.
Data-Centric and Heterogeneity-Adaptive Sequence Parallelism for Efficient LLM Training
Extending the context length (i.e., the maximum supported sequence length) of LLMs is of paramount significance. To facilitate long context training of LLMs, sequence parallelism has emerged as an essential technique, which scatters each input sequence across multiple devices and necessitates communication to process the sequence. In essence, existing sequence parallelism methods assume homogeneous sequence lengths (i.e., all input sequences are equal in length) and therefore leverages a single, static scattering strategy for all input sequences. However, in reality, the sequence lengths in LLM training corpora exhibit substantial variability, often following a long-tail distribution, which leads to workload heterogeneity. In this paper, we show that employing a single, static strategy results in inefficiency and resource under-utilization, highlighting the need for adaptive approaches to handle the heterogeneous workloads across sequences. To address this, we propose a heterogeneity-adaptive sequence parallelism method. For each training step, our approach captures the variability in sequence lengths and assigns the optimal combination of scattering strategies based on workload characteristics. We model this problem as a linear programming optimization and design an efficient and effective solver to find the optimal solution. Furthermore, we implement our method in a high-performance system that supports adaptive parallelization in distributed LLM training. Experimental results demonstrate that our system outperforms state-of-the-art training frameworks by up to 1.98x.
Fast Lexically Constrained Decoding with Dynamic Beam Allocation for Neural Machine Translation
The end-to-end nature of neural machine translation (NMT) removes many ways of manually guiding the translation process that were available in older paradigms. Recent work, however, has introduced a new capability: lexically constrained or guided decoding, a modification to beam search that forces the inclusion of pre-specified words and phrases in the output. However, while theoretically sound, existing approaches have computational complexities that are either linear (Hokamp and Liu, 2017) or exponential (Anderson et al., 2017) in the number of constraints. We present a algorithm for lexically constrained decoding with a complexity of O(1) in the number of constraints. We demonstrate the algorithms remarkable ability to properly place these constraints, and use it to explore the shaky relationship between model and BLEU scores. Our implementation is available as part of Sockeye.
Revisiting Block-based Quantisation: What is Important for Sub-8-bit LLM Inference?
The inference of Large language models (LLMs) requires immense computation and memory resources. To curtail these costs, quantisation has merged as a promising solution, but existing LLM quantisation mainly focuses on 8-bit. In this work, we explore the statistical and learning properties of the LLM layer and attribute the bottleneck of LLM quantisation to numerical scaling offsets. To address this, we adapt block quantisations for LLMs, a family of methods that share scaling factors across packed numbers. Block quantisations efficiently reduce the numerical scaling offsets solely from an arithmetic perspective, without additional treatments in the computational path. Our nearly-lossless quantised 6-bit LLMs achieve a 19times higher arithmetic density and 5times memory density than the float32 baseline, surpassing the prior art 8-bit quantisation by 2.5times in arithmetic density and 1.2times in memory density, without requiring any data calibration or re-training. We also share our insights into sub-8-bit LLM quantisation, including the mismatch between activation and weight distributions, optimal fine-tuning strategies, and a lower quantisation granularity inherent in the statistical properties of LLMs. The latter two tricks enable nearly-lossless 4-bit LLMs on downstream tasks. Our code is open-sourced.
Safurai 001: New Qualitative Approach for Code LLM Evaluation
This paper presents Safurai-001, a new Large Language Model (LLM) with significant potential in the domain of coding assistance. Driven by recent advancements in coding LLMs, Safurai-001 competes in performance with the latest models like WizardCoder [Xu et al., 2023], PanguCoder [Shen et al., 2023] and Phi-1 [Gunasekar et al., 2023] but aims to deliver a more conversational interaction. By capitalizing on the progress in data engineering (including latest techniques of data transformation and prompt engineering) and instruction tuning, this new model promises to stand toe-to-toe with recent closed and open source developments. Recognizing the need for an efficacious evaluation metric for coding LLMs, this paper also introduces GPT4-based MultiParameters, an evaluation benchmark that harnesses varied parameters to present a comprehensive insight into the models functioning and performance. Our assessment shows that Safurai-001 can outperform GPT-3.5 by 1.58% and WizardCoder by 18.78% in the Code Readability parameter and more.
