Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeDataset Reset Policy Optimization for RLHF
Reinforcement Learning (RL) from Human Preference-based feedback is a popular paradigm for fine-tuning generative models, which has produced impressive models such as GPT-4 and Claude3 Opus. This framework often consists of two steps: learning a reward model from an offline preference dataset followed by running online RL to optimize the learned reward model. In this work, leveraging the idea of reset, we propose a new RLHF algorithm with provable guarantees. Motivated by the fact that offline preference dataset provides informative states (i.e., data that is preferred by the labelers), our new algorithm, Dataset Reset Policy Optimization (DR-PO), integrates the existing offline preference dataset into the online policy training procedure via dataset reset: it directly resets the policy optimizer to the states in the offline dataset, instead of always starting from the initial state distribution. In theory, we show that DR-PO learns to perform at least as good as any policy that is covered by the offline dataset under general function approximation with finite sample complexity. In experiments, we demonstrate that on both the TL;DR summarization and the Anthropic Helpful Harmful (HH) dataset, the generation from DR-PO is better than that from Proximal Policy Optimization (PPO) and Direction Preference Optimization (DPO), under the metric of GPT4 win-rate. Code for this work can be found at https://github.com/Cornell-RL/drpo.
Reinforcement Learning with Fast and Forgetful Memory
Nearly all real world tasks are inherently partially observable, necessitating the use of memory in Reinforcement Learning (RL). Most model-free approaches summarize the trajectory into a latent Markov state using memory models borrowed from Supervised Learning (SL), even though RL tends to exhibit different training and efficiency characteristics. Addressing this discrepancy, we introduce Fast and Forgetful Memory, an algorithm-agnostic memory model designed specifically for RL. Our approach constrains the model search space via strong structural priors inspired by computational psychology. It is a drop-in replacement for recurrent neural networks (RNNs) in recurrent RL algorithms, achieving greater reward than RNNs across various recurrent benchmarks and algorithms without changing any hyperparameters. Moreover, Fast and Forgetful Memory exhibits training speeds two orders of magnitude faster than RNNs, attributed to its logarithmic time and linear space complexity. Our implementation is available at https://github.com/proroklab/ffm.
Towards General-Purpose Model-Free Reinforcement Learning
Reinforcement learning (RL) promises a framework for near-universal problem-solving. In practice however, RL algorithms are often tailored to specific benchmarks, relying on carefully tuned hyperparameters and algorithmic choices. Recently, powerful model-based RL methods have shown impressive general results across benchmarks but come at the cost of increased complexity and slow run times, limiting their broader applicability. In this paper, we attempt to find a unifying model-free deep RL algorithm that can address a diverse class of domains and problem settings. To achieve this, we leverage model-based representations that approximately linearize the value function, taking advantage of the denser task objectives used by model-based RL while avoiding the costs associated with planning or simulated trajectories. We evaluate our algorithm, MR.Q, on a variety of common RL benchmarks with a single set of hyperparameters and show a competitive performance against domain-specific and general baselines, providing a concrete step towards building general-purpose model-free deep RL algorithms.
Efficient Online Reinforcement Learning Fine-Tuning Need Not Retain Offline Data
The modern paradigm in machine learning involves pre-training on diverse data, followed by task-specific fine-tuning. In reinforcement learning (RL), this translates to learning via offline RL on a diverse historical dataset, followed by rapid online RL fine-tuning using interaction data. Most RL fine-tuning methods require continued training on offline data for stability and performance. However, this is undesirable because training on diverse offline data is slow and expensive for large datasets, and in principle, also limit the performance improvement possible because of constraints or pessimism on offline data. In this paper, we show that retaining offline data is unnecessary as long as we use a properly-designed online RL approach for fine-tuning offline RL initializations. To build this approach, we start by analyzing the role of retaining offline data in online fine-tuning. We find that continued training on offline data is mostly useful for preventing a sudden divergence in the value function at the onset of fine-tuning, caused by a distribution mismatch between the offline data and online rollouts. This divergence typically results in unlearning and forgetting the benefits of offline pre-training. Our approach, Warm-start RL (WSRL), mitigates the catastrophic forgetting of pre-trained initializations using a very simple idea. WSRL employs a warmup phase that seeds the online RL run with a very small number of rollouts from the pre-trained policy to do fast online RL. The data collected during warmup helps ``recalibrate'' the offline Q-function to the online distribution, allowing us to completely discard offline data without destabilizing the online RL fine-tuning. We show that WSRL is able to fine-tune without retaining any offline data, and is able to learn faster and attains higher performance than existing algorithms irrespective of whether they retain offline data or not.
Reinforcement Learning with General Utilities: Simpler Variance Reduction and Large State-Action Space
We consider the reinforcement learning (RL) problem with general utilities which consists in maximizing a function of the state-action occupancy measure. Beyond the standard cumulative reward RL setting, this problem includes as particular cases constrained RL, pure exploration and learning from demonstrations among others. For this problem, we propose a simpler single-loop parameter-free normalized policy gradient algorithm. Implementing a recursive momentum variance reduction mechanism, our algorithm achieves mathcal{O}(epsilon^{-3}) and mathcal{O}(epsilon^{-2}) sample complexities for epsilon-first-order stationarity and epsilon-global optimality respectively, under adequate assumptions. We further address the setting of large finite state action spaces via linear function approximation of the occupancy measure and show a mathcal{O}(epsilon^{-4}) sample complexity for a simple policy gradient method with a linear regression subroutine.
ReLOAD: Reinforcement Learning with Optimistic Ascent-Descent for Last-Iterate Convergence in Constrained MDPs
In recent years, Reinforcement Learning (RL) has been applied to real-world problems with increasing success. Such applications often require to put constraints on the agent's behavior. Existing algorithms for constrained RL (CRL) rely on gradient descent-ascent, but this approach comes with a caveat. While these algorithms are guaranteed to converge on average, they do not guarantee last-iterate convergence, i.e., the current policy of the agent may never converge to the optimal solution. In practice, it is often observed that the policy alternates between satisfying the constraints and maximizing the reward, rarely accomplishing both objectives simultaneously. Here, we address this problem by introducing Reinforcement Learning with Optimistic Ascent-Descent (ReLOAD), a principled CRL method with guaranteed last-iterate convergence. We demonstrate its empirical effectiveness on a wide variety of CRL problems including discrete MDPs and continuous control. In the process we establish a benchmark of challenging CRL problems.
Mastering Atari Games with Limited Data
Reinforcement learning has achieved great success in many applications. However, sample efficiency remains a key challenge, with prominent methods requiring millions (or even billions) of environment steps to train. Recently, there has been significant progress in sample efficient image-based RL algorithms; however, consistent human-level performance on the Atari game benchmark remains an elusive goal. We propose a sample efficient model-based visual RL algorithm built on MuZero, which we name EfficientZero. Our method achieves 194.3% mean human performance and 109.0% median performance on the Atari 100k benchmark with only two hours of real-time game experience and outperforms the state SAC in some tasks on the DMControl 100k benchmark. This is the first time an algorithm achieves super-human performance on Atari games with such little data. EfficientZero's performance is also close to DQN's performance at 200 million frames while we consume 500 times less data. EfficientZero's low sample complexity and high performance can bring RL closer to real-world applicability. We implement our algorithm in an easy-to-understand manner and it is available at https://github.com/YeWR/EfficientZero. We hope it will accelerate the research of MCTS-based RL algorithms in the wider community.
Recurrent Off-policy Baselines for Memory-based Continuous Control
When the environment is partially observable (PO), a deep reinforcement learning (RL) agent must learn a suitable temporal representation of the entire history in addition to a strategy to control. This problem is not novel, and there have been model-free and model-based algorithms proposed for this problem. However, inspired by recent success in model-free image-based RL, we noticed the absence of a model-free baseline for history-based RL that (1) uses full history and (2) incorporates recent advances in off-policy continuous control. Therefore, we implement recurrent versions of DDPG, TD3, and SAC (RDPG, RTD3, and RSAC) in this work, evaluate them on short-term and long-term PO domains, and investigate key design choices. Our experiments show that RDPG and RTD3 can surprisingly fail on some domains and that RSAC is the most reliable, reaching near-optimal performance on nearly all domains. However, one task that requires systematic exploration still proved to be difficult, even for RSAC. These results show that model-free RL can learn good temporal representation using only reward signals; the primary difficulty seems to be computational cost and exploration. To facilitate future research, we have made our PyTorch implementation publicly available at https://github.com/zhihanyang2022/off-policy-continuous-control.
Policy Smoothing for Provably Robust Reinforcement Learning
The study of provable adversarial robustness for deep neural networks (DNNs) has mainly focused on static supervised learning tasks such as image classification. However, DNNs have been used extensively in real-world adaptive tasks such as reinforcement learning (RL), making such systems vulnerable to adversarial attacks as well. Prior works in provable robustness in RL seek to certify the behaviour of the victim policy at every time-step against a non-adaptive adversary using methods developed for the static setting. But in the real world, an RL adversary can infer the defense strategy used by the victim agent by observing the states, actions, etc., from previous time-steps and adapt itself to produce stronger attacks in future steps. We present an efficient procedure, designed specifically to defend against an adaptive RL adversary, that can directly certify the total reward without requiring the policy to be robust at each time-step. Our main theoretical contribution is to prove an adaptive version of the Neyman-Pearson Lemma -- a key lemma for smoothing-based certificates -- where the adversarial perturbation at a particular time can be a stochastic function of current and previous observations and states as well as previous actions. Building on this result, we propose policy smoothing where the agent adds a Gaussian noise to its observation at each time-step before passing it through the policy function. Our robustness certificates guarantee that the final total reward obtained by policy smoothing remains above a certain threshold, even though the actions at intermediate time-steps may change under the attack. Our experiments on various environments like Cartpole, Pong, Freeway and Mountain Car show that our method can yield meaningful robustness guarantees in practice.
Open RL Benchmark: Comprehensive Tracked Experiments for Reinforcement Learning
In many Reinforcement Learning (RL) papers, learning curves are useful indicators to measure the effectiveness of RL algorithms. However, the complete raw data of the learning curves are rarely available. As a result, it is usually necessary to reproduce the experiments from scratch, which can be time-consuming and error-prone. We present Open RL Benchmark, a set of fully tracked RL experiments, including not only the usual data such as episodic return, but also all algorithm-specific and system metrics. Open RL Benchmark is community-driven: anyone can download, use, and contribute to the data. At the time of writing, more than 25,000 runs have been tracked, for a cumulative duration of more than 8 years. Open RL Benchmark covers a wide range of RL libraries and reference implementations. Special care is taken to ensure that each experiment is precisely reproducible by providing not only the full parameters, but also the versions of the dependencies used to generate it. In addition, Open RL Benchmark comes with a command-line interface (CLI) for easy fetching and generating figures to present the results. In this document, we include two case studies to demonstrate the usefulness of Open RL Benchmark in practice. To the best of our knowledge, Open RL Benchmark is the first RL benchmark of its kind, and the authors hope that it will improve and facilitate the work of researchers in the field.
A Near-Optimal Algorithm for Safe Reinforcement Learning Under Instantaneous Hard Constraints
In many applications of Reinforcement Learning (RL), it is critically important that the algorithm performs safely, such that instantaneous hard constraints are satisfied at each step, and unsafe states and actions are avoided. However, existing algorithms for ''safe'' RL are often designed under constraints that either require expected cumulative costs to be bounded or assume all states are safe. Thus, such algorithms could violate instantaneous hard constraints and traverse unsafe states (and actions) in practice. Therefore, in this paper, we develop the first near-optimal safe RL algorithm for episodic Markov Decision Processes with unsafe states and actions under instantaneous hard constraints and the linear mixture model. It not only achieves a regret O(d H^3 sqrt{dK}{Delta_c}) that tightly matches the state-of-the-art regret in the setting with only unsafe actions and nearly matches that in the unconstrained setting, but is also safe at each step, where d is the feature-mapping dimension, K is the number of episodes, H is the number of steps in each episode, and Delta_c is a safety-related parameter. We also provide a lower bound Omega(max{dH K, H{Delta_c^2}}), which indicates that the dependency on Delta_c is necessary. Further, both our algorithm design and regret analysis involve several novel ideas, which may be of independent interest.
Bayesian Reparameterization of Reward-Conditioned Reinforcement Learning with Energy-based Models
Recently, reward-conditioned reinforcement learning (RCRL) has gained popularity due to its simplicity, flexibility, and off-policy nature. However, we will show that current RCRL approaches are fundamentally limited and fail to address two critical challenges of RCRL -- improving generalization on high reward-to-go (RTG) inputs, and avoiding out-of-distribution (OOD) RTG queries during testing time. To address these challenges when training vanilla RCRL architectures, we propose Bayesian Reparameterized RCRL (BR-RCRL), a novel set of inductive biases for RCRL inspired by Bayes' theorem. BR-RCRL removes a core obstacle preventing vanilla RCRL from generalizing on high RTG inputs -- a tendency that the model treats different RTG inputs as independent values, which we term ``RTG Independence". BR-RCRL also allows us to design an accompanying adaptive inference method, which maximizes total returns while avoiding OOD queries that yield unpredictable behaviors in vanilla RCRL methods. We show that BR-RCRL achieves state-of-the-art performance on the Gym-Mujoco and Atari offline RL benchmarks, improving upon vanilla RCRL by up to 11%.
Optimal Horizon-Free Reward-Free Exploration for Linear Mixture MDPs
We study reward-free reinforcement learning (RL) with linear function approximation, where the agent works in two phases: (1) in the exploration phase, the agent interacts with the environment but cannot access the reward; and (2) in the planning phase, the agent is given a reward function and is expected to find a near-optimal policy based on samples collected in the exploration phase. The sample complexities of existing reward-free algorithms have a polynomial dependence on the planning horizon, which makes them intractable for long planning horizon RL problems. In this paper, we propose a new reward-free algorithm for learning linear mixture Markov decision processes (MDPs), where the transition probability can be parameterized as a linear combination of known feature mappings. At the core of our algorithm is uncertainty-weighted value-targeted regression with exploration-driven pseudo-reward and a high-order moment estimator for the aleatoric and epistemic uncertainties. When the total reward is bounded by 1, we show that our algorithm only needs to explore tilde O( d^2varepsilon^{-2}) episodes to find an varepsilon-optimal policy, where d is the dimension of the feature mapping. The sample complexity of our algorithm only has a polylogarithmic dependence on the planning horizon and therefore is ``horizon-free''. In addition, we provide an Omega(d^2varepsilon^{-2}) sample complexity lower bound, which matches the sample complexity of our algorithm up to logarithmic factors, suggesting that our algorithm is optimal.
REBEL: Reinforcement Learning via Regressing Relative Rewards
While originally developed for continuous control problems, Proximal Policy Optimization (PPO) has emerged as the work-horse of a variety of reinforcement learning (RL) applications including the fine-tuning of generative models. Unfortunately, PPO requires multiple heuristics to enable stable convergence (e.g. value networks, clipping) and is notorious for its sensitivity to the precise implementation of these components. In response, we take a step back and ask what a minimalist RL algorithm for the era of generative models would look like. We propose REBEL, an algorithm that cleanly reduces the problem of policy optimization to regressing the relative rewards via a direct policy parameterization between two completions to a prompt, enabling strikingly lightweight implementation. In theory, we prove that fundamental RL algorithms like Natural Policy Gradient can be seen as variants of REBEL, which allows us to match the strongest known theoretical guarantees in terms of convergence and sample complexity in the RL literature. REBEL can also cleanly incorporate offline data and handle the intransitive preferences we frequently see in practice. Empirically, we find that REBEL provides a unified approach to language modeling and image generation with stronger or similar performance as PPO and DPO, all while being simpler to implement and more computationally tractable than PPO.
Upside-Down Reinforcement Learning for More Interpretable Optimal Control
Model-Free Reinforcement Learning (RL) algorithms either learn how to map states to expected rewards or search for policies that can maximize a certain performance function. Model-Based algorithms instead, aim to learn an approximation of the underlying model of the RL environment and then use it in combination with planning algorithms. Upside-Down Reinforcement Learning (UDRL) is a novel learning paradigm that aims to learn how to predict actions from states and desired commands. This task is formulated as a Supervised Learning problem and has successfully been tackled by Neural Networks (NNs). In this paper, we investigate whether function approximation algorithms other than NNs can also be used within a UDRL framework. Our experiments, performed over several popular optimal control benchmarks, show that tree-based methods like Random Forests and Extremely Randomized Trees can perform just as well as NNs with the significant benefit of resulting in policies that are inherently more interpretable than NNs, therefore paving the way for more transparent, safe, and robust RL.
AdaStop: sequential testing for efficient and reliable comparisons of Deep RL Agents
The reproducibility of many experimental results in Deep Reinforcement Learning (RL) is under question. To solve this reproducibility crisis, we propose a theoretically sound methodology to compare multiple Deep RL algorithms. The performance of one execution of a Deep RL algorithm is random so that independent executions are needed to assess it precisely. When comparing several RL algorithms, a major question is how many executions must be made and how can we assure that the results of such a comparison is theoretically sound. Researchers in Deep RL often use less than 5 independent executions to compare algorithms: we claim that this is not enough in general. Moreover, when comparing several algorithms at once, the error of each comparison accumulates and must be taken into account with a multiple tests procedure to preserve low error guarantees. To address this problem in a statistically sound way, we introduce AdaStop, a new statistical test based on multiple group sequential tests. When comparing algorithms, AdaStop adapts the number of executions to stop as early as possible while ensuring that we have enough information to distinguish algorithms that perform better than the others in a statistical significant way. We prove both theoretically and empirically that AdaStop has a low probability of making an error (Family-Wise Error). Finally, we illustrate the effectiveness of AdaStop in multiple use-cases, including toy examples and difficult cases such as Mujoco environments.
B-Coder: Value-Based Deep Reinforcement Learning for Program Synthesis
Program synthesis aims to create accurate, executable code from natural language descriptions. This field has leveraged the power of reinforcement learning (RL) in conjunction with large language models (LLMs), significantly enhancing code generation capabilities. This integration focuses on directly optimizing functional correctness, transcending conventional supervised losses. While current literature predominantly favors policy-based algorithms, attributes of program synthesis suggest a natural compatibility with value-based methods. This stems from rich collection of off-policy programs developed by human programmers, and the straightforward verification of generated programs through automated unit testing (i.e. easily obtainable rewards in RL language). Diverging from the predominant use of policy-based algorithms, our work explores the applicability of value-based approaches, leading to the development of our B-Coder (pronounced Bellman coder). Yet, training value-based methods presents challenges due to the enormous search space inherent to program synthesis. To this end, we propose an initialization protocol for RL agents utilizing pre-trained LMs and a conservative Bellman operator to reduce training complexities. Moreover, we demonstrate how to leverage the learned value functions as a dual strategy to post-process generated programs. Our empirical evaluations demonstrated B-Coder's capability in achieving state-of-the-art performance compared with policy-based methods. Remarkably, this achievement is reached with minimal reward engineering effort, highlighting the effectiveness of value-based RL, independent of reward designs.
Safe Reinforcement Learning with Minimal Supervision
Reinforcement learning (RL) in the real world necessitates the development of procedures that enable agents to explore without causing harm to themselves or others. The most successful solutions to the problem of safe RL leverage offline data to learn a safe-set, enabling safe online exploration. However, this approach to safe-learning is often constrained by the demonstrations that are available for learning. In this paper we investigate the influence of the quantity and quality of data used to train the initial safe learning problem offline on the ability to learn safe-RL policies online. Specifically, we focus on tasks with spatially extended goal states where we have few or no demonstrations available. Classically this problem is addressed either by using hand-designed controllers to generate data or by collecting user-generated demonstrations. However, these methods are often expensive and do not scale to more complex tasks and environments. To address this limitation we propose an unsupervised RL-based offline data collection procedure, to learn complex and scalable policies without the need for hand-designed controllers or user demonstrations. Our research demonstrates the significance of providing sufficient demonstrations for agents to learn optimal safe-RL policies online, and as a result, we propose optimistic forgetting, a novel online safe-RL approach that is practical for scenarios with limited data. Further, our unsupervised data collection approach highlights the need to balance diversity and optimality for safe online exploration.
Revisiting the Minimalist Approach to Offline Reinforcement Learning
Recent years have witnessed significant advancements in offline reinforcement learning (RL), resulting in the development of numerous algorithms with varying degrees of complexity. While these algorithms have led to noteworthy improvements, many incorporate seemingly minor design choices that impact their effectiveness beyond core algorithmic advances. However, the effect of these design choices on established baselines remains understudied. In this work, we aim to bridge this gap by conducting a retrospective analysis of recent works in offline RL and propose ReBRAC, a minimalistic algorithm that integrates such design elements built on top of the TD3+BC method. We evaluate ReBRAC on 51 datasets with both proprioceptive and visual state spaces using D4RL and V-D4RL benchmarks, demonstrating its state-of-the-art performance among ensemble-free methods in both offline and offline-to-online settings. To further illustrate the efficacy of these design choices, we perform a large-scale ablation study and hyperparameter sensitivity analysis on the scale of thousands of experiments.
Is RLHF More Difficult than Standard RL?
Reinforcement learning from Human Feedback (RLHF) learns from preference signals, while standard Reinforcement Learning (RL) directly learns from reward signals. Preferences arguably contain less information than rewards, which makes preference-based RL seemingly more difficult. This paper theoretically proves that, for a wide range of preference models, we can solve preference-based RL directly using existing algorithms and techniques for reward-based RL, with small or no extra costs. Specifically, (1) for preferences that are drawn from reward-based probabilistic models, we reduce the problem to robust reward-based RL that can tolerate small errors in rewards; (2) for general arbitrary preferences where the objective is to find the von Neumann winner, we reduce the problem to multiagent reward-based RL which finds Nash equilibria for factored Markov games under a restricted set of policies. The latter case can be further reduce to adversarial MDP when preferences only depend on the final state. We instantiate all reward-based RL subroutines by concrete provable algorithms, and apply our theory to a large class of models including tabular MDPs and MDPs with generic function approximation. We further provide guarantees when K-wise comparisons are available.
Understanding the Complexity Gains of Single-Task RL with a Curriculum
Reinforcement learning (RL) problems can be challenging without well-shaped rewards. Prior work on provably efficient RL methods generally proposes to address this issue with dedicated exploration strategies. However, another way to tackle this challenge is to reformulate it as a multi-task RL problem, where the task space contains not only the challenging task of interest but also easier tasks that implicitly function as a curriculum. Such a reformulation opens up the possibility of running existing multi-task RL methods as a more efficient alternative to solving a single challenging task from scratch. In this work, we provide a theoretical framework that reformulates a single-task RL problem as a multi-task RL problem defined by a curriculum. Under mild regularity conditions on the curriculum, we show that sequentially solving each task in the multi-task RL problem is more computationally efficient than solving the original single-task problem, without any explicit exploration bonuses or other exploration strategies. We also show that our theoretical insights can be translated into an effective practical learning algorithm that can accelerate curriculum learning on simulated robotic tasks.
Safe Reinforcement Learning via Hierarchical Adaptive Chance-Constraint Safeguards
Ensuring safety in Reinforcement Learning (RL), typically framed as a Constrained Markov Decision Process (CMDP), is crucial for real-world exploration applications. Current approaches in handling CMDP struggle to balance optimality and feasibility, as direct optimization methods cannot ensure state-wise in-training safety, and projection-based methods correct actions inefficiently through lengthy iterations. To address these challenges, we propose Adaptive Chance-constrained Safeguards (ACS), an adaptive, model-free safe RL algorithm using the safety recovery rate as a surrogate chance constraint to iteratively ensure safety during exploration and after achieving convergence. Theoretical analysis indicates that the relaxed probabilistic constraint sufficiently guarantees forward invariance to the safe set. And extensive experiments conducted on both simulated and real-world safety-critical tasks demonstrate its effectiveness in enforcing safety (nearly zero-violation) while preserving optimality (+23.8%), robustness, and fast response in stochastic real-world settings.
Enhancing Policy Gradient with the Polyak Step-Size Adaption
Policy gradient is a widely utilized and foundational algorithm in the field of reinforcement learning (RL). Renowned for its convergence guarantees and stability compared to other RL algorithms, its practical application is often hindered by sensitivity to hyper-parameters, particularly the step-size. In this paper, we introduce the integration of the Polyak step-size in RL, which automatically adjusts the step-size without prior knowledge. To adapt this method to RL settings, we address several issues, including unknown f* in the Polyak step-size. Additionally, we showcase the performance of the Polyak step-size in RL through experiments, demonstrating faster convergence and the attainment of more stable policies.
Jump-Start Reinforcement Learning
Reinforcement learning (RL) provides a theoretical framework for continuously improving an agent's behavior via trial and error. However, efficiently learning policies from scratch can be very difficult, particularly for tasks with exploration challenges. In such settings, it might be desirable to initialize RL with an existing policy, offline data, or demonstrations. However, naively performing such initialization in RL often works poorly, especially for value-based methods. In this paper, we present a meta algorithm that can use offline data, demonstrations, or a pre-existing policy to initialize an RL policy, and is compatible with any RL approach. In particular, we propose Jump-Start Reinforcement Learning (JSRL), an algorithm that employs two policies to solve tasks: a guide-policy, and an exploration-policy. By using the guide-policy to form a curriculum of starting states for the exploration-policy, we are able to efficiently improve performance on a set of simulated robotic tasks. We show via experiments that JSRL is able to significantly outperform existing imitation and reinforcement learning algorithms, particularly in the small-data regime. In addition, we provide an upper bound on the sample complexity of JSRL and show that with the help of a guide-policy, one can improve the sample complexity for non-optimism exploration methods from exponential in horizon to polynomial.
Teaching Large Language Models to Reason with Reinforcement Learning
Reinforcement Learning from Human Feedback (RLHF) has emerged as a dominant approach for aligning LLM outputs with human preferences. Inspired by the success of RLHF, we study the performance of multiple algorithms that learn from feedback (Expert Iteration, Proximal Policy Optimization (PPO), Return-Conditioned RL) on improving LLM reasoning capabilities. We investigate both sparse and dense rewards provided to the LLM both heuristically and via a learned reward model. We additionally start from multiple model sizes and initializations both with and without supervised fine-tuning (SFT) data. Overall, we find all algorithms perform comparably, with Expert Iteration performing best in most cases. Surprisingly, we find the sample complexity of Expert Iteration is similar to that of PPO, requiring at most on the order of 10^6 samples to converge from a pretrained checkpoint. We investigate why this is the case, concluding that during RL training models fail to explore significantly beyond solutions already produced by SFT models. Additionally, we discuss a trade off between maj@1 and pass@96 metric performance during SFT training and how conversely RL training improves both simultaneously. We then conclude by discussing the implications of our findings for RLHF and the future role of RL in LLM fine-tuning.
Dueling RL: Reinforcement Learning with Trajectory Preferences
We consider the problem of preference based reinforcement learning (PbRL), where, unlike traditional reinforcement learning, an agent receives feedback only in terms of a 1 bit (0/1) preference over a trajectory pair instead of absolute rewards for them. The success of the traditional RL framework crucially relies on the underlying agent-reward model, which, however, depends on how accurately a system designer can express an appropriate reward function and often a non-trivial task. The main novelty of our framework is the ability to learn from preference-based trajectory feedback that eliminates the need to hand-craft numeric reward models. This paper sets up a formal framework for the PbRL problem with non-markovian rewards, where the trajectory preferences are encoded by a generalized linear model of dimension d. Assuming the transition model is known, we then propose an algorithm with almost optimal regret guarantee of mathcal{O}left( SH d log (T / delta) T right). We further, extend the above algorithm to the case of unknown transition dynamics, and provide an algorithm with near optimal regret guarantee mathcal{O}((d + H^2 + |S|)dT +|mathcal{S||A|TH} ). To the best of our knowledge, our work is one of the first to give tight regret guarantees for preference based RL problems with trajectory preferences.
