Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeWatermarking Autoregressive Image Generation
Watermarking the outputs of generative models has emerged as a promising approach for tracking their provenance. Despite significant interest in autoregressive image generation models and their potential for misuse, no prior work has attempted to watermark their outputs at the token level. In this work, we present the first such approach by adapting language model watermarking techniques to this setting. We identify a key challenge: the lack of reverse cycle-consistency (RCC), wherein re-tokenizing generated image tokens significantly alters the token sequence, effectively erasing the watermark. To address this and to make our method robust to common image transformations, neural compression, and removal attacks, we introduce (i) a custom tokenizer-detokenizer finetuning procedure that improves RCC, and (ii) a complementary watermark synchronization layer. As our experiments demonstrate, our approach enables reliable and robust watermark detection with theoretically grounded p-values.
Large Language Model Watermark Stealing With Mixed Integer Programming
The Large Language Model (LLM) watermark is a newly emerging technique that shows promise in addressing concerns surrounding LLM copyright, monitoring AI-generated text, and preventing its misuse. The LLM watermark scheme commonly includes generating secret keys to partition the vocabulary into green and red lists, applying a perturbation to the logits of tokens in the green list to increase their sampling likelihood, thus facilitating watermark detection to identify AI-generated text if the proportion of green tokens exceeds a threshold. However, recent research indicates that watermarking methods using numerous keys are susceptible to removal attacks, such as token editing, synonym substitution, and paraphrasing, with robustness declining as the number of keys increases. Therefore, the state-of-the-art watermark schemes that employ fewer or single keys have been demonstrated to be more robust against text editing and paraphrasing. In this paper, we propose a novel green list stealing attack against the state-of-the-art LLM watermark scheme and systematically examine its vulnerability to this attack. We formalize the attack as a mixed integer programming problem with constraints. We evaluate our attack under a comprehensive threat model, including an extreme scenario where the attacker has no prior knowledge, lacks access to the watermark detector API, and possesses no information about the LLM's parameter settings or watermark injection/detection scheme. Extensive experiments on LLMs, such as OPT and LLaMA, demonstrate that our attack can successfully steal the green list and remove the watermark across all settings.
Black-Box Detection of Language Model Watermarks
Watermarking has emerged as a promising way to detect LLM-generated text, by augmenting LLM generations with later detectable signals. Recent work has proposed multiple families of watermarking schemes, several of which focus on preserving the LLM distribution. This distribution-preservation property is motivated by the fact that it is a tractable proxy for retaining LLM capabilities, as well as the inherently implied undetectability of the watermark by downstream users. Yet, despite much discourse around undetectability, no prior work has investigated the practical detectability of any of the current watermarking schemes in a realistic black-box setting. In this work we tackle this for the first time, developing rigorous statistical tests to detect the presence, and estimate parameters, of all three popular watermarking scheme families, using only a limited number of black-box queries. We experimentally confirm the effectiveness of our methods on a range of schemes and a diverse set of open-source models. Further, we validate the feasibility of our tests on real-world APIs. Our findings indicate that current watermarking schemes are more detectable than previously believed.
Mark My Words: Analyzing and Evaluating Language Model Watermarks
The capabilities of large language models have grown significantly in recent years and so too have concerns about their misuse. In this context, the ability to distinguish machine-generated text from human-authored content becomes important. Prior works have proposed numerous schemes to watermark text, which would benefit from a systematic evaluation framework. This work focuses on text watermarking techniques - as opposed to image watermarks - and proposes a comprehensive benchmark for them under different tasks as well as practical attacks. We focus on three main metrics: quality, size (e.g. the number of tokens needed to detect a watermark), and tamper-resistance. Current watermarking techniques are good enough to be deployed: Kirchenbauer et al. can watermark Llama2-7B-chat with no perceivable loss in quality in under 100 tokens, and with good tamper-resistance to simple attacks, regardless of temperature. We argue that watermark indistinguishability is too strong a requirement: schemes that slightly modify logit distributions outperform their indistinguishable counterparts with no noticeable loss in generation quality. We publicly release our benchmark.