Parallel Speculative Decoding with Adaptive Draft Length
Speculative decoding (SD), where an extra draft model is employed to provide multiple draft tokens first and then the original target model verifies these tokens in parallel, has shown great power for LLM inference acceleration. However, existing SD methods suffer from the mutual waiting problem, i.e., the target model gets stuck when the draft model is guessing tokens, and vice versa. This problem is directly incurred by the asynchronous execution of the draft model and the target model, and is exacerbated due to the fixed draft length in speculative decoding. To address these challenges, we propose a conceptually simple, flexible, and general framework to boost speculative decoding, namely Parallel spEculative decoding with Adaptive dRaft Length (PEARL). Specifically, PEARL proposes pre-verify to verify the first draft token in advance during the drafting phase, and post-verify to generate more draft tokens during the verification phase. PEARL parallels the drafting phase and the verification phase via applying the two strategies, and achieves adaptive draft length for different scenarios, which effectively alleviates the mutual waiting problem. Moreover, we theoretically demonstrate that the mean accepted tokens of PEARL is more than existing draft-then-verify works. Experiments on various text generation benchmarks demonstrate the effectiveness of our \name, leading to a superior speedup performance up to 3.79times and 1.52times, compared to auto-regressive decoding and vanilla speculative decoding, respectively.
Compressing LLMs: The Truth is Rarely Pure and Never Simple
Despite their remarkable achievements, modern Large Language Models (LLMs) encounter exorbitant computational and memory footprints. Recently, several works have shown significant success in training-free and data-free compression (pruning and quantization) of LLMs achieving 50-60% sparsity and reducing the bit-width down to 3 or 4 bits per weight, with negligible perplexity degradation over the uncompressed baseline. As recent research efforts are focused on developing increasingly sophisticated compression methods, our work takes a step back, and re-evaluates the effectiveness of existing SoTA compression methods, which rely on a fairly simple and widely questioned metric, perplexity (even for dense LLMs). We introduce Knowledge-Intensive Compressed LLM BenchmarK (LLM-KICK), a collection of carefully-curated tasks to re-define the evaluation protocol for compressed LLMs, which have significant alignment with their dense counterparts, and perplexity fail to capture subtle change in their true capabilities. LLM-KICK unveils many favorable merits and unfortunate plights of current SoTA compression methods: all pruning methods suffer significant performance degradation, sometimes at trivial sparsity ratios (e.g., 25-30%), and fail for N:M sparsity on knowledge-intensive tasks; current quantization methods are more successful than pruning; yet, pruned LLMs even at geq 50% sparsity are robust in-context retrieval and summarization systems; among others. LLM-KICK is designed to holistically access compressed LLMs' ability for language understanding, reasoning, generation, in-context retrieval, in-context summarization, etc. We hope our study can foster the development of better LLM compression methods. All our related codes are planed to be open-sourced.
Accelerating Speculative Decoding using Dynamic Speculation Length
Speculative decoding is a promising method for reducing the inference latency of large language models. The effectiveness of the method depends on the speculation length (SL) - the number of tokens generated by the draft model at each iteration. The vast majority of speculative decoding approaches use the same SL for all iterations. In this work, we show that this practice is suboptimal. We introduce DISCO, a DynamIc SpeCulation length Optimization method that uses a classifier to dynamically adjust the SL at each iteration, while provably preserving the decoding quality. Experiments with four benchmarks demonstrate average speedup gains of 10.3% relative to our best baselines.
On Differentially Private String Distances
Given a database of bit strings A_1,ldots,A_min {0,1}^n, a fundamental data structure task is to estimate the distances between a given query Bin {0,1}^n with all the strings in the database. In addition, one might further want to ensure the integrity of the database by releasing these distance statistics in a secure manner. In this work, we propose differentially private (DP) data structures for this type of tasks, with a focus on Hamming and edit distance. On top of the strong privacy guarantees, our data structures are also time- and space-efficient. In particular, our data structure is epsilon-DP against any sequence of queries of arbitrary length, and for any query B such that the maximum distance to any string in the database is at most k, we output m distance estimates. Moreover, - For Hamming distance, our data structure answers any query in widetilde O(mk+n) time and each estimate deviates from the true distance by at most widetilde O(k/e^{epsilon/log k}); - For edit distance, our data structure answers any query in widetilde O(mk^2+n) time and each estimate deviates from the true distance by at most widetilde O(k/e^{epsilon/(log k log n)}). For moderate k, both data structures support sublinear query operations. We obtain these results via a novel adaptation of the randomized response technique as a bit flipping procedure, applied to the sketched strings.
BiLLM: Pushing the Limit of Post-Training Quantization for LLMs
Pretrained large language models (LLMs) exhibit exceptional general language processing capabilities but come with significant demands on memory and computational resources. As a powerful compression technology, binarization can extremely reduce model weights to a mere 1 bit, lowering the expensive computation and memory requirements. However, existing quantization techniques fall short of maintaining LLM performance under ultra-low bit-widths. In response to this challenge, we present BiLLM, a groundbreaking 1-bit post-training quantization scheme tailored for pretrained LLMs. Based on the weight distribution of LLMs, BiLLM first identifies and structurally selects salient weights, and minimizes the compression loss through an effective binary residual approximation strategy. Moreover, considering the bell-shaped distribution of the non-salient weights, we propose an optimal splitting search to group and binarize them accurately. BiLLM achieving for the first time high-accuracy inference (e.g. 8.41 perplexity on LLaMA2-70B) with only 1.08-bit weights across various LLMs families and evaluation metrics, outperforms SOTA quantization methods of LLM by significant margins. Moreover, BiLLM enables the binarization process of the LLM with 7 billion weights within 0.5 hours on a single GPU, demonstrating satisfactory time efficiency.