Horizon-free Reinforcement Learning in Adversarial Linear Mixture MDPs
Recent studies have shown that episodic reinforcement learning (RL) is no harder than bandits when the total reward is bounded by 1, and proved regret bounds that have a polylogarithmic dependence on the planning horizon H. However, it remains an open question that if such results can be carried over to adversarial RL, where the reward is adversarially chosen at each episode. In this paper, we answer this question affirmatively by proposing the first horizon-free policy search algorithm. To tackle the challenges caused by exploration and adversarially chosen reward, our algorithm employs (1) a variance-uncertainty-aware weighted least square estimator for the transition kernel; and (2) an occupancy measure-based technique for the online search of a stochastic policy. We show that our algorithm achieves an Obig((d+log (|S|^2 |A|))Kbig) regret with full-information feedback, where d is the dimension of a known feature mapping linearly parametrizing the unknown transition kernel of the MDP, K is the number of episodes, |S| and |A| are the cardinalities of the state and action spaces. We also provide hardness results and regret lower bounds to justify the near optimality of our algorithm and the unavoidability of log|S| and log|A| in the regret bound.
SERL: A Software Suite for Sample-Efficient Robotic Reinforcement Learning
In recent years, significant progress has been made in the field of robotic reinforcement learning (RL), enabling methods that handle complex image observations, train in the real world, and incorporate auxiliary data, such as demonstrations and prior experience. However, despite these advances, robotic RL remains hard to use. It is acknowledged among practitioners that the particular implementation details of these algorithms are often just as important (if not more so) for performance as the choice of algorithm. We posit that a significant challenge to widespread adoption of robotic RL, as well as further development of robotic RL methods, is the comparative inaccessibility of such methods. To address this challenge, we developed a carefully implemented library containing a sample efficient off-policy deep RL method, together with methods for computing rewards and resetting the environment, a high-quality controller for a widely-adopted robot, and a number of challenging example tasks. We provide this library as a resource for the community, describe its design choices, and present experimental results. Perhaps surprisingly, we find that our implementation can achieve very efficient learning, acquiring policies for PCB board assembly, cable routing, and object relocation between 25 to 50 minutes of training per policy on average, improving over state-of-the-art results reported for similar tasks in the literature. These policies achieve perfect or near-perfect success rates, extreme robustness even under perturbations, and exhibit emergent recovery and correction behaviors. We hope that these promising results and our high-quality open-source implementation will provide a tool for the robotics community to facilitate further developments in robotic RL. Our code, documentation, and videos can be found at https://serl-robot.github.io/
Making RL with Preference-based Feedback Efficient via Randomization
Reinforcement Learning algorithms that learn from human feedback (RLHF) need to be efficient in terms of statistical complexity, computational complexity, and query complexity. In this work, we consider the RLHF setting where the feedback is given in the format of preferences over pairs of trajectories. In the linear MDP model, using randomization in algorithm design, we present an algorithm that is sample efficient (i.e., has near-optimal worst-case regret bounds) and has polynomial running time (i.e., computational complexity is polynomial with respect to relevant parameters). Our algorithm further minimizes the query complexity through a novel randomized active learning procedure. In particular, our algorithm demonstrates a near-optimal tradeoff between the regret bound and the query complexity. To extend the results to more general nonlinear function approximation, we design a model-based randomized algorithm inspired by the idea of Thompson sampling. Our algorithm minimizes Bayesian regret bound and query complexity, again achieving a near-optimal tradeoff between these two quantities. Computation-wise, similar to the prior Thompson sampling algorithms under the regular RL setting, the main computation primitives of our algorithm are Bayesian supervised learning oracles which have been heavily investigated on the empirical side when applying Thompson sampling algorithms to RL benchmark problems.
Provably Efficient CVaR RL in Low-rank MDPs
We study risk-sensitive Reinforcement Learning (RL), where we aim to maximize the Conditional Value at Risk (CVaR) with a fixed risk tolerance tau. Prior theoretical work studying risk-sensitive RL focuses on the tabular Markov Decision Processes (MDPs) setting. To extend CVaR RL to settings where state space is large, function approximation must be deployed. We study CVaR RL in low-rank MDPs with nonlinear function approximation. Low-rank MDPs assume the underlying transition kernel admits a low-rank decomposition, but unlike prior linear models, low-rank MDPs do not assume the feature or state-action representation is known. We propose a novel Upper Confidence Bound (UCB) bonus-driven algorithm to carefully balance the interplay between exploration, exploitation, and representation learning in CVaR RL. We prove that our algorithm achieves a sample complexity of Oleft(H^7 A^2 d^4{tau^2 epsilon^2}right) to yield an epsilon-optimal CVaR, where H is the length of each episode, A is the capacity of action space, and d is the dimension of representations. Computational-wise, we design a novel discretized Least-Squares Value Iteration (LSVI) algorithm for the CVaR objective as the planning oracle and show that we can find the near-optimal policy in a polynomial running time with a Maximum Likelihood Estimation oracle. To our knowledge, this is the first provably efficient CVaR RL algorithm in low-rank MDPs.
Asynchronous RLHF: Faster and More Efficient Off-Policy RL for Language Models
The dominant paradigm for RLHF is online and on-policy RL: synchronously generating from the large language model (LLM) policy, labelling with a reward model, and learning using feedback on the LLM's own outputs. While performant, this paradigm is computationally inefficient. Inspired by classical deep RL literature, we propose separating generation and learning in RLHF. This enables asynchronous generation of new samples while simultaneously training on old samples, leading to faster training and more compute-optimal scaling. However, asynchronous training relies on an underexplored regime, online but off-policy RLHF: learning on samples from previous iterations of our model. To understand the challenges in this regime, we investigate a fundamental question: how much off-policyness can we tolerate for asynchronous training to speed up learning but maintain performance? Among several RLHF algorithms we tested, we find that online DPO is most robust to off-policy data, and robustness increases with the scale of the policy model. We study further compute optimizations for asynchronous RLHF but find that they come at a performance cost, giving rise to a trade-off. Finally, we verify the scalability of asynchronous RLHF by training LLaMA 3.1 8B on an instruction-following task 40% faster than a synchronous run while matching final performance.
Evolving Reinforcement Learning Algorithms
We propose a method for meta-learning reinforcement learning algorithms by searching over the space of computational graphs which compute the loss function for a value-based model-free RL agent to optimize. The learned algorithms are domain-agnostic and can generalize to new environments not seen during training. Our method can both learn from scratch and bootstrap off known existing algorithms, like DQN, enabling interpretable modifications which improve performance. Learning from scratch on simple classical control and gridworld tasks, our method rediscovers the temporal-difference (TD) algorithm. Bootstrapped from DQN, we highlight two learned algorithms which obtain good generalization performance over other classical control tasks, gridworld type tasks, and Atari games. The analysis of the learned algorithm behavior shows resemblance to recently proposed RL algorithms that address overestimation in value-based methods.
The Effective Horizon Explains Deep RL Performance in Stochastic Environments
Reinforcement learning (RL) theory has largely focused on proving minimax sample complexity bounds. These require strategic exploration algorithms that use relatively limited function classes for representing the policy or value function. Our goal is to explain why deep RL algorithms often perform well in practice, despite using random exploration and much more expressive function classes like neural networks. Our work arrives at an explanation by showing that many stochastic MDPs can be solved by performing only a few steps of value iteration on the random policy's Q function and then acting greedily. When this is true, we find that it is possible to separate the exploration and learning components of RL, making it much easier to analyze. We introduce a new RL algorithm, SQIRL, that iteratively learns a near-optimal policy by exploring randomly to collect rollouts and then performing a limited number of steps of fitted-Q iteration over those rollouts. Any regression algorithm that satisfies basic in-distribution generalization properties can be used in SQIRL to efficiently solve common MDPs. This can explain why deep RL works, since it is empirically established that neural networks generalize well in-distribution. Furthermore, SQIRL explains why random exploration works well in practice. We leverage SQIRL to derive instance-dependent sample complexity bounds for RL that are exponential only in an "effective horizon" of lookahead and on the complexity of the class used for function approximation. Empirically, we also find that SQIRL performance strongly correlates with PPO and DQN performance in a variety of stochastic environments, supporting that our theoretical analysis is predictive of practical performance. Our code and data are available at https://github.com/cassidylaidlaw/effective-horizon.
ReMax: A Simple, Effective, and Efficient Reinforcement Learning Method for Aligning Large Language Models
Alignment is crucial for training large language models. The predominant strategy is Reinforcement Learning from Human Feedback (RLHF), with Proximal Policy Optimization (PPO) as the de-facto algorithm. Yet, PPO is known to struggle with computational inefficiency, a challenge that this paper aims to address. We identify three important properties of RLHF tasks: fast simulation, deterministic transitions, and trajectory-level rewards, which are not leveraged in PPO. Based on these properties, we develop ReMax, a new algorithm tailored for RLHF. The design of ReMax builds on the celebrated algorithm REINFORCE but is enhanced with a new variance-reduction technique. ReMax offers threefold advantages over PPO: first, it is simple to implement with just 6 lines of code. It further eliminates more than 4 hyper-parameters in PPO, which are laborious to tune. Second, ReMax reduces memory usage by about 50%. To illustrate, PPO runs out of memory when fine-tuning a Llama2-7B model on A100-80GB GPUs, whereas ReMax can support the training. Even though memory-efficient techniques (e.g., ZeRO and offload) are employed for PPO to afford training, ReMax can utilize a larger batch size to increase throughput. Third, in terms of wall-clock time, PPO is about twice as slow as ReMax per iteration. Importantly, these improvements do not sacrifice task performance. We hypothesize that these advantages can be maintained in larger-scale models.
S^2R: Teaching LLMs to Self-verify and Self-correct via Reinforcement Learning
Recent studies have demonstrated the effectiveness of LLM test-time scaling. However, existing approaches to incentivize LLMs' deep thinking abilities generally require large-scale data or significant training efforts. Meanwhile, it remains unclear how to improve the thinking abilities of less powerful base models. In this work, we introduce S^2R, an efficient framework that enhances LLM reasoning by teaching models to self-verify and self-correct during inference. Specifically, we first initialize LLMs with iterative self-verification and self-correction behaviors through supervised fine-tuning on carefully curated data. The self-verification and self-correction skills are then further strengthened by both outcome-level and process-level reinforcement learning, with minimized resource requirements, enabling the model to adaptively refine its reasoning process during inference. Our results demonstrate that, with only 3.1k self-verifying and self-correcting behavior initialization samples, Qwen2.5-math-7B achieves an accuracy improvement from 51.0\% to 81.6\%, outperforming models trained on an equivalent amount of long-CoT distilled data. Extensive experiments and analysis based on three base models across both in-domain and out-of-domain benchmarks validate the effectiveness of S^2R. Our code and data are available at https://github.com/NineAbyss/S2R.
Horizon-Free Regret for Linear Markov Decision Processes
A recent line of works showed regret bounds in reinforcement learning (RL) can be (nearly) independent of planning horizon, a.k.a.~the horizon-free bounds. However, these regret bounds only apply to settings where a polynomial dependency on the size of transition model is allowed, such as tabular Markov Decision Process (MDP) and linear mixture MDP. We give the first horizon-free bound for the popular linear MDP setting where the size of the transition model can be exponentially large or even uncountable. In contrast to prior works which explicitly estimate the transition model and compute the inhomogeneous value functions at different time steps, we directly estimate the value functions and confidence sets. We obtain the horizon-free bound by: (1) maintaining multiple weighted least square estimators for the value functions; and (2) a structural lemma which shows the maximal total variation of the inhomogeneous value functions is bounded by a polynomial factor of the feature dimension.
Provably Efficient Iterated CVaR Reinforcement Learning with Function Approximation and Human Feedback
Risk-sensitive reinforcement learning (RL) aims to optimize policies that balance the expected reward and risk. In this paper, we present a novel risk-sensitive RL framework that employs an Iterated Conditional Value-at-Risk (CVaR) objective under both linear and general function approximations, enriched by human feedback. These new formulations provide a principled way to guarantee safety in each decision making step throughout the control process. Moreover, integrating human feedback into risk-sensitive RL framework bridges the gap between algorithmic decision-making and human participation, allowing us to also guarantee safety for human-in-the-loop systems. We propose provably sample-efficient algorithms for this Iterated CVaR RL and provide rigorous theoretical analysis. Furthermore, we establish a matching lower bound to corroborate the optimality of our algorithms in a linear context.
Snapshot Reinforcement Learning: Leveraging Prior Trajectories for Efficiency
Deep reinforcement learning (DRL) algorithms require substantial samples and computational resources to achieve higher performance, which restricts their practical application and poses challenges for further development. Given the constraint of limited resources, it is essential to leverage existing computational work (e.g., learned policies, samples) to enhance sample efficiency and reduce the computational resource consumption of DRL algorithms. Previous works to leverage existing computational work require intrusive modifications to existing algorithms and models, designed specifically for specific algorithms, lacking flexibility and universality. In this paper, we present the Snapshot Reinforcement Learning (SnapshotRL) framework, which enhances sample efficiency by simply altering environments, without making any modifications to algorithms and models. By allowing student agents to choose states in teacher trajectories as the initial state to sample, SnapshotRL can effectively utilize teacher trajectories to assist student agents in training, allowing student agents to explore a larger state space at the early training phase. We propose a simple and effective SnapshotRL baseline algorithm, S3RL, which integrates well with existing DRL algorithms. Our experiments demonstrate that integrating S3RL with TD3, SAC, and PPO algorithms on the MuJoCo benchmark significantly improves sample efficiency and average return, without extra samples and additional computational resources.
Horizon-Free and Variance-Dependent Reinforcement Learning for Latent Markov Decision Processes
We study regret minimization for reinforcement learning (RL) in Latent Markov Decision Processes (LMDPs) with context in hindsight. We design a novel model-based algorithmic framework which can be instantiated with both a model-optimistic and a value-optimistic solver. We prove an O(mathsf{Var^star M Gamma S A K}) regret bound where O hides logarithm factors, M is the number of contexts, S is the number of states, A is the number of actions, K is the number of episodes, Gamma le S is the maximum transition degree of any state-action pair, and Var^star is a variance quantity describing the determinism of the LMDP. The regret bound only scales logarithmically with the planning horizon, thus yielding the first (nearly) horizon-free regret bound for LMDP. This is also the first problem-dependent regret bound for LMDP. Key in our proof is an analysis of the total variance of alpha vectors (a generalization of value functions), which is handled with a truncation method. We complement our positive result with a novel Omega(mathsf{Var^star M S A K}) regret lower bound with Gamma = 2, which shows our upper bound minimax optimal when Gamma is a constant for the class of variance-bounded LMDPs. Our lower bound relies on new constructions of hard instances and an argument inspired by the symmetrization technique from theoretical computer science, both of which are technically different from existing lower bound proof for MDPs, and thus can be of independent interest.
Mastering Visual Continuous Control: Improved Data-Augmented Reinforcement Learning
We present DrQ-v2, a model-free reinforcement learning (RL) algorithm for visual continuous control. DrQ-v2 builds on DrQ, an off-policy actor-critic approach that uses data augmentation to learn directly from pixels. We introduce several improvements that yield state-of-the-art results on the DeepMind Control Suite. Notably, DrQ-v2 is able to solve complex humanoid locomotion tasks directly from pixel observations, previously unattained by model-free RL. DrQ-v2 is conceptually simple, easy to implement, and provides significantly better computational footprint compared to prior work, with the majority of tasks taking just 8 hours to train on a single GPU. Finally, we publicly release DrQ-v2's implementation to provide RL practitioners with a strong and computationally efficient baseline.
Refined Regret for Adversarial MDPs with Linear Function Approximation
We consider learning in an adversarial Markov Decision Process (MDP) where the loss functions can change arbitrarily over K episodes and the state space can be arbitrarily large. We assume that the Q-function of any policy is linear in some known features, that is, a linear function approximation exists. The best existing regret upper bound for this setting (Luo et al., 2021) is of order mathcal O(K^{2/3}) (omitting all other dependencies), given access to a simulator. This paper provides two algorithms that improve the regret to mathcal O(sqrt K) in the same setting. Our first algorithm makes use of a refined analysis of the Follow-the-Regularized-Leader (FTRL) algorithm with the log-barrier regularizer. This analysis allows the loss estimators to be arbitrarily negative and might be of independent interest. Our second algorithm develops a magnitude-reduced loss estimator, further removing the polynomial dependency on the number of actions in the first algorithm and leading to the optimal regret bound (up to logarithmic terms and dependency on the horizon). Moreover, we also extend the first algorithm to simulator-free linear MDPs, which achieves mathcal O(K^{8/9}) regret and greatly improves over the best existing bound mathcal O(K^{14/15}). This algorithm relies on a better alternative to the Matrix Geometric Resampling procedure by Neu & Olkhovskaya (2020), which could again be of independent interest.
Non-Stationary Dueling Bandits
We study the non-stationary dueling bandits problem with K arms, where the time horizon T consists of M stationary segments, each of which is associated with its own preference matrix. The learner repeatedly selects a pair of arms and observes a binary preference between them as feedback. To minimize the accumulated regret, the learner needs to pick the Condorcet winner of each stationary segment as often as possible, despite preference matrices and segment lengths being unknown. We propose the Beat, the, Winner, Reset algorithm and prove a bound on its expected binary weak regret in the stationary case, which tightens the bound of current state-of-art algorithms. We also show a regret bound for the non-stationary case, without requiring knowledge of M or T. We further propose and analyze two meta-algorithms, DETECT for weak regret and Monitored, Dueling, Bandits for strong regret, both based on a detection-window approach that can incorporate any dueling bandit algorithm as a black-box algorithm. Finally, we prove a worst-case lower bound for expected weak regret in the non-stationary case.
Improving Large Language Models via Fine-grained Reinforcement Learning with Minimum Editing Constraint
Reinforcement learning (RL) has been widely used in training large language models~(LLMs) for preventing unexpected outputs, \eg reducing harmfulness and errors. However, existing RL methods mostly adopt the instance-level reward, which is unable to provide fine-grained supervision for complex reasoning tasks, and can not focus on the few key tokens that lead to the incorrectness. To address it, we propose a new RL method named RLMEC that incorporates a generative model as the reward model, which is trained by the erroneous solution rewriting task under the minimum editing constraint, and can produce token-level rewards for RL training. Based on the generative reward model, we design the token-level RL objective for training and an imitation-based regularization for stabilizing RL process. And the both objectives focus on the learning of the key tokens for the erroneous solution, reducing the effect of other unimportant tokens. The experiment results on mathematical tasks and question-answering tasks have demonstrated the effectiveness of our approach. Our code and data are available at https://github.com/RUCAIBox/RLMEC.
Principled Reinforcement Learning with Human Feedback from Pairwise or K-wise Comparisons
We provide a theoretical framework for Reinforcement Learning with Human Feedback (RLHF). Our analysis shows that when the true reward function is linear, the widely used maximum likelihood estimator (MLE) converges under both the Bradley-Terry-Luce (BTL) model and the Plackett-Luce (PL) model. However, we show that when training a policy based on the learned reward model, MLE fails while a pessimistic MLE provides policies with improved performance under certain coverage assumptions. Additionally, we demonstrate that under the PL model, the true MLE and an alternative MLE that splits the K-wise comparison into pairwise comparisons both converge. Moreover, the true MLE is asymptotically more efficient. Our results validate the empirical success of existing RLHF algorithms in InstructGPT and provide new insights for algorithm design. Furthermore, our results unify the problem of RLHF and max-entropy Inverse Reinforcement Learning (IRL), and provide the first sample complexity bound for max-entropy IRL.
On Representation Complexity of Model-based and Model-free Reinforcement Learning
We study the representation complexity of model-based and model-free reinforcement learning (RL) in the context of circuit complexity. We prove theoretically that there exists a broad class of MDPs such that their underlying transition and reward functions can be represented by constant depth circuits with polynomial size, while the optimal Q-function suffers an exponential circuit complexity in constant-depth circuits. By drawing attention to the approximation errors and building connections to complexity theory, our theory provides unique insights into why model-based algorithms usually enjoy better sample complexity than model-free algorithms from a novel representation complexity perspective: in some cases, the ground-truth rule (model) of the environment is simple to represent, while other quantities, such as Q-function, appear complex. We empirically corroborate our theory by comparing the approximation error of the transition kernel, reward function, and optimal Q-function in various Mujoco environments, which demonstrates that the approximation errors of the transition kernel and reward function are consistently lower than those of the optimal Q-function. To the best of our knowledge, this work is the first to study the circuit complexity of RL, which also provides a rigorous framework for future research.
ACE : Off-Policy Actor-Critic with Causality-Aware Entropy Regularization
The varying significance of distinct primitive behaviors during the policy learning process has been overlooked by prior model-free RL algorithms. Leveraging this insight, we explore the causal relationship between different action dimensions and rewards to evaluate the significance of various primitive behaviors during training. We introduce a causality-aware entropy term that effectively identifies and prioritizes actions with high potential impacts for efficient exploration. Furthermore, to prevent excessive focus on specific primitive behaviors, we analyze the gradient dormancy phenomenon and introduce a dormancy-guided reset mechanism to further enhance the efficacy of our method. Our proposed algorithm, ACE: Off-policy Actor-critic with Causality-aware Entropy regularization, demonstrates a substantial performance advantage across 29 diverse continuous control tasks spanning 7 domains compared to model-free RL baselines, which underscores the effectiveness, versatility, and efficient sample efficiency of our approach. Benchmark results and videos are available at https://ace-rl.github.io/.
FastRLAP: A System for Learning High-Speed Driving via Deep RL and Autonomous Practicing
We present a system that enables an autonomous small-scale RC car to drive aggressively from visual observations using reinforcement learning (RL). Our system, FastRLAP (faster lap), trains autonomously in the real world, without human interventions, and without requiring any simulation or expert demonstrations. Our system integrates a number of important components to make this possible: we initialize the representations for the RL policy and value function from a large prior dataset of other robots navigating in other environments (at low speed), which provides a navigation-relevant representation. From here, a sample-efficient online RL method uses a single low-speed user-provided demonstration to determine the desired driving course, extracts a set of navigational checkpoints, and autonomously practices driving through these checkpoints, resetting automatically on collision or failure. Perhaps surprisingly, we find that with appropriate initialization and choice of algorithm, our system can learn to drive over a variety of racing courses with less than 20 minutes of online training. The resulting policies exhibit emergent aggressive driving skills, such as timing braking and acceleration around turns and avoiding areas which impede the robot's motion, approaching the performance of a human driver using a similar first-person interface over the course of training.
Semi-Supervised Offline Reinforcement Learning with Action-Free Trajectories
Natural agents can effectively learn from multiple data sources that differ in size, quality, and types of measurements. We study this heterogeneity in the context of offline reinforcement learning (RL) by introducing a new, practically motivated semi-supervised setting. Here, an agent has access to two sets of trajectories: labelled trajectories containing state, action and reward triplets at every timestep, along with unlabelled trajectories that contain only state and reward information. For this setting, we develop and study a simple meta-algorithmic pipeline that learns an inverse dynamics model on the labelled data to obtain proxy-labels for the unlabelled data, followed by the use of any offline RL algorithm on the true and proxy-labelled trajectories. Empirically, we find this simple pipeline to be highly successful -- on several D4RL benchmarks~fu2020d4rl, certain offline RL algorithms can match the performance of variants trained on a fully labelled dataset even when we label only 10\% of trajectories which are highly suboptimal. To strengthen our understanding, we perform a large-scale controlled empirical study investigating the interplay of data-centric properties of the labelled and unlabelled datasets, with algorithmic design choices (e.g., choice of inverse dynamics, offline RL algorithm) to identify general trends and best practices for training RL agents on semi-supervised offline datasets.
Towards Robust Offline Reinforcement Learning under Diverse Data Corruption
Offline reinforcement learning (RL) presents a promising approach for learning reinforced policies from offline datasets without the need for costly or unsafe interactions with the environment. However, datasets collected by humans in real-world environments are often noisy and may even be maliciously corrupted, which can significantly degrade the performance of offline RL. In this work, we first investigate the performance of current offline RL algorithms under comprehensive data corruption, including states, actions, rewards, and dynamics. Our extensive experiments reveal that implicit Q-learning (IQL) demonstrates remarkable resilience to data corruption among various offline RL algorithms. Furthermore, we conduct both empirical and theoretical analyses to understand IQL's robust performance, identifying its supervised policy learning scheme as the key factor. Despite its relative robustness, IQL still suffers from heavy-tail targets of Q functions under dynamics corruption. To tackle this challenge, we draw inspiration from robust statistics to employ the Huber loss to handle the heavy-tailedness and utilize quantile estimators to balance penalization for corrupted data and learning stability. By incorporating these simple yet effective modifications into IQL, we propose a more robust offline RL approach named Robust IQL (RIQL). Extensive experiments demonstrate that RIQL exhibits highly robust performance when subjected to diverse data corruption scenarios.
Discovering highly efficient low-weight quantum error-correcting codes with reinforcement learning
The realization of scalable fault-tolerant quantum computing is expected to hinge on quantum error-correcting codes. In the quest for more efficient quantum fault tolerance, a critical code parameter is the weight of measurements that extract information about errors to enable error correction: as higher measurement weights require higher implementation costs and introduce more errors, it is important in code design to optimize measurement weight. This underlies the surging interest in quantum low-density parity-check (qLDPC) codes, the study of which has primarily focused on the asymptotic (large-code-limit) properties. In this work, we introduce a versatile and computationally efficient approach to stabilizer code weight reduction based on reinforcement learning (RL), which produces new low-weight codes that substantially outperform the state of the art in practically relevant parameter regimes, extending significantly beyond previously accessible small distances. For example, our approach demonstrates savings in physical qubit overhead compared to existing results by 1 to 2 orders of magnitude for weight 6 codes and brings the overhead into a feasible range for near-future experiments. We also investigate the interplay between code parameters using our RL framework, offering new insights into the potential efficiency and power of practically viable coding strategies. Overall, our results demonstrate how RL can effectively advance the crucial yet challenging problem of quantum code discovery and thereby facilitate a faster path to the practical implementation of fault-tolerant quantum technologies.
RRLS : Robust Reinforcement Learning Suite
Robust reinforcement learning is the problem of learning control policies that provide optimal worst-case performance against a span of adversarial environments. It is a crucial ingredient for deploying algorithms in real-world scenarios with prevalent environmental uncertainties and has been a long-standing object of attention in the community, without a standardized set of benchmarks. This contribution endeavors to fill this gap. We introduce the Robust Reinforcement Learning Suite (RRLS), a benchmark suite based on Mujoco environments. RRLS provides six continuous control tasks with two types of uncertainty sets for training and evaluation. Our benchmark aims to standardize robust reinforcement learning tasks, facilitating reproducible and comparable experiments, in particular those from recent state-of-the-art contributions, for which we demonstrate the use of RRLS. It is also designed to be easily expandable to new environments. The source code is available at https://github.com/SuReLI/RRLS{https://github.com/SuReLI/RRLS}.
PRDP: Proximal Reward Difference Prediction for Large-Scale Reward Finetuning of Diffusion Models
Reward finetuning has emerged as a promising approach to aligning foundation models with downstream objectives. Remarkable success has been achieved in the language domain by using reinforcement learning (RL) to maximize rewards that reflect human preference. However, in the vision domain, existing RL-based reward finetuning methods are limited by their instability in large-scale training, rendering them incapable of generalizing to complex, unseen prompts. In this paper, we propose Proximal Reward Difference Prediction (PRDP), enabling stable black-box reward finetuning for diffusion models for the first time on large-scale prompt datasets with over 100K prompts. Our key innovation is the Reward Difference Prediction (RDP) objective that has the same optimal solution as the RL objective while enjoying better training stability. Specifically, the RDP objective is a supervised regression objective that tasks the diffusion model with predicting the reward difference of generated image pairs from their denoising trajectories. We theoretically prove that the diffusion model that obtains perfect reward difference prediction is exactly the maximizer of the RL objective. We further develop an online algorithm with proximal updates to stably optimize the RDP objective. In experiments, we demonstrate that PRDP can match the reward maximization ability of well-established RL-based methods in small-scale training. Furthermore, through large-scale training on text prompts from the Human Preference Dataset v2 and the Pick-a-Pic v1 dataset, PRDP achieves superior generation quality on a diverse set of complex, unseen prompts whereas RL-based methods completely fail.