Watermarking Text Generated by Black-Box Language Models
LLMs now exhibit human-like skills in various fields, leading to worries about misuse. Thus, detecting generated text is crucial. However, passive detection methods are stuck in domain specificity and limited adversarial robustness. To achieve reliable detection, a watermark-based method was proposed for white-box LLMs, allowing them to embed watermarks during text generation. The method involves randomly dividing the model vocabulary to obtain a special list and adjusting the probability distribution to promote the selection of words in the list. A detection algorithm aware of the list can identify the watermarked text. However, this method is not applicable in many real-world scenarios where only black-box language models are available. For instance, third-parties that develop API-based vertical applications cannot watermark text themselves because API providers only supply generated text and withhold probability distributions to shield their commercial interests. To allow third-parties to autonomously inject watermarks into generated text, we develop a watermarking framework for black-box language model usage scenarios. Specifically, we first define a binary encoding function to compute a random binary encoding corresponding to a word. The encodings computed for non-watermarked text conform to a Bernoulli distribution, wherein the probability of a word representing bit-1 being approximately 0.5. To inject a watermark, we alter the distribution by selectively replacing words representing bit-0 with context-based synonyms that represent bit-1. A statistical test is then used to identify the watermark. Experiments demonstrate the effectiveness of our method on both Chinese and English datasets. Furthermore, results under re-translation, polishing, word deletion, and synonym substitution attacks reveal that it is arduous to remove the watermark without compromising the original semantics.
Excuse me, sir? Your language model is leaking (information)
We introduce a cryptographic method to hide an arbitrary secret payload in the response of a Large Language Model (LLM). A secret key is required to extract the payload from the model's response, and without the key it is provably impossible to distinguish between the responses of the original LLM and the LLM that hides a payload. In particular, the quality of generated text is not affected by the payload. Our approach extends a recent result of Christ, Gunn and Zamir (2023) who introduced an undetectable watermarking scheme for LLMs.
WaterDrum: Watermarking for Data-centric Unlearning Metric
Large language model (LLM) unlearning is critical in real-world applications where it is necessary to efficiently remove the influence of private, copyrighted, or harmful data from some users. However, existing utility-centric unlearning metrics (based on model utility) may fail to accurately evaluate the extent of unlearning in realistic settings such as when (a) the forget and retain set have semantically similar content, (b) retraining the model from scratch on the retain set is impractical, and/or (c) the model owner can improve the unlearning metric without directly performing unlearning on the LLM. This paper presents the first data-centric unlearning metric for LLMs called WaterDrum that exploits robust text watermarking for overcoming these limitations. We also introduce new benchmark datasets for LLM unlearning that contain varying levels of similar data points and can be used to rigorously evaluate unlearning algorithms using WaterDrum. Our code is available at https://github.com/lululu008/WaterDrum and our new benchmark datasets are released at https://huggingface.co/datasets/Glow-AI/WaterDrum-Ax.
On the Learnability of Watermarks for Language Models
Watermarking of language model outputs enables statistical detection of model-generated text, which has many applications in the responsible deployment of language models. Existing watermarking strategies operate by altering the decoder of an existing language model, and the ability for a language model to directly learn to generate the watermark would have significant implications for the real-world deployment of watermarks. First, learned watermarks could be used to build open models that naturally generate watermarked text, allowing for open models to benefit from watermarking. Second, if watermarking is used to determine the provenance of generated text, an adversary can hurt the reputation of a victim model by spoofing its watermark and generating damaging watermarked text. To investigate the learnability of watermarks, we propose watermark distillation, which trains a student model to behave like a teacher model that uses decoding-based watermarking. We test our approach on three distinct decoding-based watermarking strategies and various hyperparameter settings, finding that models can learn to generate watermarked text with high detectability. We also find limitations to learnability, including the loss of watermarking capabilities under fine-tuning on normal text and high sample complexity when learning low-distortion watermarks.
