new

Get trending papers in your email inbox!

Subscribe

byAK and the research community

Mar 12

AIR-Bench 2024: A Safety Benchmark Based on Risk Categories from Regulations and Policies

Foundation models (FMs) provide societal benefits but also amplify risks. Governments, companies, and researchers have proposed regulatory frameworks, acceptable use policies, and safety benchmarks in response. However, existing public benchmarks often define safety categories based on previous literature, intuitions, or common sense, leading to disjointed sets of categories for risks specified in recent regulations and policies, which makes it challenging to evaluate and compare FMs across these benchmarks. To bridge this gap, we introduce AIR-Bench 2024, the first AI safety benchmark aligned with emerging government regulations and company policies, following the regulation-based safety categories grounded in our AI risks study, AIR 2024. AIR 2024 decomposes 8 government regulations and 16 company policies into a four-tiered safety taxonomy with 314 granular risk categories in the lowest tier. AIR-Bench 2024 contains 5,694 diverse prompts spanning these categories, with manual curation and human auditing to ensure quality. We evaluate leading language models on AIR-Bench 2024, uncovering insights into their alignment with specified safety concerns. By bridging the gap between public benchmarks and practical AI risks, AIR-Bench 2024 provides a foundation for assessing model safety across jurisdictions, fostering the development of safer and more responsible AI systems.

AutoTrust: Benchmarking Trustworthiness in Large Vision Language Models for Autonomous Driving

Recent advancements in large vision language models (VLMs) tailored for autonomous driving (AD) have shown strong scene understanding and reasoning capabilities, making them undeniable candidates for end-to-end driving systems. However, limited work exists on studying the trustworthiness of DriveVLMs -- a critical factor that directly impacts public transportation safety. In this paper, we introduce AutoTrust, a comprehensive trustworthiness benchmark for large vision-language models in autonomous driving (DriveVLMs), considering diverse perspectives -- including trustfulness, safety, robustness, privacy, and fairness. We constructed the largest visual question-answering dataset for investigating trustworthiness issues in driving scenarios, comprising over 10k unique scenes and 18k queries. We evaluated six publicly available VLMs, spanning from generalist to specialist, from open-source to commercial models. Our exhaustive evaluations have unveiled previously undiscovered vulnerabilities of DriveVLMs to trustworthiness threats. Specifically, we found that the general VLMs like LLaVA-v1.6 and GPT-4o-mini surprisingly outperform specialized models fine-tuned for driving in terms of overall trustworthiness. DriveVLMs like DriveLM-Agent are particularly vulnerable to disclosing sensitive information. Additionally, both generalist and specialist VLMs remain susceptible to adversarial attacks and struggle to ensure unbiased decision-making across diverse environments and populations. Our findings call for immediate and decisive action to address the trustworthiness of DriveVLMs -- an issue of critical importance to public safety and the welfare of all citizens relying on autonomous transportation systems. Our benchmark is publicly available at https://github.com/taco-group/AutoTrust, and the leaderboard is released at https://taco-group.github.io/AutoTrust/.

WildGuard: Open One-Stop Moderation Tools for Safety Risks, Jailbreaks, and Refusals of LLMs

We introduce WildGuard -- an open, light-weight moderation tool for LLM safety that achieves three goals: (1) identifying malicious intent in user prompts, (2) detecting safety risks of model responses, and (3) determining model refusal rate. Together, WildGuard serves the increasing needs for automatic safety moderation and evaluation of LLM interactions, providing a one-stop tool with enhanced accuracy and broad coverage across 13 risk categories. While existing open moderation tools such as Llama-Guard2 score reasonably well in classifying straightforward model interactions, they lag far behind a prompted GPT-4, especially in identifying adversarial jailbreaks and in evaluating models' refusals, a key measure for evaluating safety behaviors in model responses. To address these challenges, we construct WildGuardMix, a large-scale and carefully balanced multi-task safety moderation dataset with 92K labeled examples that cover vanilla (direct) prompts and adversarial jailbreaks, paired with various refusal and compliance responses. WildGuardMix is a combination of WildGuardTrain, the training data of WildGuard, and WildGuardTest, a high-quality human-annotated moderation test set with 5K labeled items covering broad risk scenarios. Through extensive evaluations on WildGuardTest and ten existing public benchmarks, we show that WildGuard establishes state-of-the-art performance in open-source safety moderation across all the three tasks compared to ten strong existing open-source moderation models (e.g., up to 26.4% improvement on refusal detection). Importantly, WildGuard matches and sometimes exceeds GPT-4 performance (e.g., up to 3.9% improvement on prompt harmfulness identification). WildGuard serves as a highly effective safety moderator in an LLM interface, reducing the success rate of jailbreak attacks from 79.8% to 2.4%.

Youku-mPLUG: A 10 Million Large-scale Chinese Video-Language Dataset for Pre-training and Benchmarks

To promote the development of Vision-Language Pre-training (VLP) and multimodal Large Language Model (LLM) in the Chinese community, we firstly release the largest public Chinese high-quality video-language dataset named Youku-mPLUG, which is collected from Youku, a well-known Chinese video-sharing website, with strict criteria of safety, diversity, and quality. Youku-mPLUG contains 10 million Chinese video-text pairs filtered from 400 million raw videos across a wide range of 45 diverse categories for large-scale pre-training. In addition, to facilitate a comprehensive evaluation of video-language models, we carefully build the largest human-annotated Chinese benchmarks covering three popular video-language tasks of cross-modal retrieval, video captioning, and video category classification. Youku-mPLUG can enable researchers to conduct more in-depth multimodal research and develop better applications in the future. Furthermore, we release popular video-language pre-training models, ALPRO and mPLUG-2, and our proposed modularized decoder-only model mPLUG-video pre-trained on Youku-mPLUG. Experiments show that models pre-trained on Youku-mPLUG gain up to 23.1% improvement in video category classification. Besides, mPLUG-video achieves a new state-of-the-art result on these benchmarks with 80.5% top-1 accuracy in video category classification and 68.9 CIDEr score in video captioning, respectively. Finally, we scale up mPLUG-video based on the frozen Bloomz with only 1.7% trainable parameters as Chinese multimodal LLM, and demonstrate impressive instruction and video understanding ability. The zero-shot instruction understanding experiment indicates that pretraining with Youku-mPLUG can enhance the ability to comprehend overall and detailed visual semantics, recognize scene text, and leverage open-domain knowledge.

AILuminate: Introducing v1.0 of the AI Risk and Reliability Benchmark from MLCommons

The rapid advancement and deployment of AI systems have created an urgent need for standard safety-evaluation frameworks. This paper introduces AILuminate v1.0, the first comprehensive industry-standard benchmark for assessing AI-product risk and reliability. Its development employed an open process that included participants from multiple fields. The benchmark evaluates an AI system's resistance to prompts designed to elicit dangerous, illegal, or undesirable behavior in 12 hazard categories, including violent crimes, nonviolent crimes, sex-related crimes, child sexual exploitation, indiscriminate weapons, suicide and self-harm, intellectual property, privacy, defamation, hate, sexual content, and specialized advice (election, financial, health, legal). Our method incorporates a complete assessment standard, extensive prompt datasets, a novel evaluation framework, a grading and reporting system, and the technical as well as organizational infrastructure for long-term support and evolution. In particular, the benchmark employs an understandable five-tier grading scale (Poor to Excellent) and incorporates an innovative entropy-based system-response evaluation. In addition to unveiling the benchmark, this report also identifies limitations of our method and of building safety benchmarks generally, including evaluator uncertainty and the constraints of single-turn interactions. This work represents a crucial step toward establishing global standards for AI risk and reliability evaluation while acknowledging the need for continued development in areas such as multiturn interactions, multimodal understanding, coverage of additional languages, and emerging hazard categories. Our findings provide valuable insights for model developers, system integrators, and policymakers working to promote safer AI deployment.

LabSafety Bench: Benchmarking LLMs on Safety Issues in Scientific Labs

Laboratory accidents pose significant risks to human life and property, underscoring the importance of robust safety protocols. Despite advancements in safety training, laboratory personnel may still unknowingly engage in unsafe practices. With the increasing reliance on large language models (LLMs) for guidance in various fields, including laboratory settings, there is a growing concern about their reliability in critical safety-related decision-making. Unlike trained human researchers, LLMs lack formal lab safety education, raising questions about their ability to provide safe and accurate guidance. Existing research on LLM trustworthiness primarily focuses on issues such as ethical compliance, truthfulness, and fairness but fails to fully cover safety-critical real-world applications, like lab safety. To address this gap, we propose the Laboratory Safety Benchmark (LabSafety Bench), a comprehensive evaluation framework based on a new taxonomy aligned with Occupational Safety and Health Administration (OSHA) protocols. This benchmark includes 765 multiple-choice questions verified by human experts, assessing LLMs and vision language models (VLMs) performance in lab safety contexts. Our evaluations demonstrate that while GPT-4o outperforms human participants, it is still prone to critical errors, highlighting the risks of relying on LLMs in safety-critical environments. Our findings emphasize the need for specialized benchmarks to accurately assess the trustworthiness of LLMs in real-world safety applications.

What are the best systems? New perspectives on NLP Benchmarking

In Machine Learning, a benchmark refers to an ensemble of datasets associated with one or multiple metrics together with a way to aggregate different systems performances. They are instrumental in (i) assessing the progress of new methods along different axes and (ii) selecting the best systems for practical use. This is particularly the case for NLP with the development of large pre-trained models (e.g. GPT, BERT) that are expected to generalize well on a variety of tasks. While the community mainly focused on developing new datasets and metrics, there has been little interest in the aggregation procedure, which is often reduced to a simple average over various performance measures. However, this procedure can be problematic when the metrics are on a different scale, which may lead to spurious conclusions. This paper proposes a new procedure to rank systems based on their performance across different tasks. Motivated by the social choice theory, the final system ordering is obtained through aggregating the rankings induced by each task and is theoretically grounded. We conduct extensive numerical experiments (on over 270k scores) to assess the soundness of our approach both on synthetic and real scores (e.g. GLUE, EXTREM, SEVAL, TAC, FLICKR). In particular, we show that our method yields different conclusions on state-of-the-art systems than the mean-aggregation procedure while being both more reliable and robust.

MobileSafetyBench: Evaluating Safety of Autonomous Agents in Mobile Device Control

Autonomous agents powered by large language models (LLMs) show promising potential in assistive tasks across various domains, including mobile device control. As these agents interact directly with personal information and device settings, ensuring their safe and reliable behavior is crucial to prevent undesirable outcomes. However, no benchmark exists for standardized evaluation of the safety of mobile device-control agents. In this work, we introduce MobileSafetyBench, a benchmark designed to evaluate the safety of device-control agents within a realistic mobile environment based on Android emulators. We develop a diverse set of tasks involving interactions with various mobile applications, including messaging and banking applications. To clearly evaluate safety apart from general capabilities, we design separate tasks measuring safety and tasks evaluating helpfulness. The safety tasks challenge agents with managing potential risks prevalent in daily life and include tests to evaluate robustness against indirect prompt injections. Our experiments demonstrate that while baseline agents, based on state-of-the-art LLMs, perform well in executing helpful tasks, they show poor performance in safety tasks. To mitigate these safety concerns, we propose a prompting method that encourages agents to prioritize safety considerations. While this method shows promise in promoting safer behaviors, there is still considerable room for improvement to fully earn user trust. This highlights the urgent need for continued research to develop more robust safety mechanisms in mobile environments. We open-source our benchmark at: https://mobilesafetybench.github.io/.

