new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 4

Cross-Tokenizer Distillation via Approximate Likelihood Matching

Distillation has shown remarkable success in transferring knowledge from a Large Language Model (LLM) teacher to a student LLM. However, current distillation methods predominantly require the same tokenizer between the teacher and the student, restricting their applicability to only a small subset of teacher-student pairs. In this work, we develop a cross-tokenizer distillation method to solve this crucial deficiency. Our method is the first to enable cross-tokenizer distillation without a next-token prediction loss as the main objective, instead purely maximizing the student predictions' similarity to the teacher's predictions (known as pure distillation), while also being robust to large mismatches between the teacher and the student tokenizer function and vocabulary. Empirically, our method enables substantially improved performance as tested on two use cases. First, we show that viewing tokenizer transfer as self-distillation enables unprecedently effective transfer across tokenizers. We transfer (subword-level) Llama and Gemma models to byte-level tokenization more effectively than prior methods transfer to a similar subword tokenizer under a comparable training budget. Transferring different base models to the same tokenizer also enables ensembling them (e.g., via averaging their predicted probabilities) which boosts performance. Second, we use our cross-tokenizer distillation method to distil a large maths-specialized LLM into a smaller model, achieving competitive maths problem-solving performance. Overall, our results make substantial strides toward better adaptability and enhanced interaction between different LLMs.

  • 3 authors
·
Mar 25

Incorporating Surrogate Gradient Norm to Improve Offline Optimization Techniques

Offline optimization has recently emerged as an increasingly popular approach to mitigate the prohibitively expensive cost of online experimentation. The key idea is to learn a surrogate of the black-box function that underlines the target experiment using a static (offline) dataset of its previous input-output queries. Such an approach is, however, fraught with an out-of-distribution issue where the learned surrogate becomes inaccurate outside the offline data regimes. To mitigate this, existing offline optimizers have proposed numerous conditioning techniques to prevent the learned surrogate from being too erratic. Nonetheless, such conditioning strategies are often specific to particular surrogate or search models, which might not generalize to a different model choice. This motivates us to develop a model-agnostic approach instead, which incorporates a notion of model sharpness into the training loss of the surrogate as a regularizer. Our approach is supported by a new theoretical analysis demonstrating that reducing surrogate sharpness on the offline dataset provably reduces its generalized sharpness on unseen data. Our analysis extends existing theories from bounding generalized prediction loss (on unseen data) with loss sharpness to bounding the worst-case generalized surrogate sharpness with its empirical estimate on training data, providing a new perspective on sharpness regularization. Our extensive experimentation on a diverse range of optimization tasks also shows that reducing surrogate sharpness often leads to significant improvement, marking (up to) a noticeable 9.6% performance boost. Our code is publicly available at https://github.com/cuong-dm/IGNITE

  • 4 authors
·
Mar 6

Data-Efficient Reinforcement Learning with Self-Predictive Representations

While deep reinforcement learning excels at solving tasks where large amounts of data can be collected through virtually unlimited interaction with the environment, learning from limited interaction remains a key challenge. We posit that an agent can learn more efficiently if we augment reward maximization with self-supervised objectives based on structure in its visual input and sequential interaction with the environment. Our method, Self-Predictive Representations(SPR), trains an agent to predict its own latent state representations multiple steps into the future. We compute target representations for future states using an encoder which is an exponential moving average of the agent's parameters and we make predictions using a learned transition model. On its own, this future prediction objective outperforms prior methods for sample-efficient deep RL from pixels. We further improve performance by adding data augmentation to the future prediction loss, which forces the agent's representations to be consistent across multiple views of an observation. Our full self-supervised objective, which combines future prediction and data augmentation, achieves a median human-normalized score of 0.415 on Atari in a setting limited to 100k steps of environment interaction, which represents a 55% relative improvement over the previous state-of-the-art. Notably, even in this limited data regime, SPR exceeds expert human scores on 7 out of 26 games. The code associated with this work is available at https://github.com/mila-iqia/spr

  • 6 authors
·
Jul 12, 2020

RLP: Reinforcement as a Pretraining Objective

The dominant paradigm for training large reasoning models starts with pre-training using next-token prediction loss on vast amounts of data. Reinforcement learning, while powerful in scaling reasoning, is introduced only as the very last phase of post-training, preceded by supervised fine-tuning. While dominant, is this an optimal way of training? In this paper, we present RLP, an information-driven reinforcement pretraining objective, that brings the core spirit of reinforcement learning -- exploration -- to the last phase of pretraining. The key idea is to treat chain-of-thought as an exploratory action, with rewards computed based on the information gain it provides for predicting future tokens. This training objective essentially encourages the model to think for itself before predicting what comes next, thus teaching an independent thinking behavior earlier in the pretraining. More concretely, the reward signal measures the increase in log-likelihood of the next token when conditioning on both context and a sampled reasoning chain, compared to conditioning on context alone. This approach yields a verifier-free dense reward signal, allowing for efficient training for the full document stream during pretraining. Specifically, RLP reframes reinforcement learning for reasoning as a pretraining objective on ordinary text, bridging the gap between next-token prediction and the emergence of useful chain-of-thought reasoning. Pretraining with RLP on Qwen3-1.7B-Base lifts the overall average across an eight-benchmark math-and-science suite by 19%. With identical post-training, the gains compound, with the largest improvements on reasoning-heavy tasks such as AIME25 and MMLU-Pro. Applying RLP to the hybrid Nemotron-Nano-12B-v2 increases the overall average from 42.81% to 61.32% and raises the average on scientific reasoning by 23%, demonstrating scalability across architectures and model sizes.

nvidia NVIDIA
·
Sep 26 4

Order-Disorder: Imitation Adversarial Attacks for Black-box Neural Ranking Models

Neural text ranking models have witnessed significant advancement and are increasingly being deployed in practice. Unfortunately, they also inherit adversarial vulnerabilities of general neural models, which have been detected but remain underexplored by prior studies. Moreover, the inherit adversarial vulnerabilities might be leveraged by blackhat SEO to defeat better-protected search engines. In this study, we propose an imitation adversarial attack on black-box neural passage ranking models. We first show that the target passage ranking model can be transparentized and imitated by enumerating critical queries/candidates and then train a ranking imitation model. Leveraging the ranking imitation model, we can elaborately manipulate the ranking results and transfer the manipulation attack to the target ranking model. For this purpose, we propose an innovative gradient-based attack method, empowered by the pairwise objective function, to generate adversarial triggers, which causes premeditated disorderliness with very few tokens. To equip the trigger camouflages, we add the next sentence prediction loss and the language model fluency constraint to the objective function. Experimental results on passage ranking demonstrate the effectiveness of the ranking imitation attack model and adversarial triggers against various SOTA neural ranking models. Furthermore, various mitigation analyses and human evaluation show the effectiveness of camouflages when facing potential mitigation approaches. To motivate other scholars to further investigate this novel and important problem, we make the experiment data and code publicly available.

  • 8 authors
·
Sep 14, 2022

UniSite: The First Cross-Structure Dataset and Learning Framework for End-to-End Ligand Binding Site Detection

The detection of ligand binding sites for proteins is a fundamental step in Structure-Based Drug Design. Despite notable advances in recent years, existing methods, datasets, and evaluation metrics are confronted with several key challenges: (1) current datasets and methods are centered on individual protein-ligand complexes and neglect that diverse binding sites may exist across multiple complexes of the same protein, introducing significant statistical bias; (2) ligand binding site detection is typically modeled as a discontinuous workflow, employing binary segmentation and subsequent clustering algorithms; (3) traditional evaluation metrics do not adequately reflect the actual performance of different binding site prediction methods. To address these issues, we first introduce UniSite-DS, the first UniProt (Unique Protein)-centric ligand binding site dataset, which contains 4.81 times more multi-site data and 2.08 times more overall data compared to the previously most widely used datasets. We then propose UniSite, the first end-to-end ligand binding site detection framework supervised by set prediction loss with bijective matching. In addition, we introduce Average Precision based on Intersection over Union (IoU) as a more accurate evaluation metric for ligand binding site prediction. Extensive experiments on UniSite-DS and several representative benchmark datasets demonstrate that IoU-based Average Precision provides a more accurate reflection of prediction quality, and that UniSite outperforms current state-of-the-art methods in ligand binding site detection. The dataset and codes will be made publicly available at https://github.com/quanlin-wu/unisite.

  • 4 authors
·
Jun 3

DistinctAD: Distinctive Audio Description Generation in Contexts

Audio Descriptions (ADs) aim to provide a narration of a movie in text form, describing non-dialogue-related narratives, such as characters, actions, or scene establishment. Automatic generation of ADs remains challenging due to: i) the domain gap between movie-AD data and existing data used to train vision-language models, and ii) the issue of contextual redundancy arising from highly similar neighboring visual clips in a long movie. In this work, we propose DistinctAD, a novel two-stage framework for generating ADs that emphasize distinctiveness to produce better narratives. To address the domain gap, we introduce a CLIP-AD adaptation strategy that does not require additional AD corpora, enabling more effective alignment between movie and AD modalities at both global and fine-grained levels. In Stage-II, DistinctAD incorporates two key innovations: (i) a Contextual Expectation-Maximization Attention (EMA) module that reduces redundancy by extracting common bases from consecutive video clips, and (ii) an explicit distinctive word prediction loss that filters out repeated words in the context, ensuring the prediction of unique terms specific to the current AD. Comprehensive evaluations on MAD-Eval, CMD-AD, and TV-AD benchmarks demonstrate the superiority of DistinctAD, with the model consistently outperforming baselines, particularly in Recall@k/N, highlighting its effectiveness in producing high-quality, distinctive ADs.