Real-World Fluid Directed Rigid Body Control via Deep Reinforcement Learning
Recent advances in real-world applications of reinforcement learning (RL) have relied on the ability to accurately simulate systems at scale. However, domains such as fluid dynamical systems exhibit complex dynamic phenomena that are hard to simulate at high integration rates, limiting the direct application of modern deep RL algorithms to often expensive or safety critical hardware. In this work, we introduce "Box o Flows", a novel benchtop experimental control system for systematically evaluating RL algorithms in dynamic real-world scenarios. We describe the key components of the Box o Flows, and through a series of experiments demonstrate how state-of-the-art model-free RL algorithms can synthesize a variety of complex behaviors via simple reward specifications. Furthermore, we explore the role of offline RL in data-efficient hypothesis testing by reusing past experiences. We believe that the insights gained from this preliminary study and the availability of systems like the Box o Flows support the way forward for developing systematic RL algorithms that can be generally applied to complex, dynamical systems. Supplementary material and videos of experiments are available at https://sites.google.com/view/box-o-flows/home.
A Review of Safe Reinforcement Learning: Methods, Theory and Applications
Reinforcement learning (RL) has achieved tremendous success in many complex decision making tasks. When it comes to deploying RL in the real world, safety concerns are usually raised, leading to a growing demand for safe RL algorithms, such as in autonomous driving and robotics scenarios. While safety control has a long history, the study of safe RL algorithms is still in the early stages. To establish a good foundation for future research in this thread, in this paper, we provide a review for safe RL from the perspectives of methods, theory and applications. Firstly, we review the progress of safe RL from five dimensions and come up with five problems that are crucial for safe RL being deployed in real-world applications, coined as "2H3W". Secondly, we analyze the theory and algorithm progress from the perspectives of answering the "2H3W" problems. Then, the sample complexity of safe RL methods is reviewed and discussed, followed by an introduction of the applications and benchmarks of safe RL algorithms. Finally, we open the discussion of the challenging problems in safe RL, hoping to inspire more future research on this thread. To advance the study of safe RL algorithms, we release a benchmark suite, an open-sourced repository containing the implementations of major safe RL algorithms, along with tutorials at the link: https://github.com/chauncygu/Safe-Reinforcement-Learning-Baselines.git.
Scaling Test-Time Compute Without Verification or RL is Suboptimal
Despite substantial advances in scaling test-time compute, an ongoing debate in the community is how it should be scaled up to enable continued and efficient improvements with scaling. There are largely two approaches: first, distilling successful search or thinking traces; and second, using verification (e.g., 0/1 outcome rewards, reward models, or verifiers) to guide reinforcement learning (RL) and search algorithms. In this paper, we prove that finetuning LLMs with verifier-based (VB) methods based on RL or search is far superior to verifier-free (VF) approaches based on distilling or cloning search traces, given a fixed amount of compute/data budget. Further, we show that as we scale test-time compute (measured as the output token length) and training data, suboptimality of VF methods scales poorly compared to VB when the base pre-trained LLM presents a heterogeneous distribution over correct solution traces (e.g., different lengths, styles, etc.) and admits a non-sharp distribution over rewards on traces sampled from it. We formalize this condition using anti-concentration [Erdos, 1945]. This implies a stronger result that VB methods scale better asymptotically, with the performance gap between VB and VF methods widening as test-time budget grows. We corroborate our theory empirically on both didactic and math reasoning problems with 3/8/32B-sized pre-trained LLMs, where we find verification is crucial for scaling test-time compute.
Simplified Temporal Consistency Reinforcement Learning
Reinforcement learning is able to solve complex sequential decision-making tasks but is currently limited by sample efficiency and required computation. To improve sample efficiency, recent work focuses on model-based RL which interleaves model learning with planning. Recent methods further utilize policy learning, value estimation, and, self-supervised learning as auxiliary objectives. In this paper we show that, surprisingly, a simple representation learning approach relying only on a latent dynamics model trained by latent temporal consistency is sufficient for high-performance RL. This applies when using pure planning with a dynamics model conditioned on the representation, but, also when utilizing the representation as policy and value function features in model-free RL. In experiments, our approach learns an accurate dynamics model to solve challenging high-dimensional locomotion tasks with online planners while being 4.1 times faster to train compared to ensemble-based methods. With model-free RL without planning, especially on high-dimensional tasks, such as the DeepMind Control Suite Humanoid and Dog tasks, our approach outperforms model-free methods by a large margin and matches model-based methods' sample efficiency while training 2.4 times faster.
Language Model Alignment with Elastic Reset
Finetuning language models with reinforcement learning (RL), e.g. from human feedback (HF), is a prominent method for alignment. But optimizing against a reward model can improve on reward while degrading performance in other areas, a phenomenon known as reward hacking, alignment tax, or language drift. First, we argue that commonly-used test metrics are insufficient and instead measure how different algorithms tradeoff between reward and drift. The standard method modified the reward with a Kullback-Lieber (KL) penalty between the online and initial model. We propose Elastic Reset, a new algorithm that achieves higher reward with less drift without explicitly modifying the training objective. We periodically reset the online model to an exponentially moving average (EMA) of itself, then reset the EMA model to the initial model. Through the use of an EMA, our model recovers quickly after resets and achieves higher reward with less drift in the same number of steps. We demonstrate that fine-tuning language models with Elastic Reset leads to state-of-the-art performance on a small scale pivot-translation benchmark, outperforms all baselines in a medium-scale RLHF-like IMDB mock sentiment task and leads to a more performant and more aligned technical QA chatbot with LLaMA-7B. Code available at github.com/mnoukhov/elastic-reset.
Near-Minimax-Optimal Risk-Sensitive Reinforcement Learning with CVaR
In this paper, we study risk-sensitive Reinforcement Learning (RL), focusing on the objective of Conditional Value at Risk (CVaR) with risk tolerance tau. Starting with multi-arm bandits (MABs), we show the minimax CVaR regret rate is Omega(tau^{-1AK}), where A is the number of actions and K is the number of episodes, and that it is achieved by an Upper Confidence Bound algorithm with a novel Bernstein bonus. For online RL in tabular Markov Decision Processes (MDPs), we show a minimax regret lower bound of Omega(tau^{-1SAK}) (with normalized cumulative rewards), where S is the number of states, and we propose a novel bonus-driven Value Iteration procedure. We show that our algorithm achieves the optimal regret of widetilde O(tau^{-1SAK}) under a continuity assumption and in general attains a near-optimal regret of widetilde O(tau^{-1}SAK), which is minimax-optimal for constant tau. This improves on the best available bounds. By discretizing rewards appropriately, our algorithms are computationally efficient.
Action-Quantized Offline Reinforcement Learning for Robotic Skill Learning
The offline reinforcement learning (RL) paradigm provides a general recipe to convert static behavior datasets into policies that can perform better than the policy that collected the data. While policy constraints, conservatism, and other methods for mitigating distributional shifts have made offline reinforcement learning more effective, the continuous action setting often necessitates various approximations for applying these techniques. Many of these challenges are greatly alleviated in discrete action settings, where offline RL constraints and regularizers can often be computed more precisely or even exactly. In this paper, we propose an adaptive scheme for action quantization. We use a VQ-VAE to learn state-conditioned action quantization, avoiding the exponential blowup that comes with na\"ive discretization of the action space. We show that several state-of-the-art offline RL methods such as IQL, CQL, and BRAC improve in performance on benchmarks when combined with our proposed discretization scheme. We further validate our approach on a set of challenging long-horizon complex robotic manipulation tasks in the Robomimic environment, where our discretized offline RL algorithms are able to improve upon their continuous counterparts by 2-3x. Our project page is at https://saqrl.github.io/
A Simple and Provable Scaling Law for the Test-Time Compute of Large Language Models
We propose a general two-stage algorithm that enjoys a provable scaling law for the test-time compute of large language models (LLMs). Given an input problem, the proposed algorithm first generates N candidate solutions, and then chooses the best one via a multiple-round knockout tournament where each pair of candidates are compared for K times and only the winners move on to the next round. In a minimalistic implementation, both stages can be executed with a black-box LLM alone and nothing else (e.g., no external verifier or reward model), and a total of N times (K + 1) highly parallelizable LLM calls are needed for solving an input problem. Assuming that a generated candidate solution is correct with probability p_{gen} > 0 and a comparison between a pair of correct and incorrect solutions identifies the right winner with probability p_{comp} > 0.5 (i.e., better than a random guess), we prove theoretically that the failure probability of the proposed algorithm decays to zero exponentially with respect to N and K: $P(final output is incorrect) le (1 - p_{gen})^N + lceil log_2 N rceil e^{-2 K (p_{comp} - 0.5)^2}.$ Our empirical results with the challenging MMLU-Pro benchmark validate the technical assumptions, as well as the efficacy of the proposed algorithm and the gains from scaling up its test-time compute.
Model-Free Robust Average-Reward Reinforcement Learning
Robust Markov decision processes (MDPs) address the challenge of model uncertainty by optimizing the worst-case performance over an uncertainty set of MDPs. In this paper, we focus on the robust average-reward MDPs under the model-free setting. We first theoretically characterize the structure of solutions to the robust average-reward Bellman equation, which is essential for our later convergence analysis. We then design two model-free algorithms, robust relative value iteration (RVI) TD and robust RVI Q-learning, and theoretically prove their convergence to the optimal solution. We provide several widely used uncertainty sets as examples, including those defined by the contamination model, total variation, Chi-squared divergence, Kullback-Leibler (KL) divergence and Wasserstein distance.
New Desiderata for Direct Preference Optimization
Large language models in the past have typically relied on some form of reinforcement learning with human feedback (RLHF) to better align model responses with human preferences. However, because of oft-observed instabilities when implementing these RLHF pipelines, various reparameterization techniques have recently been introduced to sidestep the need for separately learning an RL reward model. Instead, directly fine-tuning for human preferences is achieved via the minimization of a single closed-form training objective, a process originally referred to as direct preference optimization (DPO) and followed by several notable descendants. Although effective in certain real-world settings, we introduce new evaluation criteria that serve to highlight unresolved shortcomings in the ability of existing DPO methods to interpolate between a pre-trained reference model and empirical measures of human preferences, as well as unavoidable trade-offs in how low- and high-quality responses are regularized and constraints are handled. Our insights then motivate an alternative DPO-like loss that provably mitigates these limitations. Empirical results serve to corroborate notable aspects of our analyses.
Robot Fine-Tuning Made Easy: Pre-Training Rewards and Policies for Autonomous Real-World Reinforcement Learning
The pre-train and fine-tune paradigm in machine learning has had dramatic success in a wide range of domains because the use of existing data or pre-trained models on the internet enables quick and easy learning of new tasks. We aim to enable this paradigm in robotic reinforcement learning, allowing a robot to learn a new task with little human effort by leveraging data and models from the Internet. However, reinforcement learning often requires significant human effort in the form of manual reward specification or environment resets, even if the policy is pre-trained. We introduce RoboFuME, a reset-free fine-tuning system that pre-trains a multi-task manipulation policy from diverse datasets of prior experiences and self-improves online to learn a target task with minimal human intervention. Our insights are to utilize calibrated offline reinforcement learning techniques to ensure efficient online fine-tuning of a pre-trained policy in the presence of distribution shifts and leverage pre-trained vision language models (VLMs) to build a robust reward classifier for autonomously providing reward signals during the online fine-tuning process. In a diverse set of five real robot manipulation tasks, we show that our method can incorporate data from an existing robot dataset collected at a different institution and improve on a target task within as little as 3 hours of autonomous real-world experience. We also demonstrate in simulation experiments that our method outperforms prior works that use different RL algorithms or different approaches for predicting rewards. Project website: https://robofume.github.io
Iterative Preference Learning from Human Feedback: Bridging Theory and Practice for RLHF under KL-Constraint
This paper studies the theoretical framework of the alignment process of generative models with Reinforcement Learning from Human Feedback (RLHF). We consider a standard mathematical formulation, the reverse-KL regularized contextual bandit for RLHF. Despite its widespread practical application, a rigorous theoretical analysis of this formulation remains open. We investigate its behavior in three distinct settings -- offline, online, and hybrid -- and propose efficient algorithms with finite-sample theoretical guarantees. Moving towards practical applications, our framework, with a robust approximation of the information-theoretical policy improvement oracle, naturally gives rise to several novel RLHF algorithms. This includes an iterative version of the Direct Preference Optimization (DPO) algorithm for online settings, and a multi-step rejection sampling strategy for offline scenarios. Our empirical evaluations on real-world alignment experiment of large language model demonstrate that these proposed methods significantly surpass existing strong baselines, such as DPO and Rejection Sampling Optimization (RSO), showcasing the connections between solid theoretical foundations and their powerful practical implementations.
Overcoming Slow Decision Frequencies in Continuous Control: Model-Based Sequence Reinforcement Learning for Model-Free Control
Reinforcement learning (RL) is rapidly reaching and surpassing human-level control capabilities. However, state-of-the-art RL algorithms often require timesteps and reaction times significantly faster than human capabilities, which is impractical in real-world settings and typically necessitates specialized hardware. Such speeds are difficult to achieve in the real world and often requires specialized hardware. We introduce Sequence Reinforcement Learning (SRL), an RL algorithm designed to produce a sequence of actions for a given input state, enabling effective control at lower decision frequencies. SRL addresses the challenges of learning action sequences by employing both a model and an actor-critic architecture operating at different temporal scales. We propose a "temporal recall" mechanism, where the critic uses the model to estimate intermediate states between primitive actions, providing a learning signal for each individual action within the sequence. Once training is complete, the actor can generate action sequences independently of the model, achieving model-free control at a slower frequency. We evaluate SRL on a suite of continuous control tasks, demonstrating that it achieves performance comparable to state-of-the-art algorithms while significantly reducing actor sample complexity. To better assess performance across varying decision frequencies, we introduce the Frequency-Averaged Score (FAS) metric. Our results show that SRL significantly outperforms traditional RL algorithms in terms of FAS, making it particularly suitable for applications requiring variable decision frequencies. Additionally, we compare SRL with model-based online planning, showing that SRL achieves superior FAS while leveraging the same model during training that online planners use for planning.
Back to Basics: Revisiting REINFORCE Style Optimization for Learning from Human Feedback in LLMs
AI alignment in the shape of Reinforcement Learning from Human Feedback (RLHF) is increasingly treated as a crucial ingredient for high performance large language models. Proximal Policy Optimization (PPO) has been positioned by recent literature as the canonical method for the RL part of RLHF. However, it involves both high computational cost and sensitive hyperparameter tuning. We posit that most of the motivational principles that led to the development of PPO are less of a practical concern in RLHF and advocate for a less computationally expensive method that preserves and even increases performance. We revisit the formulation of alignment from human preferences in the context of RL. Keeping simplicity as a guiding principle, we show that many components of PPO are unnecessary in an RLHF context and that far simpler REINFORCE-style optimization variants outperform both PPO and newly proposed "RL-free" methods such as DPO and RAFT. Our work suggests that careful adaptation to LLMs alignment characteristics enables benefiting from online RL optimization at low cost.
Pessimistic Nonlinear Least-Squares Value Iteration for Offline Reinforcement Learning
Offline reinforcement learning (RL), where the agent aims to learn the optimal policy based on the data collected by a behavior policy, has attracted increasing attention in recent years. While offline RL with linear function approximation has been extensively studied with optimal results achieved under certain assumptions, many works shift their interest to offline RL with non-linear function approximation. However, limited works on offline RL with non-linear function approximation have instance-dependent regret guarantees. In this paper, we propose an oracle-efficient algorithm, dubbed Pessimistic Nonlinear Least-Square Value Iteration (PNLSVI), for offline RL with non-linear function approximation. Our algorithmic design comprises three innovative components: (1) a variance-based weighted regression scheme that can be applied to a wide range of function classes, (2) a subroutine for variance estimation, and (3) a planning phase that utilizes a pessimistic value iteration approach. Our algorithm enjoys a regret bound that has a tight dependency on the function class complexity and achieves minimax optimal instance-dependent regret when specialized to linear function approximation. Our work extends the previous instance-dependent results within simpler function classes, such as linear and differentiable function to a more general framework.
Streaming Deep Reinforcement Learning Finally Works
Natural intelligence processes experience as a continuous stream, sensing, acting, and learning moment-by-moment in real time. Streaming learning, the modus operandi of classic reinforcement learning (RL) algorithms like Q-learning and TD, mimics natural learning by using the most recent sample without storing it. This approach is also ideal for resource-constrained, communication-limited, and privacy-sensitive applications. However, in deep RL, learners almost always use batch updates and replay buffers, making them computationally expensive and incompatible with streaming learning. Although the prevalence of batch deep RL is often attributed to its sample efficiency, a more critical reason for the absence of streaming deep RL is its frequent instability and failure to learn, which we refer to as stream barrier. This paper introduces the stream-x algorithms, the first class of deep RL algorithms to overcome stream barrier for both prediction and control and match sample efficiency of batch RL. Through experiments in Mujoco Gym, DM Control Suite, and Atari Games, we demonstrate stream barrier in existing algorithms and successful stable learning with our stream-x algorithms: stream Q, stream AC, and stream TD, achieving the best model-free performance in DM Control Dog environments. A set of common techniques underlies the stream-x algorithms, enabling their success with a single set of hyperparameters and allowing for easy extension to other algorithms, thereby reviving streaming RL.
RORL: Robust Offline Reinforcement Learning via Conservative Smoothing
Offline reinforcement learning (RL) provides a promising direction to exploit massive amount of offline data for complex decision-making tasks. Due to the distribution shift issue, current offline RL algorithms are generally designed to be conservative in value estimation and action selection. However, such conservatism can impair the robustness of learned policies when encountering observation deviation under realistic conditions, such as sensor errors and adversarial attacks. To trade off robustness and conservatism, we propose Robust Offline Reinforcement Learning (RORL) with a novel conservative smoothing technique. In RORL, we explicitly introduce regularization on the policy and the value function for states near the dataset, as well as additional conservative value estimation on these states. Theoretically, we show RORL enjoys a tighter suboptimality bound than recent theoretical results in linear MDPs. We demonstrate that RORL can achieve state-of-the-art performance on the general offline RL benchmark and is considerably robust to adversarial observation perturbations.
Guaranteed Trust Region Optimization via Two-Phase KL Penalization
On-policy reinforcement learning (RL) has become a popular framework for solving sequential decision problems due to its computational efficiency and theoretical simplicity. Some on-policy methods guarantee every policy update is constrained to a trust region relative to the prior policy to ensure training stability. These methods often require computationally intensive non-linear optimization or require a particular form of action distribution. In this work, we show that applying KL penalization alone is nearly sufficient to enforce such trust regions. Then, we show that introducing a "fixup" phase is sufficient to guarantee a trust region is enforced on every policy update while adding fewer than 5% additional gradient steps in practice. The resulting algorithm, which we call FixPO, is able to train a variety of policy architectures and action spaces, is easy to implement, and produces results competitive with other trust region methods.
A Robust Optimisation Perspective on Counterexample-Guided Repair of Neural Networks
Counterexample-guided repair aims at creating neural networks with mathematical safety guarantees, facilitating the application of neural networks in safety-critical domains. However, whether counterexample-guided repair is guaranteed to terminate remains an open question. We approach this question by showing that counterexample-guided repair can be viewed as a robust optimisation algorithm. While termination guarantees for neural network repair itself remain beyond our reach, we prove termination for more restrained machine learning models and disprove termination in a general setting. We empirically study the practical implications of our theoretical results, demonstrating the suitability of common verifiers and falsifiers for repair despite a disadvantageous theoretical result. Additionally, we use our theoretical insights to devise a novel algorithm for repairing linear regression models based on quadratic programming, surpassing existing approaches.
Off-Policy Primal-Dual Safe Reinforcement Learning
Primal-dual safe RL methods commonly perform iterations between the primal update of the policy and the dual update of the Lagrange Multiplier. Such a training paradigm is highly susceptible to the error in cumulative cost estimation since this estimation serves as the key bond connecting the primal and dual update processes. We show that this problem causes significant underestimation of cost when using off-policy methods, leading to the failure to satisfy the safety constraint. To address this issue, we propose conservative policy optimization, which learns a policy in a constraint-satisfying area by considering the uncertainty in cost estimation. This improves constraint satisfaction but also potentially hinders reward maximization. We then introduce local policy convexification to help eliminate such suboptimality by gradually reducing the estimation uncertainty. We provide theoretical interpretations of the joint coupling effect of these two ingredients and further verify them by extensive experiments. Results on benchmark tasks show that our method not only achieves an asymptotic performance comparable to state-of-the-art on-policy methods while using much fewer samples, but also significantly reduces constraint violation during training. Our code is available at https://github.com/ZifanWu/CAL.
Non-stationary Reinforcement Learning under General Function Approximation
General function approximation is a powerful tool to handle large state and action spaces in a broad range of reinforcement learning (RL) scenarios. However, theoretical understanding of non-stationary MDPs with general function approximation is still limited. In this paper, we make the first such an attempt. We first propose a new complexity metric called dynamic Bellman Eluder (DBE) dimension for non-stationary MDPs, which subsumes majority of existing tractable RL problems in static MDPs as well as non-stationary MDPs. Based on the proposed complexity metric, we propose a novel confidence-set based model-free algorithm called SW-OPEA, which features a sliding window mechanism and a new confidence set design for non-stationary MDPs. We then establish an upper bound on the dynamic regret for the proposed algorithm, and show that SW-OPEA is provably efficient as long as the variation budget is not significantly large. We further demonstrate via examples of non-stationary linear and tabular MDPs that our algorithm performs better in small variation budget scenario than the existing UCB-type algorithms. To the best of our knowledge, this is the first dynamic regret analysis in non-stationary MDPs with general function approximation.
VinePPO: Unlocking RL Potential For LLM Reasoning Through Refined Credit Assignment
Large language models (LLMs) are increasingly applied to complex reasoning tasks that require executing several complex steps before receiving any reward. Properly assigning credit to these steps is essential for enhancing model performance. Proximal Policy Optimization (PPO), a state-of-the-art reinforcement learning (RL) algorithm used for LLM finetuning, employs value networks to tackle credit assignment. However, value networks face challenges in predicting the expected cumulative rewards accurately in complex reasoning tasks, often leading to high-variance updates and suboptimal performance. In this work, we systematically evaluate the efficacy of value networks and reveal their significant shortcomings in reasoning-heavy LLM tasks, showing that they barely outperform a random baseline when comparing alternative steps. To address this, we propose VinePPO, a straightforward approach that leverages the flexibility of language environments to compute unbiased Monte Carlo-based estimates, bypassing the need for large value networks. Our method consistently outperforms PPO and other RL-free baselines across MATH and GSM8K datasets with fewer gradient updates (up to 9x), less wall-clock time (up to 3.0x). These results emphasize the importance of accurate credit assignment in RL finetuning of LLM and demonstrate VinePPO's potential as a superior alternative.
Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor
Model-free deep reinforcement learning (RL) algorithms have been demonstrated on a range of challenging decision making and control tasks. However, these methods typically suffer from two major challenges: very high sample complexity and brittle convergence properties, which necessitate meticulous hyperparameter tuning. Both of these challenges severely limit the applicability of such methods to complex, real-world domains. In this paper, we propose soft actor-critic, an off-policy actor-critic deep RL algorithm based on the maximum entropy reinforcement learning framework. In this framework, the actor aims to maximize expected reward while also maximizing entropy. That is, to succeed at the task while acting as randomly as possible. Prior deep RL methods based on this framework have been formulated as Q-learning methods. By combining off-policy updates with a stable stochastic actor-critic formulation, our method achieves state-of-the-art performance on a range of continuous control benchmark tasks, outperforming prior on-policy and off-policy methods. Furthermore, we demonstrate that, in contrast to other off-policy algorithms, our approach is very stable, achieving very similar performance across different random seeds.
CaT: Constraints as Terminations for Legged Locomotion Reinforcement Learning
Deep Reinforcement Learning (RL) has demonstrated impressive results in solving complex robotic tasks such as quadruped locomotion. Yet, current solvers fail to produce efficient policies respecting hard constraints. In this work, we advocate for integrating constraints into robot learning and present Constraints as Terminations (CaT), a novel constrained RL algorithm. Departing from classical constrained RL formulations, we reformulate constraints through stochastic terminations during policy learning: any violation of a constraint triggers a probability of terminating potential future rewards the RL agent could attain. We propose an algorithmic approach to this formulation, by minimally modifying widely used off-the-shelf RL algorithms in robot learning (such as Proximal Policy Optimization). Our approach leads to excellent constraint adherence without introducing undue complexity and computational overhead, thus mitigating barriers to broader adoption. Through empirical evaluation on the real quadruped robot Solo crossing challenging obstacles, we demonstrate that CaT provides a compelling solution for incorporating constraints into RL frameworks. Videos and code are available at https://constraints-as-terminations.github.io.
When is Realizability Sufficient for Off-Policy Reinforcement Learning?
Model-free algorithms for reinforcement learning typically require a condition called Bellman completeness in order to successfully operate off-policy with function approximation, unless additional conditions are met. However, Bellman completeness is a requirement that is much stronger than realizability and that is deemed to be too strong to hold in practice. In this work, we relax this structural assumption and analyze the statistical complexity of off-policy reinforcement learning when only realizability holds for the prescribed function class. We establish finite-sample guarantees for off-policy reinforcement learning that are free of the approximation error term known as inherent Bellman error, and that depend on the interplay of three factors. The first two are well known: they are the metric entropy of the function class and the concentrability coefficient that represents the cost of learning off-policy. The third factor is new, and it measures the violation of Bellman completeness, namely the mis-alignment between the chosen function class and its image through the Bellman operator. In essence, these error bounds establish that off-policy reinforcement learning remains statistically viable even in absence of Bellman completeness, and characterize the intermediate situation between the favorable Bellman complete setting and the worst-case scenario where exponential lower bounds are in force. Our analysis directly applies to the solution found by temporal difference algorithms when they converge.
Agent-R: Training Language Model Agents to Reflect via Iterative Self-Training
Large Language Models (LLMs) agents are increasingly pivotal for addressing complex tasks in interactive environments. Existing work mainly focuses on enhancing performance through behavior cloning from stronger experts, yet such approaches often falter in real-world applications, mainly due to the inability to recover from errors. However, step-level critique data is difficult and expensive to collect. Automating and dynamically constructing self-critique datasets is thus crucial to empowering models with intelligent agent capabilities. In this work, we propose an iterative self-training framework, Agent-R, that enables language Agent to Reflect on the fly. Unlike traditional methods that reward or penalize actions based on correctness, Agent-R leverages MCTS to construct training data that recover correct trajectories from erroneous ones. A key challenge of agent reflection lies in the necessity for timely revision rather than waiting until the end of a rollout. To address this, we introduce a model-guided critique construction mechanism: the actor model identifies the first error step (within its current capability) in a failed trajectory. Starting from it, we splice it with the adjacent correct path, which shares the same parent node in the tree. This strategy enables the model to learn reflection based on its current policy, therefore yielding better learning efficiency. To further explore the scalability of this self-improvement paradigm, we investigate iterative refinement of both error correction capabilities and dataset construction. Our findings demonstrate that Agent-R continuously improves the model's ability to recover from errors and enables timely error correction. Experiments on three interactive environments show that Agent-R effectively equips agents to correct erroneous actions while avoiding loops, achieving superior performance compared to baseline methods (+5.59%).