Auto-Regressive Next-Token Predictors are Universal Learners
Large language models display remarkable capabilities in logical and mathematical reasoning, allowing them to solve complex tasks. Interestingly, these abilities emerge in networks trained on the simple task of next-token prediction. In this work, we present a theoretical framework for studying auto-regressive next-token predictors. We demonstrate that even simple models such as linear next-token predictors, trained on Chain-of-Thought (CoT) data, can approximate any function efficiently computed by a Turing machine. We introduce a new complexity measure -- length complexity -- which measures the number of intermediate tokens in a CoT sequence required to approximate some target function, and analyze the interplay between length complexity and other notions of complexity. Finally, we show experimentally that simple next-token predictors, such as linear networks and shallow Multi-Layer Perceptrons (MLPs), display non-trivial performance on text generation and arithmetic tasks. Our results demonstrate that the power of language models can be attributed, to a great extent, to the auto-regressive next-token training scheme, and not necessarily to a particular choice of architecture.
BitNet b1.58 Reloaded: State-of-the-art Performance Also on Smaller Networks
Recently proposed methods for 1-bit and 1.58-bit quantization aware training investigate the performance and behavior of these methods in the context of large language models, finding state-of-the-art performance for models with more than 3B parameters. In this work, we investigate 1.58-bit quantization for small language and vision models ranging from 100K to 48M parameters. We introduce a variant of BitNet b1.58, which allows to rely on the median rather than the mean in the quantization process. Through extensive experiments we investigate the performance of 1.58-bit models obtained through quantization aware training. We further investigate the robustness of 1.58-bit quantization-aware training to changes in the learning rate and regularization through weight decay, finding different patterns for small language and vision models than previously reported for large language models. Our results showcase that 1.58-bit quantization-aware training provides state-of-the-art performance for small language models when doubling hidden layer sizes and reaches or even surpasses state-of-the-art performance for small vision models of identical size. Ultimately, we demonstrate that 1.58-bit quantization-aware training is a viable and promising approach also for training smaller deep learning networks, facilitating deployment of such models in low-resource use-cases and encouraging future research.
Decoding at the Speed of Thought: Harnessing Parallel Decoding of Lexical Units for LLMs
Large language models have demonstrated exceptional capability in natural language understanding and generation. However, their generation speed is limited by the inherently sequential nature of their decoding process, posing challenges for real-time applications. This paper introduces Lexical Unit Decoding (LUD), a novel decoding methodology implemented in a data-driven manner, accelerating the decoding process without sacrificing output quality. The core of our approach is the observation that a pre-trained language model can confidently predict multiple contiguous tokens, forming the basis for a lexical unit, in which these contiguous tokens could be decoded in parallel. Extensive experiments validate that our method substantially reduces decoding time while maintaining generation quality, i.e., 33\% speed up on natural language generation with no quality loss, and 30\% speed up on code generation with a negligible quality loss of 3\%. Distinctively, LUD requires no auxiliary models and does not require changes to existing architectures. It can also be integrated with other decoding acceleration methods, thus achieving an even more pronounced inference efficiency boost. We posit that the foundational principles of LUD could define a new decoding paradigm for future language models, enhancing their applicability for a broader spectrum of applications. All codes are be publicly available at https://github.com/tjunlp-lab/Lexical-Unit-Decoding-LUD-. Keywords: Parallel Decoding, Lexical Unit Decoding, Large Language Model
Transformers Can Achieve Length Generalization But Not Robustly
Length generalization, defined as the ability to extrapolate from shorter training sequences to longer test ones, is a significant challenge for language models. This issue persists even with large-scale Transformers handling relatively straightforward tasks. In this paper, we test the Transformer's ability of length generalization using the task of addition of two integers. We show that the success of length generalization is intricately linked to the data format and the type of position encoding. Using the right combination of data format and position encodings, we show for the first time that standard Transformers can extrapolate to a sequence length that is 2.5x the input length. Nevertheless, unlike in-distribution generalization, length generalization remains fragile, significantly influenced by factors like random weight initialization and training data order, leading to large variances across different random seeds.