Introducing v0.5 of the AI Safety Benchmark from MLCommons

This paper introduces v0.5 of the AI Safety Benchmark, which has been created by the MLCommons AI Safety Working Group. The AI Safety Benchmark has been designed to assess the safety risks of AI systems that use chat-tuned language models. We introduce a principled approach to specifying and constructing the benchmark, which for v0.5 covers only a single use case (an adult chatting to a general-purpose assistant in English), and a limited set of personas (i.e., typical users, malicious users, and vulnerable users). We created a new taxonomy of 13 hazard categories, of which 7 have tests in the v0.5 benchmark. We plan to release version 1.0 of the AI Safety Benchmark by the end of 2024. The v1.0 benchmark will provide meaningful insights into the safety of AI systems. However, the v0.5 benchmark should not be used to assess the safety of AI systems. We have sought to fully document the limitations, flaws, and challenges of v0.5. This release of v0.5 of the AI Safety Benchmark includes (1) a principled approach to specifying and constructing the benchmark, which comprises use cases, types of systems under test (SUTs), language and context, personas, tests, and test items; (2) a taxonomy of 13 hazard categories with definitions and subcategories; (3) tests for seven of the hazard categories, each comprising a unique set of test items, i.e., prompts. There are 43,090 test items in total, which we created with templates; (4) a grading system for AI systems against the benchmark; (5) an openly available platform, and downloadable tool, called ModelBench that can be used to evaluate the safety of AI systems on the benchmark; (6) an example evaluation report which benchmarks the performance of over a dozen openly available chat-tuned language models; (7) a test specification for the benchmark.

Safety Assessment of Chinese Large Language Models

With the rapid popularity of large language models such as ChatGPT and GPT-4, a growing amount of attention is paid to their safety concerns. These models may generate insulting and discriminatory content, reflect incorrect social values, and may be used for malicious purposes such as fraud and dissemination of misleading information. Evaluating and enhancing their safety is particularly essential for the wide application of large language models (LLMs). To further promote the safe deployment of LLMs, we develop a Chinese LLM safety assessment benchmark. Our benchmark explores the comprehensive safety performance of LLMs from two perspectives: 8 kinds of typical safety scenarios and 6 types of more challenging instruction attacks. Our benchmark is based on a straightforward process in which it provides the test prompts and evaluates the safety of the generated responses from the evaluated model. In evaluation, we utilize the LLM's strong evaluation ability and develop it as a safety evaluator by prompting. On top of this benchmark, we conduct safety assessments and analyze 15 LLMs including the OpenAI GPT series and other well-known Chinese LLMs, where we observe some interesting findings. For example, we find that instruction attacks are more likely to expose safety issues of all LLMs. Moreover, to promote the development and deployment of safe, responsible, and ethical AI, we publicly release SafetyPrompts including 100k augmented prompts and responses by LLMs.

Benchmarking AI Models in Software Engineering: A Review, Search Tool, and Enhancement Protocol

Benchmarks are essential for consistent evaluation and reproducibility. The integration of Artificial Intelligence into Software Engineering (AI4SE) has given rise to numerous benchmarks for tasks such as code generation and bug fixing. However, this surge presents challenges: (1) scattered benchmark knowledge across tasks, (2) difficulty in selecting relevant benchmarks, (3) the absence of a uniform standard for benchmark development, and (4) limitations of existing benchmarks. In this paper, we review 173 studies and identify 204 AI4SE benchmarks. We classify these benchmarks, analyze their limitations, and expose gaps in practices. Based on our review, we created BenchScout, a semantic search tool to find relevant benchmarks, using automated clustering of the contexts from associated studies. We conducted a user study with 22 participants to evaluate BenchScout's usability, effectiveness, and intuitiveness which resulted in average scores of 4.5, 4.0, and 4.1 out of 5. To advance benchmarking standards, we propose BenchFrame, a unified method to enhance benchmark quality. As a case study, we applied BenchFrame to the HumanEval benchmark and addressed its main limitations. This led to HumanEvalNext, featuring (1) corrected errors, (2) improved language conversion, (3) expanded test coverage, and (4) increased difficulty. We then evaluated ten state-of-the-art code language models on HumanEval, HumanEvalPlus, and HumanEvalNext. On HumanEvalNext, models showed a pass@1 score reduction of 31.22% and 19.94% compared to HumanEval and HumanEvalPlus, respectively.

Open RL Benchmark: Comprehensive Tracked Experiments for Reinforcement Learning

In many Reinforcement Learning (RL) papers, learning curves are useful indicators to measure the effectiveness of RL algorithms. However, the complete raw data of the learning curves are rarely available. As a result, it is usually necessary to reproduce the experiments from scratch, which can be time-consuming and error-prone. We present Open RL Benchmark, a set of fully tracked RL experiments, including not only the usual data such as episodic return, but also all algorithm-specific and system metrics. Open RL Benchmark is community-driven: anyone can download, use, and contribute to the data. At the time of writing, more than 25,000 runs have been tracked, for a cumulative duration of more than 8 years. Open RL Benchmark covers a wide range of RL libraries and reference implementations. Special care is taken to ensure that each experiment is precisely reproducible by providing not only the full parameters, but also the versions of the dependencies used to generate it. In addition, Open RL Benchmark comes with a command-line interface (CLI) for easy fetching and generating figures to present the results. In this document, we include two case studies to demonstrate the usefulness of Open RL Benchmark in practice. To the best of our knowledge, Open RL Benchmark is the first RL benchmark of its kind, and the authors hope that it will improve and facilitate the work of researchers in the field.

SafeWatch: An Efficient Safety-Policy Following Video Guardrail Model with Transparent Explanations

With the rise of generative AI and rapid growth of high-quality video generation, video guardrails have become more crucial than ever to ensure safety and security across platforms. Current video guardrails, however, are either overly simplistic, relying on pure classification models trained on simple policies with limited unsafe categories, which lack detailed explanations, or prompting multimodal large language models (MLLMs) with long safety guidelines, which are inefficient and impractical for guardrailing real-world content. To bridge this gap, we propose SafeWatch, an efficient MLLM-based video guardrail model designed to follow customized safety policies and provide multi-label video guardrail outputs with content-specific explanations in a zero-shot manner. In particular, unlike traditional MLLM-based guardrails that encode all safety policies autoregressively, causing inefficiency and bias, SafeWatch uniquely encodes each policy chunk in parallel and eliminates their position bias such that all policies are attended simultaneously with equal importance. In addition, to improve efficiency and accuracy, SafeWatch incorporates a policy-aware visual token pruning algorithm that adaptively selects the most relevant video tokens for each policy, discarding noisy or irrelevant information. This allows for more focused, policy-compliant guardrail with significantly reduced computational overhead. Considering the limitations of existing video guardrail benchmarks, we propose SafeWatch-Bench, a large-scale video guardrail benchmark comprising over 2M videos spanning six safety categories which covers over 30 tasks to ensure a comprehensive coverage of all potential safety scenarios. SafeWatch outperforms SOTA by 28.2% on SafeWatch-Bench, 13.6% on benchmarks, cuts costs by 10%, and delivers top-tier explanations validated by LLM and human reviews.

UnsafeBench: Benchmarking Image Safety Classifiers on Real-World and AI-Generated Images

Image safety classifiers play an important role in identifying and mitigating the spread of unsafe images online (e.g., images including violence, hateful rhetoric, etc.). At the same time, with the advent of text-to-image models and increasing concerns about the safety of AI models, developers are increasingly relying on image safety classifiers to safeguard their models. Yet, the performance of current image safety classifiers remains unknown for real-world and AI-generated images. To bridge this research gap, in this work, we propose UnsafeBench, a benchmarking framework that evaluates the effectiveness and robustness of image safety classifiers. First, we curate a large dataset of 10K real-world and AI-generated images that are annotated as safe or unsafe based on a set of 11 unsafe categories of images (sexual, violent, hateful, etc.). Then, we evaluate the effectiveness and robustness of five popular image safety classifiers, as well as three classifiers that are powered by general-purpose visual language models. Our assessment indicates that existing image safety classifiers are not comprehensive and effective enough in mitigating the multifaceted problem of unsafe images. Also, we find that classifiers trained only on real-world images tend to have degraded performance when applied to AI-generated images. Motivated by these findings, we design and implement a comprehensive image moderation tool called PerspectiveVision, which effectively identifies 11 categories of real-world and AI-generated unsafe images. The best PerspectiveVision model achieves an overall F1-Score of 0.810 on six evaluation datasets, which is comparable with closed-source and expensive state-of-the-art models like GPT-4V. UnsafeBench and PerspectiveVision can aid the research community in better understanding the landscape of image safety classification in the era of generative AI.

FMB: a Functional Manipulation Benchmark for Generalizable Robotic Learning

In this paper, we propose a real-world benchmark for studying robotic learning in the context of functional manipulation: a robot needs to accomplish complex long-horizon behaviors by composing individual manipulation skills in functionally relevant ways. The core design principles of our Functional Manipulation Benchmark (FMB) emphasize a harmonious balance between complexity and accessibility. Tasks are deliberately scoped to be narrow, ensuring that models and datasets of manageable scale can be utilized effectively to track progress. Simultaneously, they are diverse enough to pose a significant generalization challenge. Furthermore, the benchmark is designed to be easily replicable, encompassing all essential hardware and software components. To achieve this goal, FMB consists of a variety of 3D-printed objects designed for easy and accurate replication by other researchers. The objects are procedurally generated, providing a principled framework to study generalization in a controlled fashion. We focus on fundamental manipulation skills, including grasping, repositioning, and a range of assembly behaviors. The FMB can be used to evaluate methods for acquiring individual skills, as well as methods for combining and ordering such skills to solve complex, multi-stage manipulation tasks. We also offer an imitation learning framework that includes a suite of policies trained to solve the proposed tasks. This enables researchers to utilize our tasks as a versatile toolkit for examining various parts of the pipeline. For example, researchers could propose a better design for a grasping controller and evaluate it in combination with our baseline reorientation and assembly policies as part of a pipeline for solving multi-stage tasks. Our dataset, object CAD files, code, and evaluation videos can be found on our project website: https://functional-manipulation-benchmark.github.io

BARS: Towards Open Benchmarking for Recommender Systems

The past two decades have witnessed the rapid development of personalized recommendation techniques. Despite significant progress made in both research and practice of recommender systems, to date, there is a lack of a widely-recognized benchmarking standard in this field. Many existing studies perform model evaluations and comparisons in an ad-hoc manner, for example, by employing their own private data splits or using different experimental settings. Such conventions not only increase the difficulty in reproducing existing studies, but also lead to inconsistent experimental results among them. This largely limits the credibility and practical value of research results in this field. To tackle these issues, we present an initiative project (namely BARS) aiming for open benchmarking for recommender systems. In comparison to some earlier attempts towards this goal, we take a further step by setting up a standardized benchmarking pipeline for reproducible research, which integrates all the details about datasets, source code, hyper-parameter settings, running logs, and evaluation results. The benchmark is designed with comprehensiveness and sustainability in mind. It covers both matching and ranking tasks, and also enables researchers to easily follow and contribute to the research in this field. This project will not only reduce the redundant efforts of researchers to re-implement or re-run existing baselines, but also drive more solid and reproducible research on recommender systems. We would like to call upon everyone to use the BARS benchmark for future evaluation, and contribute to the project through the portal at: https://openbenchmark.github.io/BARS.