Towards Codable Watermarking for Injecting Multi-bits Information to LLMs
As large language models (LLMs) generate texts with increasing fluency and realism, there is a growing need to identify the source of texts to prevent the abuse of LLMs. Text watermarking techniques have proven reliable in distinguishing whether a text is generated by LLMs by injecting hidden patterns. However, we argue that existing LLM watermarking methods are encoding-inefficient and cannot flexibly meet the diverse information encoding needs (such as encoding model version, generation time, user id, etc.). In this work, we conduct the first systematic study on the topic of Codable Text Watermarking for LLMs (CTWL) that allows text watermarks to carry multi-bit customizable information. First of all, we study the taxonomy of LLM watermarking technologies and give a mathematical formulation for CTWL. Additionally, we provide a comprehensive evaluation system for CTWL: (1) watermarking success rate, (2) robustness against various corruptions, (3) coding rate of payload information, (4) encoding and decoding efficiency, (5) impacts on the quality of the generated text. To meet the requirements of these non-Pareto-improving metrics, we follow the most prominent vocabulary partition-based watermarking direction, and devise an advanced CTWL method named Balance-Marking. The core idea of our method is to use a proxy language model to split the vocabulary into probability-balanced parts, thereby effectively maintaining the quality of the watermarked text. Our code is available at https://github.com/lancopku/codable-watermarking-for-llm.
Can AI-Generated Text be Reliably Detected?
In this paper, both empirically and theoretically, we show that several AI-text detectors are not reliable in practical scenarios. Empirically, we show that paraphrasing attacks, where a light paraphraser is applied on top of a large language model (LLM), can break a whole range of detectors, including ones using watermarking schemes as well as neural network-based detectors and zero-shot classifiers. Our experiments demonstrate that retrieval-based detectors, designed to evade paraphrasing attacks, are still vulnerable to recursive paraphrasing. We then provide a theoretical impossibility result indicating that as language models become more sophisticated and better at emulating human text, the performance of even the best-possible detector decreases. For a sufficiently advanced language model seeking to imitate human text, even the best-possible detector may only perform marginally better than a random classifier. Our result is general enough to capture specific scenarios such as particular writing styles, clever prompt design, or text paraphrasing. We also extend the impossibility result to include the case where pseudorandom number generators are used for AI-text generation instead of true randomness. We show that the same result holds with a negligible correction term for all polynomial-time computable detectors. Finally, we show that even LLMs protected by watermarking schemes can be vulnerable against spoofing attacks where adversarial humans can infer hidden LLM text signatures and add them to human-generated text to be detected as text generated by the LLMs, potentially causing reputational damage to their developers. We believe these results can open an honest conversation in the community regarding the ethical and reliable use of AI-generated text.
A Watermark for Large Language Models
Potential harms of large language models can be mitigated by watermarking model output, i.e., embedding signals into generated text that are invisible to humans but algorithmically detectable from a short span of tokens. We propose a watermarking framework for proprietary language models. The watermark can be embedded with negligible impact on text quality, and can be detected using an efficient open-source algorithm without access to the language model API or parameters. The watermark works by selecting a randomized set of "green" tokens before a word is generated, and then softly promoting use of green tokens during sampling. We propose a statistical test for detecting the watermark with interpretable p-values, and derive an information-theoretic framework for analyzing the sensitivity of the watermark. We test the watermark using a multi-billion parameter model from the Open Pretrained Transformer (OPT) family, and discuss robustness and security.
An Overview of Large Language Models for Statisticians
Large Language Models (LLMs) have emerged as transformative tools in artificial intelligence (AI), exhibiting remarkable capabilities across diverse tasks such as text generation, reasoning, and decision-making. While their success has primarily been driven by advances in computational power and deep learning architectures, emerging problems -- in areas such as uncertainty quantification, decision-making, causal inference, and distribution shift -- require a deeper engagement with the field of statistics. This paper explores potential areas where statisticians can make important contributions to the development of LLMs, particularly those that aim to engender trustworthiness and transparency for human users. Thus, we focus on issues such as uncertainty quantification, interpretability, fairness, privacy, watermarking and model adaptation. We also consider possible roles for LLMs in statistical analysis. By bridging AI and statistics, we aim to foster a deeper collaboration that advances both the theoretical foundations and practical applications of LLMs, ultimately shaping their role in addressing complex societal challenges.
Cross-Attention Watermarking of Large Language Models
A new approach to linguistic watermarking of language models is presented in which information is imperceptibly inserted into the output text while preserving its readability and original meaning. A cross-attention mechanism is used to embed watermarks in the text during inference. Two methods using cross-attention are presented that minimize the effect of watermarking on the performance of a pretrained model. Exploration of different training strategies for optimizing the watermarking and of the challenges and implications of applying this approach in real-world scenarios clarified the tradeoff between watermark robustness and text quality. Watermark selection substantially affects the generated output for high entropy sentences. This proactive watermarking approach has potential application in future model development.