Effective Long-Context Scaling of Foundation Models
We present a series of long-context LLMs that support effective context windows of up to 32,768 tokens. Our model series are built through continual pretraining from Llama 2 with longer training sequences and on a dataset where long texts are upsampled. We perform extensive evaluation on language modeling, synthetic context probing tasks, and a wide range of research benchmarks. On research benchmarks, our models achieve consistent improvements on most regular tasks and significant improvements on long-context tasks over Llama 2. Notably, with a cost-effective instruction tuning procedure that does not require human-annotated long instruction data, the 70B variant can already surpass gpt-3.5-turbo-16k's overall performance on a suite of long-context tasks. Alongside these results, we provide an in-depth analysis on the individual components of our method. We delve into Llama's position encodings and discuss its limitation in modeling long dependencies. We also examine the impact of various design choices in the pretraining process, including the data mix and the training curriculum of sequence lengths -- our ablation experiments suggest that having abundant long texts in the pretrain dataset is not the key to achieving strong performance, and we empirically verify that long context continual pretraining is more efficient and similarly effective compared to pretraining from scratch with long sequences.
VALL-E 2: Neural Codec Language Models are Human Parity Zero-Shot Text to Speech Synthesizers
This paper introduces VALL-E 2, the latest advancement in neural codec language models that marks a milestone in zero-shot text-to-speech synthesis (TTS), achieving human parity for the first time. Based on its predecessor, VALL-E, the new iteration introduces two significant enhancements: Repetition Aware Sampling refines the original nucleus sampling process by accounting for token repetition in the decoding history. It not only stabilizes the decoding but also circumvents the infinite loop issue. Grouped Code Modeling organizes codec codes into groups to effectively shorten the sequence length, which not only boosts inference speed but also addresses the challenges of long sequence modeling. Our experiments on the LibriSpeech and VCTK datasets show that VALL-E 2 surpasses previous systems in speech robustness, naturalness, and speaker similarity. It is the first of its kind to reach human parity on these benchmarks. Moreover, VALL-E 2 consistently synthesizes high-quality speech, even for sentences that are traditionally challenging due to their complexity or repetitive phrases. The advantages of this work could contribute to valuable endeavors, such as generating speech for individuals with aphasia or people with amyotrophic lateral sclerosis. Demos of VALL-E 2 will be posted to https://aka.ms/valle2.
Towards Codable Watermarking for Injecting Multi-bits Information to LLMs
As large language models (LLMs) generate texts with increasing fluency and realism, there is a growing need to identify the source of texts to prevent the abuse of LLMs. Text watermarking techniques have proven reliable in distinguishing whether a text is generated by LLMs by injecting hidden patterns. However, we argue that existing LLM watermarking methods are encoding-inefficient and cannot flexibly meet the diverse information encoding needs (such as encoding model version, generation time, user id, etc.). In this work, we conduct the first systematic study on the topic of Codable Text Watermarking for LLMs (CTWL) that allows text watermarks to carry multi-bit customizable information. First of all, we study the taxonomy of LLM watermarking technologies and give a mathematical formulation for CTWL. Additionally, we provide a comprehensive evaluation system for CTWL: (1) watermarking success rate, (2) robustness against various corruptions, (3) coding rate of payload information, (4) encoding and decoding efficiency, (5) impacts on the quality of the generated text. To meet the requirements of these non-Pareto-improving metrics, we follow the most prominent vocabulary partition-based watermarking direction, and devise an advanced CTWL method named Balance-Marking. The core idea of our method is to use a proxy language model to split the vocabulary into probability-balanced parts, thereby effectively maintaining the quality of the watermarked text. Our code is available at https://github.com/lancopku/codable-watermarking-for-llm.
KVQuant: Towards 10 Million Context Length LLM Inference with KV Cache Quantization
LLMs are seeing growing use for applications such as document analysis and summarization which require large context windows, and with these large context windows KV cache activations surface as the dominant contributor to memory consumption during inference. Quantization is a promising approach for compressing KV cache activations; however, existing solutions fail to represent activations accurately in ultra-low precisions, such as sub-4-bit. In this work, we present KVQuant, which addresses this problem by incorporating novel methods for quantizing cached KV activations, including: (i) Per-Channel Key Quantization, where we adjust the dimension along which we quantize the Key activations to better match the distribution; (ii) Pre-RoPE Key Quantization, where we quantize Key activations before the rotary positional embedding to mitigate its impact on quantization; (iii) Non-Uniform KV Cache Quantization, where we derive per-layer sensitivity-weighted non-uniform datatypes that better represent the distributions; (iv) Per-Vector Dense-and-Sparse Quantization, where we isolate outliers separately for each vector to minimize skews in quantization ranges; and (v) Q-Norm, where we normalize quantization centroids in order to mitigate distribution shift, providing additional benefits for 2-bit quantization. By applying our method to the LLaMA, LLaMA-2, and Mistral models, we achieve <0.1 perplexity degradation with 3-bit quantization on both Wikitext-2 and C4, outperforming existing approaches. Our method enables serving the LLaMA-7B model with a context length of up to 1 million on a single A100-80GB GPU and up to 10 million on an 8-GPU system.