R1-Searcher: Incentivizing the Search Capability in LLMs via Reinforcement Learning
Existing Large Reasoning Models (LRMs) have shown the potential of reinforcement learning (RL) to enhance the complex reasoning capabilities of Large Language Models~(LLMs). While they achieve remarkable performance on challenging tasks such as mathematics and coding, they often rely on their internal knowledge to solve problems, which can be inadequate for time-sensitive or knowledge-intensive questions, leading to inaccuracies and hallucinations. To address this, we propose R1-Searcher, a novel two-stage outcome-based RL approach designed to enhance the search capabilities of LLMs. This method allows LLMs to autonomously invoke external search systems to access additional knowledge during the reasoning process. Our framework relies exclusively on RL, without requiring process rewards or distillation for a cold start. % effectively generalizing to out-of-domain datasets and supporting both Base and Instruct models. Our experiments demonstrate that our method significantly outperforms previous strong RAG methods, even when compared to the closed-source GPT-4o-mini.
Free from Bellman Completeness: Trajectory Stitching via Model-based Return-conditioned Supervised Learning
Off-policy dynamic programming (DP) techniques such as Q-learning have proven to be important in sequential decision-making problems. In the presence of function approximation, however, these techniques often diverge due to the absence of Bellman completeness in the function classes considered, a crucial condition for the success of DP-based methods. In this paper, we show how off-policy learning techniques based on return-conditioned supervised learning (RCSL) are able to circumvent these challenges of Bellman completeness, converging under significantly more relaxed assumptions inherited from supervised learning. We prove there exists a natural environment in which if one uses two-layer multilayer perceptron as the function approximator, the layer width needs to grow linearly with the state space size to satisfy Bellman completeness while a constant layer width is enough for RCSL. These findings take a step towards explaining the superior empirical performance of RCSL methods compared to DP-based methods in environments with near-optimal datasets. Furthermore, in order to learn from sub-optimal datasets, we propose a simple framework called MBRCSL, granting RCSL methods the ability of dynamic programming to stitch together segments from distinct trajectories. MBRCSL leverages learned dynamics models and forward sampling to accomplish trajectory stitching while avoiding the need for Bellman completeness that plagues all dynamic programming algorithms. We propose both theoretical analysis and experimental evaluation to back these claims, outperforming state-of-the-art model-free and model-based offline RL algorithms across several simulated robotics problems.
RLSAC: Reinforcement Learning enhanced Sample Consensus for End-to-End Robust Estimation
Robust estimation is a crucial and still challenging task, which involves estimating model parameters in noisy environments. Although conventional sampling consensus-based algorithms sample several times to achieve robustness, these algorithms cannot use data features and historical information effectively. In this paper, we propose RLSAC, a novel Reinforcement Learning enhanced SAmple Consensus framework for end-to-end robust estimation. RLSAC employs a graph neural network to utilize both data and memory features to guide exploring directions for sampling the next minimum set. The feedback of downstream tasks serves as the reward for unsupervised training. Therefore, RLSAC can avoid differentiating to learn the features and the feedback of downstream tasks for end-to-end robust estimation. In addition, RLSAC integrates a state transition module that encodes both data and memory features. Our experimental results demonstrate that RLSAC can learn from features to gradually explore a better hypothesis. Through analysis, it is apparent that RLSAC can be easily transferred to other sampling consensus-based robust estimation tasks. To the best of our knowledge, RLSAC is also the first method that uses reinforcement learning to sample consensus for end-to-end robust estimation. We release our codes at https://github.com/IRMVLab/RLSAC.
Reinforcement Learning by Guided Safe Exploration
Safety is critical to broadening the application of reinforcement learning (RL). Often, we train RL agents in a controlled environment, such as a laboratory, before deploying them in the real world. However, the real-world target task might be unknown prior to deployment. Reward-free RL trains an agent without the reward to adapt quickly once the reward is revealed. We consider the constrained reward-free setting, where an agent (the guide) learns to explore safely without the reward signal. This agent is trained in a controlled environment, which allows unsafe interactions and still provides the safety signal. After the target task is revealed, safety violations are not allowed anymore. Thus, the guide is leveraged to compose a safe behaviour policy. Drawing from transfer learning, we also regularize a target policy (the student) towards the guide while the student is unreliable and gradually eliminate the influence of the guide as training progresses. The empirical analysis shows that this method can achieve safe transfer learning and helps the student solve the target task faster.
One Objective to Rule Them All: A Maximization Objective Fusing Estimation and Planning for Exploration
In online reinforcement learning (online RL), balancing exploration and exploitation is crucial for finding an optimal policy in a sample-efficient way. To achieve this, existing sample-efficient online RL algorithms typically consist of three components: estimation, planning, and exploration. However, in order to cope with general function approximators, most of them involve impractical algorithmic components to incentivize exploration, such as optimization within data-dependent level-sets or complicated sampling procedures. To address this challenge, we propose an easy-to-implement RL framework called Maximize to Explore (MEX), which only needs to optimize unconstrainedly a single objective that integrates the estimation and planning components while balancing exploration and exploitation automatically. Theoretically, we prove that MEX achieves a sublinear regret with general function approximations for Markov decision processes (MDP) and is further extendable to two-player zero-sum Markov games (MG). Meanwhile, we adapt deep RL baselines to design practical versions of MEX, in both model-free and model-based manners, which can outperform baselines by a stable margin in various MuJoCo environments with sparse rewards. Compared with existing sample-efficient online RL algorithms with general function approximations, MEX achieves similar sample efficiency while enjoying a lower computational cost and is more compatible with modern deep RL methods.
Safe Offline Reinforcement Learning with Feasibility-Guided Diffusion Model
Safe offline RL is a promising way to bypass risky online interactions towards safe policy learning. Most existing methods only enforce soft constraints, i.e., constraining safety violations in expectation below thresholds predetermined. This can lead to potentially unsafe outcomes, thus unacceptable in safety-critical scenarios. An alternative is to enforce the hard constraint of zero violation. However, this can be challenging in offline setting, as it needs to strike the right balance among three highly intricate and correlated aspects: safety constraint satisfaction, reward maximization, and behavior regularization imposed by offline datasets. Interestingly, we discover that via reachability analysis of safe-control theory, the hard safety constraint can be equivalently translated to identifying the largest feasible region given the offline dataset. This seamlessly converts the original trilogy problem to a feasibility-dependent objective, i.e., maximizing reward value within the feasible region while minimizing safety risks in the infeasible region. Inspired by these, we propose FISOR (FeasIbility-guided Safe Offline RL), which allows safety constraint adherence, reward maximization, and offline policy learning to be realized via three decoupled processes, while offering strong safety performance and stability. In FISOR, the optimal policy for the translated optimization problem can be derived in a special form of weighted behavior cloning. Thus, we propose a novel energy-guided diffusion model that does not require training a complicated time-dependent classifier to extract the policy, greatly simplifying the training. We compare FISOR against baselines on DSRL benchmark for safe offline RL. Evaluation results show that FISOR is the only method that can guarantee safety satisfaction in all tasks, while achieving top returns in most tasks.
An Open-Loop Baseline for Reinforcement Learning Locomotion Tasks
In search of a simple baseline for Deep Reinforcement Learning in locomotion tasks, we propose a model-free open-loop strategy. By leveraging prior knowledge and the elegance of simple oscillators to generate periodic joint motions, it achieves respectable performance in five different locomotion environments, with a number of tunable parameters that is a tiny fraction of the thousands typically required by DRL algorithms. We conduct two additional experiments using open-loop oscillators to identify current shortcomings of these algorithms. Our results show that, compared to the baseline, DRL is more prone to performance degradation when exposed to sensor noise or failure. Furthermore, we demonstrate a successful transfer from simulation to reality using an elastic quadruped, where RL fails without randomization or reward engineering. Overall, the proposed baseline and associated experiments highlight the existing limitations of DRL for robotic applications, provide insights on how to address them, and encourage reflection on the costs of complexity and generality.
In defense of parameter sharing for model-compression
When considering a model architecture, there are several ways to reduce its memory footprint. Historically, popular approaches included selecting smaller architectures and creating sparse networks through pruning. More recently, randomized parameter-sharing (RPS) methods have gained traction for model compression at start of training. In this paper, we comprehensively assess the trade-off between memory and accuracy across RPS, pruning techniques, and building smaller models. Our findings demonstrate that RPS, which is both data and model-agnostic, consistently outperforms/matches smaller models and all moderately informed pruning strategies, such as MAG, SNIP, SYNFLOW, and GRASP, across the entire compression range. This advantage becomes particularly pronounced in higher compression scenarios. Notably, even when compared to highly informed pruning techniques like Lottery Ticket Rewinding (LTR), RPS exhibits superior performance in high compression settings. This points out inherent capacity advantage that RPS enjoys over sparse models. Theoretically, we establish RPS as a superior technique in terms of memory-efficient representation when compared to pruning for linear models. This paper argues in favor of paradigm shift towards RPS based models. During our rigorous evaluation of RPS, we identified issues in the state-of-the-art RPS technique ROAST, specifically regarding stability (ROAST's sensitivity to initialization hyperparameters, often leading to divergence) and Pareto-continuity (ROAST's inability to recover the accuracy of the original model at zero compression). We provably address both of these issues. We refer to the modified RPS, which incorporates our improvements, as STABLE-RPS.
The Wisdom of Hindsight Makes Language Models Better Instruction Followers
Reinforcement learning has seen wide success in finetuning large language models to better align with instructions via human feedback. The so-called algorithm, Reinforcement Learning with Human Feedback (RLHF) demonstrates impressive performance on the GPT series models. However, the underlying Reinforcement Learning (RL) algorithm is complex and requires an additional training pipeline for reward and value networks. In this paper, we consider an alternative approach: converting feedback to instruction by relabeling the original one and training the model for better alignment in a supervised manner. Such an algorithm doesn't require any additional parameters except for the original language model and maximally reuses the pretraining pipeline. To achieve this, we formulate instruction alignment problem for language models as a goal-reaching problem in decision making. We propose Hindsight Instruction Relabeling (HIR), a novel algorithm for aligning language models with instructions. The resulting two-stage algorithm shed light to a family of reward-free approaches that utilize the hindsightly relabeled instructions based on feedback. We evaluate the performance of HIR extensively on 12 challenging BigBench reasoning tasks and show that HIR outperforms the baseline algorithms and is comparable to or even surpasses supervised finetuning.
Semi-Offline Reinforcement Learning for Optimized Text Generation
In reinforcement learning (RL), there are two major settings for interacting with the environment: online and offline. Online methods explore the environment at significant time cost, and offline methods efficiently obtain reward signals by sacrificing exploration capability. We propose semi-offline RL, a novel paradigm that smoothly transits from offline to online settings, balances exploration capability and training cost, and provides a theoretical foundation for comparing different RL settings. Based on the semi-offline formulation, we present the RL setting that is optimal in terms of optimization cost, asymptotic error, and overfitting error bound. Extensive experiments show that our semi-offline approach is efficient and yields comparable or often better performance compared with state-of-the-art methods.
Deep Reinforcement Learning at the Edge of the Statistical Precipice
Deep reinforcement learning (RL) algorithms are predominantly evaluated by comparing their relative performance on a large suite of tasks. Most published results on deep RL benchmarks compare point estimates of aggregate performance such as mean and median scores across tasks, ignoring the statistical uncertainty implied by the use of a finite number of training runs. Beginning with the Arcade Learning Environment (ALE), the shift towards computationally-demanding benchmarks has led to the practice of evaluating only a small number of runs per task, exacerbating the statistical uncertainty in point estimates. In this paper, we argue that reliable evaluation in the few run deep RL regime cannot ignore the uncertainty in results without running the risk of slowing down progress in the field. We illustrate this point using a case study on the Atari 100k benchmark, where we find substantial discrepancies between conclusions drawn from point estimates alone versus a more thorough statistical analysis. With the aim of increasing the field's confidence in reported results with a handful of runs, we advocate for reporting interval estimates of aggregate performance and propose performance profiles to account for the variability in results, as well as present more robust and efficient aggregate metrics, such as interquartile mean scores, to achieve small uncertainty in results. Using such statistical tools, we scrutinize performance evaluations of existing algorithms on other widely used RL benchmarks including the ALE, Procgen, and the DeepMind Control Suite, again revealing discrepancies in prior comparisons. Our findings call for a change in how we evaluate performance in deep RL, for which we present a more rigorous evaluation methodology, accompanied with an open-source library rliable, to prevent unreliable results from stagnating the field.
Offline Reinforcement Learning with Closed-Form Policy Improvement Operators
Behavior constrained policy optimization has been demonstrated to be a successful paradigm for tackling Offline Reinforcement Learning. By exploiting historical transitions, a policy is trained to maximize a learned value function while constrained by the behavior policy to avoid a significant distributional shift. In this paper, we propose our closed-form policy improvement operators. We make a novel observation that the behavior constraint naturally motivates the use of first-order Taylor approximation, leading to a linear approximation of the policy objective. Additionally, as practical datasets are usually collected by heterogeneous policies, we model the behavior policies as a Gaussian Mixture and overcome the induced optimization difficulties by leveraging the LogSumExp's lower bound and Jensen's Inequality, giving rise to a closed-form policy improvement operator. We instantiate offline RL algorithms with our novel policy improvement operators and empirically demonstrate their effectiveness over state-of-the-art algorithms on the standard D4RL benchmark. Our code is available at https://cfpi-icml23.github.io/.
Offline Data Enhanced On-Policy Policy Gradient with Provable Guarantees
Hybrid RL is the setting where an RL agent has access to both offline data and online data by interacting with the real-world environment. In this work, we propose a new hybrid RL algorithm that combines an on-policy actor-critic method with offline data. On-policy methods such as policy gradient and natural policy gradient (NPG) have shown to be more robust to model misspecification, though sometimes it may not be as sample efficient as methods that rely on off-policy learning. On the other hand, offline methods that depend on off-policy training often require strong assumptions in theory and are less stable to train in practice. Our new approach integrates a procedure of off-policy training on the offline data into an on-policy NPG framework. We show that our approach, in theory, can obtain a best-of-both-worlds type of result -- it achieves the state-of-art theoretical guarantees of offline RL when offline RL-specific assumptions hold, while at the same time maintaining the theoretical guarantees of on-policy NPG regardless of the offline RL assumptions' validity. Experimentally, in challenging rich-observation environments, we show that our approach outperforms a state-of-the-art hybrid RL baseline which only relies on off-policy policy optimization, demonstrating the empirical benefit of combining on-policy and off-policy learning. Our code is publicly available at https://github.com/YifeiZhou02/HNPG.
Learning for Edge-Weighted Online Bipartite Matching with Robustness Guarantees
Many problems, such as online ad display, can be formulated as online bipartite matching. The crucial challenge lies in the nature of sequentially-revealed online item information, based on which we make irreversible matching decisions at each step. While numerous expert online algorithms have been proposed with bounded worst-case competitive ratios, they may not offer satisfactory performance in average cases. On the other hand, reinforcement learning (RL) has been applied to improve the average performance, but it lacks robustness and can perform arbitrarily poorly. In this paper, we propose a novel RL-based approach to edge-weighted online bipartite matching with robustness guarantees (LOMAR), achieving both good average-case and worst-case performance. The key novelty of LOMAR is a new online switching operation which, based on a judicious condition to hedge against future uncertainties, decides whether to follow the expert's decision or the RL decision for each online item. We prove that for any rhoin[0,1], LOMAR is rho-competitive against any given expert online algorithm. To improve the average performance, we train the RL policy by explicitly considering the online switching operation. Finally, we run empirical experiments to demonstrate the advantages of LOMAR compared to existing baselines. Our code is available at: https://github.com/Ren-Research/LOMAR
Train Once, Get a Family: State-Adaptive Balances for Offline-to-Online Reinforcement Learning
Offline-to-online reinforcement learning (RL) is a training paradigm that combines pre-training on a pre-collected dataset with fine-tuning in an online environment. However, the incorporation of online fine-tuning can intensify the well-known distributional shift problem. Existing solutions tackle this problem by imposing a policy constraint on the policy improvement objective in both offline and online learning. They typically advocate a single balance between policy improvement and constraints across diverse data collections. This one-size-fits-all manner may not optimally leverage each collected sample due to the significant variation in data quality across different states. To this end, we introduce Family Offline-to-Online RL (FamO2O), a simple yet effective framework that empowers existing algorithms to determine state-adaptive improvement-constraint balances. FamO2O utilizes a universal model to train a family of policies with different improvement/constraint intensities, and a balance model to select a suitable policy for each state. Theoretically, we prove that state-adaptive balances are necessary for achieving a higher policy performance upper bound. Empirically, extensive experiments show that FamO2O offers a statistically significant improvement over various existing methods, achieving state-of-the-art performance on the D4RL benchmark. Codes are available at https://github.com/LeapLabTHU/FamO2O.
D5RL: Diverse Datasets for Data-Driven Deep Reinforcement Learning
Offline reinforcement learning algorithms hold the promise of enabling data-driven RL methods that do not require costly or dangerous real-world exploration and benefit from large pre-collected datasets. This in turn can facilitate real-world applications, as well as a more standardized approach to RL research. Furthermore, offline RL methods can provide effective initializations for online finetuning to overcome challenges with exploration. However, evaluating progress on offline RL algorithms requires effective and challenging benchmarks that capture properties of real-world tasks, provide a range of task difficulties, and cover a range of challenges both in terms of the parameters of the domain (e.g., length of the horizon, sparsity of rewards) and the parameters of the data (e.g., narrow demonstration data or broad exploratory data). While considerable progress in offline RL in recent years has been enabled by simpler benchmark tasks, the most widely used datasets are increasingly saturating in performance and may fail to reflect properties of realistic tasks. We propose a new benchmark for offline RL that focuses on realistic simulations of robotic manipulation and locomotion environments, based on models of real-world robotic systems, and comprising a variety of data sources, including scripted data, play-style data collected by human teleoperators, and other data sources. Our proposed benchmark covers state-based and image-based domains, and supports both offline RL and online fine-tuning evaluation, with some of the tasks specifically designed to require both pre-training and fine-tuning. We hope that our proposed benchmark will facilitate further progress on both offline RL and fine-tuning algorithms. Website with code, examples, tasks, and data is available at https://sites.google.com/view/d5rl/
Optimizing Memory Mapping Using Deep Reinforcement Learning
Resource scheduling and allocation is a critical component of many high impact systems ranging from congestion control to cloud computing. Finding more optimal solutions to these problems often has significant impact on resource and time savings, reducing device wear-and-tear, and even potentially improving carbon emissions. In this paper, we focus on a specific instance of a scheduling problem, namely the memory mapping problem that occurs during compilation of machine learning programs: That is, mapping tensors to different memory layers to optimize execution time. We introduce an approach for solving the memory mapping problem using Reinforcement Learning. RL is a solution paradigm well-suited for sequential decision making problems that are amenable to planning, and combinatorial search spaces with high-dimensional data inputs. We formulate the problem as a single-player game, which we call the mallocGame, such that high-reward trajectories of the game correspond to efficient memory mappings on the target hardware. We also introduce a Reinforcement Learning agent, mallocMuZero, and show that it is capable of playing this game to discover new and improved memory mapping solutions that lead to faster execution times on real ML workloads on ML accelerators. We compare the performance of mallocMuZero to the default solver used by the Accelerated Linear Algebra (XLA) compiler on a benchmark of realistic ML workloads. In addition, we show that mallocMuZero is capable of improving the execution time of the recently published AlphaTensor matrix multiplication model.
Is DPO Superior to PPO for LLM Alignment? A Comprehensive Study
Reinforcement Learning from Human Feedback (RLHF) is currently the most widely used method to align large language models (LLMs) with human preferences. Existing RLHF methods can be roughly categorized as either reward-based or reward-free. Novel applications such as ChatGPT and Claude leverage reward-based methods that first learn a reward model and apply actor-critic algorithms, such as Proximal Policy Optimization (PPO). However, in academic benchmarks, state-of-the-art results are often achieved via reward-free methods, such as Direct Preference Optimization (DPO). Is DPO truly superior to PPO? Why does PPO perform poorly on these benchmarks? In this paper, we first conduct both theoretical and empirical studies on the algorithmic properties of DPO and show that DPO may have fundamental limitations. Moreover, we also comprehensively examine PPO and reveal the key factors for the best performances of PPO in fine-tuning LLMs. Finally, we benchmark DPO and PPO across various a collection of RLHF testbeds, ranging from dialogue to code generation. Experiment results demonstrate that PPO is able to surpass other alignment methods in all cases and achieve state-of-the-art results in challenging code competitions.
Discovered Policy Optimisation
Tremendous progress has been made in reinforcement learning (RL) over the past decade. Most of these advancements came through the continual development of new algorithms, which were designed using a combination of mathematical derivations, intuitions, and experimentation. Such an approach of creating algorithms manually is limited by human understanding and ingenuity. In contrast, meta-learning provides a toolkit for automatic machine learning method optimisation, potentially addressing this flaw. However, black-box approaches which attempt to discover RL algorithms with minimal prior structure have thus far not outperformed existing hand-crafted algorithms. Mirror Learning, which includes RL algorithms, such as PPO, offers a potential middle-ground starting point: while every method in this framework comes with theoretical guarantees, components that differentiate them are subject to design. In this paper we explore the Mirror Learning space by meta-learning a "drift" function. We refer to the immediate result as Learnt Policy Optimisation (LPO). By analysing LPO we gain original insights into policy optimisation which we use to formulate a novel, closed-form RL algorithm, Discovered Policy Optimisation (DPO). Our experiments in Brax environments confirm state-of-the-art performance of LPO and DPO, as well as their transfer to unseen settings.
Online Nonstochastic Control with Adversarial and Static Constraints
This paper studies online nonstochastic control problems with adversarial and static constraints. We propose online nonstochastic control algorithms that achieve both sublinear regret and sublinear adversarial constraint violation while keeping static constraint violation minimal against the optimal constrained linear control policy in hindsight. To establish the results, we introduce an online convex optimization with memory framework under adversarial and static constraints, which serves as a subroutine for the constrained online nonstochastic control algorithms. This subroutine also achieves the state-of-the-art regret and constraint violation bounds for constrained online convex optimization problems, which is of independent interest. Our experiments demonstrate the proposed control algorithms are adaptive to adversarial constraints and achieve smaller cumulative costs and violations. Moreover, our algorithms are less conservative and achieve significantly smaller cumulative costs than the state-of-the-art algorithm.
Robust Subtask Learning for Compositional Generalization
Compositional reinforcement learning is a promising approach for training policies to perform complex long-horizon tasks. Typically, a high-level task is decomposed into a sequence of subtasks and a separate policy is trained to perform each subtask. In this paper, we focus on the problem of training subtask policies in a way that they can be used to perform any task; here, a task is given by a sequence of subtasks. We aim to maximize the worst-case performance over all tasks as opposed to the average-case performance. We formulate the problem as a two agent zero-sum game in which the adversary picks the sequence of subtasks. We propose two RL algorithms to solve this game: one is an adaptation of existing multi-agent RL algorithms to our setting and the other is an asynchronous version which enables parallel training of subtask policies. We evaluate our approach on two multi-task environments with continuous states and actions and demonstrate that our algorithms outperform state-of-the-art baselines.
Towards Optimal Regret in Adversarial Linear MDPs with Bandit Feedback
We study online reinforcement learning in linear Markov decision processes with adversarial losses and bandit feedback, without prior knowledge on transitions or access to simulators. We introduce two algorithms that achieve improved regret performance compared to existing approaches. The first algorithm, although computationally inefficient, ensures a regret of mathcal{O}left(Kright), where K is the number of episodes. This is the first result with the optimal K dependence in the considered setting. The second algorithm, which is based on the policy optimization framework, guarantees a regret of mathcal{O}left(K^{3{4}} right) and is computationally efficient. Both our results significantly improve over the state-of-the-art: a computationally inefficient algorithm by Kong et al. [2023] with mathcal{O}left(K^{4{5}}+polyleft(1{lambda_{min}}right) right) regret, for some problem-dependent constant lambda_{min} that can be arbitrarily close to zero, and a computationally efficient algorithm by Sherman et al. [2023b] with mathcal{O}left(K^{6{7}} right) regret.
Generalizing from a few environments in safety-critical reinforcement learning
Before deploying autonomous agents in the real world, we need to be confident they will perform safely in novel situations. Ideally, we would expose agents to a very wide range of situations during training, allowing them to learn about every possible danger, but this is often impractical. This paper investigates safety and generalization from a limited number of training environments in deep reinforcement learning (RL). We find RL algorithms can fail dangerously on unseen test environments even when performing perfectly on training environments. Firstly, in a gridworld setting, we show that catastrophes can be significantly reduced with simple modifications, including ensemble model averaging and the use of a blocking classifier. In the more challenging CoinRun environment we find similar methods do not significantly reduce catastrophes. However, we do find that the uncertainty information from the ensemble is useful for predicting whether a catastrophe will occur within a few steps and hence whether human intervention should be requested.
Generalized Implicit Follow-The-Regularized-Leader
We propose a new class of online learning algorithms, generalized implicit Follow-The-Regularized-Leader (FTRL), that expands the scope of FTRL framework. Generalized implicit FTRL can recover known algorithms, as FTRL with linearized losses and implicit FTRL, and it allows the design of new update rules, as extensions of aProx and Mirror-Prox to FTRL. Our theory is constructive in the sense that it provides a simple unifying framework to design updates that directly improve the worst-case upper bound on the regret. The key idea is substituting the linearization of the losses with a Fenchel-Young inequality. We show the flexibility of the framework by proving that some known algorithms, like the Mirror-Prox updates, are instantiations of the generalized implicit FTRL. Finally, the new framework allows us to recover the temporal variation bound of implicit OMD, with the same computational complexity.
MOTO: Offline Pre-training to Online Fine-tuning for Model-based Robot Learning
We study the problem of offline pre-training and online fine-tuning for reinforcement learning from high-dimensional observations in the context of realistic robot tasks. Recent offline model-free approaches successfully use online fine-tuning to either improve the performance of the agent over the data collection policy or adapt to novel tasks. At the same time, model-based RL algorithms have achieved significant progress in sample efficiency and the complexity of the tasks they can solve, yet remain under-utilized in the fine-tuning setting. In this work, we argue that existing model-based offline RL methods are not suitable for offline-to-online fine-tuning in high-dimensional domains due to issues with distribution shifts, off-dynamics data, and non-stationary rewards. We propose an on-policy model-based method that can efficiently reuse prior data through model-based value expansion and policy regularization, while preventing model exploitation by controlling epistemic uncertainty. We find that our approach successfully solves tasks from the MetaWorld benchmark, as well as the Franka Kitchen robot manipulation environment completely from images. To the best of our knowledge, MOTO is the first method to solve this environment from pixels.
Regret Bounds for Markov Decision Processes with Recursive Optimized Certainty Equivalents
The optimized certainty equivalent (OCE) is a family of risk measures that cover important examples such as entropic risk, conditional value-at-risk and mean-variance models. In this paper, we propose a new episodic risk-sensitive reinforcement learning formulation based on tabular Markov decision processes with recursive OCEs. We design an efficient learning algorithm for this problem based on value iteration and upper confidence bound. We derive an upper bound on the regret of the proposed algorithm, and also establish a minimax lower bound. Our bounds show that the regret rate achieved by our proposed algorithm has optimal dependence on the number of episodes and the number of actions.