Protecting Language Generation Models via Invisible Watermarking
Language generation models have been an increasingly powerful enabler for many applications. Many such models offer free or affordable API access, which makes them potentially vulnerable to model extraction attacks through distillation. To protect intellectual property (IP) and ensure fair use of these models, various techniques such as lexical watermarking and synonym replacement have been proposed. However, these methods can be nullified by obvious countermeasures such as "synonym randomization". To address this issue, we propose GINSEW, a novel method to protect text generation models from being stolen through distillation. The key idea of our method is to inject secret signals into the probability vector of the decoding steps for each target token. We can then detect the secret message by probing a suspect model to tell if it is distilled from the protected one. Experimental results show that GINSEW can effectively identify instances of IP infringement with minimal impact on the generation quality of protected APIs. Our method demonstrates an absolute improvement of 19 to 29 points on mean average precision (mAP) in detecting suspects compared to previous methods against watermark removal attacks.
Watermarking Degrades Alignment in Language Models: Analysis and Mitigation
Watermarking techniques for large language models (LLMs) can significantly impact output quality, yet their effects on truthfulness, safety, and helpfulness remain critically underexamined. This paper presents a systematic analysis of how two popular watermarking approaches-Gumbel and KGW-affect these core alignment properties across four aligned LLMs. Our experiments reveal two distinct degradation patterns: guard attenuation, where enhanced helpfulness undermines model safety, and guard amplification, where excessive caution reduces model helpfulness. These patterns emerge from watermark-induced shifts in token distribution, surfacing the fundamental tension that exists between alignment objectives. To mitigate these degradations, we propose Alignment Resampling (AR), an inference-time sampling method that uses an external reward model to restore alignment. We establish a theoretical lower bound on the improvement in expected reward score as the sample size is increased and empirically demonstrate that sampling just 2-4 watermarked generations effectively recovers or surpasses baseline (unwatermarked) alignment scores. To overcome the limited response diversity of standard Gumbel watermarking, our modified implementation sacrifices strict distortion-freeness while maintaining robust detectability, ensuring compatibility with AR. Experimental results confirm that AR successfully recovers baseline alignment in both watermarking approaches, while maintaining strong watermark detectability. This work reveals the critical balance between watermark strength and model alignment, providing a simple inference-time solution to responsibly deploy watermarked LLMs in practice.
MorphMark: Flexible Adaptive Watermarking for Large Language Models
Watermarking by altering token sampling probabilities based on red-green list is a promising method for tracing the origin of text generated by large language models (LLMs). However, existing watermark methods often struggle with a fundamental dilemma: improving watermark effectiveness (the detectability of the watermark) often comes at the cost of reduced text quality. This trade-off limits their practical application. To address this challenge, we first formalize the problem within a multi-objective trade-off analysis framework. Within this framework, we identify a key factor that influences the dilemma. Unlike existing methods, where watermark strength is typically treated as a fixed hyperparameter, our theoretical insights lead to the development of MorphMarka method that adaptively adjusts the watermark strength in response to changes in the identified factor, thereby achieving an effective resolution of the dilemma. In addition, MorphMark also prioritizes flexibility since it is a model-agnostic and model-free watermark method, thereby offering a practical solution for real-world deployment, particularly in light of the rapid evolution of AI models. Extensive experiments demonstrate that MorphMark achieves a superior resolution of the effectiveness-quality dilemma, while also offering greater flexibility and time and space efficiency.
Optimizing Adaptive Attacks against Content Watermarks for Language Models
Large Language Models (LLMs) can be misused to spread online spam and misinformation. Content watermarking deters misuse by hiding a message in model-generated outputs, enabling their detection using a secret watermarking key. Robustness is a core security property, stating that evading detection requires (significant) degradation of the content's quality. Many LLM watermarking methods have been proposed, but robustness is tested only against non-adaptive attackers who lack knowledge of the watermarking method and can find only suboptimal attacks. We formulate the robustness of LLM watermarking as an objective function and propose preference-based optimization to tune adaptive attacks against the specific watermarking method. Our evaluation shows that (i) adaptive attacks substantially outperform non-adaptive baselines. (ii) Even in a non-adaptive setting, adaptive attacks optimized against a few known watermarks remain highly effective when tested against other unseen watermarks, and (iii) optimization-based attacks are practical and require less than seven GPU hours. Our findings underscore the need to test robustness against adaptive attackers.
