new

Get trending papers in your email inbox!

Subscribe

byAK and the research community

Mar 13

Situated Language Learning via Interactive Narratives

This paper provides a roadmap that explores the question of how to imbue learning agents with the ability to understand and generate contextually relevant natural language in service of achieving a goal. We hypothesize that two key components in creating such agents are interactivity and environment grounding, shown to be vital parts of language learning in humans, and posit that interactive narratives should be the environments of choice for such training these agents. These games are simulations in which an agent interacts with the world through natural language -- "perceiving", "acting upon", and "talking to" the world using textual descriptions, commands, and dialogue -- and as such exist at the intersection of natural language processing, storytelling, and sequential decision making. We discuss the unique challenges a text games' puzzle-like structure combined with natural language state-and-action spaces provides: knowledge representation, commonsense reasoning, and exploration. Beyond the challenges described so far, progress in the realm of interactive narratives can be applied in adjacent problem domains. These applications provide interesting challenges of their own as well as extensions to those discussed so far. We describe three of them in detail: (1) evaluating AI system's commonsense understanding by automatically creating interactive narratives; (2) adapting abstract text-based policies to include other modalities such as vision; and (3) enabling multi-agent and human-AI collaboration in shared, situated worlds.

Quilt-LLaVA: Visual Instruction Tuning by Extracting Localized Narratives from Open-Source Histopathology Videos

The gigapixel scale of whole slide images (WSIs) poses a challenge for histopathology multi-modal chatbots, requiring a global WSI analysis for diagnosis, compounding evidence from different WSI patches. Current visual instruction datasets, generated through large language models, focus on creating question/answer pairs for individual image patches, which may lack diagnostic capacity on their own in histopathology, further complicated by the absence of spatial grounding in histopathology image captions. To bridge this gap, we introduce Quilt-Instruct, a large-scale dataset of 107,131 histopathology-specific instruction question/answer pairs, that is collected by leveraging educational histopathology videos from YouTube, which provides spatial localization of captions by automatically extracting narrators' cursor movements. In addition, we provide contextual reasoning by extracting diagnosis and supporting facts from the entire video content to guide the extrapolative reasoning of GPT-4. Using Quilt-Instruct, we train Quilt-LLaVA, which can reason beyond the given single image patch, enabling diagnostic reasoning and the capability of spatial awareness. To evaluate Quilt-LLaVA, we propose a comprehensive evaluation dataset created from 985 images and 1283 human-generated question-answers. We also thoroughly evaluate Quilt-LLaVA using public histopathology datasets, where Quilt-LLaVA significantly outperforms SOTA by over 10% on relative GPT-4 score and 4% and 9% on open and closed set VQA. Our code, data, and model are publicly available at quilt-llava.github.io.

GROVE: A Retrieval-augmented Complex Story Generation Framework with A Forest of Evidence

Conditional story generation is significant in human-machine interaction, particularly in producing stories with complex plots. While Large language models (LLMs) perform well on multiple NLP tasks, including story generation, it is challenging to generate stories with both complex and creative plots. Existing methods often rely on detailed prompts to guide LLMs to meet target conditions, which inadvertently restrict the creative potential of the generated stories. We argue that leveraging information from exemplary human-written stories facilitates generating more diverse plotlines. Delving deeper into story details helps build complex and credible plots. In this paper, we propose a retrieval-auGmented stoRy generation framework with a fOrest of eVidEnce (GROVE) to enhance stories' complexity. We build a retrieval repository for target conditions to produce few-shot examples to prompt LLMs. Additionally, we design an ``asking-why'' prompting scheme that extracts a forest of evidence, providing compensation for the ambiguities that may occur in the generated story. This iterative process uncovers underlying story backgrounds. Finally, we select the most fitting chains of evidence from the evidence forest and integrate them into the generated story, thereby enhancing the narrative's complexity and credibility. Experimental results and numerous examples verify the effectiveness of our method.

Language with Vision: a Study on Grounded Word and Sentence Embeddings

Language grounding to vision is an active field of research aiming to enrich text-based representations of word meanings by leveraging perceptual knowledge from vision. Despite many attempts at language grounding, it is still unclear how to effectively inject visual knowledge into the word embeddings of a language in such a way that a proper balance of textual and visual knowledge is maintained. Some common concerns are the following. Is visual grounding beneficial for abstract words or is its contribution only limited to concrete words? What is the optimal way of bridging the gap between text and vision? How much do we gain by visually grounding textual embeddings? The present study addresses these questions by proposing a simple yet very effective grounding approach for pre-trained word embeddings. Our model aligns textual embeddings with vision while largely preserving the distributional statistics that characterize word use in text corpora. By applying a learned alignment, we are able to generate visually grounded embeddings for unseen words, including abstract words. A series of evaluations on word similarity benchmarks shows that visual grounding is beneficial not only for concrete words, but also for abstract words. We also show that our method for visual grounding offers advantages for contextualized embeddings, but only when these are trained on corpora of relatively modest size. Code and grounded embeddings for English are available at https://github.com/Hazel1994/Visually_Grounded_Word_Embeddings_2.

An Automated Pipeline for Character and Relationship Extraction from Readers' Literary Book Reviews on Goodreads.com

Reader reviews of literary fiction on social media, especially those in persistent, dedicated forums, create and are in turn driven by underlying narrative frameworks. In their comments about a novel, readers generally include only a subset of characters and their relationships, thus offering a limited perspective on that work. Yet in aggregate, these reviews capture an underlying narrative framework comprised of different actants (people, places, things), their roles, and interactions that we label the "consensus narrative framework". We represent this framework in the form of an actant-relationship story graph. Extracting this graph is a challenging computational problem, which we pose as a latent graphical model estimation problem. Posts and reviews are viewed as samples of sub graphs/networks of the hidden narrative framework. Inspired by the qualitative narrative theory of Greimas, we formulate a graphical generative Machine Learning (ML) model where nodes represent actants, and multi-edges and self-loops among nodes capture context-specific relationships. We develop a pipeline of interlocking automated methods to extract key actants and their relationships, and apply it to thousands of reviews and comments posted on Goodreads.com. We manually derive the ground truth narrative framework from SparkNotes, and then use word embedding tools to compare relationships in ground truth networks with our extracted networks. We find that our automated methodology generates highly accurate consensus narrative frameworks: for our four target novels, with approximately 2900 reviews per novel, we report average coverage/recall of important relationships of > 80% and an average edge detection rate of >89\%. These extracted narrative frameworks can generate insight into how people (or classes of people) read and how they recount what they have read to others.