LEOPARD : A Vision Language Model For Text-Rich Multi-Image Tasks
Text-rich images, where text serves as the central visual element guiding the overall understanding, are prevalent in real-world applications, such as presentation slides, scanned documents, and webpage snapshots. Tasks involving multiple text-rich images are especially challenging, as they require not only understanding the content of individual images but reasoning about inter-relationships and logical flows across multiple visual inputs. Despite the importance of these scenarios, current multimodal large language models (MLLMs) struggle to handle such tasks due to two key challenges: (1) the scarcity of high-quality instruction tuning datasets for text-rich multi-image scenarios, and (2) the difficulty in balancing image resolution with visual feature sequence length. To address these challenges, we propose \OurMethod, a MLLM designed specifically for handling vision-language tasks involving multiple text-rich images. First, we curated about one million high-quality multimodal instruction-tuning data, tailored to text-rich, multi-image scenarios. Second, we developed an adaptive high-resolution multi-image encoding module to dynamically optimize the allocation of visual sequence length based on the original aspect ratios and resolutions of the input images. Experiments across a wide range of benchmarks demonstrate our model's superior capabilities in text-rich, multi-image evaluations and competitive performance in general domain evaluations.
Tighter Bounds on the Expressivity of Transformer Encoders
Characterizing neural networks in terms of better-understood formal systems has the potential to yield new insights into the power and limitations of these networks. Doing so for transformers remains an active area of research. Bhattamishra and others have shown that transformer encoders are at least as expressive as a certain kind of counter machine, while Merrill and Sabharwal have shown that fixed-precision transformer encoders recognize only languages in uniform TC^0. We connect and strengthen these results by identifying a variant of first-order logic with counting quantifiers that is simultaneously an upper bound for fixed-precision transformer encoders and a lower bound for transformer encoders. This brings us much closer than before to an exact characterization of the languages that transformer encoders recognize.
Efficient Streaming Language Models with Attention Sinks
Deploying Large Language Models (LLMs) in streaming applications such as multi-round dialogue, where long interactions are expected, is urgently needed but poses two major challenges. Firstly, during the decoding stage, caching previous tokens' Key and Value states (KV) consumes extensive memory. Secondly, popular LLMs cannot generalize to longer texts than the training sequence length. Window attention, where only the most recent KVs are cached, is a natural approach -- but we show that it fails when the text length surpasses the cache size. We observe an interesting phenomenon, namely attention sink, that keeping the KV of initial tokens will largely recover the performance of window attention. In this paper, we first demonstrate that the emergence of attention sink is due to the strong attention scores towards initial tokens as a ``sink'' even if they are not semantically important. Based on the above analysis, we introduce StreamingLLM, an efficient framework that enables LLMs trained with a finite length attention window to generalize to infinite sequence lengths without any fine-tuning. We show that StreamingLLM can enable Llama-2, MPT, Falcon, and Pythia to perform stable and efficient language modeling with up to 4 million tokens and more. In addition, we discover that adding a placeholder token as a dedicated attention sink during pre-training can further improve streaming deployment. In streaming settings, StreamingLLM outperforms the sliding window recomputation baseline by up to 22.2x speedup. Code and datasets are provided at https://github.com/mit-han-lab/streaming-llm.
HAWQV3: Dyadic Neural Network Quantization
Current low-precision quantization algorithms often have the hidden cost of conversion back and forth from floating point to quantized integer values. This hidden cost limits the latency improvement realized by quantizing Neural Networks. To address this, we present HAWQV3, a novel mixed-precision integer-only quantization framework. The contributions of HAWQV3 are the following: (i) An integer-only inference where the entire computational graph is performed only with integer multiplication, addition, and bit shifting, without any floating point operations or even integer division; (ii) A novel hardware-aware mixed-precision quantization method where the bit-precision is calculated by solving an integer linear programming problem that balances the trade-off between model perturbation and other constraints, e.g., memory footprint and latency; (iii) Direct hardware deployment and open source contribution for 4-bit uniform/mixed-precision quantization in TVM, achieving an average speed up of 1.45times for uniform 4-bit, as compared to uniform 8-bit for ResNet50 on T4 GPUs; and (iv) extensive evaluation of the proposed methods on ResNet18/50 and InceptionV3, for various model compression levels with/without mixed precision. For ResNet50, our INT8 quantization achieves an accuracy of 77.58%, which is 2.68% higher than prior integer-only work, and our mixed-precision INT4/8 quantization can reduce INT8 latency by 23% and still achieve 76.73% accuracy. Our framework and the TVM implementation have been open sourced.