Unbiased Watermark for Large Language Models
The recent advancements in large language models (LLMs) have sparked a growing apprehension regarding the potential misuse. One approach to mitigating this risk is to incorporate watermarking techniques into LLMs, allowing for the tracking and attribution of model outputs. This study examines a crucial aspect of watermarking: how significantly watermarks impact the quality of model-generated outputs. Previous studies have suggested a trade-off between watermark strength and output quality. However, our research demonstrates that it is possible to integrate watermarks without affecting the output probability distribution with appropriate implementation. We refer to this type of watermark as an unbiased watermark. This has significant implications for the use of LLMs, as it becomes impossible for users to discern whether a service provider has incorporated watermarks or not. Furthermore, the presence of watermarks does not compromise the performance of the model in downstream tasks, ensuring that the overall utility of the language model is preserved. Our findings contribute to the ongoing discussion around responsible AI development, suggesting that unbiased watermarks can serve as an effective means of tracking and attributing model outputs without sacrificing output quality.
PostMark: A Robust Blackbox Watermark for Large Language Models
The most effective techniques to detect LLM-generated text rely on inserting a detectable signature -- or watermark -- during the model's decoding process. Most existing watermarking methods require access to the underlying LLM's logits, which LLM API providers are loath to share due to fears of model distillation. As such, these watermarks must be implemented independently by each LLM provider. In this paper, we develop PostMark, a modular post-hoc watermarking procedure in which an input-dependent set of words (determined via a semantic embedding) is inserted into the text after the decoding process has completed. Critically, PostMark does not require logit access, which means it can be implemented by a third party. We also show that PostMark is more robust to paraphrasing attacks than existing watermarking methods: our experiments cover eight baseline algorithms, five base LLMs, and three datasets. Finally, we evaluate the impact of PostMark on text quality using both automated and human assessments, highlighting the trade-off between quality and robustness to paraphrasing. We release our code, outputs, and annotations at https://github.com/lilakk/PostMark.
Robust Distortion-free Watermarks for Language Models
We propose a methodology for planting watermarks in text from an autoregressive language model that are robust to perturbations without changing the distribution over text up to a certain maximum generation budget. We generate watermarked text by mapping a sequence of random numbers -- which we compute using a randomized watermark key -- to a sample from the language model. To detect watermarked text, any party who knows the key can align the text to the random number sequence. We instantiate our watermark methodology with two sampling schemes: inverse transform sampling and exponential minimum sampling. We apply these watermarks to three language models -- OPT-1.3B, LLaMA-7B and Alpaca-7B -- to experimentally validate their statistical power and robustness to various paraphrasing attacks. Notably, for both the OPT-1.3B and LLaMA-7B models, we find we can reliably detect watermarked text (p leq 0.01) from 35 tokens even after corrupting between 40-50\% of the tokens via random edits (i.e., substitutions, insertions or deletions). For the Alpaca-7B model, we conduct a case study on the feasibility of watermarking responses to typical user instructions. Due to the lower entropy of the responses, detection is more difficult: around 25% of the responses -- whose median length is around 100 tokens -- are detectable with p leq 0.01, and the watermark is also less robust to certain automated paraphrasing attacks we implement.
Watermarking Makes Language Models Radioactive
This paper investigates the radioactivity of LLM-generated texts, i.e. whether it is possible to detect that such input was used as training data. Conventional methods like membership inference can carry out this detection with some level of accuracy. We show that watermarked training data leaves traces easier to detect and much more reliable than membership inference. We link the contamination level to the watermark robustness, its proportion in the training set, and the fine-tuning process. We notably demonstrate that training on watermarked synthetic instructions can be detected with high confidence (p-value < 1e-5) even when as little as 5% of training text is watermarked. Thus, LLM watermarking, originally designed for detecting machine-generated text, gives the ability to easily identify if the outputs of a watermarked LLM were used to fine-tune another LLM.