On Designing Effective RL Reward at Training Time for LLM Reasoning
Reward models have been increasingly critical for improving the reasoning capability of LLMs. Existing research has shown that a well-trained reward model can substantially improve model performances at inference time via search. However, the potential of reward models during RL training time still remains largely under-explored. It is currently unclear whether these reward models can provide additional training signals to enhance the reasoning capabilities of LLMs in RL training that uses sparse success rewards, which verify the correctness of solutions. In this work, we evaluate popular reward models for RL training, including the Outcome-supervised Reward Model (ORM) and the Process-supervised Reward Model (PRM), and train a collection of LLMs for math problems using RL by combining these learned rewards with success rewards. Surprisingly, even though these learned reward models have strong inference-time performances, they may NOT help or even hurt RL training, producing worse performances than LLMs trained with the success reward only. Our analysis reveals that an LLM can receive high rewards from some of these reward models by repeating correct but unnecessary reasoning steps, leading to a severe reward hacking issue. Therefore, we introduce two novel reward refinement techniques, including Clipping and Delta. The key idea is to ensure the accumulative reward of any reasoning trajectory is upper-bounded to keep a learned reward model effective without being exploited. We evaluate our techniques with multiple reward models over a set of 1.5B and 7B LLMs on MATH and GSM8K benchmarks and demonstrate that with a carefully designed reward function, RL training without any additional supervised tuning can improve all the evaluated LLMs, including the state-of-the-art 7B LLM Qwen2.5-Math-7B-Instruct on MATH and GSM8K benchmarks.
MaxInfoRL: Boosting exploration in reinforcement learning through information gain maximization
Reinforcement learning (RL) algorithms aim to balance exploiting the current best strategy with exploring new options that could lead to higher rewards. Most common RL algorithms use undirected exploration, i.e., select random sequences of actions. Exploration can also be directed using intrinsic rewards, such as curiosity or model epistemic uncertainty. However, effectively balancing task and intrinsic rewards is challenging and often task-dependent. In this work, we introduce a framework, MaxInfoRL, for balancing intrinsic and extrinsic exploration. MaxInfoRL steers exploration towards informative transitions, by maximizing intrinsic rewards such as the information gain about the underlying task. When combined with Boltzmann exploration, this approach naturally trades off maximization of the value function with that of the entropy over states, rewards, and actions. We show that our approach achieves sublinear regret in the simplified setting of multi-armed bandits. We then apply this general formulation to a variety of off-policy model-free RL methods for continuous state-action spaces, yielding novel algorithms that achieve superior performance across hard exploration problems and complex scenarios such as visual control tasks.
Is Model Ensemble Necessary? Model-based RL via a Single Model with Lipschitz Regularized Value Function
Probabilistic dynamics model ensemble is widely used in existing model-based reinforcement learning methods as it outperforms a single dynamics model in both asymptotic performance and sample efficiency. In this paper, we provide both practical and theoretical insights on the empirical success of the probabilistic dynamics model ensemble through the lens of Lipschitz continuity. We find that, for a value function, the stronger the Lipschitz condition is, the smaller the gap between the true dynamics- and learned dynamics-induced Bellman operators is, thus enabling the converged value function to be closer to the optimal value function. Hence, we hypothesize that the key functionality of the probabilistic dynamics model ensemble is to regularize the Lipschitz condition of the value function using generated samples. To test this hypothesis, we devise two practical robust training mechanisms through computing the adversarial noise and regularizing the value network's spectral norm to directly regularize the Lipschitz condition of the value functions. Empirical results show that combined with our mechanisms, model-based RL algorithms with a single dynamics model outperform those with an ensemble of probabilistic dynamics models. These findings not only support the theoretical insight, but also provide a practical solution for developing computationally efficient model-based RL algorithms.
Enhancing Code LLMs with Reinforcement Learning in Code Generation: A Survey
With the rapid evolution of large language models (LLM), reinforcement learning (RL) has emerged as a pivotal technique for code generation and optimization in various domains. This paper presents a systematic survey of the application of RL in code optimization and generation, highlighting its role in enhancing compiler optimization, resource allocation, and the development of frameworks and tools. Subsequent sections first delve into the intricate processes of compiler optimization, where RL algorithms are leveraged to improve efficiency and resource utilization. The discussion then progresses to the function of RL in resource allocation, emphasizing register allocation and system optimization. We also explore the burgeoning role of frameworks and tools in code generation, examining how RL can be integrated to bolster their capabilities. This survey aims to serve as a comprehensive resource for researchers and practitioners interested in harnessing the power of RL to advance code generation and optimization techniques.
Dual RL: Unification and New Methods for Reinforcement and Imitation Learning
The goal of reinforcement learning (RL) is to find a policy that maximizes the expected cumulative return. It has been shown that this objective can be represented as an optimization problem of state-action visitation distribution under linear constraints. The dual problem of this formulation, which we refer to as dual RL, is unconstrained and easier to optimize. In this work, we first cast several state-of-the-art offline RL and offline imitation learning (IL) algorithms as instances of dual RL approaches with shared structures. Such unification allows us to identify the root cause of the shortcomings of prior methods. For offline IL, our analysis shows that prior methods are based on a restrictive coverage assumption that greatly limits their performance in practice. To fix this limitation, we propose a new discriminator-free method ReCOIL that learns to imitate from arbitrary off-policy data to obtain near-expert performance. For offline RL, our analysis frames a recent offline RL method XQL in the dual framework, and we further propose a new method f-DVL that provides alternative choices to the Gumbel regression loss that fixes the known training instability issue of XQL. The performance improvements by both of our proposed methods, ReCOIL and f-DVL, in IL and RL are validated on an extensive suite of simulated robot locomotion and manipulation tasks. Project code and details can be found at this https://hari-sikchi.github.io/dual-rl.
TÜLU 3: Pushing Frontiers in Open Language Model Post-Training
Language model post-training is applied to refine behaviors and unlock new skills across a wide range of recent language models, but open recipes for applying these techniques lag behind proprietary ones. The underlying training data and recipes for post-training are simultaneously the most important pieces of the puzzle and the portion with the least transparency. To bridge this gap, we introduce T\"ULU 3, a family of fully-open state-of-the-art post-trained models, alongside its data, code, and training recipes, serving as a comprehensive guide for modern post-training techniques. T\"ULU 3, which builds on Llama 3.1 base models, achieves results surpassing the instruct versions of Llama 3.1, Qwen 2.5, Mistral, and even closed models such as GPT-4o-mini and Claude 3.5-Haiku. The training algorithms for our models include supervised finetuning (SFT), Direct Preference Optimization (DPO), and a novel method we call Reinforcement Learning with Verifiable Rewards (RLVR). With T\"ULU 3, we introduce a multi-task evaluation scheme for post-training recipes with development and unseen evaluations, standard benchmark implementations, and substantial decontamination of existing open datasets on said benchmarks. We conclude with analysis and discussion of training methods that did not reliably improve performance. In addition to the T\"ULU 3 model weights and demo, we release the complete recipe -- including datasets for diverse core skills, a robust toolkit for data curation and evaluation, the training code and infrastructure, and, most importantly, a detailed report for reproducing and further adapting the T\"ULU 3 approach to more domains.
Process Supervision-Guided Policy Optimization for Code Generation
Reinforcement Learning (RL) with unit test feedback has enhanced large language models (LLMs) code generation, but relies on sparse rewards provided only after complete code evaluation, limiting learning efficiency and incremental improvements. When generated code fails all unit tests, no learning signal is received, hindering progress on complex tasks. To address this, we propose a Process Reward Model (PRM) that delivers dense, line-level feedback on code correctness during generation, mimicking human code refinement and providing immediate guidance. We explore various strategies for training PRMs and integrating them into the RL framework, finding that using PRMs both as dense rewards and for value function initialization significantly boosts performance. Our approach increases our in-house LLM's pass rate from 28.2% to 29.8% on LiveCodeBench and from 31.8% to 35.8% on our internal benchmark. Our experimental results highlight the effectiveness of PRMs in enhancing RL-driven code generation, especially for long-horizon scenarios.
Harnessing Mixed Offline Reinforcement Learning Datasets via Trajectory Weighting
Most offline reinforcement learning (RL) algorithms return a target policy maximizing a trade-off between (1) the expected performance gain over the behavior policy that collected the dataset, and (2) the risk stemming from the out-of-distribution-ness of the induced state-action occupancy. It follows that the performance of the target policy is strongly related to the performance of the behavior policy and, thus, the trajectory return distribution of the dataset. We show that in mixed datasets consisting of mostly low-return trajectories and minor high-return trajectories, state-of-the-art offline RL algorithms are overly restrained by low-return trajectories and fail to exploit high-performing trajectories to the fullest. To overcome this issue, we show that, in deterministic MDPs with stochastic initial states, the dataset sampling can be re-weighted to induce an artificial dataset whose behavior policy has a higher return. This re-weighted sampling strategy may be combined with any offline RL algorithm. We further analyze that the opportunity for performance improvement over the behavior policy correlates with the positive-sided variance of the returns of the trajectories in the dataset. We empirically show that while CQL, IQL, and TD3+BC achieve only a part of this potential policy improvement, these same algorithms combined with our reweighted sampling strategy fully exploit the dataset. Furthermore, we empirically demonstrate that, despite its theoretical limitation, the approach may still be efficient in stochastic environments. The code is available at https://github.com/Improbable-AI/harness-offline-rl.
SRL: Scaling Distributed Reinforcement Learning to Over Ten Thousand Cores
The ever-growing complexity of reinforcement learning (RL) tasks demands a distributed RL system to efficiently generate and process a massive amount of data to train intelligent agents. However, existing open-source libraries suffer from various limitations, which impede their practical use in challenging scenarios where large-scale training is necessary. While industrial systems from OpenAI and DeepMind have achieved successful large-scale RL training, their system architecture and implementation details remain undisclosed to the community. In this paper, we present a novel abstraction on the dataflows of RL training, which unifies practical RL training across diverse applications into a general framework and enables fine-grained optimizations. Following this abstraction, we develop a scalable, efficient, and extensible distributed RL system called ReaLly Scalable RL (SRL). The system architecture of SRL separates major RL computation components and allows massively parallelized training. Moreover, SRL offers user-friendly and extensible interfaces for customized algorithms. Our evaluation shows that SRL outperforms existing academic libraries in both a single machine and a medium-sized cluster. In a large-scale cluster, the novel architecture of SRL leads to up to 3.7x speedup compared to the design choices adopted by the existing libraries. We also conduct a direct benchmark comparison to OpenAI's industrial system, Rapid, in the challenging hide-and-seek environment. SRL reproduces the same solution as reported by OpenAI with up to 5x speedup in wall-clock time. Furthermore, we also examine the performance of SRL in a much harder variant of the hide-and-seek environment and achieve substantial learning speedup by scaling SRL to over 15k CPU cores and 32 A100 GPUs. Notably, SRL is the first in the academic community to perform RL experiments at such a large scale.
EfficientZero V2: Mastering Discrete and Continuous Control with Limited Data
Sample efficiency remains a crucial challenge in applying Reinforcement Learning (RL) to real-world tasks. While recent algorithms have made significant strides in improving sample efficiency, none have achieved consistently superior performance across diverse domains. In this paper, we introduce EfficientZero V2, a general framework designed for sample-efficient RL algorithms. We have expanded the performance of EfficientZero to multiple domains, encompassing both continuous and discrete actions, as well as visual and low-dimensional inputs. With a series of improvements we propose, EfficientZero V2 outperforms the current state-of-the-art (SOTA) by a significant margin in diverse tasks under the limited data setting. EfficientZero V2 exhibits a notable advancement over the prevailing general algorithm, DreamerV3, achieving superior outcomes in 50 of 66 evaluated tasks across diverse benchmarks, such as Atari 100k, Proprio Control, and Vision Control.
SGDR: Stochastic Gradient Descent with Warm Restarts
Restart techniques are common in gradient-free optimization to deal with multimodal functions. Partial warm restarts are also gaining popularity in gradient-based optimization to improve the rate of convergence in accelerated gradient schemes to deal with ill-conditioned functions. In this paper, we propose a simple warm restart technique for stochastic gradient descent to improve its anytime performance when training deep neural networks. We empirically study its performance on the CIFAR-10 and CIFAR-100 datasets, where we demonstrate new state-of-the-art results at 3.14% and 16.21%, respectively. We also demonstrate its advantages on a dataset of EEG recordings and on a downsampled version of the ImageNet dataset. Our source code is available at https://github.com/loshchil/SGDR
Constrained Decision Transformer for Offline Safe Reinforcement Learning
Safe reinforcement learning (RL) trains a constraint satisfaction policy by interacting with the environment. We aim to tackle a more challenging problem: learning a safe policy from an offline dataset. We study the offline safe RL problem from a novel multi-objective optimization perspective and propose the epsilon-reducible concept to characterize problem difficulties. The inherent trade-offs between safety and task performance inspire us to propose the constrained decision transformer (CDT) approach, which can dynamically adjust the trade-offs during deployment. Extensive experiments show the advantages of the proposed method in learning an adaptive, safe, robust, and high-reward policy. CDT outperforms its variants and strong offline safe RL baselines by a large margin with the same hyperparameters across all tasks, while keeping the zero-shot adaptation capability to different constraint thresholds, making our approach more suitable for real-world RL under constraints. The code is available at https://github.com/liuzuxin/OSRL.
On the Emergence of Thinking in LLMs I: Searching for the Right Intuition
Recent AI advancements, such as OpenAI's new models, are transforming LLMs into LRMs (Large Reasoning Models) that perform reasoning during inference, taking extra time and compute for higher-quality outputs. We aim to uncover the algorithmic framework for training LRMs. Methods like self-consistency, PRM, and AlphaZero suggest reasoning as guided search. We ask: what is the simplest, most scalable way to enable search in LLMs? We propose a post-training framework called Reinforcement Learning via Self-Play (RLSP). RLSP involves three steps: (1) supervised fine-tuning with human or synthetic demonstrations of the reasoning process, (2) using an exploration reward signal to encourage diverse and efficient reasoning behaviors, and (3) RL training with an outcome verifier to ensure correctness while preventing reward hacking. Our key innovation is to decouple exploration and correctness signals during PPO training, carefully balancing them to improve performance and efficiency. Empirical studies in the math domain show that RLSP improves reasoning. On the Llama-3.1-8B-Instruct model, RLSP can boost performance by 23% in MATH-500 test set; On AIME 2024 math problems, Qwen2.5-32B-Instruct improved by 10% due to RLSP. However, a more important finding of this work is that the models trained using RLSP, even with the simplest exploration reward that encourages the model to take more intermediate steps, showed several emergent behaviors such as backtracking, exploration of ideas, and verification. These findings demonstrate that RLSP framework might be enough to enable emergence of complex reasoning abilities in LLMs when scaled. Lastly, we propose a theory as to why RLSP search strategy is more suitable for LLMs inspired by a remarkable result that says CoT provably increases computational power of LLMs, which grows as the number of steps in CoT li2024chain,merrill2023expresssive.
Beyond Worst-case Attacks: Robust RL with Adaptive Defense via Non-dominated Policies
In light of the burgeoning success of reinforcement learning (RL) in diverse real-world applications, considerable focus has been directed towards ensuring RL policies are robust to adversarial attacks during test time. Current approaches largely revolve around solving a minimax problem to prepare for potential worst-case scenarios. While effective against strong attacks, these methods often compromise performance in the absence of attacks or the presence of only weak attacks. To address this, we study policy robustness under the well-accepted state-adversarial attack model, extending our focus beyond only worst-case attacks. We first formalize this task at test time as a regret minimization problem and establish its intrinsic hardness in achieving sublinear regret when the baseline policy is from a general continuous policy class, Pi. This finding prompts us to refine the baseline policy class Pi prior to test time, aiming for efficient adaptation within a finite policy class Pi, which can resort to an adversarial bandit subroutine. In light of the importance of a small, finite Pi, we propose a novel training-time algorithm to iteratively discover non-dominated policies, forming a near-optimal and minimal Pi, thereby ensuring both robustness and test-time efficiency. Empirical validation on the Mujoco corroborates the superiority of our approach in terms of natural and robust performance, as well as adaptability to various attack scenarios.
Optimizing Test-Time Compute via Meta Reinforcement Fine-Tuning
Training models to effectively use test-time compute is crucial for improving the reasoning performance of LLMs. Current methods mostly do so via fine-tuning on search traces or running RL with 0/1 outcome reward, but do these approaches efficiently utilize test-time compute? Would these approaches continue to scale as the budget improves? In this paper, we try to answer these questions. We formalize the problem of optimizing test-time compute as a meta-reinforcement learning (RL) problem, which provides a principled perspective on spending test-time compute. This perspective enables us to view the long output stream from the LLM as consisting of several episodes run at test time and leads us to use a notion of cumulative regret over output tokens as a way to measure the efficacy of test-time compute. Akin to how RL algorithms can best tradeoff exploration and exploitation over training, minimizing cumulative regret would also provide the best balance between exploration and exploitation in the token stream. While we show that state-of-the-art models do not minimize regret, one can do so by maximizing a dense reward bonus in conjunction with the outcome 0/1 reward RL. This bonus is the ''progress'' made by each subsequent block in the output stream, quantified by the change in the likelihood of eventual success. Using these insights, we develop Meta Reinforcement Fine-Tuning, or MRT, a new class of fine-tuning methods for optimizing test-time compute. MRT leads to a 2-3x relative gain in performance and roughly a 1.5x gain in token efficiency for math reasoning compared to outcome-reward RL.
Improving Offline RL by Blending Heuristics
We propose Heuristic Blending (HUBL), a simple performance-improving technique for a broad class of offline RL algorithms based on value bootstrapping. HUBL modifies the Bellman operators used in these algorithms, partially replacing the bootstrapped values with heuristic ones that are estimated with Monte-Carlo returns. For trajectories with higher returns, HUBL relies more on the heuristic values and less on bootstrapping; otherwise, it leans more heavily on bootstrapping. HUBL is very easy to combine with many existing offline RL implementations by relabeling the offline datasets with adjusted rewards and discount factors. We derive a theory that explains HUBL's effect on offline RL as reducing offline RL's complexity and thus increasing its finite-sample performance. Furthermore, we empirically demonstrate that HUBL consistently improves the policy quality of four state-of-the-art bootstrapping-based offline RL algorithms (ATAC, CQL, TD3+BC, and IQL), by 9% on average over 27 datasets of the D4RL and Meta-World benchmarks.
Convergence Results For Q-Learning With Experience Replay
A commonly used heuristic in RL is experience replay (e.g.~lin1993reinforcement, mnih2015human), in which a learner stores and re-uses past trajectories as if they were sampled online. In this work, we initiate a rigorous study of this heuristic in the setting of tabular Q-learning. We provide a convergence rate guarantee, and discuss how it compares to the convergence of Q-learning depending on important parameters such as the frequency and number of replay iterations. We also provide theoretical evidence showing when we might expect this heuristic to strictly improve performance, by introducing and analyzing a simple class of MDPs. Finally, we provide some experiments to support our theoretical findings.
Improving Language Models with Advantage-based Offline Policy Gradients
Abstract Language Models (LMs) achieve substantial language capabilities when finetuned using Reinforcement Learning with Human Feedback (RLHF). However, RLHF is an unstable and data-hungry process that continually requires new high-quality LM-generated data for finetuning. We introduce Advantage-Leftover Lunch RL (A-LoL), a new class of offline policy gradient algorithms that enable RL training on any pre-existing data. By assuming the entire LM output sequence as a single action, A-LoL allows incorporating sequence-level classifiers or human-designed scoring functions as rewards. Subsequently, by using LM's internal sequence-level value estimate, A-LoL filters negative advantage (low-quality) data points during training, making it resilient to noise. Overall, A-LoL is an easy-to-implement LM training recipe that is sample-efficient and stable. We demonstrate the effectiveness of A-LoL and its variants with a set of four different language generation tasks. We compare against both online RL (PPO) and recent preference-based (DPO, PRO) and reward-based (GOLD) offline RL baselines. On the commonly-used RLHF benchmark, Helpful and Harmless Assistant (HHA), LMs trained with A-LoL methods achieve the highest diversity while also being rated more safe and helpful than baselines according to humans. Additionally, in the remaining three tasks, A-LoL could optimize multiple distinct reward functions even when using noisy or suboptimal training data. We also release our experimental code. https://github.com/abaheti95/LoL-RL
Hardness of Independent Learning and Sparse Equilibrium Computation in Markov Games
We consider the problem of decentralized multi-agent reinforcement learning in Markov games. A fundamental question is whether there exist algorithms that, when adopted by all agents and run independently in a decentralized fashion, lead to no-regret for each player, analogous to celebrated convergence results in normal-form games. While recent work has shown that such algorithms exist for restricted settings (notably, when regret is defined with respect to deviations to Markovian policies), the question of whether independent no-regret learning can be achieved in the standard Markov game framework was open. We provide a decisive negative resolution this problem, both from a computational and statistical perspective. We show that: - Under the widely-believed assumption that PPAD-hard problems cannot be solved in polynomial time, there is no polynomial-time algorithm that attains no-regret in general-sum Markov games when executed independently by all players, even when the game is known to the algorithm designer and the number of players is a small constant. - When the game is unknown, no algorithm, regardless of computational efficiency, can achieve no-regret without observing a number of episodes that is exponential in the number of players. Perhaps surprisingly, our lower bounds hold even for seemingly easier setting in which all agents are controlled by a a centralized algorithm. They are proven via lower bounds for a simpler problem we refer to as SparseCCE, in which the goal is to compute a coarse correlated equilibrium that is sparse in the sense that it can be represented as a mixture of a small number of product policies. The crux of our approach is a novel application of aggregation techniques from online learning, whereby we show that any algorithm for the SparseCCE problem can be used to compute approximate Nash equilibria for non-zero sum normal-form games.
Harnessing Density Ratios for Online Reinforcement Learning
The theories of offline and online reinforcement learning, despite having evolved in parallel, have begun to show signs of the possibility for a unification, with algorithms and analysis techniques for one setting often having natural counterparts in the other. However, the notion of density ratio modeling, an emerging paradigm in offline RL, has been largely absent from online RL, perhaps for good reason: the very existence and boundedness of density ratios relies on access to an exploratory dataset with good coverage, but the core challenge in online RL is to collect such a dataset without having one to start. In this work we show -- perhaps surprisingly -- that density ratio-based algorithms have online counterparts. Assuming only the existence of an exploratory distribution with good coverage, a structural condition known as coverability (Xie et al., 2023), we give a new algorithm (GLOW) that uses density ratio realizability and value function realizability to perform sample-efficient online exploration. GLOW addresses unbounded density ratios via careful use of truncation, and combines this with optimism to guide exploration. GLOW is computationally inefficient; we complement it with a more efficient counterpart, HyGLOW, for the Hybrid RL setting (Song et al., 2022) wherein online RL is augmented with additional offline data. HyGLOW is derived as a special case of a more general meta-algorithm that provides a provable black-box reduction from hybrid RL to offline RL, which may be of independent interest.
Safe DreamerV3: Safe Reinforcement Learning with World Models
The widespread application of Reinforcement Learning (RL) in real-world situations is yet to come to fruition, largely as a result of its failure to satisfy the essential safety demands of such systems. Existing safe reinforcement learning (SafeRL) methods, employing cost functions to enhance safety, fail to achieve zero-cost in complex scenarios, including vision-only tasks, even with comprehensive data sampling and training. To address this, we introduce Safe DreamerV3, a novel algorithm that integrates both Lagrangian-based and planning-based methods within a world model. Our methodology represents a significant advancement in SafeRL as the first algorithm to achieve nearly zero-cost in both low-dimensional and vision-only tasks within the Safety-Gymnasium benchmark. Our project website can be found in: https://sites.google.com/view/safedreamerv3.
Optimal Transport for Offline Imitation Learning
With the advent of large datasets, offline reinforcement learning (RL) is a promising framework for learning good decision-making policies without the need to interact with the real environment. However, offline RL requires the dataset to be reward-annotated, which presents practical challenges when reward engineering is difficult or when obtaining reward annotations is labor-intensive. In this paper, we introduce Optimal Transport Reward labeling (OTR), an algorithm that assigns rewards to offline trajectories, with a few high-quality demonstrations. OTR's key idea is to use optimal transport to compute an optimal alignment between an unlabeled trajectory in the dataset and an expert demonstration to obtain a similarity measure that can be interpreted as a reward, which can then be used by an offline RL algorithm to learn the policy. OTR is easy to implement and computationally efficient. On D4RL benchmarks, we show that OTR with a single demonstration can consistently match the performance of offline RL with ground-truth rewards.
Multi-Turn Code Generation Through Single-Step Rewards
We address the problem of code generation from multi-turn execution feedback. Existing methods either generate code without feedback or use complex, hierarchical reinforcement learning to optimize multi-turn rewards. We propose a simple yet scalable approach, muCode, that solves multi-turn code generation using only single-step rewards. Our key insight is that code generation is a one-step recoverable MDP, where the correct code can be recovered from any intermediate code state in a single turn. muCode iteratively trains both a generator to provide code solutions conditioned on multi-turn execution feedback and a verifier to score the newly generated code. Experimental evaluations show that our approach achieves significant improvements over the state-of-the-art baselines. We provide analysis of the design choices of the reward models and policy, and show the efficacy of muCode at utilizing the execution feedback. Our code is available at https://github.com/portal-cornell/muCode.
RLHF Workflow: From Reward Modeling to Online RLHF
We present the workflow of Online Iterative Reinforcement Learning from Human Feedback (RLHF) in this technical report, which is widely reported to outperform its offline counterpart by a large margin in the recent large language model (LLM) literature. However, existing open-source RLHF projects are still largely confined to the offline learning setting. In this technical report, we aim to fill in this gap and provide a detailed recipe that is easy to reproduce for online iterative RLHF. In particular, since online human feedback is usually infeasible for open-source communities with limited resources, we start by constructing preference models using a diverse set of open-source datasets and use the constructed proxy preference model to approximate human feedback. Then, we discuss the theoretical insights and algorithmic principles behind online iterative RLHF, followed by a detailed practical implementation. Our trained LLM, SFR-Iterative-DPO-LLaMA-3-8B-R, achieves impressive performance on LLM chatbot benchmarks, including AlpacaEval-2, Arena-Hard, and MT-Bench, as well as other academic benchmarks such as HumanEval and TruthfulQA. We have shown that supervised fine-tuning (SFT) and iterative RLHF can obtain state-of-the-art performance with fully open-source datasets. Further, we have made our models, curated datasets, and comprehensive step-by-step code guidebooks publicly available. Please refer to https://github.com/RLHFlow/RLHF-Reward-Modeling and https://github.com/RLHFlow/Online-RLHF for more detailed information.
Replay across Experiments: A Natural Extension of Off-Policy RL
Replaying data is a principal mechanism underlying the stability and data efficiency of off-policy reinforcement learning (RL). We present an effective yet simple framework to extend the use of replays across multiple experiments, minimally adapting the RL workflow for sizeable improvements in controller performance and research iteration times. At its core, Replay Across Experiments (RaE) involves reusing experience from previous experiments to improve exploration and bootstrap learning while reducing required changes to a minimum in comparison to prior work. We empirically show benefits across a number of RL algorithms and challenging control domains spanning both locomotion and manipulation, including hard exploration tasks from egocentric vision. Through comprehensive ablations, we demonstrate robustness to the quality and amount of data available and various hyperparameter choices. Finally, we discuss how our approach can be applied more broadly across research life cycles and can increase resilience by reloading data across random seeds or hyperparameter variations.
RLOR: A Flexible Framework of Deep Reinforcement Learning for Operation Research
Reinforcement learning has been applied in operation research and has shown promise in solving large combinatorial optimization problems. However, existing works focus on developing neural network architectures for certain problems. These works lack the flexibility to incorporate recent advances in reinforcement learning, as well as the flexibility of customizing model architectures for operation research problems. In this work, we analyze the end-to-end autoregressive models for vehicle routing problems and show that these models can benefit from the recent advances in reinforcement learning with a careful re-implementation of the model architecture. In particular, we re-implemented the Attention Model and trained it with Proximal Policy Optimization (PPO) in CleanRL, showing at least 8 times speed up in training time. We hereby introduce RLOR, a flexible framework for Deep Reinforcement Learning for Operation Research. We believe that a flexible framework is key to developing deep reinforcement learning models for operation research problems. The code of our work is publicly available at https://github.com/cpwan/RLOR.