Rethinking Benchmark and Contamination for Language Models with Rephrased Samples

Large language models are increasingly trained on all the data ever produced by humans. Many have raised concerns about the trustworthiness of public benchmarks due to potential contamination in pre-training or fine-tuning datasets. While most data decontamination efforts apply string matching (e.g., n-gram overlap) to remove benchmark data, we show that these methods are insufficient, and simple variations of test data (e.g., paraphrasing, translation) can easily bypass these decontamination measures. Furthermore, we demonstrate that if such variation of test data is not eliminated, a 13B model can easily overfit a test benchmark and achieve drastically high performance, on par with GPT-4. We validate such observations in widely used benchmarks such as MMLU, GSK8k, and HumanEval. To address this growing risk, we propose a stronger LLM-based decontamination method and apply it to widely used pre-training and fine-tuning datasets, revealing significant previously unknown test overlap. For example, in pre-training sets such as RedPajama-Data-1T and StarCoder-Data, we identified that 8-18\% of the HumanEval benchmark overlaps. Interestingly, we also find such contamination in synthetic dataset generated by GPT-3.5/4, suggesting a potential risk of unintentional contamination. We urge the community to adopt stronger decontamination approaches when using public benchmarks. Moreover, we call for the community to actively develop fresh one-time exams to evaluate models accurately. Our decontamination tool is publicly available at https://github.com/lm-sys/llm-decontaminator.

Benchmarking Neural Network Training Algorithms

Training algorithms, broadly construed, are an essential part of every deep learning pipeline. Training algorithm improvements that speed up training across a wide variety of workloads (e.g., better update rules, tuning protocols, learning rate schedules, or data selection schemes) could save time, save computational resources, and lead to better, more accurate, models. Unfortunately, as a community, we are currently unable to reliably identify training algorithm improvements, or even determine the state-of-the-art training algorithm. In this work, using concrete experiments, we argue that real progress in speeding up training requires new benchmarks that resolve three basic challenges faced by empirical comparisons of training algorithms: (1) how to decide when training is complete and precisely measure training time, (2) how to handle the sensitivity of measurements to exact workload details, and (3) how to fairly compare algorithms that require hyperparameter tuning. In order to address these challenges, we introduce a new, competitive, time-to-result benchmark using multiple workloads running on fixed hardware, the AlgoPerf: Training Algorithms benchmark. Our benchmark includes a set of workload variants that make it possible to detect benchmark submissions that are more robust to workload changes than current widely-used methods. Finally, we evaluate baseline submissions constructed using various optimizers that represent current practice, as well as other optimizers that have recently received attention in the literature. These baseline results collectively demonstrate the feasibility of our benchmark, show that non-trivial gaps between methods exist, and set a provisional state-of-the-art for future benchmark submissions to try and surpass.

REAP: A Large-Scale Realistic Adversarial Patch Benchmark

Machine learning models are known to be susceptible to adversarial perturbation. One famous attack is the adversarial patch, a sticker with a particularly crafted pattern that makes the model incorrectly predict the object it is placed on. This attack presents a critical threat to cyber-physical systems that rely on cameras such as autonomous cars. Despite the significance of the problem, conducting research in this setting has been difficult; evaluating attacks and defenses in the real world is exceptionally costly while synthetic data are unrealistic. In this work, we propose the REAP (REalistic Adversarial Patch) benchmark, a digital benchmark that allows the user to evaluate patch attacks on real images, and under real-world conditions. Built on top of the Mapillary Vistas dataset, our benchmark contains over 14,000 traffic signs. Each sign is augmented with a pair of geometric and lighting transformations, which can be used to apply a digitally generated patch realistically onto the sign. Using our benchmark, we perform the first large-scale assessments of adversarial patch attacks under realistic conditions. Our experiments suggest that adversarial patch attacks may present a smaller threat than previously believed and that the success rate of an attack on simpler digital simulations is not predictive of its actual effectiveness in practice. We release our benchmark publicly at https://github.com/wagner-group/reap-benchmark.

NAVSIM: Data-Driven Non-Reactive Autonomous Vehicle Simulation and Benchmarking

Benchmarking vision-based driving policies is challenging. On one hand, open-loop evaluation with real data is easy, but these results do not reflect closed-loop performance. On the other, closed-loop evaluation is possible in simulation, but is hard to scale due to its significant computational demands. Further, the simulators available today exhibit a large domain gap to real data. This has resulted in an inability to draw clear conclusions from the rapidly growing body of research on end-to-end autonomous driving. In this paper, we present NAVSIM, a middle ground between these evaluation paradigms, where we use large datasets in combination with a non-reactive simulator to enable large-scale real-world benchmarking. Specifically, we gather simulation-based metrics, such as progress and time to collision, by unrolling bird's eye view abstractions of the test scenes for a short simulation horizon. Our simulation is non-reactive, i.e., the evaluated policy and environment do not influence each other. As we demonstrate empirically, this decoupling allows open-loop metric computation while being better aligned with closed-loop evaluations than traditional displacement errors. NAVSIM enabled a new competition held at CVPR 2024, where 143 teams submitted 463 entries, resulting in several new insights. On a large set of challenging scenarios, we observe that simple methods with moderate compute requirements such as TransFuser can match recent large-scale end-to-end driving architectures such as UniAD. Our modular framework can potentially be extended with new datasets, data curation strategies, and metrics, and will be continually maintained to host future challenges. Our code is available at https://github.com/autonomousvision/navsim.

Safety Evaluation of DeepSeek Models in Chinese Contexts

Recently, the DeepSeek series of models, leveraging their exceptional reasoning capabilities and open-source strategy, is reshaping the global AI landscape. Despite these advantages, they exhibit significant safety deficiencies. Research conducted by Robust Intelligence, a subsidiary of Cisco, in collaboration with the University of Pennsylvania, revealed that DeepSeek-R1 has a 100\% attack success rate when processing harmful prompts. Additionally, multiple safety companies and research institutions have confirmed critical safety vulnerabilities in this model. As models demonstrating robust performance in Chinese and English, DeepSeek models require equally crucial safety assessments in both language contexts. However, current research has predominantly focused on safety evaluations in English environments, leaving a gap in comprehensive assessments of their safety performance in Chinese contexts. In response to this gap, this study introduces CHiSafetyBench, a Chinese-specific safety evaluation benchmark. This benchmark systematically evaluates the safety of DeepSeek-R1 and DeepSeek-V3 in Chinese contexts, revealing their performance across safety categories. The experimental results quantify the deficiencies of these two models in Chinese contexts, providing key insights for subsequent improvements. It should be noted that, despite our efforts to establish a comprehensive, objective, and authoritative evaluation benchmark, the selection of test samples, characteristics of data distribution, and the setting of evaluation criteria may inevitably introduce certain biases into the evaluation results. We will continuously optimize the evaluation benchmark and periodically update this report to provide more comprehensive and accurate assessment outcomes. Please refer to the latest version of the paper for the most recent evaluation results and conclusions.

Benchmark Agreement Testing Done Right: A Guide for LLM Benchmark Evaluation

Recent advancements in Language Models (LMs) have catalyzed the creation of multiple benchmarks, designed to assess these models' general capabilities. A crucial task, however, is assessing the validity of the benchmarks themselves. This is most commonly done via Benchmark Agreement Testing (BAT), where new benchmarks are validated against established ones using some agreement metric (e.g., rank correlation). Despite the crucial role of BAT for benchmark builders and consumers, there are no standardized procedures for such agreement testing. This deficiency can lead to invalid conclusions, fostering mistrust in benchmarks and upending the ability to properly choose the appropriate benchmark to use. By analyzing over 40 prominent benchmarks, we demonstrate how some overlooked methodological choices can significantly influence BAT results, potentially undermining the validity of conclusions. To address these inconsistencies, we propose a set of best practices for BAT and demonstrate how utilizing these methodologies greatly improves BAT robustness and validity. To foster adoption and facilitate future research,, we introduce BenchBench, a python package for BAT, and release the BenchBench-leaderboard, a meta-benchmark designed to evaluate benchmarks using their peers. Our findings underscore the necessity for standardized BAT, ensuring the robustness and validity of benchmark evaluations in the evolving landscape of language model research. BenchBench Package: https://github.com/IBM/BenchBench Leaderboard: https://huggingface.co/spaces/per/BenchBench

ChaosBench: A Multi-Channel, Physics-Based Benchmark for Subseasonal-to-Seasonal Climate Prediction

Accurate prediction of climate in the subseasonal-to-seasonal scale is crucial for disaster readiness, reduced economic risk, and improved policy-making amidst climate change. Yet, S2S prediction remains challenging due to the chaotic nature of the system. At present, existing benchmarks for weather and climate applications, tend to (1) have shorter forecasting range of up-to 14 days, (2) do not include a wide range of operational baseline forecasts, and (3) lack physics-based constraints for explainability. Thus, we propose ChaosBench, a large-scale, multi-channel, physics-based benchmark for S2S prediction. ChaosBench has over 460K frames of real-world observations and simulations, each with 60 variable-channels and spanning for up-to 45 years. We also propose several physics-based, in addition to vision-based metrics, that enables for a more physically-consistent model. Furthermore, we include a diverse set of physics-based forecasts from 4 national weather agencies as baselines to our data-driven counterpart. We establish two tasks that vary in complexity: full and sparse dynamics prediction. Our benchmark is one of the first to perform large-scale evaluation on existing models including PanguWeather, FourCastNetV2, GraphCast, and ClimaX, and finds methods originally developed for weather-scale applications fails on S2S task. We release our benchmark code and datasets at https://leap-stc.github.io/ChaosBench.

MOMAland: A Set of Benchmarks for Multi-Objective Multi-Agent Reinforcement Learning

Many challenging tasks such as managing traffic systems, electricity grids, or supply chains involve complex decision-making processes that must balance multiple conflicting objectives and coordinate the actions of various independent decision-makers (DMs). One perspective for formalising and addressing such tasks is multi-objective multi-agent reinforcement learning (MOMARL). MOMARL broadens reinforcement learning (RL) to problems with multiple agents each needing to consider multiple objectives in their learning process. In reinforcement learning research, benchmarks are crucial in facilitating progress, evaluation, and reproducibility. The significance of benchmarks is underscored by the existence of numerous benchmark frameworks developed for various RL paradigms, including single-agent RL (e.g., Gymnasium), multi-agent RL (e.g., PettingZoo), and single-agent multi-objective RL (e.g., MO-Gymnasium). To support the advancement of the MOMARL field, we introduce MOMAland, the first collection of standardised environments for multi-objective multi-agent reinforcement learning. MOMAland addresses the need for comprehensive benchmarking in this emerging field, offering over 10 diverse environments that vary in the number of agents, state representations, reward structures, and utility considerations. To provide strong baselines for future research, MOMAland also includes algorithms capable of learning policies in such settings.