Album Storytelling with Iterative Story-aware Captioning and Large Language Models

This work studies how to transform an album to vivid and coherent stories, a task we refer to as "album storytelling". While this task can help preserve memories and facilitate experience sharing, it remains an underexplored area in current literature. With recent advances in Large Language Models (LLMs), it is now possible to generate lengthy, coherent text, opening up the opportunity to develop an AI assistant for album storytelling. One natural approach is to use caption models to describe each photo in the album, and then use LLMs to summarize and rewrite the generated captions into an engaging story. However, we find this often results in stories containing hallucinated information that contradicts the images, as each generated caption ("story-agnostic") is not always about the description related to the whole story or miss some necessary information. To address these limitations, we propose a new iterative album storytelling pipeline. Specifically, we start with an initial story and build a story-aware caption model to refine the captions using the whole story as guidance. The polished captions are then fed into the LLMs to generate a new refined story. This process is repeated iteratively until the story contains minimal factual errors while maintaining coherence. To evaluate our proposed pipeline, we introduce a new dataset of image collections from vlogs and a set of systematic evaluation metrics. Our results demonstrate that our method effectively generates more accurate and engaging stories for albums, with enhanced coherence and vividness.

Long-Span Question-Answering: Automatic Question Generation and QA-System Ranking via Side-by-Side Evaluation

We explore the use of long-context capabilities in large language models to create synthetic reading comprehension data from entire books. Previous efforts to construct such datasets relied on crowd-sourcing, but the emergence of transformers with a context size of 1 million or more tokens now enables entirely automatic approaches. Our objective is to test the capabilities of LLMs to analyze, understand, and reason over problems that require a detailed comprehension of long spans of text, such as questions involving character arcs, broader themes, or the consequences of early actions later in the story. We propose a holistic pipeline for automatic data generation including question generation, answering, and model scoring using an ``Evaluator''. We find that a relative approach, comparing answers between models in a pairwise fashion and ranking with a Bradley-Terry model, provides a more consistent and differentiating scoring mechanism than an absolute scorer that rates answers individually. We also show that LLMs from different model families produce moderate agreement in their ratings. We ground our approach using the manually curated NarrativeQA dataset, where our evaluator shows excellent agreement with human judgement and even finds errors in the dataset. Using our automatic evaluation approach, we show that using an entire book as context produces superior reading comprehension performance compared to baseline no-context (parametric knowledge only) and retrieval-based approaches.

F-LMM: Grounding Frozen Large Multimodal Models

Endowing Large Multimodal Models (LMMs) with visual grounding capability can significantly enhance AIs' understanding of the visual world and their interaction with humans. However, existing methods typically fine-tune the parameters of LMMs to learn additional segmentation tokens and overfit grounding and segmentation datasets. Such a design would inevitably cause a catastrophic diminution in the indispensable conversational capability of general AI assistants. In this paper, we comprehensively evaluate state-of-the-art grounding LMMs across a suite of multimodal question-answering benchmarks, observing pronounced performance drops that indicate vanishing general knowledge comprehension and weakened instruction following ability. To address this issue, we present F-LMM -- grounding frozen off-the-shelf LMMs in human-AI conversations -- a straightforward yet effective design based on the fact that word-pixel correspondences conducive to visual grounding inherently exist in the attention weights of well-trained LMMs. Using only a few trainable CNN layers, we can translate word-pixel attention weights to mask logits, which a SAM-based mask refiner can further optimise. Our F-LMM neither learns special segmentation tokens nor utilises high-quality grounded instruction-tuning data, but achieves competitive performance on referring expression segmentation and panoptic narrative grounding benchmarks while completely preserving LMMs' original conversational ability. Additionally, with instruction-following ability preserved and grounding ability obtained, our F-LMM can perform visual chain-of-thought reasoning and better resist object hallucinations.

Scalable and Domain-General Abstractive Proposition Segmentation

Segmenting text into fine-grained units of meaning is important to a wide range of NLP applications. The default approach of segmenting text into sentences is often insufficient, especially since sentences are usually complex enough to include multiple units of meaning that merit separate treatment in the downstream task. We focus on the task of abstractive proposition segmentation: transforming text into simple, self-contained, well-formed sentences. Several recent works have demonstrated the utility of proposition segmentation with few-shot prompted LLMs for downstream tasks such as retrieval-augmented grounding and fact verification. However, this approach does not scale to large amounts of text and may not always extract all the facts from the input text. In this paper, we first introduce evaluation metrics for the task to measure several dimensions of quality. We then propose a scalable, yet accurate, proposition segmentation model. We model proposition segmentation as a supervised task by training LLMs on existing annotated datasets and show that training yields significantly improved results. We further show that by using the fine-tuned LLMs as teachers for annotating large amounts of multi-domain synthetic distillation data, we can train smaller student models with results similar to the teacher LLMs. We then demonstrate that our technique leads to effective domain generalization, by annotating data in two domains outside the original training data and evaluating on them. Finally, as a key contribution of the paper, we share an easy-to-use API for NLP practitioners to use.

TicketTalk: Toward human-level performance with end-to-end, transaction-based dialog systems

We present a data-driven, end-to-end approach to transaction-based dialog systems that performs at near-human levels in terms of verbal response quality and factual grounding accuracy. We show that two essential components of the system produce these results: a sufficiently large and diverse, in-domain labeled dataset, and a neural network-based, pre-trained model that generates both verbal responses and API call predictions. In terms of data, we introduce TicketTalk, a movie ticketing dialog dataset with 23,789 annotated conversations. The movie ticketing conversations range from completely open-ended and unrestricted to more structured, both in terms of their knowledge base, discourse features, and number of turns. In qualitative human evaluations, model-generated responses trained on just 10,000 TicketTalk dialogs were rated to "make sense" 86.5 percent of the time, almost the same as human responses in the same contexts. Our simple, API-focused annotation schema results in a much easier labeling task making it faster and more cost effective. It is also the key component for being able to predict API calls accurately. We handle factual grounding by incorporating API calls in the training data, allowing our model to learn which actions to take and when. Trained on the same 10,000-dialog set, the model's API call predictions were rated to be correct 93.9 percent of the time in our evaluations, surpassing the ratings for the corresponding human labels. We show how API prediction and response generation scores improve as the dataset size incrementally increases from 5000 to 21,000 dialogs. Our analysis also clearly illustrates the benefits of pre-training. We are publicly releasing the TicketTalk dataset with this paper to facilitate future work on transaction-based dialogs.