From Trade-off to Synergy: A Versatile Symbiotic Watermarking Framework for Large Language Models
The rise of Large Language Models (LLMs) has heightened concerns about the misuse of AI-generated text, making watermarking a promising solution. Mainstream watermarking schemes for LLMs fall into two categories: logits-based and sampling-based. However, current schemes entail trade-offs among robustness, text quality, and security. To mitigate this, we integrate logits-based and sampling-based schemes, harnessing their respective strengths to achieve synergy. In this paper, we propose a versatile symbiotic watermarking framework with three strategies: serial, parallel, and hybrid. The hybrid framework adaptively embeds watermarks using token entropy and semantic entropy, optimizing the balance between detectability, robustness, text quality, and security. Furthermore, we validate our approach through comprehensive experiments on various datasets and models. Experimental results indicate that our method outperforms existing baselines and achieves state-of-the-art (SOTA) performance. We believe this framework provides novel insights into diverse watermarking paradigms. Our code is available at https://github.com/redwyd/SymMark{https://github.com/redwyd/SymMark}.
From Intentions to Techniques: A Comprehensive Taxonomy and Challenges in Text Watermarking for Large Language Models
With the rapid growth of Large Language Models (LLMs), safeguarding textual content against unauthorized use is crucial. Text watermarking offers a vital solution, protecting both - LLM-generated and plain text sources. This paper presents a unified overview of different perspectives behind designing watermarking techniques, through a comprehensive survey of the research literature. Our work has two key advantages, (1) we analyze research based on the specific intentions behind different watermarking techniques, evaluation datasets used, watermarking addition, and removal methods to construct a cohesive taxonomy. (2) We highlight the gaps and open challenges in text watermarking to promote research in protecting text authorship. This extensive coverage and detailed analysis sets our work apart, offering valuable insights into the evolving landscape of text watermarking in language models.
Watermark Stealing in Large Language Models
LLM watermarking has attracted attention as a promising way to detect AI-generated content, with some works suggesting that current schemes may already be fit for deployment. In this work we dispute this claim, identifying watermark stealing (WS) as a fundamental vulnerability of these schemes. We show that querying the API of the watermarked LLM to approximately reverse-engineer a watermark enables practical spoofing attacks, as hypothesized in prior work, but also greatly boosts scrubbing attacks, which was previously unnoticed. We are the first to propose an automated WS algorithm and use it in the first comprehensive study of spoofing and scrubbing in realistic settings. We show that for under $50 an attacker can both spoof and scrub state-of-the-art schemes previously considered safe, with average success rate of over 80%. Our findings challenge common beliefs about LLM watermarking, stressing the need for more robust schemes. We make all our code and additional examples available at https://watermark-stealing.org.
Three Bricks to Consolidate Watermarks for Large Language Models
The task of discerning between generated and natural texts is increasingly challenging. In this context, watermarking emerges as a promising technique for ascribing generated text to a specific model. It alters the sampling generation process so as to leave an invisible trace in the generated output, facilitating later detection. This research consolidates watermarks for large language models based on three theoretical and empirical considerations. First, we introduce new statistical tests that offer robust theoretical guarantees which remain valid even at low false-positive rates (less than 10^{-6}). Second, we compare the effectiveness of watermarks using classical benchmarks in the field of natural language processing, gaining insights into their real-world applicability. Third, we develop advanced detection schemes for scenarios where access to the LLM is available, as well as multi-bit watermarking.
On the Reliability of Watermarks for Large Language Models
Large language models (LLMs) are now deployed to everyday use and positioned to produce large quantities of text in the coming decade. Machine-generated text may displace human-written text on the internet and has the potential to be used for malicious purposes, such as spearphishing attacks and social media bots. Watermarking is a simple and effective strategy for mitigating such harms by enabling the detection and documentation of LLM-generated text. Yet, a crucial question remains: How reliable is watermarking in realistic settings in the wild? There, watermarked text might be mixed with other text sources, paraphrased by human writers or other language models, and used for applications in a broad number of domains, both social and technical. In this paper, we explore different detection schemes, quantify their power at detecting watermarks, and determine how much machine-generated text needs to be observed in each scenario to reliably detect the watermark. We especially highlight our human study, where we investigate the reliability of watermarking when faced with human paraphrasing. We compare watermark-based detection to other detection strategies, finding overall that watermarking is a reliable solution, especially because of its sample complexity - for all attacks we consider, the watermark evidence compounds the more examples are given, and the watermark is eventually detected.