JavaBench: A Benchmark of Object-Oriented Code Generation for Evaluating Large Language Models

Code generation benchmarks such as HumanEval are widely adopted to evaluate LLMs' capabilities. However, after consolidating the latest 24 benchmarks, we noticed three significant imbalances. First, imbalanced programming language. 95.8% of benchmarks involve Python, while only 5 benchmarks involve Java. Second, imbalanced code granularity. Function-/statement-level benchmarks account for over 83.3% of benchmarks. Only a mere handful extends to class-/project-levels, and all are limited to Python. Third, lacking advanced features. Existing benchmarks primarily assess basic coding skills, while overlooking advanced Object-Oriented Programming (OOP) features (i.e., encapsulation, inheritance, and polymorphism). To fill these gaps, we propose JavaBench, a project-level Java benchmark that exercises OOP features. It comprises four Java projects with 389 methods in 106 Java classes. The test coverage is up to 92%, and JavaBench is attested by 282 undergraduate students, reaching a 90.93/100 average score (i.e., pass rate against the test suite), ensuring the quality of documentation, code skeleton, and tests. To better evaluate LLM's capability against JavaBench, we introduce a systematic evaluation design covering three context settings and five synthesis strategies at two granularities using three hierarchical metrics. Our extensive experiment yields several interesting findings. First, we noticed that regarding project-level Java programming, LLMs are far behind undergraduate students (no project can be correctly completed by any studied LLMs, and at most 41.17% Pass@5 in a more relaxed evaluation). Second, using method signature as prompt context may strike an ideal balance for project-level code generation. JavaBench is publicly available at https://github.com/java-bench/JavaBench.

Machine Learning for Shipwreck Segmentation from Side Scan Sonar Imagery: Dataset and Benchmark

Open-source benchmark datasets have been a critical component for advancing machine learning for robot perception in terrestrial applications. Benchmark datasets enable the widespread development of state-of-the-art machine learning methods, which require large datasets for training, validation, and thorough comparison to competing approaches. Underwater environments impose several operational challenges that hinder efforts to collect large benchmark datasets for marine robot perception. Furthermore, a low abundance of targets of interest relative to the size of the search space leads to increased time and cost required to collect useful datasets for a specific task. As a result, there is limited availability of labeled benchmark datasets for underwater applications. We present the AI4Shipwrecks dataset, which consists of 24 distinct shipwreck sites totaling 286 high-resolution labeled side scan sonar images to advance the state-of-the-art in autonomous sonar image understanding. We leverage the unique abundance of targets in Thunder Bay National Marine Sanctuary in Lake Huron, MI, to collect and compile a sonar imagery benchmark dataset through surveys with an autonomous underwater vehicle (AUV). We consulted with expert marine archaeologists for the labeling of robotically gathered data. We then leverage this dataset to perform benchmark experiments for comparison of state-of-the-art supervised segmentation methods, and we present insights on opportunities and open challenges for the field. The dataset and benchmarking tools will be released as an open-source benchmark dataset to spur innovation in machine learning for Great Lakes and ocean exploration. The dataset and accompanying software are available at https://umfieldrobotics.github.io/ai4shipwrecks/.

Quantifying Variance in Evaluation Benchmarks

Evaluation benchmarks are the cornerstone of measuring capabilities of large language models (LLMs), as well as driving progress in said capabilities. Originally designed to make claims about capabilities (or lack thereof) in fully pretrained models, evaluation benchmarks are now also extensively used to decide between various training choices. Despite this widespread usage, we rarely quantify the variance in our evaluation benchmarks, which dictates whether differences in performance are meaningful. Here, we define and measure a range of metrics geared towards measuring variance in evaluation benchmarks, including seed variance across initialisations, and monotonicity during training. By studying a large number of models -- both openly available and pretrained from scratch -- we provide empirical estimates for a variety of variance metrics, with considerations and recommendations for practitioners. We also evaluate the utility and tradeoffs of continuous versus discrete performance measures and explore options for better understanding and reducing this variance. We find that simple changes, such as framing choice tasks (like MMLU) as completion tasks, can often reduce variance for smaller scale (sim7B) models, while more involved methods inspired from human testing literature (such as item analysis and item response theory) struggle to meaningfully reduce variance. Overall, our work provides insights into variance in evaluation benchmarks, suggests LM-specific techniques to reduce variance, and more generally encourages practitioners to carefully factor in variance when comparing models.

SORRY-Bench: Systematically Evaluating Large Language Model Safety Refusal Behaviors

Evaluating aligned large language models' (LLMs) ability to recognize and reject unsafe user requests is crucial for safe, policy-compliant deployments. Existing evaluation efforts, however, face three limitations that we address with SORRY-Bench, our proposed benchmark. First, existing methods often use coarse-grained taxonomies of unsafe topics, and are over-representing some fine-grained topics. For example, among the ten existing datasets that we evaluated, tests for refusals of self-harm instructions are over 3x less represented than tests for fraudulent activities. SORRY-Bench improves on this by using a fine-grained taxonomy of 45 potentially unsafe topics, and 450 class-balanced unsafe instructions, compiled through human-in-the-loop methods. Second, linguistic characteristics and formatting of prompts are often overlooked, like different languages, dialects, and more -- which are only implicitly considered in many evaluations. We supplement SORRY-Bench with 20 diverse linguistic augmentations to systematically examine these effects. Third, existing evaluations rely on large LLMs (e.g., GPT-4) for evaluation, which can be computationally expensive. We investigate design choices for creating a fast, accurate automated safety evaluator. By collecting 7K+ human annotations and conducting a meta-evaluation of diverse LLM-as-a-judge designs, we show that fine-tuned 7B LLMs can achieve accuracy comparable to GPT-4 scale LLMs, with lower computational cost. Putting these together, we evaluate over 40 proprietary and open-source LLMs on SORRY-Bench, analyzing their distinctive refusal behaviors. We hope our effort provides a building block for systematic evaluations of LLMs' safety refusal capabilities, in a balanced, granular, and efficient manner.

Job-SDF: A Multi-Granularity Dataset for Job Skill Demand Forecasting and Benchmarking

In a rapidly evolving job market, skill demand forecasting is crucial as it enables policymakers and businesses to anticipate and adapt to changes, ensuring that workforce skills align with market needs, thereby enhancing productivity and competitiveness. Additionally, by identifying emerging skill requirements, it directs individuals towards relevant training and education opportunities, promoting continuous self-learning and development. However, the absence of comprehensive datasets presents a significant challenge, impeding research and the advancement of this field. To bridge this gap, we present Job-SDF, a dataset designed to train and benchmark job-skill demand forecasting models. Based on 10.35 million public job advertisements collected from major online recruitment platforms in China between 2021 and 2023, this dataset encompasses monthly recruitment demand for 2,324 types of skills across 521 companies. Our dataset uniquely enables evaluating skill demand forecasting models at various granularities, including occupation, company, and regional levels. We benchmark a range of models on this dataset, evaluating their performance in standard scenarios, in predictions focused on lower value ranges, and in the presence of structural breaks, providing new insights for further research. Our code and dataset are publicly accessible via the https://github.com/Job-SDF/benchmark.

The WMDP Benchmark: Measuring and Reducing Malicious Use With Unlearning

The White House Executive Order on Artificial Intelligence highlights the risks of large language models (LLMs) empowering malicious actors in developing biological, cyber, and chemical weapons. To measure these risks of malicious use, government institutions and major AI labs are developing evaluations for hazardous capabilities in LLMs. However, current evaluations are private, preventing further research into mitigating risk. Furthermore, they focus on only a few, highly specific pathways for malicious use. To fill these gaps, we publicly release the Weapons of Mass Destruction Proxy (WMDP) benchmark, a dataset of 4,157 multiple-choice questions that serve as a proxy measurement of hazardous knowledge in biosecurity, cybersecurity, and chemical security. WMDP was developed by a consortium of academics and technical consultants, and was stringently filtered to eliminate sensitive information prior to public release. WMDP serves two roles: first, as an evaluation for hazardous knowledge in LLMs, and second, as a benchmark for unlearning methods to remove such hazardous knowledge. To guide progress on unlearning, we develop CUT, a state-of-the-art unlearning method based on controlling model representations. CUT reduces model performance on WMDP while maintaining general capabilities in areas such as biology and computer science, suggesting that unlearning may be a concrete path towards reducing malicious use from LLMs. We release our benchmark and code publicly at https://wmdp.ai

CodeElo: Benchmarking Competition-level Code Generation of LLMs with Human-comparable Elo Ratings

With the increasing code reasoning capabilities of existing large language models (LLMs) and breakthroughs in reasoning models like OpenAI o1 and o3, there is a growing need to develop more challenging and comprehensive benchmarks that effectively test their sophisticated competition-level coding abilities. Existing benchmarks, like LiveCodeBench and USACO, fall short due to the unavailability of private test cases, lack of support for special judges, and misaligned execution environments. To bridge this gap, we introduce CodeElo, a standardized competition-level code generation benchmark that effectively addresses all these challenges for the first time. CodeElo benchmark is mainly based on the official CodeForces platform and tries to align with the platform as much as possible. We compile the recent six months of contest problems on CodeForces with detailed information such as contest divisions, problem difficulty ratings, and problem algorithm tags. We introduce a unique judging method in which problems are submitted directly to the platform and develop a reliable Elo rating calculation system that aligns with the platform and is comparable with human participants but has lower variance. By testing on our CodeElo, we provide the Elo ratings of 30 existing popular open-source and 3 proprietary LLMs for the first time. The results show that o1-mini and QwQ-32B-Preview stand out significantly, achieving Elo ratings of 1578 and 1261, respectively, while other models struggle even with the easiest problems, placing in the lowest 20 percent among all human participants. Detailed analysis experiments are also conducted to provide insights into performance across algorithms and comparisons between using C++ and Python, which can suggest directions for future studies.