Policy Filtration in RLHF to Fine-Tune LLM for Code Generation
Reinforcement learning from human feedback (RLHF) is one of the key techniques that helps large language models (LLMs) to follow instructions and provide helpful and harmless responses. While direct policy optimization methods exist, state-of-the-art LLMs adopt RL-based methods (usually PPO) in RLHF to train the policy to generate good responses guided by a reward model learned from preference data. The main challenge of these methods is the inaccuracy of the intermediate reward model, especially in code generation tasks that require long and complex reasoning to score a response. We find that the reliability of the reward model varies across responses assigned with different rewards. This motivates us to filter the samples whose rewards may be unreliable to improve signal-to-noise ratio during policy learning, resulting in Policy Filtration for Proximal Policy Optimization (PF-PPO). To choose a proper policy filtration strategy for a given reward model, the coefficient of determination (R^2) between rewards and actual scores on filtered samples serves as a good metrics and helps us find several promising strategies. We provide extensive experiments to validate the effectiveness of PF-PPO in code generation tasks, and find that some variants of PF-PPO are highly effective and achieve new state-of-the-art performance across 7-billion-parameter models on HumanEval, MBPP, and a new and more challenging LeetCode Contest benchmark.
Semi-Markov Offline Reinforcement Learning for Healthcare
Reinforcement learning (RL) tasks are typically framed as Markov Decision Processes (MDPs), assuming that decisions are made at fixed time intervals. However, many applications of great importance, including healthcare, do not satisfy this assumption, yet they are commonly modelled as MDPs after an artificial reshaping of the data. In addition, most healthcare (and similar) problems are offline by nature, allowing for only retrospective studies. To address both challenges, we begin by discussing the Semi-MDP (SMDP) framework, which formally handles actions of variable timings. We next present a formal way to apply SMDP modifications to nearly any given value-based offline RL method. We use this theory to introduce three SMDP-based offline RL algorithms, namely, SDQN, SDDQN, and SBCQ. We then experimentally demonstrate that only these SMDP-based algorithms learn the optimal policy in variable-time environments, whereas their MDP counterparts do not. Finally, we apply our new algorithms to a real-world offline dataset pertaining to warfarin dosing for stroke prevention and demonstrate similar results.
LLMs cannot find reasoning errors, but can correct them!
While self-correction has shown promise in improving LLM outputs in terms of style and quality (e.g. Chen et al., 2023; Madaan et al., 2023), recent attempts to self-correct logical or reasoning errors often cause correct answers to become incorrect, resulting in worse performances overall (Huang et al., 2023). In this paper, we break down the self-correction process into two core components: mistake finding and output correction. For mistake finding, we release BIG-Bench Mistake, a dataset of logical mistakes in Chain-of-Thought reasoning traces. We provide benchmark numbers for several state-of-the-art LLMs, and demonstrate that LLMs generally struggle with finding logical mistakes. For output correction, we propose a backtracking method which provides large improvements when given information on mistake location. We construe backtracking as a lightweight alternative to reinforcement learning methods, and show that it remains effective with a reward model at 60-70% accuracy.
Symbol Guided Hindsight Priors for Reward Learning from Human Preferences
Specifying rewards for reinforcement learned (RL) agents is challenging. Preference-based RL (PbRL) mitigates these challenges by inferring a reward from feedback over sets of trajectories. However, the effectiveness of PbRL is limited by the amount of feedback needed to reliably recover the structure of the target reward. We present the PRIor Over Rewards (PRIOR) framework, which incorporates priors about the structure of the reward function and the preference feedback into the reward learning process. Imposing these priors as soft constraints on the reward learning objective reduces the amount of feedback required by half and improves overall reward recovery. Additionally, we demonstrate that using an abstract state space for the computation of the priors further improves the reward learning and the agent's performance.
RLtools: A Fast, Portable Deep Reinforcement Learning Library for Continuous Control
Deep Reinforcement Learning (RL) can yield capable agents and control policies in several domains but is commonly plagued by prohibitively long training times. Additionally, in the case of continuous control problems, the applicability of learned policies on real-world embedded devices is limited due to the lack of real-time guarantees and portability of existing libraries. To address these challenges, we present RLtools, a dependency-free, header-only, pure C++ library for deep supervised and reinforcement learning. Its novel architecture allows RLtools to be used on a wide variety of platforms, from HPC clusters over workstations and laptops to smartphones, smartwatches, and microcontrollers. Specifically, due to the tight integration of the RL algorithms with simulation environments, RLtools can solve popular RL problems up to 76 times faster than other popular RL frameworks. We also benchmark the inference on a diverse set of microcontrollers and show that in most cases our optimized implementation is by far the fastest. Finally, RLtools enables the first-ever demonstration of training a deep RL algorithm directly on a microcontroller, giving rise to the field of Tiny Reinforcement Learning (TinyRL). The source code as well as documentation and live demos are available through our project page at https://rl.tools.
Time-Constrained Robust MDPs
Robust reinforcement learning is essential for deploying reinforcement learning algorithms in real-world scenarios where environmental uncertainty predominates. Traditional robust reinforcement learning often depends on rectangularity assumptions, where adverse probability measures of outcome states are assumed to be independent across different states and actions. This assumption, rarely fulfilled in practice, leads to overly conservative policies. To address this problem, we introduce a new time-constrained robust MDP (TC-RMDP) formulation that considers multifactorial, correlated, and time-dependent disturbances, thus more accurately reflecting real-world dynamics. This formulation goes beyond the conventional rectangularity paradigm, offering new perspectives and expanding the analytical framework for robust RL. We propose three distinct algorithms, each using varying levels of environmental information, and evaluate them extensively on continuous control benchmarks. Our results demonstrate that these algorithms yield an efficient tradeoff between performance and robustness, outperforming traditional deep robust RL methods in time-constrained environments while preserving robustness in classical benchmarks. This study revisits the prevailing assumptions in robust RL and opens new avenues for developing more practical and realistic RL applications.
Robust Losses for Learning Value Functions
Most value function learning algorithms in reinforcement learning are based on the mean squared (projected) Bellman error. However, squared errors are known to be sensitive to outliers, both skewing the solution of the objective and resulting in high-magnitude and high-variance gradients. To control these high-magnitude updates, typical strategies in RL involve clipping gradients, clipping rewards, rescaling rewards, or clipping errors. While these strategies appear to be related to robust losses -- like the Huber loss -- they are built on semi-gradient update rules which do not minimize a known loss. In this work, we build on recent insights reformulating squared Bellman errors as a saddlepoint optimization problem and propose a saddlepoint reformulation for a Huber Bellman error and Absolute Bellman error. We start from a formalization of robust losses, then derive sound gradient-based approaches to minimize these losses in both the online off-policy prediction and control settings. We characterize the solutions of the robust losses, providing insight into the problem settings where the robust losses define notably better solutions than the mean squared Bellman error. Finally, we show that the resulting gradient-based algorithms are more stable, for both prediction and control, with less sensitivity to meta-parameters.
Offline Reinforcement Learning as One Big Sequence Modeling Problem
Reinforcement learning (RL) is typically concerned with estimating stationary policies or single-step models, leveraging the Markov property to factorize problems in time. However, we can also view RL as a generic sequence modeling problem, with the goal being to produce a sequence of actions that leads to a sequence of high rewards. Viewed in this way, it is tempting to consider whether high-capacity sequence prediction models that work well in other domains, such as natural-language processing, can also provide effective solutions to the RL problem. To this end, we explore how RL can be tackled with the tools of sequence modeling, using a Transformer architecture to model distributions over trajectories and repurposing beam search as a planning algorithm. Framing RL as sequence modeling problem simplifies a range of design decisions, allowing us to dispense with many of the components common in offline RL algorithms. We demonstrate the flexibility of this approach across long-horizon dynamics prediction, imitation learning, goal-conditioned RL, and offline RL. Further, we show that this approach can be combined with existing model-free algorithms to yield a state-of-the-art planner in sparse-reward, long-horizon tasks.
All You Need Is Supervised Learning: From Imitation Learning to Meta-RL With Upside Down RL
Upside down reinforcement learning (UDRL) flips the conventional use of the return in the objective function in RL upside down, by taking returns as input and predicting actions. UDRL is based purely on supervised learning, and bypasses some prominent issues in RL: bootstrapping, off-policy corrections, and discount factors. While previous work with UDRL demonstrated it in a traditional online RL setting, here we show that this single algorithm can also work in the imitation learning and offline RL settings, be extended to the goal-conditioned RL setting, and even the meta-RL setting. With a general agent architecture, a single UDRL agent can learn across all paradigms.
Closing the Gap between TD Learning and Supervised Learning -- A Generalisation Point of View
Some reinforcement learning (RL) algorithms can stitch pieces of experience to solve a task never seen before during training. This oft-sought property is one of the few ways in which RL methods based on dynamic-programming differ from RL methods based on supervised-learning (SL). Yet, certain RL methods based on off-the-shelf SL algorithms achieve excellent results without an explicit mechanism for stitching; it remains unclear whether those methods forgo this important stitching property. This paper studies this question for the problems of achieving a target goal state and achieving a target return value. Our main result is to show that the stitching property corresponds to a form of combinatorial generalization: after training on a distribution of (state, goal) pairs, one would like to evaluate on (state, goal) pairs not seen together in the training data. Our analysis shows that this sort of generalization is different from i.i.d. generalization. This connection between stitching and generalisation reveals why we should not expect SL-based RL methods to perform stitching, even in the limit of large datasets and models. Based on this analysis, we construct new datasets to explicitly test for this property, revealing that SL-based methods lack this stitching property and hence fail to perform combinatorial generalization. Nonetheless, the connection between stitching and combinatorial generalisation also suggests a simple remedy for improving generalisation in SL: data augmentation. We propose a temporal data augmentation and demonstrate that adding it to SL-based methods enables them to successfully complete tasks not seen together during training. On a high level, this connection illustrates the importance of combinatorial generalization for data efficiency in time-series data beyond tasks beyond RL, like audio, video, or text.
Inverse Preference Learning: Preference-based RL without a Reward Function
Reward functions are difficult to design and often hard to align with human intent. Preference-based Reinforcement Learning (RL) algorithms address these problems by learning reward functions from human feedback. However, the majority of preference-based RL methods na\"ively combine supervised reward models with off-the-shelf RL algorithms. Contemporary approaches have sought to improve performance and query complexity by using larger and more complex reward architectures such as transformers. Instead of using highly complex architectures, we develop a new and parameter-efficient algorithm, Inverse Preference Learning (IPL), specifically designed for learning from offline preference data. Our key insight is that for a fixed policy, the Q-function encodes all information about the reward function, effectively making them interchangeable. Using this insight, we completely eliminate the need for a learned reward function. Our resulting algorithm is simpler and more parameter-efficient. Across a suite of continuous control and robotics benchmarks, IPL attains competitive performance compared to more complex approaches that leverage transformer-based and non-Markovian reward functions while having fewer algorithmic hyperparameters and learned network parameters. Our code is publicly released.
Large Language Models can Implement Policy Iteration
This work presents In-Context Policy Iteration, an algorithm for performing Reinforcement Learning (RL), in-context, using foundation models. While the application of foundation models to RL has received considerable attention, most approaches rely on either (1) the curation of expert demonstrations (either through manual design or task-specific pretraining) or (2) adaptation to the task of interest using gradient methods (either fine-tuning or training of adapter layers). Both of these techniques have drawbacks. Collecting demonstrations is labor-intensive, and algorithms that rely on them do not outperform the experts from which the demonstrations were derived. All gradient techniques are inherently slow, sacrificing the "few-shot" quality that made in-context learning attractive to begin with. In this work, we present an algorithm, ICPI, that learns to perform RL tasks without expert demonstrations or gradients. Instead we present a policy-iteration method in which the prompt content is the entire locus of learning. ICPI iteratively updates the contents of the prompt from which it derives its policy through trial-and-error interaction with an RL environment. In order to eliminate the role of in-weights learning (on which approaches like Decision Transformer rely heavily), we demonstrate our algorithm using Codex, a language model with no prior knowledge of the domains on which we evaluate it.
Doubly Optimal No-Regret Learning in Monotone Games
We consider online learning in multi-player smooth monotone games. Existing algorithms have limitations such as (1) being only applicable to strongly monotone games; (2) lacking the no-regret guarantee; (3) having only asymptotic or slow O(1{T}) last-iterate convergence rate to a Nash equilibrium. While the O(1{T}) rate is tight for a large class of algorithms including the well-studied extragradient algorithm and optimistic gradient algorithm, it is not optimal for all gradient-based algorithms. We propose the accelerated optimistic gradient (AOG) algorithm, the first doubly optimal no-regret learning algorithm for smooth monotone games. Namely, our algorithm achieves both (i) the optimal O(T) regret in the adversarial setting under smooth and convex loss functions and (ii) the optimal O(1{T}) last-iterate convergence rate to a Nash equilibrium in multi-player smooth monotone games. As a byproduct of the accelerated last-iterate convergence rate, we further show that each player suffers only an O(log T) individual worst-case dynamic regret, providing an exponential improvement over the previous state-of-the-art O(T) bound.
Mirror Descent Policy Optimization
Mirror descent (MD), a well-known first-order method in constrained convex optimization, has recently been shown as an important tool to analyze trust-region algorithms in reinforcement learning (RL). However, there remains a considerable gap between such theoretically analyzed algorithms and the ones used in practice. Inspired by this, we propose an efficient RL algorithm, called {\em mirror descent policy optimization} (MDPO). MDPO iteratively updates the policy by {\em approximately} solving a trust-region problem, whose objective function consists of two terms: a linearization of the standard RL objective and a proximity term that restricts two consecutive policies to be close to each other. Each update performs this approximation by taking multiple gradient steps on this objective function. We derive {\em on-policy} and {\em off-policy} variants of MDPO, while emphasizing important design choices motivated by the existing theory of MD in RL. We highlight the connections between on-policy MDPO and two popular trust-region RL algorithms: TRPO and PPO, and show that explicitly enforcing the trust-region constraint is in fact {\em not} a necessity for high performance gains in TRPO. We then show how the popular soft actor-critic (SAC) algorithm can be derived by slight modifications of off-policy MDPO. Overall, MDPO is derived from the MD principles, offers a unified approach to viewing a number of popular RL algorithms, and performs better than or on-par with TRPO, PPO, and SAC in a number of continuous control tasks. Code is available at https://github.com/manantomar/Mirror-Descent-Policy-Optimization.
STP: Self-play LLM Theorem Provers with Iterative Conjecturing and Proving
A fundamental challenge in formal theorem proving by LLMs is the lack of high-quality training data. Although reinforcement learning or expert iteration partially mitigates this issue by alternating between LLM generating proofs and finetuning them on correctly generated ones, performance quickly plateaus due to the scarcity of correct proofs (sparse rewards). To keep improving the models with limited data, we draw inspiration from mathematicians, who continuously develop new results, partly by proposing novel conjectures or exercises (which are often variants of known results) and attempting to solve them. We design the Self-play Theorem Prover (STP) that simultaneously takes on two roles, conjecturer and prover, each providing training signals to the other. The conjecturer is trained iteratively on previously generated conjectures that are barely provable by the current prover, which incentivizes it to generate increasingly challenging conjectures over time. The prover attempts to prove the conjectures with standard expert iteration. We evaluate STP with both Lean and Isabelle formal versifiers. With 19.8 billion tokens generated during the training in Lean, STP proves 26.3% of the statements in the LeanWorkbook dataset, doubling the previous best result of 13.2% achieved through expert iteration. The final model achieves state-of-the-art performance among whole-proof generation methods on miniF2F-test (61.7%, pass@3200), Proofnet-test (23.1%, pass@3200) and PutnamBench (8/644, pass@3200).
Regularization and Variance-Weighted Regression Achieves Minimax Optimality in Linear MDPs: Theory and Practice
Mirror descent value iteration (MDVI), an abstraction of Kullback-Leibler (KL) and entropy-regularized reinforcement learning (RL), has served as the basis for recent high-performing practical RL algorithms. However, despite the use of function approximation in practice, the theoretical understanding of MDVI has been limited to tabular Markov decision processes (MDPs). We study MDVI with linear function approximation through its sample complexity required to identify an varepsilon-optimal policy with probability 1-delta under the settings of an infinite-horizon linear MDP, generative model, and G-optimal design. We demonstrate that least-squares regression weighted by the variance of an estimated optimal value function of the next state is crucial to achieving minimax optimality. Based on this observation, we present Variance-Weighted Least-Squares MDVI (VWLS-MDVI), the first theoretical algorithm that achieves nearly minimax optimal sample complexity for infinite-horizon linear MDPs. Furthermore, we propose a practical VWLS algorithm for value-based deep RL, Deep Variance Weighting (DVW). Our experiments demonstrate that DVW improves the performance of popular value-based deep RL algorithms on a set of MinAtar benchmarks.
What can online reinforcement learning with function approximation benefit from general coverage conditions?
In online reinforcement learning (RL), instead of employing standard structural assumptions on Markov decision processes (MDPs), using a certain coverage condition (original from offline RL) is enough to ensure sample-efficient guarantees (Xie et al. 2023). In this work, we focus on this new direction by digging more possible and general coverage conditions, and study the potential and the utility of them in efficient online RL. We identify more concepts, including the L^p variant of concentrability, the density ratio realizability, and trade-off on the partial/rest coverage condition, that can be also beneficial to sample-efficient online RL, achieving improved regret bound. Furthermore, if exploratory offline data are used, under our coverage conditions, both statistically and computationally efficient guarantees can be achieved for online RL. Besides, even though the MDP structure is given, e.g., linear MDP, we elucidate that, good coverage conditions are still beneficial to obtain faster regret bound beyond O(T) and even a logarithmic order regret. These results provide a good justification for the usage of general coverage conditions in efficient online RL.
Solving robust MDPs as a sequence of static RL problems
Designing control policies whose performance level is guaranteed to remain above a given threshold in a span of environments is a critical feature for the adoption of reinforcement learning (RL) in real-world applications. The search for such robust policies is a notoriously difficult problem, related to the so-called dynamic model of transition function uncertainty, where the environment dynamics are allowed to change at each time step. But in practical cases, one is rather interested in robustness to a span of static transition models throughout interaction episodes. The static model is known to be harder to solve than the dynamic one, and seminal algorithms, such as robust value iteration, as well as most recent works on deep robust RL, build upon the dynamic model. In this work, we propose to revisit the static model. We suggest an analysis of why solving the static model under some mild hypotheses is a reasonable endeavor, based on an equivalence with the dynamic model, and formalize the general intuition that robust MDPs can be solved by tackling a series of static problems. We introduce a generic meta-algorithm called IWOCS, which incrementally identifies worst-case transition models so as to guide the search for a robust policy. Discussion on IWOCS sheds light on new ways to decouple policy optimization and adversarial transition functions and opens new perspectives for analysis. We derive a deep RL version of IWOCS and demonstrate it is competitive with state-of-the-art algorithms on classical benchmarks.
Online Analytic Exemplar-Free Continual Learning with Large Models for Imbalanced Autonomous Driving Task
In the field of autonomous driving, even a meticulously trained model can encounter failures when faced with unfamiliar sceanrios. One of these scenarios can be formulated as an online continual learning (OCL) problem. That is, data come in an online fashion, and models are updated according to these streaming data. Two major OCL challenges are catastrophic forgetting and data imbalance. To address these challenges, in this paper, we propose an Analytic Exemplar-Free Online Continual Learning (AEF-OCL). The AEF-OCL leverages analytic continual learning principles and employs ridge regression as a classifier for features extracted by a large backbone network. It solves the OCL problem by recursively calculating the analytical solution, ensuring an equalization between the continual learning and its joint-learning counterpart, and works without the need to save any used samples (i.e., exemplar-free). Additionally, we introduce a Pseudo-Features Generator (PFG) module that recursively estimates the deviation of real features. The PFG generates offset pseudo-features following a normal distribution, thereby addressing the data imbalance issue. Experimental results demonstrate that despite being an exemplar-free strategy, our method outperforms various methods on the autonomous driving SODA10M dataset. Source code is available at https://github.com/ZHUANGHP/Analytic-continual-learning.
Reinforcement Learning in the Era of LLMs: What is Essential? What is needed? An RL Perspective on RLHF, Prompting, and Beyond
Recent advancements in Large Language Models (LLMs) have garnered wide attention and led to successful products such as ChatGPT and GPT-4. Their proficiency in adhering to instructions and delivering harmless, helpful, and honest (3H) responses can largely be attributed to the technique of Reinforcement Learning from Human Feedback (RLHF). In this paper, we aim to link the research in conventional RL to RL techniques used in LLM research. Demystify this technique by discussing why, when, and how RL excels. Furthermore, we explore potential future avenues that could either benefit from or contribute to RLHF research. Highlighted Takeaways: 1. RLHF is Online Inverse RL with Offline Demonstration Data. 2. RLHF > SFT because Imitation Learning (and Inverse RL) > Behavior Cloning (BC) by alleviating the problem of compounding error. 3. The RM step in RLHF generates a proxy of the expensive human feedback, such an insight can be generalized to other LLM tasks such as prompting evaluation and optimization where feedback is also expensive. 4. The policy learning in RLHF is more challenging than conventional problems studied in IRL due to their high action dimensionality and feedback sparsity. 5. The main superiority of PPO over off-policy value-based methods is its stability gained from (almost) on-policy data and conservative policy updates.
Training Large Language Models for Reasoning through Reverse Curriculum Reinforcement Learning
In this paper, we propose R^3: Learning Reasoning through Reverse Curriculum Reinforcement Learning (RL), a novel method that employs only outcome supervision to achieve the benefits of process supervision for large language models. The core challenge in applying RL to complex reasoning is to identify a sequence of actions that result in positive rewards and provide appropriate supervision for optimization. Outcome supervision provides sparse rewards for final results without identifying error locations, whereas process supervision offers step-wise rewards but requires extensive manual annotation. R^3 overcomes these limitations by learning from correct demonstrations. Specifically, R^3 progressively slides the start state of reasoning from a demonstration's end to its beginning, facilitating easier model exploration at all stages. Thus, R^3 establishes a step-wise curriculum, allowing outcome supervision to offer step-level signals and precisely pinpoint errors. Using Llama2-7B, our method surpasses RL baseline on eight reasoning tasks by 4.1 points on average. Notebaly, in program-based reasoning on GSM8K, it exceeds the baseline by 4.2 points across three backbone models, and without any extra data, Codellama-7B + R^3 performs comparable to larger models or closed-source models.
On-Policy Model Errors in Reinforcement Learning
Model-free reinforcement learning algorithms can compute policy gradients given sampled environment transitions, but require large amounts of data. In contrast, model-based methods can use the learned model to generate new data, but model errors and bias can render learning unstable or suboptimal. In this paper, we present a novel method that combines real-world data and a learned model in order to get the best of both worlds. The core idea is to exploit the real-world data for on-policy predictions and use the learned model only to generalize to different actions. Specifically, we use the data as time-dependent on-policy correction terms on top of a learned model, to retain the ability to generate data without accumulating errors over long prediction horizons. We motivate this method theoretically and show that it counteracts an error term for model-based policy improvement. Experiments on MuJoCo- and PyBullet-benchmarks show that our method can drastically improve existing model-based approaches without introducing additional tuning parameters.
Reinforcement Learning for Long-Horizon Interactive LLM Agents
Interactive digital agents (IDAs) leverage APIs of stateful digital environments to perform tasks in response to user requests. While IDAs powered by instruction-tuned large language models (LLMs) can react to feedback from interface invocations in multi-step exchanges, they have not been trained in their respective digital environments. Prior methods accomplish less than half of tasks in sophisticated benchmarks such as AppWorld. We present a reinforcement learning (RL) approach that trains IDAs directly in their target environments. We formalize this training as a partially observable Markov decision process and derive LOOP, a data- and memory-efficient variant of proximal policy optimization. LOOP uses no value network and maintains exactly one copy of the underlying LLM in memory, making its implementation straightforward and as memory-efficient as fine-tuning a single LLM. A 32-billion-parameter agent trained with LOOP in the AppWorld environment outperforms the much larger OpenAI o1 agent by 9 percentage points (15% relative). To our knowledge, this is the first reported application of RL to IDAs that interact with a stateful, multi-domain, multi-app environment via direct API calls. Our analysis sheds light on the effectiveness of RL in this area, showing that the agent learns to consult the API documentation, avoid unwarranted assumptions, minimize confabulation, and recover from setbacks.
Offline RL with Observation Histories: Analyzing and Improving Sample Complexity
Offline reinforcement learning (RL) can in principle synthesize more optimal behavior from a dataset consisting only of suboptimal trials. One way that this can happen is by "stitching" together the best parts of otherwise suboptimal trajectories that overlap on similar states, to create new behaviors where each individual state is in-distribution, but the overall returns are higher. However, in many interesting and complex applications, such as autonomous navigation and dialogue systems, the state is partially observed. Even worse, the state representation is unknown or not easy to define. In such cases, policies and value functions are often conditioned on observation histories instead of states. In these cases, it is not clear if the same kind of "stitching" is feasible at the level of observation histories, since two different trajectories would always have different histories, and thus "similar states" that might lead to effective stitching cannot be leveraged. Theoretically, we show that standard offline RL algorithms conditioned on observation histories suffer from poor sample complexity, in accordance with the above intuition. We then identify sufficient conditions under which offline RL can still be efficient -- intuitively, it needs to learn a compact representation of history comprising only features relevant for action selection. We introduce a bisimulation loss that captures the extent to which this happens, and propose that offline RL can explicitly optimize this loss to aid worst-case sample complexity. Empirically, we show that across a variety of tasks either our proposed loss improves performance, or the value of this loss is already minimized as a consequence of standard offline RL, indicating that it correlates well with good performance.
Universal Online Learning with Unbounded Losses: Memory Is All You Need
We resolve an open problem of Hanneke on the subject of universally consistent online learning with non-i.i.d. processes and unbounded losses. The notion of an optimistically universal learning rule was defined by Hanneke in an effort to study learning theory under minimal assumptions. A given learning rule is said to be optimistically universal if it achieves a low long-run average loss whenever the data generating process makes this goal achievable by some learning rule. Hanneke posed as an open problem whether, for every unbounded loss, the family of processes admitting universal learning are precisely those having a finite number of distinct values almost surely. In this paper, we completely resolve this problem, showing that this is indeed the case. As a consequence, this also offers a dramatically simpler formulation of an optimistically universal learning rule for any unbounded loss: namely, the simple memorization rule already suffices. Our proof relies on constructing random measurable partitions of the instance space and could be of independent interest for solving other open questions. We extend the results to the non-realizable setting thereby providing an optimistically universal Bayes consistent learning rule.
Sharp Variance-Dependent Bounds in Reinforcement Learning: Best of Both Worlds in Stochastic and Deterministic Environments
We study variance-dependent regret bounds for Markov decision processes (MDPs). Algorithms with variance-dependent regret guarantees can automatically exploit environments with low variance (e.g., enjoying constant regret on deterministic MDPs). The existing algorithms are either variance-independent or suboptimal. We first propose two new environment norms to characterize the fine-grained variance properties of the environment. For model-based methods, we design a variant of the MVP algorithm (Zhang et al., 2021a). We apply new analysis techniques to demonstrate that this algorithm enjoys variance-dependent bounds with respect to the norms we propose. In particular, this bound is simultaneously minimax optimal for both stochastic and deterministic MDPs, the first result of its kind. We further initiate the study on model-free algorithms with variance-dependent regret bounds by designing a reference-function-based algorithm with a novel capped-doubling reference update schedule. Lastly, we also provide lower bounds to complement our upper bounds.