MAIRA-2: Grounded Radiology Report Generation

Radiology reporting is a complex task that requires detailed image understanding, integration of multiple inputs, including comparison with prior imaging, and precise language generation. This makes it ideal for the development and use of generative multimodal models. Here, we extend report generation to include the localisation of individual findings on the image - a task we call grounded report generation. Prior work indicates that grounding is important for clarifying image understanding and interpreting AI-generated text. Therefore, grounded reporting stands to improve the utility and transparency of automated report drafting. To enable evaluation of grounded reporting, we propose a novel evaluation framework - RadFact - leveraging the reasoning capabilities of large language models (LLMs). RadFact assesses the factuality of individual generated sentences, as well as correctness of generated spatial localisations when present. We introduce MAIRA-2, a large multimodal model combining a radiology-specific image encoder with a LLM, and trained for the new task of grounded report generation on chest X-rays. MAIRA-2 uses more comprehensive inputs than explored previously: the current frontal image, the current lateral image, the prior frontal image and prior report, as well as the Indication, Technique and Comparison sections of the current report. We demonstrate that these additions significantly improve report quality and reduce hallucinations, establishing a new state of the art on findings generation (without grounding) on MIMIC-CXR while demonstrating the feasibility of grounded reporting as a novel and richer task.

What Makes a Good Story and How Can We Measure It? A Comprehensive Survey of Story Evaluation

With the development of artificial intelligence, particularly the success of Large Language Models (LLMs), the quantity and quality of automatically generated stories have significantly increased. This has led to the need for automatic story evaluation to assess the generative capabilities of computing systems and analyze the quality of both automatic-generated and human-written stories. Evaluating a story can be more challenging than other generation evaluation tasks. While tasks like machine translation primarily focus on assessing the aspects of fluency and accuracy, story evaluation demands complex additional measures such as overall coherence, character development, interestingness, etc. This requires a thorough review of relevant research. In this survey, we first summarize existing storytelling tasks, including text-to-text, visual-to-text, and text-to-visual. We highlight their evaluation challenges, identify various human criteria to measure stories, and present existing benchmark datasets. Then, we propose a taxonomy to organize evaluation metrics that have been developed or can be adopted for story evaluation. We also provide descriptions of these metrics, along with the discussion of their merits and limitations. Later, we discuss the human-AI collaboration for story evaluation and generation. Finally, we suggest potential future research directions, extending from story evaluation to general evaluations.

Sentence Attention Blocks for Answer Grounding

Answer grounding is the task of locating relevant visual evidence for the Visual Question Answering task. While a wide variety of attention methods have been introduced for this task, they suffer from the following three problems: designs that do not allow the usage of pre-trained networks and do not benefit from large data pre-training, custom designs that are not based on well-grounded previous designs, therefore limiting the learning power of the network, or complicated designs that make it challenging to re-implement or improve them. In this paper, we propose a novel architectural block, which we term Sentence Attention Block, to solve these problems. The proposed block re-calibrates channel-wise image feature-maps by explicitly modeling inter-dependencies between the image feature-maps and sentence embedding. We visually demonstrate how this block filters out irrelevant feature-maps channels based on sentence embedding. We start our design with a well-known attention method, and by making minor modifications, we improve the results to achieve state-of-the-art accuracy. The flexibility of our method makes it easy to use different pre-trained backbone networks, and its simplicity makes it easy to understand and be re-implemented. We demonstrate the effectiveness of our method on the TextVQA-X, VQS, VQA-X, and VizWiz-VQA-Grounding datasets. We perform multiple ablation studies to show the effectiveness of our design choices.

Measuring Large Language Models Capacity to Annotate Journalistic Sourcing

Since the launch of ChatGPT in late 2022, the capacities of Large Language Models and their evaluation have been in constant discussion and evaluation both in academic research and in the industry. Scenarios and benchmarks have been developed in several areas such as law, medicine and math (Bommasani et al., 2023) and there is continuous evaluation of model variants. One area that has not received sufficient scenario development attention is journalism, and in particular journalistic sourcing and ethics. Journalism is a crucial truth-determination function in democracy (Vincent, 2023), and sourcing is a crucial pillar to all original journalistic output. Evaluating the capacities of LLMs to annotate stories for the different signals of sourcing and how reporters justify them is a crucial scenario that warrants a benchmark approach. It offers potential to build automated systems to contrast more transparent and ethically rigorous forms of journalism with everyday fare. In this paper we lay out a scenario to evaluate LLM performance on identifying and annotating sourcing in news stories on a five-category schema inspired from journalism studies (Gans, 2004). We offer the use case, our dataset and metrics and as the first step towards systematic benchmarking. Our accuracy findings indicate LLM-based approaches have more catching to do in identifying all the sourced statements in a story, and equally, in matching the type of sources. An even harder task is spotting source justifications.

Breakpoint Transformers for Modeling and Tracking Intermediate Beliefs

Can we teach natural language understanding models to track their beliefs through intermediate points in text? We propose a representation learning framework called breakpoint modeling that allows for learning of this type. Given any text encoder and data marked with intermediate states (breakpoints) along with corresponding textual queries viewed as true/false propositions (i.e., the candidate beliefs of a model, consisting of information changing through time) our approach trains models in an efficient and end-to-end fashion to build intermediate representations that facilitate teaching and direct querying of beliefs at arbitrary points alongside solving other end tasks. To show the benefit of our approach, we experiment with a diverse set of NLU tasks including relational reasoning on CLUTRR and narrative understanding on bAbI. Using novel belief prediction tasks for both tasks, we show the benefit of our main breakpoint transformer, based on T5, over conventional representation learning approaches in terms of processing efficiency, prediction accuracy and prediction consistency, all with minimal to no effect on corresponding QA end tasks. To show the feasibility of incorporating our belief tracker into more complex reasoning pipelines, we also obtain SOTA performance on the three-tiered reasoning challenge for the TRIP benchmark (around 23-32% absolute improvement on Tasks 2-3).

"Sorry, Come Again?" Prompting -- Enhancing Comprehension and Diminishing Hallucination with [PAUSE]-injected Optimal Paraphrasing

Hallucination has emerged as the most vulnerable aspect of contemporary Large Language Models (LLMs). In this paper, we introduce the Sorry, Come Again (SCA) prompting, aimed to avoid LLM hallucinations by enhancing comprehension through: (i) optimal paraphrasing and (ii) injecting [PAUSE] tokens to delay LLM generation. First, we provide an in-depth analysis of linguistic nuances: formality, readability, and concreteness of prompts for 21 LLMs, and elucidate how these nuances contribute to hallucinated generation. Prompts with lower readability, formality, or concreteness pose comprehension challenges for LLMs, similar to those faced by humans. In such scenarios, an LLM tends to speculate and generate content based on its imagination (associative memory) to fill these information gaps. Although these speculations may occasionally align with factual information, their accuracy is not assured, often resulting in hallucination. Recent studies reveal that an LLM often neglects the middle sections of extended prompts, a phenomenon termed as lost in the middle. While a specific paraphrase may suit one LLM, the same paraphrased version may elicit a different response from another LLM. Therefore, we propose an optimal paraphrasing technique to identify the most comprehensible paraphrase of a given prompt, evaluated using Integrated Gradient (and its variations) to guarantee that the LLM accurately processes all words. While reading lengthy sentences, humans often pause at various points to better comprehend the meaning read thus far. We have fine-tuned an LLM with injected [PAUSE] tokens, allowing the LLM to pause while reading lengthier prompts. This has brought several key contributions: (i) determining the optimal position to inject [PAUSE], (ii) determining the number of [PAUSE] tokens to be inserted, and (iii) introducing reverse proxy tuning to fine-tune the LLM for [PAUSE] insertion.