A Semantic Invariant Robust Watermark for Large Language Models
Watermark algorithms for large language models (LLMs) have achieved extremely high accuracy in detecting text generated by LLMs. Such algorithms typically involve adding extra watermark logits to the LLM's logits at each generation step. However, prior algorithms face a trade-off between attack robustness and security robustness. This is because the watermark logits for a token are determined by a certain number of preceding tokens; a small number leads to low security robustness, while a large number results in insufficient attack robustness. In this work, we propose a semantic invariant watermarking method for LLMs that provides both attack robustness and security robustness. The watermark logits in our work are determined by the semantics of all preceding tokens. Specifically, we utilize another embedding LLM to generate semantic embeddings for all preceding tokens, and then these semantic embeddings are transformed into the watermark logits through our trained watermark model. Subsequent analyses and experiments demonstrated the attack robustness of our method in semantically invariant settings: synonym substitution and text paraphrasing settings. Finally, we also show that our watermark possesses adequate security robustness. Our code and data are available at https://github.com/THU-BPM/Robust_Watermark.
An Unforgeable Publicly Verifiable Watermark for Large Language Models
Recently, text watermarking algorithms for large language models (LLMs) have been proposed to mitigate the potential harms of text generated by LLMs, including fake news and copyright issues. However, current watermark detection algorithms require the secret key used in the watermark generation process, making them susceptible to security breaches and counterfeiting during public detection. To address this limitation, we propose an unforgeable publicly verifiable watermark algorithm that uses two different neural networks for watermark generation and detection, instead of using the same key at both stages. Meanwhile, the token embedding parameters are shared between the generation and detection networks, which makes the detection network achieve a high accuracy very efficiently. Experiments demonstrate that our algorithm attains high detection accuracy and computational efficiency through neural networks with a minimized number of parameters. Subsequent analysis confirms the high complexity involved in forging the watermark from the detection network. Our code and data are available at https://github.com/THU-BPM/unforgeable_watermark{https://github.com/THU-BPM/unforgeable\_watermark}.
WaterBench: Towards Holistic Evaluation of Watermarks for Large Language Models
To mitigate the potential misuse of large language models (LLMs), recent research has developed watermarking algorithms, which restrict the generation process to leave an invisible trace for watermark detection. Due to the two-stage nature of the task, most studies evaluate the generation and detection separately, thereby presenting a challenge in unbiased, thorough, and applicable evaluations. In this paper, we introduce WaterBench, the first comprehensive benchmark for LLM watermarks, in which we design three crucial factors: (1) For benchmarking procedure, to ensure an apples-to-apples comparison, we first adjust each watermarking method's hyper-parameter to reach the same watermarking strength, then jointly evaluate their generation and detection performance. (2) For task selection, we diversify the input and output length to form a five-category taxonomy, covering 9 tasks. (3) For evaluation metric, we adopt the GPT4-Judge for automatically evaluating the decline of instruction-following abilities after watermarking. We evaluate 4 open-source watermarks on 2 LLMs under 2 watermarking strengths and observe the common struggles for current methods on maintaining the generation quality. The code and data are available at https://github.com/THU-KEG/WaterBench.
Provable Robust Watermarking for AI-Generated Text
We study the problem of watermarking large language models (LLMs) generated text -- one of the most promising approaches for addressing the safety challenges of LLM usage. In this paper, we propose a rigorous theoretical framework to quantify the effectiveness and robustness of LLM watermarks. We propose a robust and high-quality watermark method, Unigram-Watermark, by extending an existing approach with a simplified fixed grouping strategy. We prove that our watermark method enjoys guaranteed generation quality, correctness in watermark detection, and is robust against text editing and paraphrasing. Experiments on three varying LLMs and two datasets verify that our Unigram-Watermark achieves superior detection accuracy and comparable generation quality in perplexity, thus promoting the responsible use of LLMs. Code is available at https://github.com/XuandongZhao/Unigram-Watermark.