  • 5 authors
·
Nov 27, 2024

Reversing the Forget-Retain Objectives: An Efficient LLM Unlearning Framework from Logit Difference

As Large Language Models (LLMs) demonstrate extensive capability in learning from documents, LLM unlearning becomes an increasingly important research area to address concerns of LLMs in terms of privacy, copyright, etc. A conventional LLM unlearning task typically involves two goals: (1) The target LLM should forget the knowledge in the specified forget documents, and (2) it should retain the other knowledge that the LLM possesses, for which we assume access to a small number of retain documents. To achieve both goals, a mainstream class of LLM unlearning methods introduces an optimization framework with a combination of two objectives - maximizing the prediction loss on the forget documents while minimizing that on the retain documents, which suffers from two challenges, degenerated output and catastrophic forgetting. In this paper, we propose a novel unlearning framework called Unlearning from Logit Difference (ULD), which introduces an assistant LLM that aims to achieve the opposite of the unlearning goals: remembering the forget documents and forgetting the retain knowledge. ULD then derives the unlearned LLM by computing the logit difference between the target and the assistant LLMs. We show that such reversed objectives would naturally resolve both aforementioned challenges while significantly improving the training efficiency. Extensive experiments demonstrate that our method efficiently achieves the intended forgetting while preserving the LLM's overall capabilities, reducing training time by more than threefold. Notably, our method loses 0% of model utility on the ToFU benchmark, whereas baseline methods may sacrifice 17% of utility on average to achieve comparable forget quality. Our code will be publicly available at https://github.com/UCSB-NLP-Chang/ULD.

  • 7 authors
·
Jun 12, 2024

LAN: Learning Adaptive Neighbors for Real-Time Insider Threat Detection

Enterprises and organizations are faced with potential threats from insider employees that may lead to serious consequences. Previous studies on insider threat detection (ITD) mainly focus on detecting abnormal users or abnormal time periods (e.g., a week or a day). However, a user may have hundreds of thousands of activities in the log, and even within a day there may exist thousands of activities for a user, requiring a high investigation budget to verify abnormal users or activities given the detection results. On the other hand, existing works are mainly post-hoc methods rather than real-time detection, which can not report insider threats in time before they cause loss. In this paper, we conduct the first study towards real-time ITD at activity level, and present a fine-grained and efficient framework LAN. Specifically, LAN simultaneously learns the temporal dependencies within an activity sequence and the relationships between activities across sequences with graph structure learning. Moreover, to mitigate the data imbalance problem in ITD, we propose a novel hybrid prediction loss, which integrates self-supervision signals from normal activities and supervision signals from abnormal activities into a unified loss for anomaly detection. We evaluate the performance of LAN on two widely used datasets, i.e., CERT r4.2 and CERT r5.2. Extensive and comparative experiments demonstrate the superiority of LAN, outperforming 9 state-of-the-art baselines by at least 9.92% and 6.35% in AUC for real-time ITD on CERT r4.2 and r5.2, respectively. Moreover, LAN can be also applied to post-hoc ITD, surpassing 8 competitive baselines by at least 7.70% and 4.03% in AUC on two datasets. Finally, the ablation study, parameter analysis, and compatibility analysis evaluate the impact of each module and hyper-parameter in LAN. The source code can be obtained from https://github.com/Li1Neo/LAN.

  • 7 authors
·
Mar 14, 2024

Discriminative Fine-tuning of LVLMs

Contrastively-trained Vision-Language Models (VLMs) like CLIP have become the de facto approach for discriminative vision-language representation learning. However, these models have limited language understanding, often exhibiting a "bag of words" behavior. At the same time, Large Vision-Language Models (LVLMs), which combine vision encoders with LLMs, have been shown capable of detailed vision-language reasoning, yet their autoregressive nature renders them less suitable for discriminative tasks. In this work, we propose to combine "the best of both worlds": a new training approach for discriminative fine-tuning of LVLMs that results in strong discriminative and compositional capabilities. Essentially, our approach converts a generative LVLM into a discriminative one, unlocking its capability for powerful image-text discrimination combined with enhanced language understanding. Our contributions include: (1) A carefully designed training/optimization framework that utilizes image-text pairs of variable length and granularity for training the model with both contrastive and next-token prediction losses. This is accompanied by ablation studies that justify the necessity of our framework's components. (2) A parameter-efficient adaptation method using a combination of soft prompting and LoRA adapters. (3) Significant improvements over state-of-the-art CLIP-like models of similar size, including standard image-text retrieval benchmarks and notable gains in compositionality.

  • 7 authors
·
Dec 5, 2024 2

Trained Rank Pruning for Efficient Deep Neural Networks

The performance of Deep Neural Networks (DNNs) keeps elevating in recent years with increasing network depth and width. To enable DNNs on edge devices like mobile phones, researchers proposed several network compression methods including pruning, quantization and factorization. Among the factorization-based approaches, low-rank approximation has been widely adopted because of its solid theoretical rationale and efficient implementations. Several previous works attempted to directly approximate a pre-trained model by low-rank decomposition; however, small approximation errors in parameters can ripple a large prediction loss. As a result, performance usually drops significantly and a sophisticated fine-tuning is required to recover accuracy. We argue that it is not optimal to separate low-rank approximation from training. Unlike previous works, this paper integrates low rank approximation and regularization into the training. We propose Trained Rank Pruning (TRP), which iterates low rank approximation and training. TRP maintains the capacity of original network while imposes low-rank constraints during training. A stochastic sub-gradient descent optimized nuclear regularization is utilized to further encourage low rank in TRP. The TRP trained network has low-rank structure in nature, and can be approximated with negligible performance loss, eliminating fine-tuning after low rank approximation. The methods are comprehensively evaluated on CIFAR-10 and ImageNet, outperforming previous compression methods using low rank approximation. Code is available: https://github.com/yuhuixu1993/Trained-Rank-Pruning

  • 9 authors
·
Dec 6, 2018

When Does Metadata Conditioning (NOT) Work for Language Model Pre-Training? A Study with Context-Free Grammars

The ability to acquire latent semantics is one of the key properties that determines the performance of language models. One convenient approach to invoke this ability is to prepend metadata (e.g. URLs, domains, and styles) at the beginning of texts in the pre-training data, making it easier for the model to access latent semantics before observing the entire text. Previous studies have reported that this technique actually improves the performance of trained models in downstream tasks; however, this improvement has been observed only in specific downstream tasks, without consistent enhancement in average next-token prediction loss. To understand this phenomenon, we closely investigate how prepending metadata during pre-training affects model performance by examining its behavior using artificial data. Interestingly, we found that this approach produces both positive and negative effects on the downstream tasks. We demonstrate that the effectiveness of the approach depends on whether latent semantics can be inferred from the downstream task's prompt. Specifically, through investigations using data generated by probabilistic context-free grammars, we show that training with metadata helps improve model's performance when the given context is long enough to infer the latent semantics. In contrast, the technique negatively impacts performance when the context lacks the necessary information to make an accurate posterior inference.

  • 10 authors
·
Apr 24

Unleashing the Power of Pre-trained Language Models for Offline Reinforcement Learning

Offline reinforcement learning (RL) aims to find a near-optimal policy using pre-collected datasets. In real-world scenarios, data collection could be costly and risky; therefore, offline RL becomes particularly challenging when the in-domain data is limited. Given recent advances in Large Language Models (LLMs) and their few-shot learning prowess, this paper introduces Language Models for Motion Control (LaMo), a general framework based on Decision Transformers to effectively use pre-trained Language Models (LMs) for offline RL. Our framework highlights four crucial components: (1) Initializing Decision Transformers with sequentially pre-trained LMs, (2) employing the LoRA fine-tuning method, in contrast to full-weight fine-tuning, to combine the pre-trained knowledge from LMs and in-domain knowledge effectively, (3) using the non-linear MLP transformation instead of linear projections, to generate embeddings, and (4) integrating an auxiliary language prediction loss during fine-tuning to stabilize the LMs and retain their original abilities on languages. Empirical results indicate LaMo achieves state-of-the-art performance in sparse-reward tasks and closes the gap between value-based offline RL methods and decision transformers in dense-reward tasks. In particular, our method demonstrates superior performance in scenarios with limited data samples. Our project website is https://lamo2023.github.io

  • 5 authors
·
Oct 31, 2023 1

DeepSolarEye: Power Loss Prediction and Weakly Supervised Soiling Localization via Fully Convolutional Networks for Solar Panels

The impact of soiling on solar panels is an important and well-studied problem in renewable energy sector. In this paper, we present the first convolutional neural network (CNN) based approach for solar panel soiling and defect analysis. Our approach takes an RGB image of solar panel and environmental factors as inputs to predict power loss, soiling localization, and soiling type. In computer vision, localization is a complex task which typically requires manually labeled training data such as bounding boxes or segmentation masks. Our proposed approach consists of specialized four stages which completely avoids localization ground truth and only needs panel images with power loss labels for training. The region of impact area obtained from the predicted localization masks are classified into soiling types using the webly supervised learning. For improving localization capabilities of CNNs, we introduce a novel bi-directional input-aware fusion (BiDIAF) block that reinforces the input at different levels of CNN to learn input-specific feature maps. Our empirical study shows that BiDIAF improves the power loss prediction accuracy by about 3% and localization accuracy by about 4%. Our end-to-end model yields further improvement of about 24% on localization when learned in a weakly supervised manner. Our approach is generalizable and showed promising results on web crawled solar panel images. Our system has a frame rate of 22 fps (including all steps) on a NVIDIA TitanX GPU. Additionally, we collected first of it's kind dataset for solar panel image analysis consisting 45,000+ images.