EIPE-text: Evaluation-Guided Iterative Plan Extraction for Long-Form Narrative Text Generation

Plan-and-Write is a common hierarchical approach in long-form narrative text generation, which first creates a plan to guide the narrative writing. Following this approach, several studies rely on simply prompting large language models for planning, which often yields suboptimal results. In this paper, we propose a new framework called Evaluation-guided Iterative Plan Extraction for long-form narrative text generation (EIPE-text), which extracts plans from the corpus of narratives and utilizes the extracted plans to construct a better planner. EIPE-text has three stages: plan extraction, learning, and inference. In the plan extraction stage, it iteratively extracts and improves plans from the narrative corpus and constructs a plan corpus. We propose a question answer (QA) based evaluation mechanism to automatically evaluate the plans and generate detailed plan refinement instructions to guide the iterative improvement. In the learning stage, we build a better planner by fine-tuning with the plan corpus or in-context learning with examples in the plan corpus. Finally, we leverage a hierarchical approach to generate long-form narratives. We evaluate the effectiveness of EIPE-text in the domains of novels and storytelling. Both GPT-4-based evaluations and human evaluations demonstrate that our method can generate more coherent and relevant long-form narratives. Our code will be released in the future.

Thought-Path Contrastive Learning via Premise-Oriented Data Augmentation for Logical Reading Comprehension

Logical reading comprehension is a challenging task that entails grasping the underlying semantics of text and applying reasoning to deduce the correct answer. Prior researches have primarily focused on enhancing logical reasoning capabilities through Chain-of-Thought (CoT) or data augmentation. However, previous work constructing chain-of-thought rationales concentrates solely on analyzing correct options, neglecting the incorrect alternatives. Addtionally, earlier efforts on data augmentation by altering contexts rely on rule-based methods, which result in generated contexts that lack diversity and coherence. To address these issues, we propose a Premise-Oriented Data Augmentation (PODA) framework. This framework can generate CoT rationales including analyses for both correct and incorrect options, while constructing diverse and high-quality counterfactual contexts from incorrect candidate options. We integrate summarizing premises and identifying premises for each option into rationales. Subsequently, we employ multi-step prompts with identified premises to construct counterfactual context. To facilitate the model's capabilities to better differentiate the reasoning process associated with each option, we introduce a novel thought-path contrastive learning method that compares reasoning paths between the original and counterfactual samples. Experimental results on three representative LLMs demonstrate that our method can improve the baselines substantially across two challenging logical reasoning benchmarks (ReClor and LogiQA 2.0). The data and code are released at https://github.com/lalalamdbf/TPReasoner.

SUR-adapter: Enhancing Text-to-Image Pre-trained Diffusion Models with Large Language Models

Diffusion models, which have emerged to become popular text-to-image generation models, can produce high-quality and content-rich images guided by textual prompts. However, there are limitations to semantic understanding and commonsense reasoning in existing models when the input prompts are concise narrative, resulting in low-quality image generation. To improve the capacities for narrative prompts, we propose a simple-yet-effective parameter-efficient fine-tuning approach called the Semantic Understanding and Reasoning adapter (SUR-adapter) for pre-trained diffusion models. To reach this goal, we first collect and annotate a new dataset SURD which consists of more than 57,000 semantically corrected multi-modal samples. Each sample contains a simple narrative prompt, a complex keyword-based prompt, and a high-quality image. Then, we align the semantic representation of narrative prompts to the complex prompts and transfer knowledge of large language models (LLMs) to our SUR-adapter via knowledge distillation so that it can acquire the powerful semantic understanding and reasoning capabilities to build a high-quality textual semantic representation for text-to-image generation. We conduct experiments by integrating multiple LLMs and popular pre-trained diffusion models to show the effectiveness of our approach in enabling diffusion models to understand and reason concise natural language without image quality degradation. Our approach can make text-to-image diffusion models easier to use with better user experience, which demonstrates our approach has the potential for further advancing the development of user-friendly text-to-image generation models by bridging the semantic gap between simple narrative prompts and complex keyword-based prompts.

The Troubling Emergence of Hallucination in Large Language Models -- An Extensive Definition, Quantification, and Prescriptive Remediations

The recent advancements in Large Language Models (LLMs) have garnered widespread acclaim for their remarkable emerging capabilities. However, the issue of hallucination has parallelly emerged as a by-product, posing significant concerns. While some recent endeavors have been made to identify and mitigate different types of hallucination, there has been a limited emphasis on the nuanced categorization of hallucination and associated mitigation methods. To address this gap, we offer a fine-grained discourse on profiling hallucination based on its degree, orientation, and category, along with offering strategies for alleviation. As such, we define two overarching orientations of hallucination: (i) factual mirage (FM) and (ii) silver lining (SL). To provide a more comprehensive understanding, both orientations are further sub-categorized into intrinsic and extrinsic, with three degrees of severity - (i) mild, (ii) moderate, and (iii) alarming. We also meticulously categorize hallucination into six types: (i) acronym ambiguity, (ii) numeric nuisance, (iii) generated golem, (iv) virtual voice, (v) geographic erratum, and (vi) time wrap. Furthermore, we curate HallucInation eLiciTation (HILT), a publicly available dataset comprising of 75,000 samples generated using 15 contemporary LLMs along with human annotations for the aforementioned categories. Finally, to establish a method for quantifying and to offer a comparative spectrum that allows us to evaluate and rank LLMs based on their vulnerability to producing hallucinations, we propose Hallucination Vulnerability Index (HVI). We firmly believe that HVI holds significant value as a tool for the wider NLP community, with the potential to serve as a rubric in AI-related policy-making. In conclusion, we propose two solution strategies for mitigating hallucinations.

Are Large Language Models Temporally Grounded?

Are Large language models (LLMs) temporally grounded? Since LLMs cannot perceive and interact with the environment, it is impossible to answer this question directly. Instead, we provide LLMs with textual narratives and probe them with respect to their common-sense knowledge of the structure and duration of events, their ability to order events along a timeline, and self-consistency within their temporal model (e.g., temporal relations such as after and before are mutually exclusive for any pair of events). We evaluate state-of-the-art LLMs (such as LLaMA 2 and GPT-4) on three tasks reflecting these abilities. Generally, we find that LLMs lag significantly behind both human performance as well as small-scale, specialised LMs. In-context learning, instruction tuning, and chain-of-thought prompting reduce this gap only to a limited degree. Crucially, LLMs struggle the most with self-consistency, displaying incoherent behaviour in at least 27.23% of their predictions. Contrary to expectations, we also find that scaling the model size does not guarantee positive gains in performance. To explain these results, we study the sources from which LLMs may gather temporal information: we find that sentence ordering in unlabelled texts, available during pre-training, is only weakly correlated with event ordering. Moreover, public instruction tuning mixtures contain few temporal tasks. Hence, we conclude that current LLMs lack a consistent temporal model of textual narratives. Code, datasets, and LLM outputs are available at https://github.com/yfqiu-nlp/temporal-llms.