SecCodePLT: A Unified Platform for Evaluating the Security of Code GenAI

Existing works have established multiple benchmarks to highlight the security risks associated with Code GenAI. These risks are primarily reflected in two areas: a model potential to generate insecure code (insecure coding) and its utility in cyberattacks (cyberattack helpfulness). While these benchmarks have made significant strides, there remain opportunities for further improvement. For instance, many current benchmarks tend to focus more on a model ability to provide attack suggestions rather than its capacity to generate executable attacks. Additionally, most benchmarks rely heavily on static evaluation metrics, which may not be as precise as dynamic metrics such as passing test cases. Conversely, expert-verified benchmarks, while offering high-quality data, often operate at a smaller scale. To address these gaps, we develop SecCodePLT, a unified and comprehensive evaluation platform for code GenAIs' risks. For insecure code, we introduce a new methodology for data creation that combines experts with automatic generation. Our methodology ensures the data quality while enabling large-scale generation. We also associate samples with test cases to conduct code-related dynamic evaluation. For cyberattack helpfulness, we set up a real environment and construct samples to prompt a model to generate actual attacks, along with dynamic metrics in our environment. We conduct extensive experiments and show that SecCodePLT outperforms the state-of-the-art (SOTA) benchmark CyberSecEval in security relevance. Furthermore, it better identifies the security risks of SOTA models in insecure coding and cyberattack helpfulness. Finally, we apply SecCodePLT to the SOTA code agent, Cursor, and, for the first time, identify non-trivial security risks in this advanced coding agent.

Agent-SafetyBench: Evaluating the Safety of LLM Agents

As large language models (LLMs) are increasingly deployed as agents, their integration into interactive environments and tool use introduce new safety challenges beyond those associated with the models themselves. However, the absence of comprehensive benchmarks for evaluating agent safety presents a significant barrier to effective assessment and further improvement. In this paper, we introduce Agent-SafetyBench, a comprehensive benchmark designed to evaluate the safety of LLM agents. Agent-SafetyBench encompasses 349 interaction environments and 2,000 test cases, evaluating 8 categories of safety risks and covering 10 common failure modes frequently encountered in unsafe interactions. Our evaluation of 16 popular LLM agents reveals a concerning result: none of the agents achieves a safety score above 60%. This highlights significant safety challenges in LLM agents and underscores the considerable need for improvement. Through quantitative analysis, we identify critical failure modes and summarize two fundamental safety detects in current LLM agents: lack of robustness and lack of risk awareness. Furthermore, our findings suggest that reliance on defense prompts alone is insufficient to address these safety issues, emphasizing the need for more advanced and robust strategies. We release Agent-SafetyBench at https://github.com/thu-coai/Agent-SafetyBench to facilitate further research and innovation in agent safety evaluation and improvement.

JudgeBench: A Benchmark for Evaluating LLM-based Judges

LLM-based judges have emerged as a scalable alternative to human evaluation and are increasingly used to assess, compare, and improve models. However, the reliability of LLM-based judges themselves is rarely scrutinized. As LLMs become more advanced, their responses grow more sophisticated, requiring stronger judges to evaluate them. Existing benchmarks primarily focus on a judge's alignment with human preferences, but often fail to account for more challenging tasks where crowdsourced human preference is a poor indicator of factual and logical correctness. To address this, we propose a novel evaluation framework to objectively evaluate LLM-based judges. Based on this framework, we propose JudgeBench, a benchmark for evaluating LLM-based judges on challenging response pairs spanning knowledge, reasoning, math, and coding. JudgeBench leverages a novel pipeline for converting existing difficult datasets into challenging response pairs with preference labels reflecting objective correctness. Our comprehensive evaluation on a collection of prompted judges, fine-tuned judges, multi-agent judges, and reward models shows that JudgeBench poses a significantly greater challenge than previous benchmarks, with many strong models (e.g., GPT-4o) performing just slightly better than random guessing. Overall, JudgeBench offers a reliable platform for assessing increasingly advanced LLM-based judges. Data and code are available at https://github.com/ScalerLab/JudgeBench .

Barkour: Benchmarking Animal-level Agility with Quadruped Robots

Animals have evolved various agile locomotion strategies, such as sprinting, leaping, and jumping. There is a growing interest in developing legged robots that move like their biological counterparts and show various agile skills to navigate complex environments quickly. Despite the interest, the field lacks systematic benchmarks to measure the performance of control policies and hardware in agility. We introduce the Barkour benchmark, an obstacle course to quantify agility for legged robots. Inspired by dog agility competitions, it consists of diverse obstacles and a time based scoring mechanism. This encourages researchers to develop controllers that not only move fast, but do so in a controllable and versatile way. To set strong baselines, we present two methods for tackling the benchmark. In the first approach, we train specialist locomotion skills using on-policy reinforcement learning methods and combine them with a high-level navigation controller. In the second approach, we distill the specialist skills into a Transformer-based generalist locomotion policy, named Locomotion-Transformer, that can handle various terrains and adjust the robot's gait based on the perceived environment and robot states. Using a custom-built quadruped robot, we demonstrate that our method can complete the course at half the speed of a dog. We hope that our work represents a step towards creating controllers that enable robots to reach animal-level agility.

The Hidden Risks of Large Reasoning Models: A Safety Assessment of R1

The rapid development of large reasoning models, such as OpenAI-o3 and DeepSeek-R1, has led to significant improvements in complex reasoning over non-reasoning large language models~(LLMs). However, their enhanced capabilities, combined with the open-source access of models like DeepSeek-R1, raise serious safety concerns, particularly regarding their potential for misuse. In this work, we present a comprehensive safety assessment of these reasoning models, leveraging established safety benchmarks to evaluate their compliance with safety regulations. Furthermore, we investigate their susceptibility to adversarial attacks, such as jailbreaking and prompt injection, to assess their robustness in real-world applications. Through our multi-faceted analysis, we uncover four key findings: (1) There is a significant safety gap between the open-source R1 models and the o3-mini model, on both safety benchmark and attack, suggesting more safety effort on R1 is needed. (2) The distilled reasoning model shows poorer safety performance compared to its safety-aligned base models. (3) The stronger the model's reasoning ability, the greater the potential harm it may cause when answering unsafe questions. (4) The thinking process in R1 models pose greater safety concerns than their final answers. Our study provides insights into the security implications of reasoning models and highlights the need for further advancements in R1 models' safety to close the gap.

Eureka: Evaluating and Understanding Large Foundation Models

Rigorous and reproducible evaluation is critical for assessing the state of the art and for guiding scientific advances in Artificial Intelligence. Evaluation is challenging in practice due to several reasons, including benchmark saturation, lack of transparency in methods used for measurement, development challenges in extracting measurements for generative tasks, and, more generally, the extensive number of capabilities required for a well-rounded comparison across models. We make three contributions to alleviate the above challenges. First, we present Eureka, an open-source framework for standardizing evaluations of large foundation models beyond single-score reporting and rankings. Second, we introduce Eureka-Bench as an extensible collection of benchmarks testing capabilities that (i) are still challenging for state-of-the-art models and (ii) represent fundamental but overlooked language and multimodal capabilities. The inherent space for improvement in non-saturated benchmarks enables us to discover meaningful differences between models at a capability level. Third, using Eureka, we conduct an analysis of 12 state-of-the-art models, providing in-depth insights into failure understanding and model comparison, which can be leveraged to plan targeted improvements. In contrast to recent trends in reports and leaderboards showing absolute rankings and claims for one model or another to be the best, our analysis shows that there is no such best model. Different models have different strengths, but there are models that appear more often than others as best performers for some capabilities. Despite the recent improvements, current models still struggle with several fundamental capabilities including detailed image understanding, benefiting from multimodal input when available rather than fully relying on language, factuality and grounding for information retrieval, and over refusals.

Flames: Benchmarking Value Alignment of LLMs in Chinese

The widespread adoption of large language models (LLMs) across various regions underscores the urgent need to evaluate their alignment with human values. Current benchmarks, however, fall short of effectively uncovering safety vulnerabilities in LLMs. Despite numerous models achieving high scores and 'topping the chart' in these evaluations, there is still a significant gap in LLMs' deeper alignment with human values and achieving genuine harmlessness. To this end, this paper proposes a value alignment benchmark named Flames, which encompasses both common harmlessness principles and a unique morality dimension that integrates specific Chinese values such as harmony. Accordingly, we carefully design adversarial prompts that incorporate complex scenarios and jailbreaking methods, mostly with implicit malice. By prompting 17 mainstream LLMs, we obtain model responses and rigorously annotate them for detailed evaluation. Our findings indicate that all the evaluated LLMs demonstrate relatively poor performance on Flames, particularly in the safety and fairness dimensions. We also develop a lightweight specified scorer capable of scoring LLMs across multiple dimensions to efficiently evaluate new models on the benchmark. The complexity of Flames has far exceeded existing benchmarks, setting a new challenge for contemporary LLMs and highlighting the need for further alignment of LLMs. Our benchmark is publicly available at https://github.com/AIFlames/Flames.

LiveBench: A Challenging, Contamination-Free LLM Benchmark

Test set contamination, wherein test data from a benchmark ends up in a newer model's training set, is a well-documented obstacle for fair LLM evaluation and can quickly render benchmarks obsolete. To mitigate this, many recent benchmarks crowdsource new prompts and evaluations from human or LLM judges; however, these can introduce significant biases, and break down when scoring hard questions. In this work, we introduce a new benchmark for LLMs designed to be immune to both test set contamination and the pitfalls of LLM judging and human crowdsourcing. We release LiveBench, the first benchmark that (1) contains frequently-updated questions from recent information sources, (2) scores answers automatically according to objective ground-truth values, and (3) contains a wide variety of challenging tasks, spanning math, coding, reasoning, language, instruction following, and data analysis. To achieve this, LiveBench contains questions that are based on recently-released math competitions, arXiv papers, news articles, and datasets, and it contains harder, contamination-free versions of tasks from previous benchmarks such as Big-Bench Hard, AMPS, and IFEval. We evaluate many prominent closed-source models, as well as dozens of open-source models ranging from 0.5B to 110B in size. LiveBench is difficult, with top models achieving below 65% accuracy. We release all questions, code, and model answers. Questions will be added and updated on a monthly basis, and we will release new tasks and harder versions of tasks over time so that LiveBench can distinguish between the capabilities of LLMs as they improve in the future. We welcome community engagement and collaboration for expanding the benchmark tasks and models.