  • 5 authors
·
Oct 10, 2017

AutoLRS: Automatic Learning-Rate Schedule by Bayesian Optimization on the Fly

The learning rate (LR) schedule is one of the most important hyper-parameters needing careful tuning in training DNNs. However, it is also one of the least automated parts of machine learning systems and usually costs significant manual effort and computing. Though there are pre-defined LR schedules and optimizers with adaptive LR, they introduce new hyperparameters that need to be tuned separately for different tasks/datasets. In this paper, we consider the question: Can we automatically tune the LR over the course of training without human involvement? We propose an efficient method, AutoLRS, which automatically optimizes the LR for each training stage by modeling training dynamics. AutoLRS aims to find an LR applied to every tau steps that minimizes the resulted validation loss. We solve this black-box optimization on the fly by Bayesian optimization (BO). However, collecting training instances for BO requires a system to evaluate each LR queried by BO's acquisition function for tau steps, which is prohibitively expensive in practice. Instead, we apply each candidate LR for only tau'lltau steps and train an exponential model to predict the validation loss after tau steps. This mutual-training process between BO and the loss-prediction model allows us to limit the training steps invested in the BO search. We demonstrate the advantages and the generality of AutoLRS through extensive experiments of training DNNs for tasks from diverse domains using different optimizers. The LR schedules auto-generated by AutoLRS lead to a speedup of 1.22times, 1.43times, and 1.5times when training ResNet-50, Transformer, and BERT, respectively, compared to the LR schedules in their original papers, and an average speedup of 1.31times over state-of-the-art heavily-tuned LR schedules.

  • 7 authors
·
May 22, 2021

Bootstrap Masked Visual Modeling via Hard Patches Mining

Masked visual modeling has attracted much attention due to its promising potential in learning generalizable representations. Typical approaches urge models to predict specific contents of masked tokens, which can be intuitively considered as teaching a student (the model) to solve given problems (predicting masked contents). Under such settings, the performance is highly correlated with mask strategies (the difficulty of provided problems). We argue that it is equally important for the model to stand in the shoes of a teacher to produce challenging problems by itself. Intuitively, patches with high values of reconstruction loss can be regarded as hard samples, and masking those hard patches naturally becomes a demanding reconstruction task. To empower the model as a teacher, we propose Hard Patches Mining (HPM), predicting patch-wise losses and subsequently determining where to mask. Technically, we introduce an auxiliary loss predictor, which is trained with a relative objective to prevent overfitting to exact loss values. Also, to gradually guide the training procedure, we propose an easy-to-hard mask strategy. Empirically, HPM brings significant improvements under both image and video benchmarks. Interestingly, solely incorporating the extra loss prediction objective leads to better representations, verifying the efficacy of determining where is hard to reconstruct. The code is available at https://github.com/Haochen-Wang409/HPM.

  • 7 authors
·
Dec 21, 2023

Scaling Law with Learning Rate Annealing

We find that the cross-entropy loss curves of neural language models empirically adhere to a scaling law with learning rate (LR) annealing over training steps (s): $L(s) = L_0 + Acdot S_1^{-alpha} - Ccdot S_2 Where S_1 is forward area and S_2$ is learning rate annealing area. This formulation takes into account two factors: (1) The forward scaling defined as typical scaling law, and (2) the additional loss drop brought by LR annealing. Therefore, this formulation can describe the full loss curve at each step, rather than the single loss point at the end of training. Applying the scaling law with LR annealing and fitting only one or two training curves, we can accurately predict the loss of language model training at any given step and across any learning rate scheduler (LRS). Furthermore, this equation accurately describes the dynamics during training process, and provides a theoretical verification and explanation for numerous experimental findings of previous studies, particularly those focusing on LR schedule and LR annealing. The resulting insights, also serve as a guide for researchers to select critical LRS in advance by prediction using our equation. Most significantly, since all the points in a full training curve follow the equation, we can achieve accurate loss prediction at any given step across any learning rate scheduler, while expending less than 1\% of the computational cost required by the chinchilla scaling law to fit language modeling loss. This approach extremely democratizes scaling law fitting and predicting in developing large language models.

  • 3 authors
·
Aug 20, 2024 1

SFTMix: Elevating Language Model Instruction Tuning with Mixup Recipe

To induce desired behaviors in large language models (LLMs) for interaction-driven tasks, the instruction-tuning stage typically trains LLMs on instruction-response pairs using the next-token prediction (NTP) loss. Previous work aiming to improve instruction-tuning performance often emphasizes the need for higher-quality supervised fine-tuning (SFT) datasets, which typically involves expensive data filtering with proprietary LLMs or labor-intensive data generation by human annotators. However, these approaches do not fully leverage the datasets' intrinsic properties, resulting in high computational and labor costs, thereby limiting scalability and performance gains. In this paper, we propose SFTMix, a novel recipe that elevates instruction-tuning performance beyond the conventional NTP paradigm, without the need for well-curated datasets. Observing that LLMs exhibit uneven confidence across the semantic representation space, we argue that examples with different confidence levels should play distinct roles during the instruction-tuning process. Based on this insight, SFTMix leverages training dynamics to identify examples with varying confidence levels, then applies a Mixup-based regularization to mitigate overfitting on confident examples while propagating supervision signals to improve learning on relatively unconfident ones. This approach enables SFTMix to significantly outperform NTP across a wide range of instruction-following and healthcare domain-specific SFT tasks, demonstrating its adaptability to diverse LLM families and scalability to datasets of any size. Comprehensive ablation studies further verify the robustness of SFTMix's design choices, underscoring its versatility in consistently enhancing performance across different LLMs and datasets in broader natural language processing applications.

  • 5 authors
·
Oct 7, 2024 2

FreeCOS: Self-Supervised Learning from Fractals and Unlabeled Images for Curvilinear Object Segmentation

Curvilinear object segmentation is critical for many applications. However, manually annotating curvilinear objects is very time-consuming and error-prone, yielding insufficiently available annotated datasets for existing supervised methods and domain adaptation methods. This paper proposes a self-supervised curvilinear object segmentation method that learns robust and distinctive features from fractals and unlabeled images (FreeCOS). The key contributions include a novel Fractal-FDA synthesis (FFS) module and a geometric information alignment (GIA) approach. FFS generates curvilinear structures based on the parametric Fractal L-system and integrates the generated structures into unlabeled images to obtain synthetic training images via Fourier Domain Adaptation. GIA reduces the intensity differences between the synthetic and unlabeled images by comparing the intensity order of a given pixel to the values of its nearby neighbors. Such image alignment can explicitly remove the dependency on absolute intensity values and enhance the inherent geometric characteristics which are common in both synthetic and real images. In addition, GIA aligns features of synthetic and real images via the prediction space adaptation loss (PSAL) and the curvilinear mask contrastive loss (CMCL). Extensive experimental results on four public datasets, i.e., XCAD, DRIVE, STARE and CrackTree demonstrate that our method outperforms the state-of-the-art unsupervised methods, self-supervised methods and traditional methods by a large margin. The source code of this work is available at https://github.com/TY-Shi/FreeCOS.

  • 4 authors
·
Jul 14, 2023

Model-Based Control with Sparse Neural Dynamics

Learning predictive models from observations using deep neural networks (DNNs) is a promising new approach to many real-world planning and control problems. However, common DNNs are too unstructured for effective planning, and current control methods typically rely on extensive sampling or local gradient descent. In this paper, we propose a new framework for integrated model learning and predictive control that is amenable to efficient optimization algorithms. Specifically, we start with a ReLU neural model of the system dynamics and, with minimal losses in prediction accuracy, we gradually sparsify it by removing redundant neurons. This discrete sparsification process is approximated as a continuous problem, enabling an end-to-end optimization of both the model architecture and the weight parameters. The sparsified model is subsequently used by a mixed-integer predictive controller, which represents the neuron activations as binary variables and employs efficient branch-and-bound algorithms. Our framework is applicable to a wide variety of DNNs, from simple multilayer perceptrons to complex graph neural dynamics. It can efficiently handle tasks involving complicated contact dynamics, such as object pushing, compositional object sorting, and manipulation of deformable objects. Numerical and hardware experiments show that, despite the aggressive sparsification, our framework can deliver better closed-loop performance than existing state-of-the-art methods.