FreeCodec: A disentangled neural speech codec with fewer tokens
Neural speech codecs have gained great attention for their outstanding reconstruction with discrete token representations. It is a crucial component in generative tasks such as speech coding and large language models (LLM). However, most works based on residual vector quantization perform worse with fewer tokens due to low coding efficiency for modeling complex coupled information. In this paper, we propose a neural speech codec named FreeCodec which employs a more effective encoding framework by decomposing intrinsic properties of speech into different components: 1) a global vector is extracted as the timbre information, 2) a prosody encoder with a long stride level is used to model the prosody information, 3) the content information is from a content encoder. Using different training strategies, FreeCodec achieves state-of-the-art performance in reconstruction and disentanglement scenarios. Results from subjective and objective experiments demonstrate that our framework outperforms existing methods.
Post-Training Quantization with Low-precision Minifloats and Integers on FPGAs
Post-Training Quantization (PTQ) is a powerful technique for model compression, reducing the precision of neural networks without additional training overhead. Recent works have investigated adopting 8-bit floating-point quantization (FP8) in the context of PTQ for model inference. However, the exploration of floating-point formats smaller than 8 bits and their comparison with integer quantization remains relatively limited. In this work, we present minifloats, which are reduced-precision floating-point formats capable of further reducing the memory footprint, latency, and energy cost of a model while approaching full-precision model accuracy. Our work presents a novel PTQ design-space exploration, comparing minifloat and integer quantization schemes across a range of 3 to 8 bits for both weights and activations. We examine the applicability of various PTQ techniques to minifloats, including weight equalization, bias correction, SmoothQuant, gradient-based learned rounding, and the GPTQ method. Our experiments validate the effectiveness of low-precision minifloats when compared to their integer counterparts across a spectrum of accuracy-precision trade-offs on a set of reference deep learning vision workloads. Finally, we evaluate our results against an FPGA-based hardware cost model, showing that integer quantization often remains the Pareto-optimal option, given its relatively smaller hardware resource footprint.
Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation
Quantization techniques can reduce the size of Deep Neural Networks and improve inference latency and throughput by taking advantage of high throughput integer instructions. In this paper we review the mathematical aspects of quantization parameters and evaluate their choices on a wide range of neural network models for different application domains, including vision, speech, and language. We focus on quantization techniques that are amenable to acceleration by processors with high-throughput integer math pipelines. We also present a workflow for 8-bit quantization that is able to maintain accuracy within 1% of the floating-point baseline on all networks studied, including models that are more difficult to quantize, such as MobileNets and BERT-large.
Two Stones Hit One Bird: Bilevel Positional Encoding for Better Length Extrapolation
In this work, we leverage the intrinsic segmentation of language sequences and design a new positional encoding method called Bilevel Positional Encoding (BiPE). For each position, our BiPE blends an intra-segment encoding and an inter-segment encoding. The intra-segment encoding identifies the locations within a segment and helps the model capture the semantic information therein via absolute positional encoding. The inter-segment encoding specifies the segment index, models the relationships between segments, and aims to improve extrapolation capabilities via relative positional encoding. Theoretical analysis shows this disentanglement of positional information makes learning more effective. The empirical results also show that our BiPE has superior length extrapolation capabilities across a wide range of tasks in diverse text modalities.
BTR: Binary Token Representations for Efficient Retrieval Augmented Language Models
Retrieval augmentation addresses many critical problems in large language models such as hallucination, staleness, and privacy leaks. However, running retrieval-augmented language models (LMs) is slow and difficult to scale due to processing large amounts of retrieved text. We introduce binary token representations (BTR), which use 1-bit vectors to precompute every token in passages, significantly reducing computation during inference. Despite the potential loss of accuracy, our new calibration techniques and training objectives restore performance. Combined with offline and runtime compression, this only requires 127GB of disk space for encoding 3 billion tokens in Wikipedia. Our experiments show that on five knowledge-intensive NLP tasks, BTR accelerates state-of-the-art inference by up to 4x and reduces storage by over 100x while maintaining over 95% task performance.
InfLLM: Unveiling the Intrinsic Capacity of LLMs for Understanding Extremely Long Sequences with Training-Free Memory
Large language models (LLMs) have emerged as a cornerstone in real-world applications with lengthy streaming inputs, such as LLM-driven agents. However, existing LLMs, pre-trained on sequences with restricted maximum length, cannot generalize to longer sequences due to the out-of-domain and distraction issues. To alleviate these issues, existing efforts employ sliding attention windows and discard distant tokens to achieve the processing of extremely long sequences. Unfortunately, these approaches inevitably fail to capture long-distance dependencies within sequences to deeply understand semantics. This paper introduces a training-free memory-based method, InfLLM, to unveil the intrinsic ability of LLMs to process streaming long sequences. Specifically, InfLLM stores distant contexts into additional memory units and employs an efficient mechanism to lookup token-relevant units for attention computation. Thereby, InfLLM allows LLMs to efficiently process long sequences while maintaining the ability to capture long-distance dependencies. Without any training, InfLLM enables LLMs pre-trained on sequences of a few thousand tokens to achieve superior performance than competitive baselines continually training these LLMs on long sequences. Even when the sequence length is scaled to 1,024K, InfLLM still effectively captures long-distance dependencies.