Towards Watermarking of Open-Source LLMs
While watermarks for closed LLMs have matured and have been included in large-scale deployments, these methods are not applicable to open-source models, which allow users full control over the decoding process. This setting is understudied yet critical, given the rising performance of open-source models. In this work, we lay the foundation for systematic study of open-source LLM watermarking. For the first time, we explicitly formulate key requirements, including durability against common model modifications such as model merging, quantization, or finetuning, and propose a concrete evaluation setup. Given the prevalence of these modifications, durability is crucial for an open-source watermark to be effective. We survey and evaluate existing methods, showing that they are not durable. We also discuss potential ways to improve their durability and highlight remaining challenges. We hope our work enables future progress on this important problem.
Who Wrote this Code? Watermarking for Code Generation
With the remarkable generation performance of large language models, ethical and legal concerns about using them have been raised, such as plagiarism and copyright issues. For such concerns, several approaches to watermark and detect LLM-generated text have been proposed very recently. However, we discover that the previous methods fail to function appropriately with code generation tasks because of the syntactic and semantic characteristics of code. Based on Kirchenbauer2023watermark, we propose a new watermarking method, Selective WatErmarking via Entropy Thresholding (SWEET), that promotes "green" tokens only at the position with high entropy of the token distribution during generation, thereby preserving the correctness of the generated code. The watermarked code is detected by the statistical test and Z-score based on the entropy information. Our experiments on HumanEval and MBPP show that SWEET significantly improves the Pareto Frontier between the code correctness and watermark detection performance. We also show that notable post-hoc detection methods (e.g. DetectGPT) fail to work well in this task. Finally, we show that setting a reasonable entropy threshold is not much of a challenge. Code is available at https://github.com/hongcheki/sweet-watermark.
Is Watermarking LLM-Generated Code Robust?
We present the first study of the robustness of existing watermarking techniques on Python code generated by large language models. Although existing works showed that watermarking can be robust for natural language, we show that it is easy to remove these watermarks on code by semantic-preserving transformations.
WaterMax: breaking the LLM watermark detectability-robustness-quality trade-off
Watermarking is a technical means to dissuade malfeasant usage of Large Language Models. This paper proposes a novel watermarking scheme, so-called WaterMax, that enjoys high detectability while sustaining the quality of the generated text of the original LLM. Its new design leaves the LLM untouched (no modification of the weights, logits, temperature, or sampling technique). WaterMax balances robustness and complexity contrary to the watermarking techniques of the literature inherently provoking a trade-off between quality and robustness. Its performance is both theoretically proven and experimentally validated. It outperforms all the SotA techniques under the most complete benchmark suite. Code available at https://github.com/eva-giboulot/WaterMax.
Paraphrasing evades detectors of AI-generated text, but retrieval is an effective defense
To detect the deployment of large language models for malicious use cases (e.g., fake content creation or academic plagiarism), several approaches have recently been proposed for identifying AI-generated text via watermarks or statistical irregularities. How robust are these detection algorithms to paraphrases of AI-generated text? To stress test these detectors, we first train an 11B parameter paraphrase generation model (DIPPER) that can paraphrase paragraphs, optionally leveraging surrounding text (e.g., user-written prompts) as context. DIPPER also uses scalar knobs to control the amount of lexical diversity and reordering in the paraphrases. Paraphrasing text generated by three large language models (including GPT3.5-davinci-003) with DIPPER successfully evades several detectors, including watermarking, GPTZero, DetectGPT, and OpenAI's text classifier. For example, DIPPER drops the detection accuracy of DetectGPT from 70.3% to 4.6% (at a constant false positive rate of 1%), without appreciably modifying the input semantics. To increase the robustness of AI-generated text detection to paraphrase attacks, we introduce a simple defense that relies on retrieving semantically-similar generations and must be maintained by a language model API provider. Given a candidate text, our algorithm searches a database of sequences previously generated by the API, looking for sequences that match the candidate text within a certain threshold. We empirically verify our defense using a database of 15M generations from a fine-tuned T5-XXL model and find that it can detect 80% to 97% of paraphrased generations across different settings, while only classifying 1% of human-written sequences as AI-generated. We will open source our code, model and data for future research.