  • 7 authors
·
Dec 20, 2023

VoxelSplat: Dynamic Gaussian Splatting as an Effective Loss for Occupancy and Flow Prediction

Recent advancements in camera-based occupancy prediction have focused on the simultaneous prediction of 3D semantics and scene flow, a task that presents significant challenges due to specific difficulties, e.g., occlusions and unbalanced dynamic environments. In this paper, we analyze these challenges and their underlying causes. To address them, we propose a novel regularization framework called VoxelSplat. This framework leverages recent developments in 3D Gaussian Splatting to enhance model performance in two key ways: (i) Enhanced Semantics Supervision through 2D Projection: During training, our method decodes sparse semantic 3D Gaussians from 3D representations and projects them onto the 2D camera view. This provides additional supervision signals in the camera-visible space, allowing 2D labels to improve the learning of 3D semantics. (ii) Scene Flow Learning: Our framework uses the predicted scene flow to model the motion of Gaussians, and is thus able to learn the scene flow of moving objects in a self-supervised manner using the labels of adjacent frames. Our method can be seamlessly integrated into various existing occupancy models, enhancing performance without increasing inference time. Extensive experiments on benchmark datasets demonstrate the effectiveness of VoxelSplat in improving the accuracy of both semantic occupancy and scene flow estimation. The project page and codes are available at https://zzy816.github.io/VoxelSplat-Demo/.

  • 6 authors
·
Jun 5

Advancing Parsimonious Deep Learning Weather Prediction using the HEALPix Mesh

We present a parsimonious deep learning weather prediction model to forecast seven atmospheric variables with 3-h time resolution for up to one-year lead times on a 110-km global mesh using the Hierarchical Equal Area isoLatitude Pixelization (HEALPix). In comparison to state-of-the-art (SOTA) machine learning (ML) weather forecast models, such as Pangu-Weather and GraphCast, our DLWP-HPX model uses coarser resolution and far fewer prognostic variables. Yet, at one-week lead times, its skill is only about one day behind both SOTA ML forecast models and the SOTA numerical weather prediction model from the European Centre for Medium-Range Weather Forecasts. We report several improvements in model design, including switching from the cubed sphere to the HEALPix mesh, inverting the channel depth of the U-Net, and introducing gated recurrent units (GRU) on each level of the U-Net hierarchy. The consistent east-west orientation of all cells on the HEALPix mesh facilitates the development of location-invariant convolution kernels that successfully propagate weather patterns across the globe without requiring separate kernels for the polar and equatorial faces of the cube sphere. Without any loss of spectral power after the first two days, the model can be unrolled autoregressively for hundreds of steps into the future to generate realistic states of the atmosphere that respect seasonal trends, as showcased in one-year simulations.

  • 8 authors
·
Sep 11, 2023

Interpretable Multi-Task PINN for Emotion Recognition and EDA Prediction

Understanding and predicting human emotional and physiological states using wearable sensors has important applications in stress monitoring, mental health assessment, and affective computing. This study presents a novel Multi-Task Physics-Informed Neural Network (PINN) that performs Electrodermal Activity (EDA) prediction and emotion classification simultaneously, using the publicly available WESAD dataset. The model integrates psychological self-report features (PANAS and SAM) with a physics-inspired differential equation representing EDA dynamics, enforcing biophysically grounded constraints through a custom loss function. This loss combines EDA regression, emotion classification, and a physics residual term for improved interpretability. The architecture supports dual outputs for both tasks and is trained under a unified multi-task framework. Evaluated using 5-fold cross-validation, the model achieves an average EDA RMSE of 0.0362, Pearson correlation of 0.9919, and F1-score of 94.08 percent. These results outperform classical models such as SVR and XGBoost, as well as ablated variants like emotion-only and EDA-only models. In addition, the learned physical parameters including decay rate (alpha_0), emotional sensitivity (beta), and time scaling (gamma) are interpretable and stable across folds, aligning with known principles of human physiology. This work is the first to introduce a multi-task PINN framework for wearable emotion recognition, offering improved performance, generalizability, and model transparency. The proposed system provides a foundation for future interpretable and multimodal applications in healthcare and human-computer interaction.

  • 1 authors
·
May 13

Optimizing Calibration by Gaining Aware of Prediction Correctness

Model calibration aims to align confidence with prediction correctness. The Cross-Entropy (CE) loss is widely used for calibrator training, which enforces the model to increase confidence on the ground truth class. However, we find the CE loss has intrinsic limitations. For example, for a narrow misclassification, a calibrator trained by the CE loss often produces high confidence on the wrongly predicted class (e.g., a test sample is wrongly classified and its softmax score on the ground truth class is around 0.4), which is undesirable. In this paper, we propose a new post-hoc calibration objective derived from the aim of calibration. Intuitively, the proposed objective function asks that the calibrator decrease model confidence on wrongly predicted samples and increase confidence on correctly predicted samples. Because a sample itself has insufficient ability to indicate correctness, we use its transformed versions (e.g., rotated, greyscaled and color-jittered) during calibrator training. Trained on an in-distribution validation set and tested with isolated, individual test samples, our method achieves competitive calibration performance on both in-distribution and out-of-distribution test sets compared with the state of the art. Further, our analysis points out the difference between our method and commonly used objectives such as CE loss and mean square error loss, where the latters sometimes deviates from the calibration aim.

  • 5 authors
·
Apr 19, 2024

Kangaroo: Lossless Self-Speculative Decoding via Double Early Exiting

Speculative decoding has demonstrated its effectiveness in accelerating the inference of large language models while maintaining a consistent sampling distribution. However, the conventional approach of training a separate draft model to achieve a satisfactory token acceptance rate can be costly. Drawing inspiration from early exiting, we propose a novel self-speculative decoding framework Kangaroo, which uses a fixed shallow sub-network as a self-draft model, with the remaining layers serving as the larger target model. We train a lightweight and efficient adapter module on top of the sub-network to bridge the gap between the sub-network and the full model's representation ability. It is noteworthy that the inference latency of the self-draft model may no longer be negligible compared to the large model, necessitating strategies to increase the token acceptance rate while minimizing the drafting steps of the small model. To address this challenge, we introduce an additional early exiting mechanism for generating draft tokens. Specifically, we halt the small model's subsequent prediction during the drafting phase once the confidence level for the current token falls below a certain threshold. Extensive experiments on the Spec-Bench demonstrate the effectiveness of Kangaroo. Under single-sequence verification, Kangaroo achieves speedups up to 1.68times on Spec-Bench, outperforming Medusa-1 with 88.7\% fewer additional parameters (67M compared to 591M). The code for Kangaroo is available at https://github.com/Equationliu/Kangaroo.

huawei-noah HUAWEI Noah's Ark Lab
·
Apr 29, 2024 2

ViPRA: Video Prediction for Robot Actions

Can we turn a video prediction model into a robot policy? Videos, including those of humans or teleoperated robots, capture rich physical interactions. However, most of them lack labeled actions, which limits their use in robot learning. We present Video Prediction for Robot Actions (ViPRA), a simple pretraining-finetuning framework that learns continuous robot control from these actionless videos. Instead of directly predicting actions, we train a video-language model to predict both future visual observations and motion-centric latent actions, which serve as intermediate representations of scene dynamics. We train these latent actions using perceptual losses and optical flow consistency to ensure they reflect physically grounded behavior. For downstream control, we introduce a chunked flow matching decoder that maps latent actions to robot-specific continuous action sequences, using only 100 to 200 teleoperated demonstrations. This approach avoids expensive action annotation, supports generalization across embodiments, and enables smooth, high-frequency continuous control upto 22 Hz via chunked action decoding. Unlike prior latent action works that treat pretraining as autoregressive policy learning, explicitly models both what changes and how. Our method outperforms strong baselines, with a 16% gain on the SIMPLER benchmark and a 13% improvement across real world manipulation tasks. We will release models and code at https://vipra-project.github.io

  • 5 authors
·
Nov 10

Ad Creative Discontinuation Prediction with Multi-Modal Multi-Task Neural Survival Networks

Discontinuing ad creatives at an appropriate time is one of the most important ad operations that can have a significant impact on sales. Such operational support for ineffective ads has been less explored than that for effective ads. After pre-analyzing 1,000,000 real-world ad creatives, we found that there are two types of discontinuation: short-term (i.e., cut-out) and long-term (i.e., wear-out). In this paper, we propose a practical prediction framework for the discontinuation of ad creatives with a hazard function-based loss function inspired by survival analysis. Our framework predicts the discontinuations with a multi-modal deep neural network that takes as input the ad creative (e.g., text, categorical, image, numerical features). To improve the prediction performance for the two different types of discontinuations and for the ad creatives that contribute to sales, we introduce two new techniques: (1) a two-term estimation technique with multi-task learning and (2) a click-through rate-weighting technique for the loss function. We evaluated our framework using the large-scale ad creative dataset, including 10 billion scale impressions. In terms of the concordance index (short: 0.896, long: 0.939, and overall: 0.792), our framework achieved significantly better performance than the conventional method (0.531). Additionally, we confirmed that our framework (i) demonstrated the same degree of discontinuation effect as manual operations for short-term cases, and (ii) accurately predicted the ad discontinuation order, which is important for long-running ad creatives for long-term cases.