Bridging Information-Theoretic and Geometric Compression in Language Models
For a language model (LM) to faithfully model human language, it must compress vast, potentially infinite information into relatively few dimensions. We propose analyzing compression in (pre-trained) LMs from two points of view: geometric and information-theoretic. We demonstrate that the two views are highly correlated, such that the intrinsic geometric dimension of linguistic data predicts their coding length under the LM. We then show that, in turn, high compression of a linguistic dataset predicts rapid adaptation to that dataset, confirming that being able to compress linguistic information is an important part of successful LM performance. As a practical byproduct of our analysis, we evaluate a battery of intrinsic dimension estimators for the first time on linguistic data, showing that only some encapsulate the relationship between information-theoretic compression, geometric compression, and ease-of-adaptation.
StarCoder 2 and The Stack v2: The Next Generation
The BigCode project, an open-scientific collaboration focused on the responsible development of Large Language Models for Code (Code LLMs), introduces StarCoder2. In partnership with Software Heritage (SWH), we build The Stack v2 on top of the digital commons of their source code archive. Alongside the SWH repositories spanning 619 programming languages, we carefully select other high-quality data sources, such as GitHub pull requests, Kaggle notebooks, and code documentation. This results in a training set that is 4x larger than the first StarCoder dataset. We train StarCoder2 models with 3B, 7B, and 15B parameters on 3.3 to 4.3 trillion tokens and thoroughly evaluate them on a comprehensive set of Code LLM benchmarks. We find that our small model, StarCoder2-3B, outperforms other Code LLMs of similar size on most benchmarks, and also outperforms StarCoderBase-15B. Our large model, StarCoder2- 15B, significantly outperforms other models of comparable size. In addition, it matches or outperforms CodeLlama-34B, a model more than twice its size. Although DeepSeekCoder- 33B is the best-performing model at code completion for high-resource languages, we find that StarCoder2-15B outperforms it on math and code reasoning benchmarks, as well as several low-resource languages. We make the model weights available under an OpenRAIL license and ensure full transparency regarding the training data by releasing the SoftWare Heritage persistent IDentifiers (SWHIDs) of the source code data.
ShadowKV: KV Cache in Shadows for High-Throughput Long-Context LLM Inference
With the widespread deployment of long-context large language models (LLMs), there has been a growing demand for efficient support of high-throughput inference. However, as the key-value (KV) cache expands with the sequence length, the increasing memory footprint and the need to access it for each token generation both result in low throughput when serving long-context LLMs. While various dynamic sparse attention methods have been proposed to speed up inference while maintaining generation quality, they either fail to sufficiently reduce GPU memory consumption or introduce significant decoding latency by offloading the KV cache to the CPU. We present ShadowKV, a high-throughput long-context LLM inference system that stores the low-rank key cache and offloads the value cache to reduce the memory footprint for larger batch sizes and longer sequences. To minimize decoding latency, ShadowKV employs an accurate KV selection strategy that reconstructs minimal sparse KV pairs on-the-fly. By evaluating ShadowKV on a broad range of benchmarks, including RULER, LongBench, and Needle In A Haystack, and models like Llama-3.1-8B, Llama-3-8B-1M, GLM-4-9B-1M, Yi-9B-200K, Phi-3-Mini-128K, and Qwen2-7B-128K, we demonstrate that it can support up to 6times larger batch sizes and boost throughput by up to 3.04times on an A100 GPU without sacrificing accuracy, even surpassing the performance achievable with infinite batch size under the assumption of infinite GPU memory. The code is available at https://github.com/bytedance/ShadowKV.
InverseCoder: Unleashing the Power of Instruction-Tuned Code LLMs with Inverse-Instruct
Recent advancements in open-source code large language models (LLMs) have demonstrated remarkable coding abilities by fine-tuning on the data generated from powerful closed-source LLMs such as GPT-3.5 and GPT-4 for instruction tuning. This paper explores how to further improve an instruction-tuned code LLM by generating data from itself rather than querying closed-source LLMs. Our key observation is the misalignment between the translation of formal and informal languages: translating formal language (i.e., code) to informal language (i.e., natural language) is more straightforward than the reverse. Based on this observation, we propose INVERSE-INSTRUCT, which summarizes instructions from code snippets instead of the reverse. Specifically, given an instruction tuning corpus for code and the resulting instruction-tuned code LLM, we ask the code LLM to generate additional high-quality instructions for the original corpus through code summarization and self-evaluation. Then, we fine-tune the base LLM on the combination of the original corpus and the self-generated one, which yields a stronger instruction-tuned LLM. We present a series of code LLMs named InverseCoder, which surpasses the performance of the original code LLMs on a wide range of benchmarks, including Python text-to-code generation, multilingual coding, and data-science code generation.