WARP: On the Benefits of Weight Averaged Rewarded Policies
Reinforcement learning from human feedback (RLHF) aligns large language models (LLMs) by encouraging their generations to have high rewards, using a reward model trained on human preferences. To prevent the forgetting of pre-trained knowledge, RLHF usually incorporates a KL regularization; this forces the policy to remain close to its supervised fine-tuned initialization, though it hinders the reward optimization. To tackle the trade-off between KL and reward, in this paper we introduce a novel alignment strategy named Weight Averaged Rewarded Policies (WARP). WARP merges policies in the weight space at three distinct stages. First, it uses the exponential moving average of the policy as a dynamic anchor in the KL regularization. Second, it applies spherical interpolation to merge independently fine-tuned policies into a new enhanced one. Third, it linearly interpolates between this merged model and the initialization, to recover features from pre-training. This procedure is then applied iteratively, with each iteration's final model used as an advanced initialization for the next, progressively refining the KL-reward Pareto front, achieving superior rewards at fixed KL. Experiments with GEMMA policies validate that WARP improves their quality and alignment, outperforming other open-source LLMs.
Learning to Prune Deep Neural Networks via Reinforcement Learning
This paper proposes PuRL - a deep reinforcement learning (RL) based algorithm for pruning neural networks. Unlike current RL based model compression approaches where feedback is given only at the end of each episode to the agent, PuRL provides rewards at every pruning step. This enables PuRL to achieve sparsity and accuracy comparable to current state-of-the-art methods, while having a much shorter training cycle. PuRL achieves more than 80% sparsity on the ResNet-50 model while retaining a Top-1 accuracy of 75.37% on the ImageNet dataset. Through our experiments we show that PuRL is also able to sparsify already efficient architectures like MobileNet-V2. In addition to performance characterisation experiments, we also provide a discussion and analysis of the various RL design choices that went into the tuning of the Markov Decision Process underlying PuRL. Lastly, we point out that PuRL is simple to use and can be easily adapted for various architectures.
Combinatorial Optimization with Policy Adaptation using Latent Space Search
Combinatorial Optimization underpins many real-world applications and yet, designing performant algorithms to solve these complex, typically NP-hard, problems remains a significant research challenge. Reinforcement Learning (RL) provides a versatile framework for designing heuristics across a broad spectrum of problem domains. However, despite notable progress, RL has not yet supplanted industrial solvers as the go-to solution. Current approaches emphasize pre-training heuristics that construct solutions but often rely on search procedures with limited variance, such as stochastically sampling numerous solutions from a single policy or employing computationally expensive fine-tuning of the policy on individual problem instances. Building on the intuition that performant search at inference time should be anticipated during pre-training, we propose COMPASS, a novel RL approach that parameterizes a distribution of diverse and specialized policies conditioned on a continuous latent space. We evaluate COMPASS across three canonical problems - Travelling Salesman, Capacitated Vehicle Routing, and Job-Shop Scheduling - and demonstrate that our search strategy (i) outperforms state-of-the-art approaches on 11 standard benchmarking tasks and (ii) generalizes better, surpassing all other approaches on a set of 18 procedurally transformed instance distributions.
Efficient Online Reinforcement Learning with Offline Data
Sample efficiency and exploration remain major challenges in online reinforcement learning (RL). A powerful approach that can be applied to address these issues is the inclusion of offline data, such as prior trajectories from a human expert or a sub-optimal exploration policy. Previous methods have relied on extensive modifications and additional complexity to ensure the effective use of this data. Instead, we ask: can we simply apply existing off-policy methods to leverage offline data when learning online? In this work, we demonstrate that the answer is yes; however, a set of minimal but important changes to existing off-policy RL algorithms are required to achieve reliable performance. We extensively ablate these design choices, demonstrating the key factors that most affect performance, and arrive at a set of recommendations that practitioners can readily apply, whether their data comprise a small number of expert demonstrations or large volumes of sub-optimal trajectories. We see that correct application of these simple recommendations can provide a 2.5times improvement over existing approaches across a diverse set of competitive benchmarks, with no additional computational overhead. We have released our code at https://github.com/ikostrikov/rlpd.
Finetuning Offline World Models in the Real World
Reinforcement Learning (RL) is notoriously data-inefficient, which makes training on a real robot difficult. While model-based RL algorithms (world models) improve data-efficiency to some extent, they still require hours or days of interaction to learn skills. Recently, offline RL has been proposed as a framework for training RL policies on pre-existing datasets without any online interaction. However, constraining an algorithm to a fixed dataset induces a state-action distribution shift between training and inference, and limits its applicability to new tasks. In this work, we seek to get the best of both worlds: we consider the problem of pretraining a world model with offline data collected on a real robot, and then finetuning the model on online data collected by planning with the learned model. To mitigate extrapolation errors during online interaction, we propose to regularize the planner at test-time by balancing estimated returns and (epistemic) model uncertainty. We evaluate our method on a variety of visuo-motor control tasks in simulation and on a real robot, and find that our method enables few-shot finetuning to seen and unseen tasks even when offline data is limited. Videos, code, and data are available at https://yunhaifeng.com/FOWM .
HoloClean: Holistic Data Repairs with Probabilistic Inference
We introduce HoloClean, a framework for holistic data repairing driven by probabilistic inference. HoloClean unifies existing qualitative data repairing approaches, which rely on integrity constraints or external data sources, with quantitative data repairing methods, which leverage statistical properties of the input data. Given an inconsistent dataset as input, HoloClean automatically generates a probabilistic program that performs data repairing. Inspired by recent theoretical advances in probabilistic inference, we introduce a series of optimizations which ensure that inference over HoloClean's probabilistic model scales to instances with millions of tuples. We show that HoloClean scales to instances with millions of tuples and find data repairs with an average precision of ~90% and an average recall of above ~76% across a diverse array of datasets exhibiting different types of errors. This yields an average F1 improvement of more than 2x against state-of-the-art methods.
Badllama 3: removing safety finetuning from Llama 3 in minutes
We show that extensive LLM safety fine-tuning is easily subverted when an attacker has access to model weights. We evaluate three state-of-the-art fine-tuning methods-QLoRA, ReFT, and Ortho-and show how algorithmic advances enable constant jailbreaking performance with cuts in FLOPs and optimisation power. We strip safety fine-tuning from Llama 3 8B in one minute and Llama 3 70B in 30 minutes on a single GPU, and sketch ways to reduce this further.
In-Dataset Trajectory Return Regularization for Offline Preference-based Reinforcement Learning
Offline preference-based reinforcement learning (PbRL) typically operates in two phases: first, use human preferences to learn a reward model and annotate rewards for a reward-free offline dataset; second, learn a policy by optimizing the learned reward via offline RL. However, accurately modeling step-wise rewards from trajectory-level preference feedback presents inherent challenges. The reward bias introduced, particularly the overestimation of predicted rewards, leads to optimistic trajectory stitching, which undermines the pessimism mechanism critical to the offline RL phase. To address this challenge, we propose In-Dataset Trajectory Return Regularization (DTR) for offline PbRL, which leverages conditional sequence modeling to mitigate the risk of learning inaccurate trajectory stitching under reward bias. Specifically, DTR employs Decision Transformer and TD-Learning to strike a balance between maintaining fidelity to the behavior policy with high in-dataset trajectory returns and selecting optimal actions based on high reward labels. Additionally, we introduce an ensemble normalization technique that effectively integrates multiple reward models, balancing the tradeoff between reward differentiation and accuracy. Empirical evaluations on various benchmarks demonstrate the superiority of DTR over other state-of-the-art baselines.
Avoiding Catastrophe in Online Learning by Asking for Help
Most learning algorithms with formal regret guarantees assume that no mistake is irreparable and essentially rely on trying all possible behaviors. This approach is problematic when some mistakes are catastrophic, i.e., irreparable. We propose an online learning problem where the goal is to minimize the chance of catastrophe. Specifically, we assume that the payoff in each round represents the chance of avoiding catastrophe that round and aim to maximize the product of payoffs (the overall chance of avoiding catastrophe) while allowing a limited number of queries to a mentor. We first show that in general, any algorithm either constantly queries the mentor or is nearly guaranteed to cause catastrophe. However, in settings where the mentor policy class is learnable in the standard online learning model, we provide an algorithm whose regret and rate of querying the mentor both approach 0 as the time horizon grows. Conceptually, if a policy class is learnable in the absence of catastrophic risk, it is learnable in the presence of catastrophic risk if the agent can ask for help.
Unconstrained Online Learning with Unbounded Losses
Algorithms for online learning typically require one or more boundedness assumptions: that the domain is bounded, that the losses are Lipschitz, or both. In this paper, we develop a new setting for online learning with unbounded domains and non-Lipschitz losses. For this setting we provide an algorithm which guarantees R_{T}(u)le tilde O(G|u|T+L|u|^{2}T) regret on any problem where the subgradients satisfy |g_{t}|le G+L|w_{t}|, and show that this bound is unimprovable without further assumptions. We leverage this algorithm to develop new saddle-point optimization algorithms that converge in duality gap in unbounded domains, even in the absence of meaningful curvature. Finally, we provide the first algorithm achieving non-trivial dynamic regret in an unbounded domain for non-Lipschitz losses, as well as a matching lower bound. The regret of our dynamic regret algorithm automatically improves to a novel L^{*} bound when the losses are smooth.
Direct Preference-based Policy Optimization without Reward Modeling
Preference-based reinforcement learning (PbRL) is an approach that enables RL agents to learn from preference, which is particularly useful when formulating a reward function is challenging. Existing PbRL methods generally involve a two-step procedure: they first learn a reward model based on given preference data and then employ off-the-shelf reinforcement learning algorithms using the learned reward model. However, obtaining an accurate reward model solely from preference information, especially when the preference is from human teachers, can be difficult. Instead, we propose a PbRL algorithm that directly learns from preference without requiring any reward modeling. To achieve this, we adopt a contrastive learning framework to design a novel policy scoring metric that assigns a high score to policies that align with the given preferences. We apply our algorithm to offline RL tasks with actual human preference labels and show that our algorithm outperforms or is on par with the existing PbRL methods. Notably, on high-dimensional control tasks, our algorithm surpasses offline RL methods that learn with ground-truth reward information. Finally, we show that our algorithm can be successfully applied to fine-tune large language models.
Adaptive Rational Activations to Boost Deep Reinforcement Learning
Latest insights from biology show that intelligence not only emerges from the connections between neurons but that individual neurons shoulder more computational responsibility than previously anticipated. This perspective should be critical in the context of constantly changing distinct reinforcement learning environments, yet current approaches still primarily employ static activation functions. In this work, we motivate why rationals are suitable for adaptable activation functions and why their inclusion into neural networks is crucial. Inspired by recurrence in residual networks, we derive a condition under which rational units are closed under residual connections and formulate a naturally regularised version: the recurrent-rational. We demonstrate that equipping popular algorithms with (recurrent-)rational activations leads to consistent improvements on Atari games, especially turning simple DQN into a solid approach, competitive to DDQN and Rainbow.
Structured State Space Models for In-Context Reinforcement Learning
Structured state space sequence (S4) models have recently achieved state-of-the-art performance on long-range sequence modeling tasks. These models also have fast inference speeds and parallelisable training, making them potentially useful in many reinforcement learning settings. We propose a modification to a variant of S4 that enables us to initialise and reset the hidden state in parallel, allowing us to tackle reinforcement learning tasks. We show that our modified architecture runs asymptotically faster than Transformers in sequence length and performs better than RNN's on a simple memory-based task. We evaluate our modified architecture on a set of partially-observable environments and find that, in practice, our model outperforms RNN's while also running over five times faster. Then, by leveraging the model's ability to handle long-range sequences, we achieve strong performance on a challenging meta-learning task in which the agent is given a randomly-sampled continuous control environment, combined with a randomly-sampled linear projection of the environment's observations and actions. Furthermore, we show the resulting model can adapt to out-of-distribution held-out tasks. Overall, the results presented in this paper show that structured state space models are fast and performant for in-context reinforcement learning tasks. We provide code at https://github.com/luchris429/popjaxrl.
LLM-Augmented Symbolic Reinforcement Learning with Landmark-Based Task Decomposition
One of the fundamental challenges in reinforcement learning (RL) is to take a complex task and be able to decompose it to subtasks that are simpler for the RL agent to learn. In this paper, we report on our work that would identify subtasks by using some given positive and negative trajectories for solving the complex task. We assume that the states are represented by first-order predicate logic using which we devise a novel algorithm to identify the subtasks. Then we employ a Large Language Model (LLM) to generate first-order logic rule templates for achieving each subtask. Such rules were then further fined tuned to a rule-based policy via an Inductive Logic Programming (ILP)-based RL agent. Through experiments, we verify the accuracy of our algorithm in detecting subtasks which successfully detect all of the subtasks correctly. We also investigated the quality of the common-sense rules produced by the language model to achieve the subtasks. Our experiments show that our LLM-guided rule template generation can produce rules that are necessary for solving a subtask, which leads to solving complex tasks with fewer assumptions about predefined first-order logic predicates of the environment.
Cleanba: A Reproducible and Efficient Distributed Reinforcement Learning Platform
Distributed Deep Reinforcement Learning (DRL) aims to leverage more computational resources to train autonomous agents with less training time. Despite recent progress in the field, reproducibility issues have not been sufficiently explored. This paper first shows that the typical actor-learner framework can have reproducibility issues even if hyperparameters are controlled. We then introduce Cleanba, a new open-source platform for distributed DRL that proposes a highly reproducible architecture. Cleanba implements highly optimized distributed variants of PPO and IMPALA. Our Atari experiments show that these variants can obtain equivalent or higher scores than strong IMPALA baselines in moolib and torchbeast and PPO baseline in CleanRL. However, Cleanba variants present 1) shorter training time and 2) more reproducible learning curves in different hardware settings. Cleanba's source code is available at https://github.com/vwxyzjn/cleanba
Lower Bounds for Learning in Revealing POMDPs
This paper studies the fundamental limits of reinforcement learning (RL) in the challenging partially observable setting. While it is well-established that learning in Partially Observable Markov Decision Processes (POMDPs) requires exponentially many samples in the worst case, a surge of recent work shows that polynomial sample complexities are achievable under the revealing condition -- A natural condition that requires the observables to reveal some information about the unobserved latent states. However, the fundamental limits for learning in revealing POMDPs are much less understood, with existing lower bounds being rather preliminary and having substantial gaps from the current best upper bounds. We establish strong PAC and regret lower bounds for learning in revealing POMDPs. Our lower bounds scale polynomially in all relevant problem parameters in a multiplicative fashion, and achieve significantly smaller gaps against the current best upper bounds, providing a solid starting point for future studies. In particular, for multi-step revealing POMDPs, we show that (1) the latent state-space dependence is at least Omega(S^{1.5}) in the PAC sample complexity, which is notably harder than the Theta(S) scaling for fully-observable MDPs; (2) Any polynomial sublinear regret is at least Omega(T^{2/3}), suggesting its fundamental difference from the single-step case where O(T) regret is achievable. Technically, our hard instance construction adapts techniques in distribution testing, which is new to the RL literature and may be of independent interest.
HybridFlow: A Flexible and Efficient RLHF Framework
Reinforcement Learning from Human Feedback (RLHF) is widely used in Large Language Model (LLM) alignment. Traditional RL can be modeled as a dataflow, where each node represents computation of a neural network (NN) and each edge denotes data dependencies between the NNs. RLHF complicates the dataflow by expanding each node into a distributed LLM training or generation program, and each edge into a many-to-many multicast. Traditional RL frameworks execute the dataflow using a single controller to instruct both intra-node computation and inter-node communication, which can be inefficient in RLHF due to large control dispatch overhead for distributed intra-node computation. Existing RLHF systems adopt a multi-controller paradigm, which can be inflexible due to nesting distributed computation and data communication. We propose HybridFlow, which combines single-controller and multi-controller paradigms in a hybrid manner to enable flexible representation and efficient execution of the RLHF dataflow. We carefully design a set of hierarchical APIs that decouple and encapsulate computation and data dependencies in the complex RLHF dataflow, allowing efficient operation orchestration to implement RLHF algorithms and flexible mapping of the computation onto various devices. We further design a 3D-HybridEngine for efficient actor model resharding between training and generation phases, with zero memory redundancy and significantly reduced communication overhead. Our experimental results demonstrate 1.53times~20.57times throughput improvement when running various RLHF algorithms using HybridFlow, as compared with state-of-the-art baselines. HybridFlow source code will be available at https://github.com/volcengine/verl.
Data pruning and neural scaling laws: fundamental limitations of score-based algorithms
Data pruning algorithms are commonly used to reduce the memory and computational cost of the optimization process. Recent empirical results reveal that random data pruning remains a strong baseline and outperforms most existing data pruning methods in the high compression regime, i.e., where a fraction of 30% or less of the data is kept. This regime has recently attracted a lot of interest as a result of the role of data pruning in improving the so-called neural scaling laws; in [Sorscher et al.], the authors showed the need for high-quality data pruning algorithms in order to beat the sample power law. In this work, we focus on score-based data pruning algorithms and show theoretically and empirically why such algorithms fail in the high compression regime. We demonstrate ``No Free Lunch" theorems for data pruning and present calibration protocols that enhance the performance of existing pruning algorithms in this high compression regime using randomization.
Towards Bridging the Gaps between the Right to Explanation and the Right to be Forgotten
The Right to Explanation and the Right to be Forgotten are two important principles outlined to regulate algorithmic decision making and data usage in real-world applications. While the right to explanation allows individuals to request an actionable explanation for an algorithmic decision, the right to be forgotten grants them the right to ask for their data to be deleted from all the databases and models of an organization. Intuitively, enforcing the right to be forgotten may trigger model updates which in turn invalidate previously provided explanations, thus violating the right to explanation. In this work, we investigate the technical implications arising due to the interference between the two aforementioned regulatory principles, and propose the first algorithmic framework to resolve the tension between them. To this end, we formulate a novel optimization problem to generate explanations that are robust to model updates due to the removal of training data instances by data deletion requests. We then derive an efficient approximation algorithm to handle the combinatorial complexity of this optimization problem. We theoretically demonstrate that our method generates explanations that are provably robust to worst-case data deletion requests with bounded costs in case of linear models and certain classes of non-linear models. Extensive experimentation with real-world datasets demonstrates the efficacy of the proposed framework.
Leverage the Average: an Analysis of KL Regularization in RL
Recent Reinforcement Learning (RL) algorithms making use of Kullback-Leibler (KL) regularization as a core component have shown outstanding performance. Yet, only little is understood theoretically about why KL regularization helps, so far. We study KL regularization within an approximate value iteration scheme and show that it implicitly averages q-values. Leveraging this insight, we provide a very strong performance bound, the very first to combine two desirable aspects: a linear dependency to the horizon (instead of quadratic) and an error propagation term involving an averaging effect of the estimation errors (instead of an accumulation effect). We also study the more general case of an additional entropy regularizer. The resulting abstract scheme encompasses many existing RL algorithms. Some of our assumptions do not hold with neural networks, so we complement this theoretical analysis with an extensive empirical study.
StepCoder: Improve Code Generation with Reinforcement Learning from Compiler Feedback
The advancement of large language models (LLMs) has significantly propelled the field of code generation. Previous work integrated reinforcement learning (RL) with compiler feedback for exploring the output space of LLMs to enhance code generation quality. However, the lengthy code generated by LLMs in response to complex human requirements makes RL exploration a challenge. Also, since the unit tests may not cover the complicated code, optimizing LLMs by using these unexecuted code snippets is ineffective. To tackle these challenges, we introduce StepCoder, a novel RL framework for code generation, consisting of two main components: CCCS addresses the exploration challenge by breaking the long sequences code generation task into a Curriculum of Code Completion Subtasks, while FGO only optimizes the model by masking the unexecuted code segments to provide Fine-Grained Optimization. In addition, we furthermore construct the APPS+ dataset for RL training, which is manually verified to ensure the correctness of unit tests. Experimental results show that our method improves the ability to explore the output space and outperforms state-of-the-art approaches in corresponding benchmarks.
Optimistic Planning by Regularized Dynamic Programming
We propose a new method for optimistic planning in infinite-horizon discounted Markov decision processes based on the idea of adding regularization to the updates of an otherwise standard approximate value iteration procedure. This technique allows us to avoid contraction and monotonicity arguments typically required by existing analyses of approximate dynamic programming methods, and in particular to use approximate transition functions estimated via least-squares procedures in MDPs with linear function approximation. We use our method to recover known guarantees in tabular MDPs and to provide a computationally efficient algorithm for learning near-optimal policies in discounted linear mixture MDPs from a single stream of experience, and show it achieves near-optimal statistical guarantees.
SWE-RL: Advancing LLM Reasoning via Reinforcement Learning on Open Software Evolution
The recent DeepSeek-R1 release has demonstrated the immense potential of reinforcement learning (RL) in enhancing the general reasoning capabilities of large language models (LLMs). While DeepSeek-R1 and other follow-up work primarily focus on applying RL to competitive coding and math problems, this paper introduces SWE-RL, the first approach to scale RL-based LLM reasoning for real-world software engineering. Leveraging a lightweight rule-based reward (e.g., the similarity score between ground-truth and LLM-generated solutions), SWE-RL enables LLMs to autonomously recover a developer's reasoning processes and solutions by learning from extensive open-source software evolution data -- the record of a software's entire lifecycle, including its code snapshots, code changes, and events such as issues and pull requests. Trained on top of Llama 3, our resulting reasoning model, Llama3-SWE-RL-70B, achieves a 41.0% solve rate on SWE-bench Verified -- a human-verified collection of real-world GitHub issues. To our knowledge, this is the best performance reported for medium-sized (<100B) LLMs to date, even comparable to leading proprietary LLMs like GPT-4o. Surprisingly, despite performing RL solely on software evolution data, Llama3-SWE-RL has even emerged with generalized reasoning skills. For example, it shows improved results on five out-of-domain tasks, namely, function coding, library use, code reasoning, mathematics, and general language understanding, whereas a supervised-finetuning baseline even leads to performance degradation on average. Overall, SWE-RL opens up a new direction to improve the reasoning capabilities of LLMs through reinforcement learning on massive software engineering data.
ReaLHF: Optimized RLHF Training for Large Language Models through Parameter Reallocation
Reinforcement Learning from Human Feedback (RLHF) stands as a pivotal technique in empowering large language model (LLM) applications. Since RLHF involves diverse computational workloads and intricate dependencies among multiple LLMs, directly adopting parallelization techniques from supervised training can result in sub-optimal performance. To overcome this limitation, we propose a novel approach named parameter ReaLlocation, which dynamically redistributes LLM parameters in the cluster and adapts parallelization strategies during training. Building upon this idea, we introduce ReaLHF, a pioneering system capable of automatically discovering and running efficient execution plans for RLHF training given the desired algorithmic and hardware configurations. ReaLHF formulates the execution plan for RLHF as an augmented dataflow graph. Based on this formulation, ReaLHF employs a tailored search algorithm with a lightweight cost estimator to discover an efficient execution plan. Subsequently, the runtime engine deploys the selected plan by effectively parallelizing computations and redistributing parameters. We evaluate ReaLHF on the LLaMA-2 models with up to 4times70 billion parameters and 128 GPUs. The experiment results showcase ReaLHF's substantial speedups of 2.0-10.6times compared to baselines. Furthermore, the execution plans generated by ReaLHF exhibit an average of 26% performance improvement over heuristic approaches based on Megatron-LM. The source code of ReaLHF is publicly available at https://github.com/openpsi-project/ReaLHF .
ArCHer: Training Language Model Agents via Hierarchical Multi-Turn RL
A broad use case of large language models (LLMs) is in goal-directed decision-making tasks (or "agent" tasks), where an LLM needs to not just generate completions for a given prompt, but rather make intelligent decisions over a multi-turn interaction to accomplish a task (e.g., when interacting with the web, using tools, or providing customer support). Reinforcement learning (RL) provides a general paradigm to address such agent tasks, but current RL methods for LLMs largely focus on optimizing single-turn rewards. By construction, most single-turn RL methods cannot endow LLMs with the ability to intelligently seek information over multiple turns, perform credit assignment, or reason about their past actions -- all of which are critical in agent tasks. This raises the question: how can we design effective and efficient multi-turn RL algorithms for LLMs? In this paper, we develop a framework for building multi-turn RL algorithms for fine-tuning LLMs, that preserves the flexibility of existing single-turn RL methods for LLMs (e.g., proximal policy optimization), while accommodating multiple turns, long horizons, and delayed rewards effectively. To do this, our framework adopts a hierarchical RL approach and runs two RL algorithms in parallel: a high-level off-policy value-based RL algorithm to aggregate reward over utterances, and a low-level RL algorithm that utilizes this high-level value function to train a token policy within each utterance or turn. Our hierarchical framework, Actor-Critic Framework with a Hierarchical Structure (ArCHer), can also give rise to other RL methods. Empirically, we find that ArCHer significantly improves efficiency and performance on agent tasks, attaining a sample efficiency of about 100x over existing methods, while also improving with larger model capacity (upto the 7 billion scale that we tested on).
Triple Preference Optimization: Achieving Better Alignment with Less Data in a Single Step Optimization
Large Language Models (LLMs) perform well across diverse tasks, but aligning them with human demonstrations is challenging. Recently, Reinforcement Learning (RL)-free methods like Direct Preference Optimization (DPO) have emerged, offering improved stability and scalability while retaining competitive performance relative to RL-based methods. However, while RL-free methods deliver satisfactory performance, they require significant data to develop a robust Supervised Fine-Tuned (SFT) model and an additional step to fine-tune this model on a preference dataset, which constrains their utility and scalability. In this paper, we introduce Triple Preference Optimization (TPO), a new preference learning method designed to align an LLM with three preferences without requiring a separate SFT step and using considerably less data. Through a combination of practical experiments and theoretical analysis, we show the efficacy of TPO as a single-step alignment strategy. Specifically, we fine-tuned the Phi-2 (2.7B) and Mistral (7B) models using TPO directly on the UltraFeedback dataset, achieving superior results compared to models aligned through other methods such as SFT, DPO, KTO, IPO, CPO, and ORPO. Moreover, the performance of TPO without the SFT component led to notable improvements in the MT-Bench score, with increases of +1.27 and +0.63 over SFT and DPO, respectively. Additionally, TPO showed higher average accuracy, surpassing DPO and SFT by 4.2% and 4.97% on the Open LLM Leaderboard benchmarks. Our code is publicly available at https://github.com/sahsaeedi/triple-preference-optimization .
Optimistic Curiosity Exploration and Conservative Exploitation with Linear Reward Shaping
In this work, we study the simple yet universally applicable case of reward shaping in value-based Deep Reinforcement Learning (DRL). We show that reward shifting in the form of the linear transformation is equivalent to changing the initialization of the Q-function in function approximation. Based on such an equivalence, we bring the key insight that a positive reward shifting leads to conservative exploitation, while a negative reward shifting leads to curiosity-driven exploration. Accordingly, conservative exploitation improves offline RL value estimation, and optimistic value estimation improves exploration for online RL. We validate our insight on a range of RL tasks and show its improvement over baselines: (1) In offline RL, the conservative exploitation leads to improved performance based on off-the-shelf algorithms; (2) In online continuous control, multiple value functions with different shifting constants can be used to tackle the exploration-exploitation dilemma for better sample efficiency; (3) In discrete control tasks, a negative reward shifting yields an improvement over the curiosity-based exploration method.