  • 3 authors
·
Apr 2, 2022

Your LLM Knows the Future: Uncovering Its Multi-Token Prediction Potential

Autoregressive language models are constrained by their inherently sequential nature, generating one token at a time. This paradigm limits inference speed and parallelism, especially during later stages of generation when the direction and semantics of text are relatively certain. In this work, we propose a novel framework that leverages the inherent knowledge of vanilla autoregressive language models about future tokens, combining techniques to realize this potential and enable simultaneous prediction of multiple subsequent tokens. Our approach introduces several key innovations: (1) a masked-input formulation where multiple future tokens are jointly predicted from a common prefix; (2) a gated LoRA formulation that preserves the original LLM's functionality, while equipping it for multi-token prediction; (3) a lightweight, learnable sampler module that generates coherent sequences from the predicted future tokens; (4) a set of auxiliary training losses, including a consistency loss, to enhance the coherence and accuracy of jointly generated tokens; and (5) a speculative generation strategy that expands tokens quadratically in the future while maintaining high fidelity. Our method achieves significant speedups through supervised fine-tuning on pretrained models. For example, it generates code and math nearly 5x faster, and improves general chat and knowledge tasks by almost 2.5x. These gains come without any loss in quality.

  • 7 authors
·
Jul 15

Reduce Information Loss in Transformers for Pluralistic Image Inpainting

Transformers have achieved great success in pluralistic image inpainting recently. However, we find existing transformer based solutions regard each pixel as a token, thus suffer from information loss issue from two aspects: 1) They downsample the input image into much lower resolutions for efficiency consideration, incurring information loss and extra misalignment for the boundaries of masked regions. 2) They quantize 256^3 RGB pixels to a small number (such as 512) of quantized pixels. The indices of quantized pixels are used as tokens for the inputs and prediction targets of transformer. Although an extra CNN network is used to upsample and refine the low-resolution results, it is difficult to retrieve the lost information back.To keep input information as much as possible, we propose a new transformer based framework "PUT". Specifically, to avoid input downsampling while maintaining the computation efficiency, we design a patch-based auto-encoder P-VQVAE, where the encoder converts the masked image into non-overlapped patch tokens and the decoder recovers the masked regions from inpainted tokens while keeping the unmasked regions unchanged. To eliminate the information loss caused by quantization, an Un-Quantized Transformer (UQ-Transformer) is applied, which directly takes the features from P-VQVAE encoder as input without quantization and regards the quantized tokens only as prediction targets. Extensive experiments show that PUT greatly outperforms state-of-the-art methods on image fidelity, especially for large masked regions and complex large-scale datasets. Code is available at https://github.com/liuqk3/PUT

  • 9 authors
·
May 10, 2022

Bias Loss for Mobile Neural Networks

Compact convolutional neural networks (CNNs) have witnessed exceptional improvements in performance in recent years. However, they still fail to provide the same predictive power as CNNs with a large number of parameters. The diverse and even abundant features captured by the layers is an important characteristic of these successful CNNs. However, differences in this characteristic between large CNNs and their compact counterparts have rarely been investigated. In compact CNNs, due to the limited number of parameters, abundant features are unlikely to be obtained, and feature diversity becomes an essential characteristic. Diverse features present in the activation maps derived from a data point during model inference may indicate the presence of a set of unique descriptors necessary to distinguish between objects of different classes. In contrast, data points with low feature diversity may not provide a sufficient amount of unique descriptors to make a valid prediction; we refer to them as random predictions. Random predictions can negatively impact the optimization process and harm the final performance. This paper proposes addressing the problem raised by random predictions by reshaping the standard cross-entropy to make it biased toward data points with a limited number of unique descriptive features. Our novel Bias Loss focuses the training on a set of valuable data points and prevents the vast number of samples with poor learning features from misleading the optimization process. Furthermore, to show the importance of diversity, we present a family of SkipNet models whose architectures are brought to boost the number of unique descriptors in the last layers. Our Skipnet-M can achieve 1% higher classification accuracy than MobileNetV3 Large.

  • 4 authors
·
Jul 23, 2021

Individualizing Glioma Radiotherapy Planning by Optimization of Data and Physics-Informed Discrete Loss

Brain tumor growth is unique to each glioma patient and extends beyond what is visible in imaging scans, infiltrating surrounding brain tissue. Understanding these hidden patient-specific progressions is essential for effective therapies. Current treatment plans for brain tumors, such as radiotherapy, typically involve delineating a uniform margin around the visible tumor on pre-treatment scans to target this invisible tumor growth. This "one size fits all" approach is derived from population studies and often fails to account for the nuances of individual patient conditions. We present the GliODIL framework, which infers the full spatial distribution of tumor cell concentration from available multi-modal imaging, leveraging a Fisher-Kolmogorov type physics model to describe tumor growth. This is achieved through the newly introduced method of Optimizing the Discrete Loss (ODIL), where both data and physics-based constraints are softly assimilated into the solution. Our test dataset comprises 152 glioblastoma patients with pre-treatment imaging and post-treatment follow-ups for tumor recurrence monitoring. By blending data-driven techniques with physics-based constraints, GliODIL enhances recurrence prediction in radiotherapy planning, challenging traditional uniform margins and strict adherence to the Fisher-Kolmogorov partial differential equation (PDE) model, which is adapted for complex cases.

  • 10 authors
·
Dec 8, 2023

Stock Price Prediction Using Convolutional Neural Networks on a Multivariate Timeseries

Prediction of future movement of stock prices has been a subject matter of many research work. In this work, we propose a hybrid approach for stock price prediction using machine learning and deep learning-based methods. We select the NIFTY 50 index values of the National Stock Exchange of India, over a period of four years, from January 2015 till December 2019. Based on the NIFTY data during the said period, we build various predictive models using machine learning approaches, and then use those models to predict the Close value of NIFTY 50 for the year 2019, with a forecast horizon of one week. For predicting the NIFTY index movement patterns, we use a number of classification methods, while for forecasting the actual Close values of NIFTY index, various regression models are built. We, then, augment our predictive power of the models by building a deep learning-based regression model using Convolutional Neural Network with a walk-forward validation. The CNN model is fine-tuned for its parameters so that the validation loss stabilizes with increasing number of iterations, and the training and validation accuracies converge. We exploit the power of CNN in forecasting the future NIFTY index values using three approaches which differ in number of variables used in forecasting, number of sub-models used in the overall models and, size of the input data for training the models. Extensive results are presented on various metrics for all classification and regression models. The results clearly indicate that CNN-based multivariate forecasting model is the most effective and accurate in predicting the movement of NIFTY index values with a weekly forecast horizon.

  • 2 authors
·
Jan 9, 2020

From Knowledge Distillation to Self-Knowledge Distillation: A Unified Approach with Normalized Loss and Customized Soft Labels

Knowledge Distillation (KD) uses the teacher's prediction logits as soft labels to guide the student, while self-KD does not need a real teacher to require the soft labels. This work unifies the formulations of the two tasks by decomposing and reorganizing the generic KD loss into a Normalized KD (NKD) loss and customized soft labels for both target class (image's category) and non-target classes named Universal Self-Knowledge Distillation (USKD). We decompose the KD loss and find the non-target loss from it forces the student's non-target logits to match the teacher's, but the sum of the two non-target logits is different, preventing them from being identical. NKD normalizes the non-target logits to equalize their sum. It can be generally used for KD and self-KD to better use the soft labels for distillation loss. USKD generates customized soft labels for both target and non-target classes without a teacher. It smooths the target logit of the student as the soft target label and uses the rank of the intermediate feature to generate the soft non-target labels with Zipf's law. For KD with teachers, our NKD achieves state-of-the-art performance on CIFAR-100 and ImageNet datasets, boosting the ImageNet Top-1 accuracy of ResNet18 from 69.90% to 71.96% with a ResNet-34 teacher. For self-KD without teachers, USKD is the first self-KD method that can be effectively applied to both CNN and ViT models with negligible additional time and memory cost, resulting in new state-of-the-art results, such as 1.17% and 0.55% accuracy gains on ImageNet for MobileNet and DeiT-Tiny, respectively. Our codes are available at https://github.com/yzd-v/cls_KD.