Efficient Transformers with Dynamic Token Pooling
Transformers achieve unrivalled performance in modelling language, but remain inefficient in terms of memory and time complexity. A possible remedy is to reduce the sequence length in the intermediate layers by pooling fixed-length segments of tokens. Nevertheless, natural units of meaning, such as words or phrases, display varying sizes. To address this mismatch, we equip language models with a dynamic-pooling mechanism, which predicts segment boundaries in an autoregressive fashion. We compare several methods to infer boundaries, including end-to-end learning through stochastic re-parameterisation, supervised learning (based on segmentations from subword tokenizers or spikes in conditional entropy), as well as linguistically motivated boundaries. We perform character-level evaluation on texts from multiple datasets and morphologically diverse languages. The results demonstrate that dynamic pooling, which jointly segments and models language, is both faster and more accurate than vanilla Transformers and fixed-length pooling within the same computational budget.
Toward Infinite-Long Prefix in Transformer
Prompting and contextual-based fine-tuning methods, which we call Prefix Learning, have been proposed to enhance the performance of language models on various downstream tasks that can match full parameter fine-tuning. There remains a limited theoretical understanding of how these methods work. In this paper, we aim to relieve this limitation by studying the learning ability of Prefix Learning from the perspective of prefix length. In particular, we approximate the infinite-long Prefix Learning optimization process by the Neural Tangent Kernel (NTK) technique. We formulate and solve it as a learning problem of the infinite-long prefix in a one-layer attention network. Our results confirm the over-parameterization property and arbitrary small loss convergence guarantee of the infinite-long Prefix Learning in attention. To the implementation end, we propose our NTK-Attention method, which is "equivalent" to attention computation with arbitrary prefix length efficiently. Its time complexity mainly depends on the sub-quadratic of input length (without prefix), and our method only requires d^2 + d extra parameters for representation, where d is the feature dimension. In addition, we conducted experiments that compare our NTK-Attention with full parameters fine-tuning, LoRA, and P-Tuning V2 methods across vision or natural language datasets. The results indicate our approach may be a promising parameter-efficient-fine-tuning method since it has demonstrated superior performance in numerous scenarios. Our code can be found at https://github.com/ChristianYang37/chiwun/tree/main/src/NTK-Attention.
xCOMET-lite: Bridging the Gap Between Efficiency and Quality in Learned MT Evaluation Metrics
State-of-the-art trainable machine translation evaluation metrics like xCOMET achieve high correlation with human judgment but rely on large encoders (up to 10.7B parameters), making them computationally expensive and inaccessible to researchers with limited resources. To address this issue, we investigate whether the knowledge stored in these large encoders can be compressed while maintaining quality. We employ distillation, quantization, and pruning techniques to create efficient xCOMET alternatives and introduce a novel data collection pipeline for efficient black-box distillation. Our experiments show that, using quantization, xCOMET can be compressed up to three times with no quality degradation. Additionally, through distillation, we create an xCOMET-lite metric, which has only 2.6% of xCOMET-XXL parameters, but retains 92.1% of its quality. Besides, it surpasses strong small-scale metrics like COMET-22 and BLEURT-20 on the WMT22 metrics challenge dataset by 6.4%, despite using 50% fewer parameters. All code, dataset, and models are available online.
LoRACode: LoRA Adapters for Code Embeddings
Code embeddings are essential for semantic code search; however, current approaches often struggle to capture the precise syntactic and contextual nuances inherent in code. Open-source models such as CodeBERT and UniXcoder exhibit limitations in scalability and efficiency, while high-performing proprietary systems impose substantial computational costs. We introduce a parameter-efficient fine-tuning method based on Low-Rank Adaptation (LoRA) to construct task-specific adapters for code retrieval. Our approach reduces the number of trainable parameters to less than two percent of the base model, enabling rapid fine-tuning on extensive code corpora (2 million samples in 25 minutes on two H100 GPUs). Experiments demonstrate an increase of up to 9.1% in Mean Reciprocal Rank (MRR) for Code2Code search, and up to 86.69% for Text2Code search tasks across multiple programming languages. Distinction in task-wise and language-wise adaptation helps explore the sensitivity of code retrieval for syntactical and linguistic variations.