Learning to Ground Instructional Articles in Videos through Narrations

In this paper we present an approach for localizing steps of procedural activities in narrated how-to videos. To deal with the scarcity of labeled data at scale, we source the step descriptions from a language knowledge base (wikiHow) containing instructional articles for a large variety of procedural tasks. Without any form of manual supervision, our model learns to temporally ground the steps of procedural articles in how-to videos by matching three modalities: frames, narrations, and step descriptions. Specifically, our method aligns steps to video by fusing information from two distinct pathways: i) {\em direct} alignment of step descriptions to frames, ii) {\em indirect} alignment obtained by composing steps-to-narrations with narrations-to-video correspondences. Notably, our approach performs global temporal grounding of all steps in an article at once by exploiting order information, and is trained with step pseudo-labels which are iteratively refined and aggressively filtered. In order to validate our model we introduce a new evaluation benchmark -- HT-Step -- obtained by manually annotating a 124-hour subset of HowTo100MA test server is accessible at \url{https://eval.ai/web/challenges/challenge-page/2082.} with steps sourced from wikiHow articles. Experiments on this benchmark as well as zero-shot evaluations on CrossTask demonstrate that our multi-modality alignment yields dramatic gains over several baselines and prior works. Finally, we show that our inner module for matching narration-to-video outperforms by a large margin the state of the art on the HTM-Align narration-video alignment benchmark.

TACAM: Topic And Context Aware Argument Mining

In this work we address the problem of argument search. The purpose of argument search is the distillation of pro and contra arguments for requested topics from large text corpora. In previous works, the usual approach is to use a standard search engine to extract text parts which are relevant to the given topic and subsequently use an argument recognition algorithm to select arguments from them. The main challenge in the argument recognition task, which is also known as argument mining, is that often sentences containing arguments are structurally similar to purely informative sentences without any stance about the topic. In fact, they only differ semantically. Most approaches use topic or search term information only for the first search step and therefore assume that arguments can be classified independently of a topic. We argue that topic information is crucial for argument mining, since the topic defines the semantic context of an argument. Precisely, we propose different models for the classification of arguments, which take information about a topic of an argument into account. Moreover, to enrich the context of a topic and to let models understand the context of the potential argument better, we integrate information from different external sources such as Knowledge Graphs or pre-trained NLP models. Our evaluation shows that considering topic information, especially in connection with external information, provides a significant performance boost for the argument mining task.

Learning to Memorize Entailment and Discourse Relations for Persona-Consistent Dialogues

Maintaining engagement and consistency is particularly important in dialogue systems. Existing works have improved the performance of dialogue systems by intentionally learning interlocutor personas with sophisticated network structures. One issue with this approach is that it requires more personal corpora with annotations. Additionally, these models typically perform the next utterance prediction to generate a response but neglect the discourse coherence in the entire conversation. To address these issues, this study proposes a method of learning to memorize entailment and discourse relations for persona-consistent dialogue tasks. Entailment text pairs in natural language inference dataset were applied to learn latent entailment relations as external memories by premise-to-hypothesis generation task. Furthermore, an internal memory with a similar architecture was applied to the discourse information in the dialogue. Placing orthogonality restrictions on these two memory spaces ensures that the latent entailment relations remain dialogue-independent. Both memories collaborate to obtain entailment and discourse representation for the generation, allowing a deeper understanding of both consistency and coherence. Experiments on two large public datasets, PersonaChat and DSTC7-AVSD, demonstrated the effectiveness of the proposed method. Both automatic and human evaluations indicate that the proposed model outperforms several strong baselines in terms of both persona consistency and response coherence. Our source code is available at https://github.com/Chenrj233/LMEDR.

A Video Is Worth 4096 Tokens: Verbalize Story Videos To Understand Them In Zero Shot

Multimedia content, such as advertisements and story videos, exhibit a rich blend of creativity and multiple modalities. They incorporate elements like text, visuals, audio, and storytelling techniques, employing devices like emotions, symbolism, and slogans to convey meaning. While previous research in multimedia understanding has focused mainly on videos with specific actions like cooking, there is a dearth of large annotated training datasets, hindering the development of supervised learning models with satisfactory performance for real-world applications. However, the rise of large language models (LLMs) has witnessed remarkable zero-shot performance in various natural language processing (NLP) tasks, such as emotion classification, question-answering, and topic classification. To bridge this performance gap in multimedia understanding, we propose verbalizing story videos to generate their descriptions in natural language and then performing video-understanding tasks on the generated story as opposed to the original video. Through extensive experiments on five video-understanding tasks, we demonstrate that our method, despite being zero-shot, achieves significantly better results than supervised baselines for video understanding. Further, alleviating a lack of story understanding benchmarks, we publicly release the first dataset on a crucial task in computational social science, persuasion strategy identification.

Detecting fake news by enhanced text representation with multi-EDU-structure awareness

Since fake news poses a serious threat to society and individuals, numerous studies have been brought by considering text, propagation and user profiles. Due to the data collection problem, these methods based on propagation and user profiles are less applicable in the early stages. A good alternative method is to detect news based on text as soon as they are released, and a lot of text-based methods were proposed, which usually utilized words, sentences or paragraphs as basic units. But, word is a too fine-grained unit to express coherent information well, sentence or paragraph is too coarse to show specific information. Which granularity is better and how to utilize it to enhance text representation for fake news detection are two key problems. In this paper, we introduce Elementary Discourse Unit (EDU) whose granularity is between word and sentence, and propose a multi-EDU-structure awareness model to improve text representation for fake news detection, namely EDU4FD. For the multi-EDU-structure awareness, we build the sequence-based EDU representations and the graph-based EDU representations. The former is gotten by modeling the coherence between consecutive EDUs with TextCNN that reflect the semantic coherence. For the latter, we first extract rhetorical relations to build the EDU dependency graph, which can show the global narrative logic and help deliver the main idea truthfully. Then a Relation Graph Attention Network (RGAT) is set to get the graph-based EDU representation. Finally, the two EDU representations are incorporated as the enhanced text representation for fake news detection, using a gated recursive unit combined with a global attention mechanism. Experiments on four cross-source fake news datasets show that our model outperforms the state-of-the-art text-based methods.

tagE: Enabling an Embodied Agent to Understand Human Instructions

Natural language serves as the primary mode of communication when an intelligent agent with a physical presence engages with human beings. While a plethora of research focuses on natural language understanding (NLU), encompassing endeavors such as sentiment analysis, intent prediction, question answering, and summarization, the scope of NLU directed at situations necessitating tangible actions by an embodied agent remains limited. The inherent ambiguity and incompleteness inherent in natural language present challenges for intelligent agents striving to decipher human intention. To tackle this predicament head-on, we introduce a novel system known as task and argument grounding for Embodied agents (tagE). At its core, our system employs an inventive neural network model designed to extract a series of tasks from complex task instructions expressed in natural language. Our proposed model adopts an encoder-decoder framework enriched with nested decoding to effectively extract tasks and their corresponding arguments from these intricate instructions. These extracted tasks are then mapped (or grounded) to the robot's established collection of skills, while the arguments find grounding in objects present within the environment. To facilitate the training and evaluation of our system, we have curated a dataset featuring complex instructions. The results of our experiments underscore the prowess of our approach, as it outperforms robust baseline models.