  • 6 authors
·
Mar 22, 2023

HumanMAC: Masked Motion Completion for Human Motion Prediction

Human motion prediction is a classical problem in computer vision and computer graphics, which has a wide range of practical applications. Previous effects achieve great empirical performance based on an encoding-decoding style. The methods of this style work by first encoding previous motions to latent representations and then decoding the latent representations into predicted motions. However, in practice, they are still unsatisfactory due to several issues, including complicated loss constraints, cumbersome training processes, and scarce switch of different categories of motions in prediction. In this paper, to address the above issues, we jump out of the foregoing style and propose a novel framework from a new perspective. Specifically, our framework works in a masked completion fashion. In the training stage, we learn a motion diffusion model that generates motions from random noise. In the inference stage, with a denoising procedure, we make motion prediction conditioning on observed motions to output more continuous and controllable predictions. The proposed framework enjoys promising algorithmic properties, which only needs one loss in optimization and is trained in an end-to-end manner. Additionally, it accomplishes the switch of different categories of motions effectively, which is significant in realistic tasks, e.g., the animation task. Comprehensive experiments on benchmarks confirm the superiority of the proposed framework. The project page is available at https://lhchen.top/Human-MAC.

  • 6 authors
·
Feb 7, 2023

Generative Regression Based Watch Time Prediction for Short-Video Recommendation

Watch time prediction (WTP) has emerged as a pivotal task in short video recommendation systems, designed to quantify user engagement through continuous interaction modeling. Predicting users' watch times on videos often encounters fundamental challenges, including wide value ranges and imbalanced data distributions, which can lead to significant estimation bias when directly applying regression techniques. Recent studies have attempted to address these issues by converting the continuous watch time estimation into an ordinal regression task. While these methods demonstrate partial effectiveness, they exhibit notable limitations: (1) the discretization process frequently relies on bucket partitioning, inherently reducing prediction flexibility and accuracy and (2) the interdependencies among different partition intervals remain underutilized, missing opportunities for effective error correction. Inspired by language modeling paradigms, we propose a novel Generative Regression (GR) framework that reformulates WTP as a sequence generation task. Our approach employs structural discretization to enable nearly lossless value reconstruction while maintaining prediction fidelity. Through carefully designed vocabulary construction and label encoding schemes, each watch time is bijectively mapped to a token sequence. To mitigate the training-inference discrepancy caused by teacher-forcing, we introduce a curriculum learning with embedding mixup strategy that gradually transitions from guided to free-generation modes. We evaluate our method against state-of-the-art approaches on two public datasets and one industrial dataset. We also perform online A/B testing on the Kuaishou App to confirm the real-world effectiveness. The results conclusively show that GR outperforms existing techniques significantly.

  • 9 authors
·
Dec 28, 2024

Chimera: A Lossless Decoding Method for Accelerating Large Language Models Inference by Fusing all Tokens

Large language models (LLMs) have demonstrated remarkable capabilities across various tasks. However, their widespread application is hindered by the resource-intensive decoding process. To address this challenge, current approaches have incorporated additional decoding heads to enable parallel prediction of multiple subsequent tokens, thereby achieving inference acceleration. Nevertheless, the accuracy of these decoding heads falls short of the auto-regressive decoding approach. In light of these limitations, we propose Chimera, a novel framework specifically designed for speculative sampling. Within this framework, we introduce a lightweight draft model that effectively utilizes previously generated tokens to predict subsequent words. To ensure both accuracy and efficiency, we present two strategies within the lightweight draft model. Firstly, we focus on capturing short-range dependencies at the bottom layer. Secondly, we leverage the readily available representations from the original LLM.Through empirical evaluation on the Vicuna and LlaMA-2 series, Chimera demonstrates impressive results, achieving an average latency speedup ratio of 2.7x compared to the vanilla auto-regressive decoding approach. This highlights the potential of our proposed framework in significantly improving the efficiency of large language models during the decoding process.

  • 7 authors
·
Feb 24, 2024

KV Prediction for Improved Time to First Token

Inference with transformer-based language models begins with a prompt processing step. In this step, the model generates the first output token and stores the KV cache needed for future generation steps. This prompt processing step can be computationally expensive, taking 10s of seconds or more for billion-parameter models on edge devices when prompt lengths or batch sizes rise. This degrades user experience by introducing significant latency into the model's outputs. To reduce the time spent producing the first output (known as the ``time to first token'', or TTFT) of a pretrained model, we introduce a novel method called KV Prediction. In our method, a small auxiliary model is used to process the prompt and produce an approximation of the KV cache used by a base model. This approximated KV cache is then used with the base model for autoregressive generation without the need to query the auxiliary model again. We demonstrate that our method produces a pareto-optimal efficiency-accuracy trade-off when compared to baselines. On TriviaQA, we demonstrate relative accuracy improvements in the range of 15%-50% across a range of TTFT FLOPs budgets. We also demonstrate accuracy improvements of up to 30% on HumanEval python code completion at fixed TTFT FLOPs budgets. Additionally, we benchmark models on an Apple M2 Pro CPU and demonstrate that our improvement in FLOPs translates to a TTFT speedup on hardware. We release our code at https://github.com/apple/corenet/tree/main/projects/kv-prediction .

  • 7 authors
·
Oct 10, 2024 2

Fire Together Wire Together: A Dynamic Pruning Approach with Self-Supervised Mask Prediction

Dynamic model pruning is a recent direction that allows for the inference of a different sub-network for each input sample during deployment. However, current dynamic methods rely on learning a continuous channel gating through regularization by inducing sparsity loss. This formulation introduces complexity in balancing different losses (e.g task loss, regularization loss). In addition, regularization based methods lack transparent tradeoff hyperparameter selection to realize a computational budget. Our contribution is two-fold: 1) decoupled task and pruning losses. 2) Simple hyperparameter selection that enables FLOPs reduction estimation before training. Inspired by the Hebbian theory in Neuroscience: "neurons that fire together wire together", we propose to predict a mask to process k filters in a layer based on the activation of its previous layer. We pose the problem as a self-supervised binary classification problem. Each mask predictor module is trained to predict if the log-likelihood for each filter in the current layer belongs to the top-k activated filters. The value k is dynamically estimated for each input based on a novel criterion using the mass of heatmaps. We show experiments on several neural architectures, such as VGG, ResNet and MobileNet on CIFAR and ImageNet datasets. On CIFAR, we reach similar accuracy to SOTA methods with 15% and 24% higher FLOPs reduction. Similarly in ImageNet, we achieve lower drop in accuracy with up to 13% improvement in FLOPs reduction.

  • 4 authors
·
Oct 15, 2021

VoluMe -- Authentic 3D Video Calls from Live Gaussian Splat Prediction

Virtual 3D meetings offer the potential to enhance copresence, increase engagement and thus improve effectiveness of remote meetings compared to standard 2D video calls. However, representing people in 3D meetings remains a challenge; existing solutions achieve high quality by using complex hardware, making use of fixed appearance via enrolment, or by inverting a pre-trained generative model. These approaches lead to constraints that are unwelcome and ill-fitting for videoconferencing applications. We present the first method to predict 3D Gaussian reconstructions in real time from a single 2D webcam feed, where the 3D representation is not only live and realistic, but also authentic to the input video. By conditioning the 3D representation on each video frame independently, our reconstruction faithfully recreates the input video from the captured viewpoint (a property we call authenticity), while generalizing realistically to novel viewpoints. Additionally, we introduce a stability loss to obtain reconstructions that are temporally stable on video sequences. We show that our method delivers state-of-the-art accuracy in visual quality and stability metrics compared to existing methods, and demonstrate our approach in live one-to-one 3D meetings using only a standard 2D camera and display. This demonstrates that our approach can allow anyone to communicate volumetrically, via a method for 3D videoconferencing that is not only highly accessible, but also realistic and authentic.

  • 9 authors
·
Jul 28

DeepFEA: Deep Learning for Prediction of Transient Finite Element Analysis Solutions

Finite Element Analysis (FEA) is a powerful but computationally intensive method for simulating physical phenomena. Recent advancements in machine learning have led to surrogate models capable of accelerating FEA. Yet there are still limitations in developing surrogates of transient FEA models that can simultaneously predict the solutions for both nodes and elements with applicability on both the 2D and 3D domains. Motivated by this research gap, this study proposes DeepFEA, a deep learning-based framework that leverages a multilayer Convolutional Long Short-Term Memory (ConvLSTM) network branching into two parallel convolutional neural networks to predict the solutions for both nodes and elements of FEA models. The proposed network is optimized using a novel adaptive learning algorithm, called Node-Element Loss Optimization (NELO). NELO minimizes the error occurring at both branches of the network enabling the prediction of solutions for transient FEA simulations. The experimental evaluation of DeepFEA is performed on three datasets in the context of structural mechanics, generated to serve as publicly available reference datasets. The results show that DeepFEA can achieve less than 3% normalized mean and root mean squared error for 2D and 3D simulation scenarios, and inference times that are two orders of magnitude faster than FEA. In contrast, relevant state-of-the-art methods face challenges with multi-dimensional output and dynamic input prediction. Furthermore, DeepFEA's robustness was demonstrated in a real-life biomedical scenario, confirming its suitability for accurate and efficient predictions of FEA simulations.