D5RL: Diverse Datasets for Data-Driven Deep Reinforcement Learning

Offline reinforcement learning algorithms hold the promise of enabling data-driven RL methods that do not require costly or dangerous real-world exploration and benefit from large pre-collected datasets. This in turn can facilitate real-world applications, as well as a more standardized approach to RL research. Furthermore, offline RL methods can provide effective initializations for online finetuning to overcome challenges with exploration. However, evaluating progress on offline RL algorithms requires effective and challenging benchmarks that capture properties of real-world tasks, provide a range of task difficulties, and cover a range of challenges both in terms of the parameters of the domain (e.g., length of the horizon, sparsity of rewards) and the parameters of the data (e.g., narrow demonstration data or broad exploratory data). While considerable progress in offline RL in recent years has been enabled by simpler benchmark tasks, the most widely used datasets are increasingly saturating in performance and may fail to reflect properties of realistic tasks. We propose a new benchmark for offline RL that focuses on realistic simulations of robotic manipulation and locomotion environments, based on models of real-world robotic systems, and comprising a variety of data sources, including scripted data, play-style data collected by human teleoperators, and other data sources. Our proposed benchmark covers state-based and image-based domains, and supports both offline RL and online fine-tuning evaluation, with some of the tasks specifically designed to require both pre-training and fine-tuning. We hope that our proposed benchmark will facilitate further progress on both offline RL and fine-tuning algorithms. Website with code, examples, tasks, and data is available at https://sites.google.com/view/d5rl/

PrimeGuard: Safe and Helpful LLMs through Tuning-Free Routing

Deploying language models (LMs) necessitates outputs to be both high-quality and compliant with safety guidelines. Although Inference-Time Guardrails (ITG) offer solutions that shift model output distributions towards compliance, we find that current methods struggle in balancing safety with helpfulness. ITG Methods that safely address non-compliant queries exhibit lower helpfulness while those that prioritize helpfulness compromise on safety. We refer to this trade-off as the guardrail tax, analogous to the alignment tax. To address this, we propose PrimeGuard, a novel ITG method that utilizes structured control flow. PrimeGuard routes requests to different self-instantiations of the LM with varying instructions, leveraging its inherent instruction-following capabilities and in-context learning. Our tuning-free approach dynamically compiles system-designer guidelines for each query. We construct and release safe-eval, a diverse red-team safety benchmark. Extensive evaluations demonstrate that PrimeGuard, without fine-tuning, overcomes the guardrail tax by (1) significantly increasing resistance to iterative jailbreak attacks and (2) achieving state-of-the-art results in safety guardrailing while (3) matching helpfulness scores of alignment-tuned models. Extensive evaluations demonstrate that PrimeGuard, without fine-tuning, outperforms all competing baselines and overcomes the guardrail tax by improving the fraction of safe responses from 61% to 97% and increasing average helpfulness scores from 4.17 to 4.29 on the largest models, while reducing attack success rate from 100% to 8%. PrimeGuard implementation is available at https://github.com/dynamofl/PrimeGuard and safe-eval dataset is available at https://huggingface.co/datasets/dynamoai/safe_eval.

Varco Arena: A Tournament Approach to Reference-Free Benchmarking Large Language Models

The rapid advancement of Large Language Models (LLMs) necessitates robust evaluation methodologies. Current benchmarking approaches often rely on comparing model outputs against predefined prompts and reference outputs. Relying on predefined reference outputs hinders flexible adaptation of benchmarks to the rapidly evolving capabilities of LLMs. This limitation necessitates periodic efforts to prepare new benchmarks. To keep pace with rapidly evolving LLM capabilities, we propose a more flexible benchmarking approach. Our method, \textbf{Varco Arena}, provides reference-free benchmarking of LLMs in tournament style. \textbf{Varco Arena} directly compares LLM outputs across a diverse set of prompts, determining model rankings through a single-elimination tournament structure. This direct pairwise comparison offers two key advantages: (1) Direct comparison, unmediated by reference text, more effectively orders competing LLMs, resulting in more reliable rankings, and (2) reference-free approach to benchmarking adds flexibility in updating benchmark prompts by eliminating the need for quality references. Our empirical results, supported by simulation experiments, demonstrate that the \textbf{Varco Arena} tournament approach aligns better with the current Elo model for benchmarking LLMs. The alignment is measured in terms of Spearman correlation, showing improvement over current practice of benchmarking that use reference outputs as comparison anchors.

CREAK: A Dataset for Commonsense Reasoning over Entity Knowledge

Most benchmark datasets targeting commonsense reasoning focus on everyday scenarios: physical knowledge like knowing that you could fill a cup under a waterfall [Talmor et al., 2019], social knowledge like bumping into someone is awkward [Sap et al., 2019], and other generic situations. However, there is a rich space of commonsense inferences anchored to knowledge about specific entities: for example, deciding the truthfulness of a claim "Harry Potter can teach classes on how to fly on a broomstick." Can models learn to combine entity knowledge with commonsense reasoning in this fashion? We introduce CREAK, a testbed for commonsense reasoning about entity knowledge, bridging fact-checking about entities (Harry Potter is a wizard and is skilled at riding a broomstick) with commonsense inferences (if you're good at a skill you can teach others how to do it). Our dataset consists of 13k human-authored English claims about entities that are either true or false, in addition to a small contrast set. Crowdworkers can easily come up with these statements and human performance on the dataset is high (high 90s); we argue that models should be able to blend entity knowledge and commonsense reasoning to do well here. In our experiments, we focus on the closed-book setting and observe that a baseline model finetuned on existing fact verification benchmark struggles on CREAK. Training a model on CREAK improves accuracy by a substantial margin, but still falls short of human performance. Our benchmark provides a unique probe into natural language understanding models, testing both its ability to retrieve facts (e.g., who teaches at the University of Chicago?) and unstated commonsense knowledge (e.g., butlers do not yell at guests).

SciSafeEval: A Comprehensive Benchmark for Safety Alignment of Large Language Models in Scientific Tasks

Large language models (LLMs) have had a transformative impact on a variety of scientific tasks across disciplines such as biology, chemistry, medicine, and physics. However, ensuring the safety alignment of these models in scientific research remains an underexplored area, with existing benchmarks primarily focus on textual content and overlooking key scientific representations such as molecular, protein, and genomic languages. Moreover, the safety mechanisms of LLMs in scientific tasks are insufficiently studied. To address these limitations, we introduce SciSafeEval, a comprehensive benchmark designed to evaluate the safety alignment of LLMs across a range of scientific tasks. SciSafeEval spans multiple scientific languages - including textual, molecular, protein, and genomic - and covers a wide range of scientific domains. We evaluate LLMs in zero-shot, few-shot and chain-of-thought settings, and introduce a 'jailbreak' enhancement feature that challenges LLMs equipped with safety guardrails, rigorously testing their defenses against malicious intention. Our benchmark surpasses existing safety datasets in both scale and scope, providing a robust platform for assessing the safety and performance of LLMs in scientific contexts. This work aims to facilitate the responsible development and deployment of LLMs, promoting alignment with safety and ethical standards in scientific research.

This is the way: designing and compiling LEPISZCZE, a comprehensive NLP benchmark for Polish

The availability of compute and data to train larger and larger language models increases the demand for robust methods of benchmarking the true progress of LM training. Recent years witnessed significant progress in standardized benchmarking for English. Benchmarks such as GLUE, SuperGLUE, or KILT have become de facto standard tools to compare large language models. Following the trend to replicate GLUE for other languages, the KLEJ benchmark has been released for Polish. In this paper, we evaluate the progress in benchmarking for low-resourced languages. We note that only a handful of languages have such comprehensive benchmarks. We also note the gap in the number of tasks being evaluated by benchmarks for resource-rich English/Chinese and the rest of the world. In this paper, we introduce LEPISZCZE (the Polish word for glew, the Middle English predecessor of glue), a new, comprehensive benchmark for Polish NLP with a large variety of tasks and high-quality operationalization of the benchmark. We design LEPISZCZE with flexibility in mind. Including new models, datasets, and tasks is as simple as possible while still offering data versioning and model tracking. In the first run of the benchmark, we test 13 experiments (task and dataset pairs) based on the five most recent LMs for Polish. We use five datasets from the Polish benchmark and add eight novel datasets. As the paper's main contribution, apart from LEPISZCZE, we provide insights and experiences learned while creating the benchmark for Polish as the blueprint to design similar benchmarks for other low-resourced languages.

NaturalCodeBench: Examining Coding Performance Mismatch on HumanEval and Natural User Prompts

Large language models (LLMs) have manifested strong ability to generate codes for productive activities. However, current benchmarks for code synthesis, such as HumanEval, MBPP, and DS-1000, are predominantly oriented towards introductory tasks on algorithm and data science, insufficiently satisfying challenging requirements prevalent in real-world coding. To fill this gap, we propose NaturalCodeBench (NCB), a challenging code benchmark designed to mirror the complexity and variety of scenarios in real coding tasks. NCB comprises 402 high-quality problems in Python and Java, meticulously selected from natural user queries from online coding services, covering 6 different domains. Noting the extraordinary difficulty in creating testing cases for real-world queries, we also introduce a semi-automated pipeline to enhance the efficiency of test case construction. Comparing with manual solutions, it achieves an efficiency increase of more than 4 times. Our systematic experiments on 39 LLMs find that performance gaps on NCB between models with close HumanEval scores could still be significant, indicating a lack of focus on practical code synthesis scenarios or over-specified optimization on HumanEval. On the other hand, even the best-performing GPT-4 is still far from satisfying on NCB. The evaluation toolkit and development set are available at https://github.com/THUDM/NaturalCodeBench.

Benchmarking Multimodal AutoML for Tabular Data with Text Fields

We consider the use of automated supervised learning systems for data tables that not only contain numeric/categorical columns, but one or more text fields as well. Here we assemble 18 multimodal data tables that each contain some text fields and stem from a real business application. Our publicly-available benchmark enables researchers to comprehensively evaluate their own methods for supervised learning with numeric, categorical, and text features. To ensure that any single modeling strategy which performs well over all 18 datasets will serve as a practical foundation for multimodal text/tabular AutoML, the diverse datasets in our benchmark vary greatly in: sample size, problem types (a mix of classification and regression tasks), number of features (with the number of text columns ranging from 1 to 28 between datasets), as well as how the predictive signal is decomposed between text vs. numeric/categorical features (and predictive interactions thereof). Over this benchmark, we evaluate various straightforward pipelines to model such data, including standard two-stage approaches where NLP is used to featurize the text such that AutoML for tabular data can then be applied. Compared with human data science teams, the fully automated methodology that performed best on our benchmark (stack ensembling a multimodal Transformer with various tree models) also manages to rank 1st place when fit to the raw text/tabular data in two MachineHack prediction competitions and 2nd place (out of 2380 teams) in Kaggle's Mercari Price Suggestion Challenge.

A Critical Review of Large Language Model on Software Engineering: An Example from ChatGPT and Automated Program Repair

Large Language Models (LLMs) have been gaining increasing attention and demonstrated promising performance across a variety of Software Engineering (SE) tasks, such as Automated Program Repair (APR), code summarization, and code completion. For example, ChatGPT, the latest black-box LLM, has been investigated by numerous recent research studies and has shown impressive performance in various tasks. However, there exists a potential risk of data leakage since these LLMs are usually close-sourced with unknown specific training details, e.g., pre-training datasets. In this paper, we seek to review the bug-fixing capabilities of ChatGPT on a clean APR benchmark with different research objectives. We first introduce {\benchmark}, a new benchmark with buggy and the corresponding fixed programs from competitive programming problems starting from 2023, after the training cutoff point of ChatGPT. The results on {\benchmark} show that ChatGPT is able to fix 109 out of 151 buggy programs using the basic prompt within 35 independent rounds, outperforming state-of-the-art LLMs CodeT5 and PLBART by 27.5\% and 62.4\% prediction accuracy. We also investigate the impact of three types of prompts, i.e., problem description, error feedback, and bug localization, leading to additional 34 fixed bugs. Besides, we provide additional discussion from the interactive nature of ChatGPT to illustrate the capacity of a dialog-based repair workflow with 9 additional fixed bugs. Inspired by the findings, we further pinpoint various challenges and opportunities for advanced SE study equipped with such LLMs (e.g.,~ChatGPT) in the near future. More importantly, our work calls for more research on the reevaluation of the achievements obtained by existing black-box LLMs across various SE tasks, not limited to ChatGPT on APR.