Towards Improving Document Understanding: An Exploration on Text-Grounding via MLLMs

In the field of document understanding, significant advances have been made in the fine-tuning of Multimodal Large Language Models (MLLMs) with instruction-following data. Nevertheless, the potential of text-grounding capability within text-rich scenarios remains underexplored. In this paper, we present a text-grounding document understanding model, termed TGDoc, which addresses this deficiency by enhancing MLLMs with the ability to discern the spatial positioning of text within images. Empirical evidence suggests that text-grounding improves the model's interpretation of textual content, thereby elevating its proficiency in comprehending text-rich images. Specifically, we compile a dataset containing 99K PowerPoint presentations sourced from the internet. We formulate instruction tuning tasks including text detection, recognition, and spotting to facilitate the cohesive alignment between the visual encoder and large language model. Moreover, we curate a collection of text-rich images and prompt the text-only GPT-4 to generate 12K high-quality conversations, featuring textual locations within text-rich scenarios. By integrating text location data into the instructions, TGDoc is adept at discerning text locations during the visual question process. Extensive experiments demonstrate that our method achieves state-of-the-art performance across multiple text-rich benchmarks, validating the effectiveness of our method.

A Comprehensive Survey of Hallucination Mitigation Techniques in Large Language Models

As Large Language Models (LLMs) continue to advance in their ability to write human-like text, a key challenge remains around their tendency to hallucinate generating content that appears factual but is ungrounded. This issue of hallucination is arguably the biggest hindrance to safely deploying these powerful LLMs into real-world production systems that impact people's lives. The journey toward widespread adoption of LLMs in practical settings heavily relies on addressing and mitigating hallucinations. Unlike traditional AI systems focused on limited tasks, LLMs have been exposed to vast amounts of online text data during training. While this allows them to display impressive language fluency, it also means they are capable of extrapolating information from the biases in training data, misinterpreting ambiguous prompts, or modifying the information to align superficially with the input. This becomes hugely alarming when we rely on language generation capabilities for sensitive applications, such as summarizing medical records, financial analysis reports, etc. This paper presents a comprehensive survey of over 32 techniques developed to mitigate hallucination in LLMs. Notable among these are Retrieval Augmented Generation (Lewis et al, 2021), Knowledge Retrieval (Varshney et al,2023), CoNLI (Lei et al, 2023), and CoVe (Dhuliawala et al, 2023). Furthermore, we introduce a detailed taxonomy categorizing these methods based on various parameters, such as dataset utilization, common tasks, feedback mechanisms, and retriever types. This classification helps distinguish the diverse approaches specifically designed to tackle hallucination issues in LLMs. Additionally, we analyze the challenges and limitations inherent in these techniques, providing a solid foundation for future research in addressing hallucinations and related phenomena within the realm of LLMs.

From Word Vectors to Multimodal Embeddings: Techniques, Applications, and Future Directions For Large Language Models

Word embeddings and language models have transformed natural language processing (NLP) by facilitating the representation of linguistic elements in continuous vector spaces. This review visits foundational concepts such as the distributional hypothesis and contextual similarity, tracing the evolution from sparse representations like one-hot encoding to dense embeddings including Word2Vec, GloVe, and fastText. We examine both static and contextualized embeddings, underscoring advancements in models such as ELMo, BERT, and GPT and their adaptations for cross-lingual and personalized applications. The discussion extends to sentence and document embeddings, covering aggregation methods and generative topic models, along with the application of embeddings in multimodal domains, including vision, robotics, and cognitive science. Advanced topics such as model compression, interpretability, numerical encoding, and bias mitigation are analyzed, addressing both technical challenges and ethical implications. Additionally, we identify future research directions, emphasizing the need for scalable training techniques, enhanced interpretability, and robust grounding in non-textual modalities. By synthesizing current methodologies and emerging trends, this survey offers researchers and practitioners an in-depth resource to push the boundaries of embedding-based language models.

Discourse-Aware Text Simplification: From Complex Sentences to Linked Propositions

Sentences that present a complex syntax act as a major stumbling block for downstream Natural Language Processing applications whose predictive quality deteriorates with sentence length and complexity. The task of Text Simplification (TS) may remedy this situation. It aims to modify sentences in order to make them easier to process, using a set of rewriting operations, such as reordering, deletion, or splitting. State-of-the-art syntactic TS approaches suffer from two major drawbacks: first, they follow a very conservative approach in that they tend to retain the input rather than transforming it, and second, they ignore the cohesive nature of texts, where context spread across clauses or sentences is needed to infer the true meaning of a statement. To address these problems, we present a discourse-aware TS approach that splits and rephrases complex English sentences within the semantic context in which they occur. Based on a linguistically grounded transformation stage that uses clausal and phrasal disembedding mechanisms, complex sentences are transformed into shorter utterances with a simple canonical structure that can be easily analyzed by downstream applications. With sentence splitting, we thus address a TS task that has hardly been explored so far. Moreover, we introduce the notion of minimality in this context, as we aim to decompose source sentences into a set of self-contained minimal semantic units. To avoid breaking down the input into a disjointed sequence of statements that is difficult to interpret because important contextual information is missing, we incorporate the semantic context between the split propositions in the form of hierarchical structures and semantic relationships. In that way, we generate a semantic hierarchy of minimal propositions that leads to a novel representation of complex assertions that puts a semantic layer on top of the simplified sentences.