  • 4 authors
·
Dec 5, 2024

UMMAN: Unsupervised Multi-graph Merge Adversarial Network for Disease Prediction Based on Intestinal Flora

The abundance of intestinal flora is closely related to human diseases, but diseases are not caused by a single gut microbe. Instead, they result from the complex interplay of numerous microbial entities. This intricate and implicit connection among gut microbes poses a significant challenge for disease prediction using abundance information from OTU data. Recently, several methods have shown potential in predicting corresponding diseases. However, these methods fail to learn the inner association among gut microbes from different hosts, leading to unsatisfactory performance. In this paper, we present a novel architecture, Unsupervised Multi-graph Merge Adversarial Network (UMMAN). UMMAN can obtain the embeddings of nodes in the Multi-Graph in an unsupervised scenario, so that it helps learn the multiplex association. Our method is the first to combine Graph Neural Network with the task of intestinal flora disease prediction. We employ complex relation-types to construct the Original-Graph and disrupt the relationships among nodes to generate corresponding Shuffled-Graph. We introduce the Node Feature Global Integration (NFGI) module to represent the global features of the graph. Furthermore, we design a joint loss comprising adversarial loss and hybrid attention loss to ensure that the real graph embedding aligns closely with the Original-Graph and diverges from the Shuffled-Graph. Comprehensive experiments on five classical OTU gut microbiome datasets demonstrate the effectiveness and stability of our method. (We will release our code soon.)

  • 5 authors
·
Jul 31, 2024

Backdoor Secrets Unveiled: Identifying Backdoor Data with Optimized Scaled Prediction Consistency

Modern machine learning (ML) systems demand substantial training data, often resorting to external sources. Nevertheless, this practice renders them vulnerable to backdoor poisoning attacks. Prior backdoor defense strategies have primarily focused on the identification of backdoored models or poisoned data characteristics, typically operating under the assumption of access to clean data. In this work, we delve into a relatively underexplored challenge: the automatic identification of backdoor data within a poisoned dataset, all under realistic conditions, i.e., without the need for additional clean data or without manually defining a threshold for backdoor detection. We draw an inspiration from the scaled prediction consistency (SPC) technique, which exploits the prediction invariance of poisoned data to an input scaling factor. Based on this, we pose the backdoor data identification problem as a hierarchical data splitting optimization problem, leveraging a novel SPC-based loss function as the primary optimization objective. Our innovation unfolds in several key aspects. First, we revisit the vanilla SPC method, unveiling its limitations in addressing the proposed backdoor identification problem. Subsequently, we develop a bi-level optimization-based approach to precisely identify backdoor data by minimizing the advanced SPC loss. Finally, we demonstrate the efficacy of our proposal against a spectrum of backdoor attacks, encompassing basic label-corrupted attacks as well as more sophisticated clean-label attacks, evaluated across various benchmark datasets. Experiment results show that our approach often surpasses the performance of current baselines in identifying backdoor data points, resulting in about 4%-36% improvement in average AUROC. Codes are available at https://github.com/OPTML-Group/BackdoorMSPC.

  • 5 authors
·
Mar 15, 2024

APNet: An All-Frame-Level Neural Vocoder Incorporating Direct Prediction of Amplitude and Phase Spectra

This paper presents a novel neural vocoder named APNet which reconstructs speech waveforms from acoustic features by predicting amplitude and phase spectra directly. The APNet vocoder is composed of an amplitude spectrum predictor (ASP) and a phase spectrum predictor (PSP). The ASP is a residual convolution network which predicts frame-level log amplitude spectra from acoustic features. The PSP also adopts a residual convolution network using acoustic features as input, then passes the output of this network through two parallel linear convolution layers respectively, and finally integrates into a phase calculation formula to estimate frame-level phase spectra. Finally, the outputs of ASP and PSP are combined to reconstruct speech waveforms by inverse short-time Fourier transform (ISTFT). All operations of the ASP and PSP are performed at the frame level. We train the ASP and PSP jointly and define multilevel loss functions based on amplitude mean square error, phase anti-wrapping error, short-time spectral inconsistency error and time domain reconstruction error. Experimental results show that our proposed APNet vocoder achieves an approximately 8x faster inference speed than HiFi-GAN v1 on a CPU due to the all-frame-level operations, while its synthesized speech quality is comparable to HiFi-GAN v1. The synthesized speech quality of the APNet vocoder is also better than that of several equally efficient models. Ablation experiments also confirm that the proposed parallel phase estimation architecture is essential to phase modeling and the proposed loss functions are helpful for improving the synthesized speech quality.

  • 2 authors
·
May 13, 2023

Idioms: Neural Decompilation With Joint Code and Type Prediction

Decompilers are important tools for reverse engineers that help them analyze software at a higher level of abstraction than assembly. Unfortunately, because compilation is lossy, deterministic decompilers produce code that is missing many of the details that make source code readable in the first place, like variable names and types. Neural decompilers, on the other hand, offer the ability to statistically fill in these details. Existing work in neural decompilation, however, suffers from substantial drawbacks that limits its ability to handle real code: it is unable to handle user-defined composite types, which are essential to fully specifying many functions' semantics, or require test cases. In this work, we introduce a new training process to finetune any LLM into a neural decompiler capable of generating the appropriate user-defined types alongside the decompilation. We introduce a new dataset, Realtype, that includes substantially more complicated and realistic types than existing neural decompilation benchmarks. Motivated by the intuition that different parts of data structures can be operated upon by different parts of the program, we show that interprocedural context can help improve neural decompilers' ability to handle user-defined types. We show that our training process yields state-of-the-art results in neural decompilation. We also publicly release the Idioms series of finetuned neural decompilation models in support of open science. In summary, we identify the need for joint code and type prediction, show that it is a hard problem, and take the first steps towards solving it.

  • 3 authors
·
Feb 6

ITCFN: Incomplete Triple-Modal Co-Attention Fusion Network for Mild Cognitive Impairment Conversion Prediction

Alzheimer's disease (AD) is a common neurodegenerative disease among the elderly. Early prediction and timely intervention of its prodromal stage, mild cognitive impairment (MCI), can decrease the risk of advancing to AD. Combining information from various modalities can significantly improve predictive accuracy. However, challenges such as missing data and heterogeneity across modalities complicate multimodal learning methods as adding more modalities can worsen these issues. Current multimodal fusion techniques often fail to adapt to the complexity of medical data, hindering the ability to identify relationships between modalities. To address these challenges, we propose an innovative multimodal approach for predicting MCI conversion, focusing specifically on the issues of missing positron emission tomography (PET) data and integrating diverse medical information. The proposed incomplete triple-modal MCI conversion prediction network is tailored for this purpose. Through the missing modal generation module, we synthesize the missing PET data from the magnetic resonance imaging and extract features using specifically designed encoders. We also develop a channel aggregation module and a triple-modal co-attention fusion module to reduce feature redundancy and achieve effective multimodal data fusion. Furthermore, we design a loss function to handle missing modality issues and align cross-modal features. These components collectively harness multimodal data to boost network performance. Experimental results on the ADNI1 and ADNI2 datasets show that our method significantly surpasses existing unimodal and other multimodal models. Our code is available at https://github.com/justinhxy/ITFC.

  • 11 authors
·
Jan 20

CSI-BERT2: A BERT-inspired Framework for Efficient CSI Prediction and Classification in Wireless Communication and Sensing

Channel state information (CSI) is a fundamental component in both wireless communication and sensing systems, enabling critical functions such as radio resource optimization and environmental perception. In wireless sensing, data scarcity and packet loss hinder efficient model training, while in wireless communication, high-dimensional CSI matrices and short coherent times caused by high mobility present challenges in CSI estimation.To address these issues, we propose a unified framework named CSI-BERT2 for CSI prediction and classification tasks. Building on CSI-BERT, we introduce a two-stage training method that first uses a mask language model (MLM) to enable the model to learn general feature extraction from scarce datasets in an unsupervised manner, followed by fine-tuning for specific downstream tasks. Specifically, we extend MLM into a mask prediction model (MPM), which efficiently addresses the CSI prediction task. We also introduce an adaptive re-weighting layer (ARL) to enhance subcarrier representation and a multi-layer perceptron (MLP) based temporal embedding module to mitigate permutation invariance issues in time-series CSI data. This significantly improves the CSI classification performance of the original CSI-BERT model. Extensive experiments on both real-world collected and simulated datasets demonstrate that CSI-BERT2 achieves state-of-the-art performance across all tasks. Our results further show that CSI-BERT2 generalizes effectively across varying sampling rates and robustly handles discontinuous CSI sequences caused by packet loss-challenges that conventional methods fail to address.

  • 6 authors
·
Dec 9, 2024

Ethicist: Targeted Training Data Extraction Through Loss Smoothed Soft Prompting and Calibrated Confidence Estimation

Large pre-trained language models achieve impressive results across many tasks. However, recent works point out that pre-trained language models may memorize a considerable fraction of their training data, leading to the privacy risk of information leakage. In this paper, we propose a method named Ethicist for targeted training data extraction through loss smoothed soft prompting and calibrated confidence estimation, investigating how to recover the suffix in the training data when given a prefix. To elicit memorization in the attacked model, we tune soft prompt embeddings while keeping the model fixed. We further propose a smoothing loss that smooths the loss distribution of the suffix tokens to make it easier to sample the correct suffix. In order to select the most probable suffix from a collection of sampled suffixes and estimate the prediction confidence, we propose a calibrated confidence estimation method, which normalizes the confidence of the generated suffixes with a local estimation. We show that Ethicist significantly improves the extraction performance on a recently proposed public benchmark. We also investigate several factors influencing the data extraction performance, including decoding strategy, model scale, prefix length, and suffix length. Our code is available at https://github.com/thu-coai/Targeted-Data-Extraction.