RE-Bench: Evaluating frontier AI R&D capabilities of language model agents against human experts

Frontier AI safety policies highlight automation of AI research and development (R&D) by AI agents as an important capability to anticipate. However, there exist few evaluations for AI R&D capabilities, and none that are highly realistic and have a direct comparison to human performance. We introduce RE-Bench (Research Engineering Benchmark, v1), which consists of 7 challenging, open-ended ML research engineering environments and data from 71 8-hour attempts by 61 distinct human experts. We confirm that our experts make progress in the environments given 8 hours, with 82% of expert attempts achieving a non-zero score and 24% matching or exceeding our strong reference solutions. We compare humans to several public frontier models through best-of-k with varying time budgets and agent designs, and find that the best AI agents achieve a score 4x higher than human experts when both are given a total time budget of 2 hours per environment. However, humans currently display better returns to increasing time budgets, narrowly exceeding the top AI agent scores given an 8-hour budget, and achieving 2x the score of the top AI agent when both are given 32 total hours (across different attempts). Qualitatively, we find that modern AI agents possess significant expertise in many ML topics -- e.g. an agent wrote a faster custom Triton kernel than any of our human experts' -- and can generate and test solutions over ten times faster than humans, at much lower cost. We open-source the evaluation environments, human expert data, analysis code and agent trajectories to facilitate future research.

Deep Reinforcement Learning at the Edge of the Statistical Precipice

Deep reinforcement learning (RL) algorithms are predominantly evaluated by comparing their relative performance on a large suite of tasks. Most published results on deep RL benchmarks compare point estimates of aggregate performance such as mean and median scores across tasks, ignoring the statistical uncertainty implied by the use of a finite number of training runs. Beginning with the Arcade Learning Environment (ALE), the shift towards computationally-demanding benchmarks has led to the practice of evaluating only a small number of runs per task, exacerbating the statistical uncertainty in point estimates. In this paper, we argue that reliable evaluation in the few run deep RL regime cannot ignore the uncertainty in results without running the risk of slowing down progress in the field. We illustrate this point using a case study on the Atari 100k benchmark, where we find substantial discrepancies between conclusions drawn from point estimates alone versus a more thorough statistical analysis. With the aim of increasing the field's confidence in reported results with a handful of runs, we advocate for reporting interval estimates of aggregate performance and propose performance profiles to account for the variability in results, as well as present more robust and efficient aggregate metrics, such as interquartile mean scores, to achieve small uncertainty in results. Using such statistical tools, we scrutinize performance evaluations of existing algorithms on other widely used RL benchmarks including the ALE, Procgen, and the DeepMind Control Suite, again revealing discrepancies in prior comparisons. Our findings call for a change in how we evaluate performance in deep RL, for which we present a more rigorous evaluation methodology, accompanied with an open-source library rliable, to prevent unreliable results from stagnating the field.

CyberSecEval 2: A Wide-Ranging Cybersecurity Evaluation Suite for Large Language Models

Large language models (LLMs) introduce new security risks, but there are few comprehensive evaluation suites to measure and reduce these risks. We present BenchmarkName, a novel benchmark to quantify LLM security risks and capabilities. We introduce two new areas for testing: prompt injection and code interpreter abuse. We evaluated multiple state-of-the-art (SOTA) LLMs, including GPT-4, Mistral, Meta Llama 3 70B-Instruct, and Code Llama. Our results show that conditioning away risk of attack remains an unsolved problem; for example, all tested models showed between 26% and 41% successful prompt injection tests. We further introduce the safety-utility tradeoff: conditioning an LLM to reject unsafe prompts can cause the LLM to falsely reject answering benign prompts, which lowers utility. We propose quantifying this tradeoff using False Refusal Rate (FRR). As an illustration, we introduce a novel test set to quantify FRR for cyberattack helpfulness risk. We find many LLMs able to successfully comply with "borderline" benign requests while still rejecting most unsafe requests. Finally, we quantify the utility of LLMs for automating a core cybersecurity task, that of exploiting software vulnerabilities. This is important because the offensive capabilities of LLMs are of intense interest; we quantify this by creating novel test sets for four representative problems. We find that models with coding capabilities perform better than those without, but that further work is needed for LLMs to become proficient at exploit generation. Our code is open source and can be used to evaluate other LLMs.

LiveXiv -- A Multi-Modal Live Benchmark Based on Arxiv Papers Content

The large-scale training of multi-modal models on data scraped from the web has shown outstanding utility in infusing these models with the required world knowledge to perform effectively on multiple downstream tasks. However, one downside of scraping data from the web can be the potential sacrifice of the benchmarks on which the abilities of these models are often evaluated. To safeguard against test data contamination and to truly test the abilities of these foundation models we propose LiveXiv: A scalable evolving live benchmark based on scientific ArXiv papers. LiveXiv accesses domain-specific manuscripts at any given timestamp and proposes to automatically generate visual question-answer pairs (VQA). This is done without any human-in-the-loop, using the multi-modal content in the manuscripts, like graphs, charts, and tables. Moreover, we introduce an efficient evaluation approach that estimates the performance of all models on the evolving benchmark using evaluations of only a subset of models. This significantly reduces the overall evaluation cost. We benchmark multiple open and proprietary Large Multi-modal Models (LMMs) on the first version of our benchmark, showing its challenging nature and exposing the models true abilities, avoiding contamination. Lastly, in our commitment to high quality, we have collected and evaluated a manually verified subset. By comparing its overall results to our automatic annotations, we have found that the performance variance is indeed minimal (<2.5%). Our dataset is available online on HuggingFace, and our code will be available here.

JailbreakBench: An Open Robustness Benchmark for Jailbreaking Large Language Models

Jailbreak attacks cause large language models (LLMs) to generate harmful, unethical, or otherwise objectionable content. Evaluating these attacks presents a number of challenges, which the current collection of benchmarks and evaluation techniques do not adequately address. First, there is no clear standard of practice regarding jailbreaking evaluation. Second, existing works compute costs and success rates in incomparable ways. And third, numerous works are not reproducible, as they withhold adversarial prompts, involve closed-source code, or rely on evolving proprietary APIs. To address these challenges, we introduce JailbreakBench, an open-sourced benchmark with the following components: (1) an evolving repository of state-of-the-art adversarial prompts, which we refer to as jailbreak artifacts; (2) a jailbreaking dataset comprising 100 behaviors -- both original and sourced from prior work -- which align with OpenAI's usage policies; (3) a standardized evaluation framework that includes a clearly defined threat model, system prompts, chat templates, and scoring functions; and (4) a leaderboard that tracks the performance of attacks and defenses for various LLMs. We have carefully considered the potential ethical implications of releasing this benchmark, and believe that it will be a net positive for the community. Over time, we will expand and adapt the benchmark to reflect technical and methodological advances in the research community.

SCALE: Scaling up the Complexity for Advanced Language Model Evaluation

Recent strides in Large Language Models (LLMs) have saturated many NLP benchmarks (even professional domain-specific ones), emphasizing the need for novel, more challenging novel ones to properly assess LLM capabilities. In this paper, we introduce a novel NLP benchmark that poses challenges to current LLMs across four key dimensions: processing long documents (up to 50K tokens), utilizing domain specific knowledge (embodied in legal texts), multilingual understanding (covering five languages), and multitasking (comprising legal document to document Information Retrieval, Court View Generation, Leading Decision Summarization, Citation Extraction, and eight challenging Text Classification tasks). Our benchmark comprises diverse legal NLP datasets from the Swiss legal system, allowing for a comprehensive study of the underlying Non-English, inherently multilingual, federal legal system. Despite recent advances, efficiently processing long documents for intense review/analysis tasks remains an open challenge for language models. Also, comprehensive, domain-specific benchmarks requiring high expertise to develop are rare, as are multilingual benchmarks. This scarcity underscores our contribution's value, considering most public models are trained predominantly on English corpora, while other languages remain understudied, particularly for practical domain-specific NLP tasks. Our benchmark allows for testing and advancing the state-of-the-art LLMs. As part of our study, we evaluate several pre-trained multilingual language models on our benchmark to establish strong baselines as a point of reference. Despite the large size of our datasets (tens to hundreds of thousands of examples), existing publicly available models struggle with most tasks, even after in-domain pretraining. We publish all resources (benchmark suite, pre-trained models, code) under a fully permissive open CC BY-SA license.

STEER-ME: Assessing the Microeconomic Reasoning of Large Language Models

How should one judge whether a given large language model (LLM) can reliably perform economic reasoning? Most existing LLM benchmarks focus on specific applications and fail to present the model with a rich variety of economic tasks. A notable exception is Raman et al. [2024], who offer an approach for comprehensively benchmarking strategic decision-making; however, this approach fails to address the non-strategic settings prevalent in microeconomics, such as supply-and-demand analysis. We address this gap by taxonomizing microeconomic reasoning into 58 distinct elements, focusing on the logic of supply and demand, each grounded in up to 10 distinct domains, 5 perspectives, and 3 types. The generation of benchmark data across this combinatorial space is powered by a novel LLM-assisted data generation protocol that we dub auto-STEER, which generates a set of questions by adapting handwritten templates to target new domains and perspectives. Because it offers an automated way of generating fresh questions, auto-STEER mitigates the risk that LLMs will be trained to over-fit evaluation benchmarks; we thus hope that it will serve as a useful tool both for evaluating and fine-tuning models for years to come. We demonstrate the usefulness of our benchmark via a case study on 27 LLMs, ranging from small open-source models to the current state of the art. We examined each model's ability to solve microeconomic problems across our whole taxonomy and present the results across a range of prompting strategies and scoring metrics.

DOMAINEVAL: An Auto-Constructed Benchmark for Multi-Domain Code Generation

Code benchmarks such as HumanEval are widely adopted to evaluate the capabilities of Large Language Models (LLMs), providing insights into their strengths and weaknesses. However, current benchmarks primarily exercise LLMs' capability on common coding tasks (e.g., bubble sort, greatest common divisor), leaving domain-specific coding tasks (e.g., computation, system, cryptography) unexplored. To fill this gap, we propose a multi-domain code benchmark, DOMAINEVAL, designed to evaluate LLMs' coding capabilities thoroughly. Our pipeline works in a fully automated manner, enabling a push-bottom construction from code repositories into formatted subjects under study. Interesting findings are observed by evaluating 12 representative LLMs against DOMAINEVAL. We notice that LLMs are generally good at computation tasks while falling short on cryptography and system coding tasks. The performance gap can be as much as 68.94% (80.94% - 12.0%) in some LLMs. We also observe that generating more samples can increase the overall performance of LLMs, while the domain bias may even increase. The contributions of this study include a code generation benchmark dataset DOMAINEVAL, encompassing six popular domains, a fully automated pipeline for constructing code benchmarks, and an identification of the limitations of LLMs in code generation tasks based on their performance on DOMAINEVAL, providing directions for future research improvements. The leaderboard is available at https://domaineval.github.io/.