SILG: The Multi-environment Symbolic Interactive Language Grounding Benchmark

Existing work in language grounding typically study single environments. How do we build unified models that apply across multiple environments? We propose the multi-environment Symbolic Interactive Language Grounding benchmark (SILG), which unifies a collection of diverse grounded language learning environments under a common interface. SILG consists of grid-world environments that require generalization to new dynamics, entities, and partially observed worlds (RTFM, Messenger, NetHack), as well as symbolic counterparts of visual worlds that require interpreting rich natural language with respect to complex scenes (ALFWorld, Touchdown). Together, these environments provide diverse grounding challenges in richness of observation space, action space, language specification, and plan complexity. In addition, we propose the first shared model architecture for RL on these environments, and evaluate recent advances such as egocentric local convolution, recurrent state-tracking, entity-centric attention, and pretrained LM using SILG. Our shared architecture achieves comparable performance to environment-specific architectures. Moreover, we find that many recent modelling advances do not result in significant gains on environments other than the one they were designed for. This highlights the need for a multi-environment benchmark. Finally, the best models significantly underperform humans on SILG, which suggests ample room for future work. We hope SILG enables the community to quickly identify new methodologies for language grounding that generalize to a diverse set of environments and their associated challenges.

LaMDA: Language Models for Dialog Applications

We present LaMDA: Language Models for Dialog Applications. LaMDA is a family of Transformer-based neural language models specialized for dialog, which have up to 137B parameters and are pre-trained on 1.56T words of public dialog data and web text. While model scaling alone can improve quality, it shows less improvements on safety and factual grounding. We demonstrate that fine-tuning with annotated data and enabling the model to consult external knowledge sources can lead to significant improvements towards the two key challenges of safety and factual grounding. The first challenge, safety, involves ensuring that the model's responses are consistent with a set of human values, such as preventing harmful suggestions and unfair bias. We quantify safety using a metric based on an illustrative set of human values, and we find that filtering candidate responses using a LaMDA classifier fine-tuned with a small amount of crowdworker-annotated data offers a promising approach to improving model safety. The second challenge, factual grounding, involves enabling the model to consult external knowledge sources, such as an information retrieval system, a language translator, and a calculator. We quantify factuality using a groundedness metric, and we find that our approach enables the model to generate responses grounded in known sources, rather than responses that merely sound plausible. Finally, we explore the use of LaMDA in the domains of education and content recommendations, and analyze their helpfulness and role consistency.

StoryGPT-V: Large Language Models as Consistent Story Visualizers

Recent generative models have demonstrated impressive capabilities in generating realistic and visually pleasing images grounded on textual prompts. Nevertheless, a significant challenge remains in applying these models for the more intricate task of story visualization. Since it requires resolving pronouns (he, she, they) in the frame descriptions, i.e., anaphora resolution, and ensuring consistent characters and background synthesis across frames. Yet, the emerging Large Language Model (LLM) showcases robust reasoning abilities to navigate through ambiguous references and process extensive sequences. Therefore, we introduce StoryGPT-V, which leverages the merits of the latent diffusion (LDM) and LLM to produce images with consistent and high-quality characters grounded on given story descriptions. First, we train a character-aware LDM, which takes character-augmented semantic embedding as input and includes the supervision of the cross-attention map using character segmentation masks, aiming to enhance character generation accuracy and faithfulness. In the second stage, we enable an alignment between the output of LLM and the character-augmented embedding residing in the input space of the first-stage model. This harnesses the reasoning ability of LLM to address ambiguous references and the comprehension capability to memorize the context. We conduct comprehensive experiments on two visual story visualization benchmarks. Our model reports superior quantitative results and consistently generates accurate characters of remarkable quality with low memory consumption. Our code will be made publicly available.

COBRA Frames: Contextual Reasoning about Effects and Harms of Offensive Statements

Warning: This paper contains content that may be offensive or upsetting. Understanding the harms and offensiveness of statements requires reasoning about the social and situational context in which statements are made. For example, the utterance "your English is very good" may implicitly signal an insult when uttered by a white man to a non-white colleague, but uttered by an ESL teacher to their student would be interpreted as a genuine compliment. Such contextual factors have been largely ignored by previous approaches to toxic language detection. We introduce COBRA frames, the first context-aware formalism for explaining the intents, reactions, and harms of offensive or biased statements grounded in their social and situational context. We create COBRACORPUS, a dataset of 33k potentially offensive statements paired with machine-generated contexts and free-text explanations of offensiveness, implied biases, speaker intents, and listener reactions. To study the contextual dynamics of offensiveness, we train models to generate COBRA explanations, with and without access to the context. We find that explanations by context-agnostic models are significantly worse than by context-aware ones, especially in situations where the context inverts the statement's offensiveness (29% accuracy drop). Our work highlights the importance and feasibility of contextualized NLP by modeling social factors.

Retrieval Augmented Fact Verification by Synthesizing Contrastive Arguments

The rapid propagation of misinformation poses substantial risks to public interest. To combat misinformation, large language models (LLMs) are adapted to automatically verify claim credibility. Nevertheless, existing methods heavily rely on the embedded knowledge within LLMs and / or black-box APIs for evidence collection, leading to subpar performance with smaller LLMs or upon unreliable context. In this paper, we propose retrieval augmented fact verification through the synthesis of contrasting arguments (RAFTS). Upon input claims, RAFTS starts with evidence retrieval, where we design a retrieval pipeline to collect and re-rank relevant documents from verifiable sources. Then, RAFTS forms contrastive arguments (i.e., supporting or refuting) conditioned on the retrieved evidence. In addition, RAFTS leverages an embedding model to identify informative demonstrations, followed by in-context prompting to generate the prediction and explanation. Our method effectively retrieves relevant documents as evidence and evaluates arguments from varying perspectives, incorporating nuanced information for fine-grained decision-making. Combined with informative in-context examples as prior, RAFTS achieves significant improvements to supervised and LLM baselines without complex prompts. We demonstrate the effectiveness of our method through extensive experiments, where RAFTS can outperform GPT-based methods with a significantly smaller 7B LLM.

FACTOID: FACtual enTailment fOr hallucInation Detection

The widespread adoption of Large Language Models (LLMs) has facilitated numerous benefits. However, hallucination is a significant concern. In response, Retrieval Augmented Generation (RAG) has emerged as a highly promising paradigm to improve LLM outputs by grounding them in factual information. RAG relies on textual entailment (TE) or similar methods to check if the text produced by LLMs is supported or contradicted, compared to retrieved documents. This paper argues that conventional TE methods are inadequate for spotting hallucinations in content generated by LLMs. For instance, consider a prompt about the 'USA's stance on the Ukraine war''. The AI-generated text states, ...U.S. President Barack Obama says the U.S. will not put troops in Ukraine...'' However, during the war the U.S. president is Joe Biden which contradicts factual reality. Moreover, current TE systems are unable to accurately annotate the given text and identify the exact portion that is contradicted. To address this, we introduces a new type of TE called ``Factual Entailment (FE).'', aims to detect factual inaccuracies in content generated by LLMs while also highlighting the specific text segment that contradicts reality. We present FACTOID (FACTual enTAILment for hallucInation Detection), a benchmark dataset for FE. We propose a multi-task learning (MTL) framework for FE, incorporating state-of-the-art (SoTA) long text embeddings such as e5-mistral-7b-instruct, along with GPT-3, SpanBERT, and RoFormer. The proposed MTL architecture for FE achieves an avg. 40\% improvement in accuracy on the FACTOID benchmark compared to SoTA TE methods. As FE automatically detects hallucinations, we assessed 15 modern LLMs and ranked them using our proposed Auto Hallucination Vulnerability Index (HVI_auto). This index quantifies and offers a comparative scale to evaluate and rank LLMs according to their hallucinations.