  • 3 authors
·
Jul 10, 2023

xTrimoABFold: De novo Antibody Structure Prediction without MSA

In the field of antibody engineering, an essential task is to design a novel antibody whose paratopes bind to a specific antigen with correct epitopes. Understanding antibody structure and its paratope can facilitate a mechanistic understanding of its function. Therefore, antibody structure prediction from its sequence alone has always been a highly valuable problem for de novo antibody design. AlphaFold2, a breakthrough in the field of structural biology, provides a solution to predict protein structure based on protein sequences and computationally expensive coevolutionary multiple sequence alignments (MSAs). However, the computational efficiency and undesirable prediction accuracy of antibodies, especially on the complementarity-determining regions (CDRs) of antibodies limit their applications in the industrially high-throughput drug design. To learn an informative representation of antibodies, we employed a deep antibody language model (ALM) on curated sequences from the observed antibody space database via a transformer model. We also developed a novel model named xTrimoABFold to predict antibody structure from antibody sequence based on the pretrained ALM as well as efficient evoformers and structural modules. The model was trained end-to-end on the antibody structures in PDB by minimizing the ensemble loss of domain-specific focal loss on CDR and the frame-aligned point loss. xTrimoABFold outperforms AlphaFold2 and other protein language model based SOTAs, e.g., OmegaFold, HelixFold-Single, and IgFold with a large significant margin (30+\% improvement on RMSD) while performing 151 times faster than AlphaFold2. To the best of our knowledge, xTrimoABFold achieved state-of-the-art antibody structure prediction. Its improvement in both accuracy and efficiency makes it a valuable tool for de novo antibody design and could make further improvements in immuno-theory.

  • 10 authors
·
Nov 30, 2022

Towards Fewer Annotations: Active Learning via Region Impurity and Prediction Uncertainty for Domain Adaptive Semantic Segmentation

Self-training has greatly facilitated domain adaptive semantic segmentation, which iteratively generates pseudo labels on unlabeled target data and retrains the network. However, realistic segmentation datasets are highly imbalanced, pseudo labels are typically biased to the majority classes and basically noisy, leading to an error-prone and suboptimal model. In this paper, we propose a simple region-based active learning approach for semantic segmentation under a domain shift, aiming to automatically query a small partition of image regions to be labeled while maximizing segmentation performance. Our algorithm, Region Impurity and Prediction Uncertainty (RIPU), introduces a new acquisition strategy characterizing the spatial adjacency of image regions along with the prediction confidence. We show that the proposed region-based selection strategy makes more efficient use of a limited budget than image-based or point-based counterparts. Further, we enforce local prediction consistency between a pixel and its nearest neighbors on a source image. Alongside, we develop a negative learning loss to make the features more discriminative. Extensive experiments demonstrate that our method only requires very few annotations to almost reach the supervised performance and substantially outperforms state-of-the-art methods. The code is available at https://github.com/BIT-DA/RIPU.

  • 5 authors
·
Nov 25, 2021

Free Draft-and-Verification: Toward Lossless Parallel Decoding for Diffusion Large Language Models

Diffusion Large Language Models (DLLMs) have emerged as a new paradigm of language modeling beyond autoregressive next-token prediction. Thanks to their bidirectional attention mechanism, DLLMs are more capable of capturing the connection of context, and thus show unique advantages in challenges like the famous "reversal curse" or learning under data-constrained scenarios. In addition, taking advantage of their inherent modeling foundations, DLLMs have the great potential of efficient inference with parallel decoding algorithms, which enable multi-token prediction per step. However, the high generation quality often requires the number of decoding steps equal to the sequence length, which performs a one-token-per-step decoding, and existing parallel decoding algorithms, which yield suboptimal decoding paths, bring inference speedup at the cost of non-negligible performance degradation. To overcome this challenge, we introduce Free Draft-and-Verification (FreeDave), a novel fast decoding algorithm tailored for DLLMs that achieves lossless parallel decoding without any model modification or extra modules. Specifically, we propose an algorithm of parallel-decoded candidate generation and verification, which is theoretically guaranteed to use the fewest model forward calls to reproduce the same sequence generated by static decoding when enough computation and memory budget is provided. By extensive evaluations on math reasoning and code generation benchmarks across different DLLMs, FreeDave is proven to boost the inference throughput up to 3.78times without performance degradation.

  • 2 authors
·
Sep 30

FCN: Fusing Exponential and Linear Cross Network for Click-Through Rate Prediction

As an important modeling paradigm in click-through rate (CTR) prediction, the Deep & Cross Network (DCN) and its derivative models have gained widespread recognition primarily due to their success in a trade-off between computational cost and performance. This paradigm employs a cross network to explicitly model feature interactions with linear growth, while leveraging deep neural networks (DNN) to implicitly capture higher-order feature interactions. However, these models still face several key limitations: (1) The performance of existing explicit feature interaction methods lags behind that of implicit DNN, resulting in overall model performance being dominated by the DNN; (2) While these models claim to capture high-order feature interactions, they often overlook potential noise within these interactions; (3) The learning process for different interaction network branches lacks appropriate supervision signals; and (4) The high-order feature interactions captured by these models are often implicit and non-interpretable due to their reliance on DNN. To address the identified limitations, this paper proposes a novel model, called Fusing Cross Network (FCN), along with two sub-networks: Linear Cross Network (LCN) and Exponential Cross Network (ECN). FCN explicitly captures feature interactions with both linear and exponential growth, eliminating the need to rely on implicit DNN. Moreover, we introduce the Self-Mask operation to filter noise layer by layer and reduce the number of parameters in the cross network by half. To effectively train these two cross networks, we propose a simple yet effective loss function called Tri-BCE, which provides tailored supervision signals for each network. We evaluate the effectiveness, efficiency, and interpretability of FCN on six benchmark datasets. Furthermore, by integrating LCN and ECN, FCN achieves a new state-of-the-art performance.

  • 6 authors
·
Jul 18, 2024

Neural Common Neighbor with Completion for Link Prediction

Despite its outstanding performance in various graph tasks, vanilla Message Passing Neural Network (MPNN) usually fails in link prediction tasks, as it only uses representations of two individual target nodes and ignores the pairwise relation between them. To capture the pairwise relations, some models add manual features to the input graph and use the output of MPNN to produce pairwise representations. In contrast, others directly use manual features as pairwise representations. Though this simplification avoids applying a GNN to each link individually and thus improves scalability, these models still have much room for performance improvement due to the hand-crafted and unlearnable pairwise features. To upgrade performance while maintaining scalability, we propose Neural Common Neighbor (NCN), which uses learnable pairwise representations. To further boost NCN, we study the unobserved link problem. The incompleteness of the graph is ubiquitous and leads to distribution shifts between the training and test set, loss of common neighbor information, and performance degradation of models. Therefore, we propose two intervention methods: common neighbor completion and target link removal. Combining the two methods with NCN, we propose Neural Common Neighbor with Completion (NCNC). NCN and NCNC outperform recent strong baselines by large margins. NCNC achieves state-of-the-art performance in link prediction tasks. Our code is available at https://github.com/GraphPKU/NeuralCommonNeighbor.

  • 3 authors
·
Feb 2, 2023

ProteinRPN: Towards Accurate Protein Function Prediction with Graph-Based Region Proposals

Protein function prediction is a crucial task in bioinformatics, with significant implications for understanding biological processes and disease mechanisms. While the relationship between sequence and function has been extensively explored, translating protein structure to function continues to present substantial challenges. Various models, particularly, CNN and graph-based deep learning approaches that integrate structural and functional data, have been proposed to address these challenges. However, these methods often fall short in elucidating the functional significance of key residues essential for protein functionality, as they predominantly adopt a retrospective perspective, leading to suboptimal performance. Inspired by region proposal networks in computer vision, we introduce the Protein Region Proposal Network (ProteinRPN) for accurate protein function prediction. Specifically, the region proposal module component of ProteinRPN identifies potential functional regions (anchors) which are refined through the hierarchy-aware node drop pooling layer favoring nodes with defined secondary structures and spatial proximity. The representations of the predicted functional nodes are enriched using attention mechanisms and subsequently fed into a Graph Multiset Transformer, which is trained with supervised contrastive (SupCon) and InfoNCE losses on perturbed protein structures. Our model demonstrates significant improvements in predicting Gene Ontology (GO) terms, effectively localizing functional residues within protein structures. The proposed framework provides a robust, scalable solution for protein function annotation, advancing the understanding of protein structure-function relationships in computational biology.

  • 3 authors
·
Sep 1, 2024