Policy Gradient in Robust MDPs with Global Convergence Guarantee
Robust Markov decision processes (RMDPs) provide a promising framework for computing reliable policies in the face of model errors. Many successful reinforcement learning algorithms build on variations of policy-gradient methods, but adapting these methods to RMDPs has been challenging. As a result, the applicability of RMDPs to large, practical domains remains limited. This paper proposes a new Double-Loop Robust Policy Gradient (DRPG), the first generic policy gradient method for RMDPs. In contrast with prior robust policy gradient algorithms, DRPG monotonically reduces approximation errors to guarantee convergence to a globally optimal policy in tabular RMDPs. We introduce a novel parametric transition kernel and solve the inner loop robust policy via a gradient-based method. Finally, our numerical results demonstrate the utility of our new algorithm and confirm its global convergence properties.
Inverse Reinforcement Learning without Reinforcement Learning
Inverse Reinforcement Learning (IRL) is a powerful set of techniques for imitation learning that aims to learn a reward function that rationalizes expert demonstrations. Unfortunately, traditional IRL methods suffer from a computational weakness: they require repeatedly solving a hard reinforcement learning (RL) problem as a subroutine. This is counter-intuitive from the viewpoint of reductions: we have reduced the easier problem of imitation learning to repeatedly solving the harder problem of RL. Another thread of work has proved that access to the side-information of the distribution of states where a strong policy spends time can dramatically reduce the sample and computational complexities of solving an RL problem. In this work, we demonstrate for the first time a more informed imitation learning reduction where we utilize the state distribution of the expert to alleviate the global exploration component of the RL subroutine, providing an exponential speedup in theory. In practice, we find that we are able to significantly speed up the prior art on continuous control tasks.
Safe RLHF: Safe Reinforcement Learning from Human Feedback
With the development of large language models (LLMs), striking a balance between the performance and safety of AI systems has never been more critical. However, the inherent tension between the objectives of helpfulness and harmlessness presents a significant challenge during LLM training. To address this issue, we propose Safe Reinforcement Learning from Human Feedback (Safe RLHF), a novel algorithm for human value alignment. Safe RLHF explicitly decouples human preferences regarding helpfulness and harmlessness, effectively avoiding the crowdworkers' confusion about the tension and allowing us to train separate reward and cost models. We formalize the safety concern of LLMs as an optimization task of maximizing the reward function while satisfying specified cost constraints. Leveraging the Lagrangian method to solve this constrained problem, Safe RLHF dynamically adjusts the balance between the two objectives during fine-tuning. Through a three-round fine-tuning using Safe RLHF, we demonstrate a superior ability to mitigate harmful responses while enhancing model performance compared to existing value-aligned algorithms. Experimentally, we fine-tuned the Alpaca-7B using Safe RLHF and aligned it with collected human preferences, significantly improving its helpfulness and harmlessness according to human evaluations.
Provably Efficient Offline Reinforcement Learning with Perturbed Data Sources
Existing theoretical studies on offline reinforcement learning (RL) mostly consider a dataset sampled directly from the target task. In practice, however, data often come from several heterogeneous but related sources. Motivated by this gap, this work aims at rigorously understanding offline RL with multiple datasets that are collected from randomly perturbed versions of the target task instead of from itself. An information-theoretic lower bound is derived, which reveals a necessary requirement on the number of involved sources in addition to that on the number of data samples. Then, a novel HetPEVI algorithm is proposed, which simultaneously considers the sample uncertainties from a finite number of data samples per data source and the source uncertainties due to a finite number of available data sources. Theoretical analyses demonstrate that HetPEVI can solve the target task as long as the data sources collectively provide a good data coverage. Moreover, HetPEVI is demonstrated to be optimal up to a polynomial factor of the horizon length. Finally, the study is extended to offline Markov games and offline robust RL, which demonstrates the generality of the proposed designs and theoretical analyses.
Hyperbolic Deep Reinforcement Learning
We propose a new class of deep reinforcement learning (RL) algorithms that model latent representations in hyperbolic space. Sequential decision-making requires reasoning about the possible future consequences of current behavior. Consequently, capturing the relationship between key evolving features for a given task is conducive to recovering effective policies. To this end, hyperbolic geometry provides deep RL models with a natural basis to precisely encode this inherently hierarchical information. However, applying existing methodologies from the hyperbolic deep learning literature leads to fatal optimization instabilities due to the non-stationarity and variance characterizing RL gradient estimators. Hence, we design a new general method that counteracts such optimization challenges and enables stable end-to-end learning with deep hyperbolic representations. We empirically validate our framework by applying it to popular on-policy and off-policy RL algorithms on the Procgen and Atari 100K benchmarks, attaining near universal performance and generalization benefits. Given its natural fit, we hope future RL research will consider hyperbolic representations as a standard tool.
Self-Improving Robust Preference Optimization
Both online and offline RLHF methods such as PPO and DPO have been extremely successful in aligning AI with human preferences. Despite their success, the existing methods suffer from a fundamental problem that their optimal solution is highly task-dependent (i.e., not robust to out-of-distribution (OOD) tasks). Here we address this challenge by proposing Self-Improving Robust Preference Optimization SRPO, a practical and mathematically principled offline RLHF framework that is completely robust to the changes in the task. The key idea of SRPO is to cast the problem of learning from human preferences as a self-improvement process, which can be mathematically expressed in terms of a min-max objective that aims at joint optimization of self-improvement policy and the generative policy in an adversarial fashion. The solution for this optimization problem is independent of the training task and thus it is robust to its changes. We then show that this objective can be re-expressed in the form of a non-adversarial offline loss which can be optimized using standard supervised optimization techniques at scale without any need for reward model and online inference. We show the effectiveness of SRPO in terms of AI Win-Rate (WR) against human (GOLD) completions. In particular, when SRPO is evaluated on the OOD XSUM dataset, it outperforms the celebrated DPO by a clear margin of 15% after 5 self-revisions, achieving WR of 90%.
Prioritized Unit Propagation with Periodic Resetting is (Almost) All You Need for Random SAT Solving
We propose prioritized unit propagation with periodic resetting, which is a simple but surprisingly effective algorithm for solving random SAT instances that are meant to be hard. In particular, an evaluation on the Random Track of the 2017 and 2018 SAT competitions shows that a basic prototype of this simple idea already ranks at second place in both years. We share this observation in the hope that it helps the SAT community better understand the hardness of random instances used in competitions and inspire other interesting ideas on SAT solving.
Constrained Bi-Level Optimization: Proximal Lagrangian Value function Approach and Hessian-free Algorithm
This paper presents a new approach and algorithm for solving a class of constrained Bi-Level Optimization (BLO) problems in which the lower-level problem involves constraints coupling both upper-level and lower-level variables. Such problems have recently gained significant attention due to their broad applicability in machine learning. However, conventional gradient-based methods unavoidably rely on computationally intensive calculations related to the Hessian matrix. To address this challenge, we begin by devising a smooth proximal Lagrangian value function to handle the constrained lower-level problem. Utilizing this construct, we introduce a single-level reformulation for constrained BLOs that transforms the original BLO problem into an equivalent optimization problem with smooth constraints. Enabled by this reformulation, we develop a Hessian-free gradient-based algorithm-termed proximal Lagrangian Value function-based Hessian-free Bi-level Algorithm (LV-HBA)-that is straightforward to implement in a single loop manner. Consequently, LV-HBA is especially well-suited for machine learning applications. Furthermore, we offer non-asymptotic convergence analysis for LV-HBA, eliminating the need for traditional strong convexity assumptions for the lower-level problem while also being capable of accommodating non-singleton scenarios. Empirical results substantiate the algorithm's superior practical performance.
The Power of Learned Locally Linear Models for Nonlinear Policy Optimization
A common pipeline in learning-based control is to iteratively estimate a model of system dynamics, and apply a trajectory optimization algorithm - e.g.~iLQR - on the learned model to minimize a target cost. This paper conducts a rigorous analysis of a simplified variant of this strategy for general nonlinear systems. We analyze an algorithm which iterates between estimating local linear models of nonlinear system dynamics and performing iLQR-like policy updates. We demonstrate that this algorithm attains sample complexity polynomial in relevant problem parameters, and, by synthesizing locally stabilizing gains, overcomes exponential dependence in problem horizon. Experimental results validate the performance of our algorithm, and compare to natural deep-learning baselines.
Masked Trajectory Models for Prediction, Representation, and Control
We introduce Masked Trajectory Models (MTM) as a generic abstraction for sequential decision making. MTM takes a trajectory, such as a state-action sequence, and aims to reconstruct the trajectory conditioned on random subsets of the same trajectory. By training with a highly randomized masking pattern, MTM learns versatile networks that can take on different roles or capabilities, by simply choosing appropriate masks at inference time. For example, the same MTM network can be used as a forward dynamics model, inverse dynamics model, or even an offline RL agent. Through extensive experiments in several continuous control tasks, we show that the same MTM network -- i.e. same weights -- can match or outperform specialized networks trained for the aforementioned capabilities. Additionally, we find that state representations learned by MTM can significantly accelerate the learning speed of traditional RL algorithms. Finally, in offline RL benchmarks, we find that MTM is competitive with specialized offline RL algorithms, despite MTM being a generic self-supervised learning method without any explicit RL components. Code is available at https://github.com/facebookresearch/mtm
Pearl: A Production-ready Reinforcement Learning Agent
Reinforcement Learning (RL) offers a versatile framework for achieving long-term goals. Its generality allows us to formalize a wide range of problems that real-world intelligent systems encounter, such as dealing with delayed rewards, handling partial observability, addressing the exploration and exploitation dilemma, utilizing offline data to improve online performance, and ensuring safety constraints are met. Despite considerable progress made by the RL research community in addressing these issues, existing open-source RL libraries tend to focus on a narrow portion of the RL solution pipeline, leaving other aspects largely unattended. This paper introduces Pearl, a Production-ready RL agent software package explicitly designed to embrace these challenges in a modular fashion. In addition to presenting preliminary benchmark results, this paper highlights Pearl's industry adoptions to demonstrate its readiness for production usage. Pearl is open sourced on Github at github.com/facebookresearch/pearl and its official website is located at pearlagent.github.io.
Leveraging Offline Data in Online Reinforcement Learning
Two central paradigms have emerged in the reinforcement learning (RL) community: online RL and offline RL. In the online RL setting, the agent has no prior knowledge of the environment, and must interact with it in order to find an epsilon-optimal policy. In the offline RL setting, the learner instead has access to a fixed dataset to learn from, but is unable to otherwise interact with the environment, and must obtain the best policy it can from this offline data. Practical scenarios often motivate an intermediate setting: if we have some set of offline data and, in addition, may also interact with the environment, how can we best use the offline data to minimize the number of online interactions necessary to learn an epsilon-optimal policy? In this work, we consider this setting, which we call the FineTuneRL setting, for MDPs with linear structure. We characterize the necessary number of online samples needed in this setting given access to some offline dataset, and develop an algorithm, FTPedel, which is provably optimal. We show through an explicit example that combining offline data with online interactions can lead to a provable improvement over either purely offline or purely online RL. Finally, our results illustrate the distinction between verifiable learning, the typical setting considered in online RL, and unverifiable learning, the setting often considered in offline RL, and show that there is a formal separation between these regimes.
Safer-Instruct: Aligning Language Models with Automated Preference Data
Reinforcement Learning from Human Feedback (RLHF) is a vital strategy for enhancing model safety in language models. However, annotating preference data for RLHF is a resource-intensive and creativity-demanding process, while automatic generation methods face limitations in data diversity and quality. In response, we present Safer-Instruct, a novel pipeline for semi-automatically constructing large-scale preference datasets. Our approach leverages reversed instruction tuning, instruction induction, and expert model evaluation to efficiently generate high-quality preference data without human annotators. We evaluate Safer-Instruct using LLaMA for instruction induction and GPT-4 as an expert model, generating approximately 10K preference samples. Finetuning an Alpaca model on this dataset demonstrates improved harmlessness while maintaining competitive performance on conversation and downstream tasks. Safer-Instruct addresses the challenges in preference data acquisition, advancing the development of safer and more responsible AI systems. Our code and data are available at https://github.com/uscnlp-lime/safer-instruct
Bridging Offline Reinforcement Learning and Imitation Learning: A Tale of Pessimism
Offline (or batch) reinforcement learning (RL) algorithms seek to learn an optimal policy from a fixed dataset without active data collection. Based on the composition of the offline dataset, two main categories of methods are used: imitation learning which is suitable for expert datasets and vanilla offline RL which often requires uniform coverage datasets. From a practical standpoint, datasets often deviate from these two extremes and the exact data composition is usually unknown a priori. To bridge this gap, we present a new offline RL framework that smoothly interpolates between the two extremes of data composition, hence unifying imitation learning and vanilla offline RL. The new framework is centered around a weak version of the concentrability coefficient that measures the deviation from the behavior policy to the expert policy alone. Under this new framework, we further investigate the question on algorithm design: can one develop an algorithm that achieves a minimax optimal rate and also adapts to unknown data composition? To address this question, we consider a lower confidence bound (LCB) algorithm developed based on pessimism in the face of uncertainty in offline RL. We study finite-sample properties of LCB as well as information-theoretic limits in multi-armed bandits, contextual bandits, and Markov decision processes (MDPs). Our analysis reveals surprising facts about optimality rates. In particular, in all three settings, LCB achieves a faster rate of 1/N for nearly-expert datasets compared to the usual rate of 1/N in offline RL, where N is the number of samples in the batch dataset. In the case of contextual bandits with at least two contexts, we prove that LCB is adaptively optimal for the entire data composition range, achieving a smooth transition from imitation learning to offline RL. We further show that LCB is almost adaptively optimal in MDPs.
Conservative Dual Policy Optimization for Efficient Model-Based Reinforcement Learning
Provably efficient Model-Based Reinforcement Learning (MBRL) based on optimism or posterior sampling (PSRL) is ensured to attain the global optimality asymptotically by introducing the complexity measure of the model. However, the complexity might grow exponentially for the simplest nonlinear models, where global convergence is impossible within finite iterations. When the model suffers a large generalization error, which is quantitatively measured by the model complexity, the uncertainty can be large. The sampled model that current policy is greedily optimized upon will thus be unsettled, resulting in aggressive policy updates and over-exploration. In this work, we propose Conservative Dual Policy Optimization (CDPO) that involves a Referential Update and a Conservative Update. The policy is first optimized under a reference model, which imitates the mechanism of PSRL while offering more stability. A conservative range of randomness is guaranteed by maximizing the expectation of model value. Without harmful sampling procedures, CDPO can still achieve the same regret as PSRL. More importantly, CDPO enjoys monotonic policy improvement and global optimality simultaneously. Empirical results also validate the exploration efficiency of CDPO.
Hyperparameters in Reinforcement Learning and How To Tune Them
In order to improve reproducibility, deep reinforcement learning (RL) has been adopting better scientific practices such as standardized evaluation metrics and reporting. However, the process of hyperparameter optimization still varies widely across papers, which makes it challenging to compare RL algorithms fairly. In this paper, we show that hyperparameter choices in RL can significantly affect the agent's final performance and sample efficiency, and that the hyperparameter landscape can strongly depend on the tuning seed which may lead to overfitting. We therefore propose adopting established best practices from AutoML, such as the separation of tuning and testing seeds, as well as principled hyperparameter optimization (HPO) across a broad search space. We support this by comparing multiple state-of-the-art HPO tools on a range of RL algorithms and environments to their hand-tuned counterparts, demonstrating that HPO approaches often have higher performance and lower compute overhead. As a result of our findings, we recommend a set of best practices for the RL community, which should result in stronger empirical results with fewer computational costs, better reproducibility, and thus faster progress. In order to encourage the adoption of these practices, we provide plug-and-play implementations of the tuning algorithms used in this paper at https://github.com/facebookresearch/how-to-autorl.
Trajectory-Aware Eligibility Traces for Off-Policy Reinforcement Learning
Off-policy learning from multistep returns is crucial for sample-efficient reinforcement learning, but counteracting off-policy bias without exacerbating variance is challenging. Classically, off-policy bias is corrected in a per-decision manner: past temporal-difference errors are re-weighted by the instantaneous Importance Sampling (IS) ratio after each action via eligibility traces. Many off-policy algorithms rely on this mechanism, along with differing protocols for cutting the IS ratios to combat the variance of the IS estimator. Unfortunately, once a trace has been fully cut, the effect cannot be reversed. This has led to the development of credit-assignment strategies that account for multiple past experiences at a time. These trajectory-aware methods have not been extensively analyzed, and their theoretical justification remains uncertain. In this paper, we propose a multistep operator that can express both per-decision and trajectory-aware methods. We prove convergence conditions for our operator in the tabular setting, establishing the first guarantees for several existing methods as well as many new ones. Finally, we introduce Recency-Bounded Importance Sampling (RBIS), which leverages trajectory awareness to perform robustly across lambda-values in an off-policy control task.
Near-Optimal Algorithms for Private Online Optimization in the Realizable Regime
We consider online learning problems in the realizable setting, where there is a zero-loss solution, and propose new Differentially Private (DP) algorithms that obtain near-optimal regret bounds. For the problem of online prediction from experts, we design new algorithms that obtain near-optimal regret {O} big( varepsilon^{-1} log^{1.5}{d} big) where d is the number of experts. This significantly improves over the best existing regret bounds for the DP non-realizable setting which are {O} big( varepsilon^{-1} minbig{d, T^{1/3}log dbig} big). We also develop an adaptive algorithm for the small-loss setting with regret O(L^starlog d + varepsilon^{-1} log^{1.5}{d}) where L^star is the total loss of the best expert. Additionally, we consider DP online convex optimization in the realizable setting and propose an algorithm with near-optimal regret O big(varepsilon^{-1} d^{1.5} big), as well as an algorithm for the smooth case with regret O big( varepsilon^{-2/3} (dT)^{1/3} big), both significantly improving over existing bounds in the non-realizable regime.
Efficient Diffusion Policies for Offline Reinforcement Learning
Offline reinforcement learning (RL) aims to learn optimal policies from offline datasets, where the parameterization of policies is crucial but often overlooked. Recently, Diffsuion-QL significantly boosts the performance of offline RL by representing a policy with a diffusion model, whose success relies on a parametrized Markov Chain with hundreds of steps for sampling. However, Diffusion-QL suffers from two critical limitations. 1) It is computationally inefficient to forward and backward through the whole Markov chain during training. 2) It is incompatible with maximum likelihood-based RL algorithms (e.g., policy gradient methods) as the likelihood of diffusion models is intractable. Therefore, we propose efficient diffusion policy (EDP) to overcome these two challenges. EDP approximately constructs actions from corrupted ones at training to avoid running the sampling chain. We conduct extensive experiments on the D4RL benchmark. The results show that EDP can reduce the diffusion policy training time from 5 days to 5 hours on gym-locomotion tasks. Moreover, we show that EDP is compatible with various offline RL algorithms (TD3, CRR, and IQL) and achieves new state-of-the-art on D4RL by large margins over previous methods. Our code is available at https://github.com/sail-sg/edp.
Provably Efficient UCB-type Algorithms For Learning Predictive State Representations
The general sequential decision-making problem, which includes Markov decision processes (MDPs) and partially observable MDPs (POMDPs) as special cases, aims at maximizing a cumulative reward by making a sequence of decisions based on a history of observations and actions over time. Recent studies have shown that the sequential decision-making problem is statistically learnable if it admits a low-rank structure modeled by predictive state representations (PSRs). Despite these advancements, existing approaches typically involve oracles or steps that are computationally intractable. On the other hand, the upper confidence bound (UCB) based approaches, which have served successfully as computationally efficient methods in bandits and MDPs, have not been investigated for more general PSRs, due to the difficulty of optimistic bonus design in these more challenging settings. This paper proposes the first known UCB-type approach for PSRs, featuring a novel bonus term that upper bounds the total variation distance between the estimated and true models. We further characterize the sample complexity bounds for our designed UCB-type algorithms for both online and offline PSRs. In contrast to existing approaches for PSRs, our UCB-type algorithms enjoy computational tractability, last-iterate guaranteed near-optimal policy, and guaranteed model accuracy.
A Critical Evaluation of AI Feedback for Aligning Large Language Models
Reinforcement learning with AI feedback (RLAIF) is a popular paradigm for improving the instruction-following abilities of powerful pre-trained language models. RLAIF first performs supervised fine-tuning (SFT) using demonstrations from a teacher model and then further fine-tunes the model with reinforcement learning (RL), using feedback from a critic model. While recent popular open-source models have demonstrated substantial improvements in performance from the RL step, in this paper we question whether the complexity of this RL step is truly warranted for AI feedback. We show that the improvements of the RL step are virtually entirely due to the widespread practice of using a weaker teacher model (e.g. GPT-3.5) for SFT data collection than the critic (e.g., GPT-4) used for AI feedback generation. Specifically, we show that simple supervised fine-tuning with GPT-4 as the teacher outperforms existing RLAIF pipelines. More generally, we find that the gains from RLAIF vary substantially across base model families, test-time evaluation protocols, and critic models. Finally, we provide a mechanistic explanation for when SFT may outperform the full two-step RLAIF pipeline as well as suggestions for making RLAIF maximally useful in practice.
Exploring the Limit of Outcome Reward for Learning Mathematical Reasoning
Reasoning abilities, especially those for solving complex math problems, are crucial components of general intelligence. Recent advances by proprietary companies, such as o-series models of OpenAI, have made remarkable progress on reasoning tasks. However, the complete technical details remain unrevealed, and the techniques that are believed certainly to be adopted are only reinforcement learning (RL) and the long chain of thoughts. This paper proposes a new RL framework, termed OREAL, to pursue the performance limit that can be achieved through Outcome REwArd-based reinforcement Learning for mathematical reasoning tasks, where only binary outcome rewards are easily accessible. We theoretically prove that behavior cloning on positive trajectories from best-of-N (BoN) sampling is sufficient to learn the KL-regularized optimal policy in binary feedback environments. This formulation further implies that the rewards of negative samples should be reshaped to ensure the gradient consistency between positive and negative samples. To alleviate the long-existing difficulties brought by sparse rewards in RL, which are even exacerbated by the partial correctness of the long chain of thought for reasoning tasks, we further apply a token-level reward model to sample important tokens in reasoning trajectories for learning. With OREAL, for the first time, a 7B model can obtain 94.0 pass@1 accuracy on MATH-500 through RL, being on par with 32B models. OREAL-32B also surpasses previous 32B models trained by distillation with 95.0 pass@1 accuracy on MATH-500. Our investigation also indicates the importance of initial policy models and training queries for RL. Code, models, and data will be released to benefit future researchhttps://github.com/InternLM/OREAL.
Denotationally Correct, Purely Functional, Efficient Reverse-mode Automatic Differentiation
Reverse-mode differentiation is used for optimization, but it introduces references, which break the purity of the underlying programs, making them notoriously harder to optimize. We present a reverse-mode differentiation on a purely functional language with array operations. It is the first one to deliver a provably efficient, purely functional, and denotationally correct reverse-mode differentiation. We show that our transformation is semantically correct and verifies the cheap gradient principle. Inspired by PROPs and compilation to categories, we introduce a novel intermediate representation that we call 'unary form'. Our reverse-mode transformation is factored as a compilation scheme through this intermediate representation. We obtain provably efficient gradients by performing general partial evaluation optimizations after our reverse-mode transformation, as opposed to manually derived ones. For simple first-order programs, the obtained output programs resemble static-single-assignment (SSA) code. We emphasize the modularity of our approach and show how our language can easily be enriched with more optimized primitives, as required for some speed-ups in practice.
Let's reward step by step: Step-Level reward model as the Navigators for Reasoning
Recent years have seen considerable advancements in multi-step reasoning with Large Language Models (LLMs). The previous studies have elucidated the merits of integrating feedback or search mechanisms during model inference to improve the reasoning accuracy. The Process-Supervised Reward Model (PRM), typically furnishes LLMs with step-by-step feedback during the training phase, akin to Proximal Policy Optimization (PPO) or reject sampling. Our objective is to examine the efficacy of PRM in the inference phase to help discern the optimal solution paths for multi-step tasks such as mathematical reasoning and code generation. To this end, we propose a heuristic greedy search algorithm that employs the step-level feedback from PRM to optimize the reasoning pathways explored by LLMs. This tailored PRM demonstrated enhanced results compared to the Chain of Thought (CoT) on mathematical benchmarks like GSM8K and MATH. Additionally, to explore the versatility of our approach, we develop a novel method to automatically generate step-level reward dataset for coding tasks and observed similar improved performance in the code generation tasks. Thus highlighting the robust nature of our reward-model-based approach to inference for reasoning tasks.
Learning to Relax: Setting Solver Parameters Across a Sequence of Linear System Instances
Solving a linear system Ax=b is a fundamental scientific computing primitive for which numerous solvers and preconditioners have been developed. These come with parameters whose optimal values depend on the system being solved and are often impossible or too expensive to identify; thus in practice sub-optimal heuristics are used. We consider the common setting in which many related linear systems need to be solved, e.g. during a single numerical simulation. In this scenario, can we sequentially choose parameters that attain a near-optimal overall number of iterations, without extra matrix computations? We answer in the affirmative for Successive Over-Relaxation (SOR), a standard solver whose parameter omega has a strong impact on its runtime. For this method, we prove that a bandit online learning algorithm -- using only the number of iterations as feedback -- can select parameters for a sequence of instances such that the overall cost approaches that of the best fixed omega as the sequence length increases. Furthermore, when given additional structural information, we show that a contextual bandit method asymptotically achieves the performance of the instance-optimal policy, which selects the best omega for each instance. Our work provides the first learning-theoretic treatment of high-precision linear system solvers and the first end-to-end guarantees for data-driven scientific computing, demonstrating theoretically the potential to speed up numerical methods using well-understood learning algorithms.
Dimension-free Regret for Learning Asymmetric Linear Dynamical Systems
Previously, methods for learning marginally stable linear dynamical systems either required the transition matrix to be symmetric or incurred regret bounds that scale polynomially with the system's hidden dimension. In this work, we introduce a novel method that overcomes this trade-off, achieving dimension-free regret despite the presence of asymmetric matrices and marginal stability. Our method combines spectral filtering with linear predictors and employs Chebyshev polynomials in the complex plane to construct a novel spectral filtering basis. This construction guarantees sublinear regret in an online learning framework, without relying on any statistical or generative assumptions. Specifically, we prove that as long as the transition matrix has eigenvalues with complex component bounded by 1/poly log T, then our method achieves regret O(T^{9/10}) when compared to the best linear dynamical predictor in hindsight.
Robust Offline Reinforcement Learning with Linearly Structured f-Divergence Regularization
The Distributionally Robust Markov Decision Process (DRMDP) is a popular framework for addressing dynamics shift in reinforcement learning by learning policies robust to the worst-case transition dynamics within a constrained set. However, solving its dual optimization oracle poses significant challenges, limiting theoretical analysis and computational efficiency. The recently proposed Robust Regularized Markov Decision Process (RRMDP) replaces the uncertainty set constraint with a regularization term on the value function, offering improved scalability and theoretical insights. Yet, existing RRMDP methods rely on unstructured regularization, often leading to overly conservative policies by considering transitions that are unrealistic. To address these issues, we propose a novel framework, the d-rectangular linear robust regularized Markov decision process (d-RRMDP), which introduces a linear latent structure into both transition kernels and regularization. For the offline RL setting, where an agent learns robust policies from a pre-collected dataset in the nominal environment, we develop a family of algorithms, Robust Regularized Pessimistic Value Iteration (R2PVI), employing linear function approximation and f-divergence based regularization terms on transition kernels. We provide instance-dependent upper bounds on the suboptimality gap of R2PVI policies, showing these bounds depend on how well the dataset covers state-action spaces visited by the optimal robust policy under robustly admissible transitions. This term is further shown to be fundamental to d-RRMDPs via information-theoretic lower bounds. Finally, numerical experiments validate that R2PVI learns robust policies and is computationally more efficient than methods for constrained DRMDPs.