KAHANI: Culturally-Nuanced Visual Storytelling Pipeline for Non-Western Cultures

Large Language Models (LLMs) and Text-To-Image (T2I) models have demonstrated the ability to generate compelling text and visual stories. However, their outputs are predominantly aligned with the sensibilities of the Global North, often resulting in an outsider's gaze on other cultures. As a result, non-Western communities have to put extra effort into generating culturally specific stories. To address this challenge, we developed a visual storytelling pipeline called KAHANI that generates culturally grounded visual stories for non-Western cultures. Our pipeline leverages off-the-shelf models GPT-4 Turbo and Stable Diffusion XL (SDXL). By using Chain of Thought (CoT) and T2I prompting techniques, we capture the cultural context from user's prompt and generate vivid descriptions of the characters and scene compositions. To evaluate the effectiveness of KAHANI, we conducted a comparative user study with ChatGPT-4 (with DALL-E3) in which participants from different regions of India compared the cultural relevance of stories generated by the two tools. Results from the qualitative and quantitative analysis performed on the user study showed that KAHANI was able to capture and incorporate more Culturally Specific Items (CSIs) compared to ChatGPT-4. In terms of both its cultural competence and visual story generation quality, our pipeline outperformed ChatGPT-4 in 27 out of the 36 comparisons.

One-Prompt-One-Story: Free-Lunch Consistent Text-to-Image Generation Using a Single Prompt

Text-to-image generation models can create high-quality images from input prompts. However, they struggle to support the consistent generation of identity-preserving requirements for storytelling. Existing approaches to this problem typically require extensive training in large datasets or additional modifications to the original model architectures. This limits their applicability across different domains and diverse diffusion model configurations. In this paper, we first observe the inherent capability of language models, coined context consistency, to comprehend identity through context with a single prompt. Drawing inspiration from the inherent context consistency, we propose a novel training-free method for consistent text-to-image (T2I) generation, termed "One-Prompt-One-Story" (1Prompt1Story). Our approach 1Prompt1Story concatenates all prompts into a single input for T2I diffusion models, initially preserving character identities. We then refine the generation process using two novel techniques: Singular-Value Reweighting and Identity-Preserving Cross-Attention, ensuring better alignment with the input description for each frame. In our experiments, we compare our method against various existing consistent T2I generation approaches to demonstrate its effectiveness through quantitative metrics and qualitative assessments. Code is available at https://github.com/byliutao/1Prompt1Story.

Self-Taught Agentic Long Context Understanding

Answering complex, long-context questions remains a major challenge for large language models (LLMs) as it requires effective question clarifications and context retrieval. We propose Agentic Long-Context Understanding (AgenticLU), a framework designed to enhance an LLM's understanding of such queries by integrating targeted self-clarification with contextual grounding within an agentic workflow. At the core of AgenticLU is Chain-of-Clarifications (CoC), where models refine their understanding through self-generated clarification questions and corresponding contextual groundings. By scaling inference as a tree search where each node represents a CoC step, we achieve 97.8% answer recall on NarrativeQA with a search depth of up to three and a branching factor of eight. To amortize the high cost of this search process to training, we leverage the preference pairs for each step obtained by the CoC workflow and perform two-stage model finetuning: (1) supervised finetuning to learn effective decomposition strategies, and (2) direct preference optimization to enhance reasoning quality. This enables AgenticLU models to generate clarifications and retrieve relevant context effectively and efficiently in a single inference pass. Extensive experiments across seven long-context tasks demonstrate that AgenticLU significantly outperforms state-of-the-art prompting methods and specialized long-context LLMs, achieving robust multi-hop reasoning while sustaining consistent performance as context length grows.

One missing piece in Vision and Language: A Survey on Comics Understanding

Vision-language models have recently evolved into versatile systems capable of high performance across a range of tasks, such as document understanding, visual question answering, and grounding, often in zero-shot settings. Comics Understanding, a complex and multifaceted field, stands to greatly benefit from these advances. Comics, as a medium, combine rich visual and textual narratives, challenging AI models with tasks that span image classification, object detection, instance segmentation, and deeper narrative comprehension through sequential panels. However, the unique structure of comics -- characterized by creative variations in style, reading order, and non-linear storytelling -- presents a set of challenges distinct from those in other visual-language domains. In this survey, we present a comprehensive review of Comics Understanding from both dataset and task perspectives. Our contributions are fivefold: (1) We analyze the structure of the comics medium, detailing its distinctive compositional elements; (2) We survey the widely used datasets and tasks in comics research, emphasizing their role in advancing the field; (3) We introduce the Layer of Comics Understanding (LoCU) framework, a novel taxonomy that redefines vision-language tasks within comics and lays the foundation for future work; (4) We provide a detailed review and categorization of existing methods following the LoCU framework; (5) Finally, we highlight current research challenges and propose directions for future exploration, particularly in the context of vision-language models applied to comics. This survey is the first to propose a task-oriented framework for comics intelligence and aims to guide future research by addressing critical gaps in data availability and task definition. A project associated with this survey is available at https://github.com/emanuelevivoli/awesome-comics-understanding.

Dyna-bAbI: unlocking bAbI's potential with dynamic synthetic benchmarking

While neural language models often perform surprisingly well on natural language understanding (NLU) tasks, their strengths and limitations remain poorly understood. Controlled synthetic tasks are thus an increasingly important resource for diagnosing model behavior. In this work we focus on story understanding, a core competency for NLU systems. However, the main synthetic resource for story understanding, the bAbI benchmark, lacks such a systematic mechanism for controllable task generation. We develop Dyna-bAbI, a dynamic framework providing fine-grained control over task generation in bAbI. We demonstrate our ideas by constructing three new tasks requiring compositional generalization, an important evaluation setting absent from the original benchmark. We tested both special-purpose models developed for bAbI as well as state-of-the-art pre-trained methods, and found that while both approaches solve the original tasks (>99% accuracy), neither approach succeeded in the compositional generalization setting, indicating the limitations of the original training data. We explored ways to augment the original data, and found that though diversifying training data was far more useful than simply increasing dataset size, it was still insufficient for driving robust compositional generalization (with <70% accuracy for complex compositions). Our results underscore the importance of highly controllable task generators for creating robust NLU systems through a virtuous cycle of model and data development.