HumanEval Pro and MBPP Pro: Evaluating Large Language Models on Self-invoking Code Generation

We introduce self-invoking code generation, a new task designed to evaluate the progressive reasoning and problem-solving capabilities of LLMs. In this task, models are presented with a base problem and a related, more complex problem. They must solve the base problem and then utilize its solution to address the more complex one. This work features three key contributions. First, we propose a general recipe for generating more challenging versions of existing benchmarks, resulting in three new benchmarks: HumanEval Pro, MBPP Pro, and BigCodeBench-Lite Pro, specifically designed to assess LLMs on self-invoking code generation. Second, from the analysis of experimental results over twenty LLMs on our benchmarks, we have two important observations: (i) Most LLMs excel in traditional code generation benchmarks like HumanEval and MBPP, but their performance declines on self-invoking tasks. For example, o1-mini achieves 96.2% pass@1 on HumanEval but only 76.2% on HumanEval Pro. (ii) On self-invoking code generation task, the instruction-tuned models demonstrate only marginal improvements compared to the base models. Third, we disclose the types of failure modes that exist in our evaluation results. All these results underscore the need for further advancements in self-invoking code generation tasks and provide a new direction for future research on enhancing LLMs' code reasoning capabilities.

Prithvi-EO-2.0: A Versatile Multi-Temporal Foundation Model for Earth Observation Applications

This technical report presents Prithvi-EO-2.0, a new geospatial foundation model that offers significant improvements over its predecessor, Prithvi-EO-1.0. Trained on 4.2M global time series samples from NASA's Harmonized Landsat and Sentinel-2 data archive at 30m resolution, the new 300M and 600M parameter models incorporate temporal and location embeddings for enhanced performance across various geospatial tasks. Through extensive benchmarking with GEO-Bench, the 600M version outperforms the previous Prithvi-EO model by 8\% across a range of tasks. It also outperforms six other geospatial foundation models when benchmarked on remote sensing tasks from different domains and resolutions (i.e. from 0.1m to 15m). The results demonstrate the versatility of the model in both classical earth observation and high-resolution applications. Early involvement of end-users and subject matter experts (SMEs) are among the key factors that contributed to the project's success. In particular, SME involvement allowed for constant feedback on model and dataset design, as well as successful customization for diverse SME-led applications in disaster response, land use and crop mapping, and ecosystem dynamics monitoring. Prithvi-EO-2.0 is available on Hugging Face and IBM terratorch, with additional resources on GitHub. The project exemplifies the Trusted Open Science approach embraced by all involved organizations.

BARS-CTR: Open Benchmarking for Click-Through Rate Prediction

Click-through rate (CTR) prediction is a critical task for many applications, as its accuracy has a direct impact on user experience and platform revenue. In recent years, CTR prediction has been widely studied in both academia and industry, resulting in a wide variety of CTR prediction models. Unfortunately, there is still a lack of standardized benchmarks and uniform evaluation protocols for CTR prediction research. This leads to non-reproducible or even inconsistent experimental results among existing studies, which largely limits the practical value and potential impact of their research. In this work, we aim to perform open benchmarking for CTR prediction and present a rigorous comparison of different models in a reproducible manner. To this end, we ran over 7,000 experiments for more than 12,000 GPU hours in total to re-evaluate 24 existing models on multiple datasets and settings. Surprisingly, our experiments show that with sufficient hyper-parameter search and model tuning, many deep models have smaller differences than expected. The results also reveal that making real progress on the modeling of CTR prediction is indeed a very challenging research task. We believe that our benchmarking work could not only allow researchers to gauge the effectiveness of new models conveniently but also make them fairly compare with the state of the arts. We have publicly released the benchmarking code, evaluation protocols, and hyper-parameter settings of our work to promote reproducible research in this field.

DeepfakeBench: A Comprehensive Benchmark of Deepfake Detection

A critical yet frequently overlooked challenge in the field of deepfake detection is the lack of a standardized, unified, comprehensive benchmark. This issue leads to unfair performance comparisons and potentially misleading results. Specifically, there is a lack of uniformity in data processing pipelines, resulting in inconsistent data inputs for detection models. Additionally, there are noticeable differences in experimental settings, and evaluation strategies and metrics lack standardization. To fill this gap, we present the first comprehensive benchmark for deepfake detection, called DeepfakeBench, which offers three key contributions: 1) a unified data management system to ensure consistent input across all detectors, 2) an integrated framework for state-of-the-art methods implementation, and 3) standardized evaluation metrics and protocols to promote transparency and reproducibility. Featuring an extensible, modular-based codebase, DeepfakeBench contains 15 state-of-the-art detection methods, 9 deepfake datasets, a series of deepfake detection evaluation protocols and analysis tools, as well as comprehensive evaluations. Moreover, we provide new insights based on extensive analysis of these evaluations from various perspectives (e.g., data augmentations, backbones). We hope that our efforts could facilitate future research and foster innovation in this increasingly critical domain. All codes, evaluations, and analyses of our benchmark are publicly available at https://github.com/SCLBD/DeepfakeBench.

The RealHumanEval: Evaluating Large Language Models' Abilities to Support Programmers

Evaluation of large language models (LLMs) for code has primarily relied on static benchmarks, including HumanEval (Chen et al., 2021), which measure the ability of LLMs to generate complete code that passes unit tests. As LLMs are increasingly used as programmer assistants, we study whether gains on existing benchmarks translate to gains in programmer productivity when coding with LLMs, including time spent coding. In addition to static benchmarks, we investigate the utility of preference metrics that might be used as proxies to measure LLM helpfulness, such as code acceptance or copy rates. To do so, we introduce RealHumanEval, a web interface to measure the ability of LLMs to assist programmers, through either autocomplete or chat support. We conducted a user study (N=213) using RealHumanEval in which users interacted with six LLMs of varying base model performance. Despite static benchmarks not incorporating humans-in-the-loop, we find that improvements in benchmark performance lead to increased programmer productivity; however gaps in benchmark versus human performance are not proportional -- a trend that holds across both forms of LLM support. In contrast, we find that programmer preferences do not correlate with their actual performance, motivating the need for better, human-centric proxy signals. We also open-source RealHumanEval to enable human-centric evaluation of new models and the study data to facilitate efforts to improve code models.

ONEBench to Test Them All: Sample-Level Benchmarking Over Open-Ended Capabilities

Traditional fixed test sets fall short in evaluating open-ended capabilities of foundation models. To address this, we propose ONEBench(OpeN-Ended Benchmarking), a new testing paradigm that consolidates individual evaluation datasets into a unified, ever-expanding sample pool. ONEBench allows users to generate custom, open-ended evaluation benchmarks from this pool, corresponding to specific capabilities of interest. By aggregating samples across test sets, ONEBench enables the assessment of diverse capabilities beyond those covered by the original test sets, while mitigating overfitting and dataset bias. Most importantly, it frames model evaluation as a collective process of selecting and aggregating sample-level tests. The shift from task-specific benchmarks to ONEBench introduces two challenges: (1)heterogeneity and (2)incompleteness. Heterogeneity refers to the aggregation over diverse metrics, while incompleteness describes comparing models evaluated on different data subsets. To address these challenges, we explore algorithms to aggregate sparse measurements into reliable model scores. Our aggregation algorithm ensures identifiability(asymptotically recovering ground-truth scores) and rapid convergence, enabling accurate model ranking with less data. On homogenous datasets, we show our aggregation algorithm provides rankings that highly correlate with those produced by average scores. We also demonstrate robustness to ~95% of measurements missing, reducing evaluation cost by up to 20x with little-to-no change in model rankings. We introduce ONEBench-LLM for language models and ONEBench-LMM for vision-language models, unifying evaluations across these domains. Overall, we present a technique for open-ended evaluation, which can aggregate over incomplete, heterogeneous sample-level measurements to continually grow a benchmark alongside the rapidly developing foundation models.

SecBench: A Comprehensive Multi-Dimensional Benchmarking Dataset for LLMs in Cybersecurity

Evaluating Large Language Models (LLMs) is crucial for understanding their capabilities and limitations across various applications, including natural language processing and code generation. Existing benchmarks like MMLU, C-Eval, and HumanEval assess general LLM performance but lack focus on specific expert domains such as cybersecurity. Previous attempts to create cybersecurity datasets have faced limitations, including insufficient data volume and a reliance on multiple-choice questions (MCQs). To address these gaps, we propose SecBench, a multi-dimensional benchmarking dataset designed to evaluate LLMs in the cybersecurity domain. SecBench includes questions in various formats (MCQs and short-answer questions (SAQs)), at different capability levels (Knowledge Retention and Logical Reasoning), in multiple languages (Chinese and English), and across various sub-domains. The dataset was constructed by collecting high-quality data from open sources and organizing a Cybersecurity Question Design Contest, resulting in 44,823 MCQs and 3,087 SAQs. Particularly, we used the powerful while cost-effective LLMs to (1). label the data and (2). constructing a grading agent for automatic evaluation of SAQs. Benchmarking results on 16 SOTA LLMs demonstrate the usability of SecBench, which is arguably the largest and most comprehensive benchmark dataset for LLMs in cybersecurity. More information about SecBench can be found at our website, and the dataset can be accessed via the artifact link.

PitVis-2023 Challenge: Workflow Recognition in videos of Endoscopic Pituitary Surgery

The field of computer vision applied to videos of minimally invasive surgery is ever-growing. Workflow recognition pertains to the automated recognition of various aspects of a surgery: including which surgical steps are performed; and which surgical instruments are used. This information can later be used to assist clinicians when learning the surgery; during live surgery; and when writing operation notes. The Pituitary Vision (PitVis) 2023 Challenge tasks the community to step and instrument recognition in videos of endoscopic pituitary surgery. This is a unique task when compared to other minimally invasive surgeries due to the smaller working space, which limits and distorts vision; and higher frequency of instrument and step switching, which requires more precise model predictions. Participants were provided with 25-videos, with results presented at the MICCAI-2023 conference as part of the Endoscopic Vision 2023 Challenge in Vancouver, Canada, on 08-Oct-2023. There were 18-submissions from 9-teams across 6-countries, using a variety of deep learning models. A commonality between the top performing models was incorporating spatio-temporal and multi-task methods, with greater than 50% and 10% macro-F1-score improvement over purely spacial single-task models in step and instrument recognition respectively. The PitVis-2023 Challenge therefore demonstrates state-of-the-art computer vision models in minimally invasive surgery are transferable to a new dataset, with surgery specific techniques used to enhance performance, progressing the field further. Benchmark results are provided in the paper, and the dataset is publicly available at: https://doi.org/10.5522/04/26531686.

Don't Make Your LLM an Evaluation Benchmark Cheater

Large language models~(LLMs) have greatly advanced the frontiers of artificial intelligence, attaining remarkable improvement in model capacity. To assess the model performance, a typical approach is to construct evaluation benchmarks for measuring the ability level of LLMs in different aspects. Despite that a number of high-quality benchmarks have been released, the concerns about the appropriate use of these benchmarks and the fair comparison of different models are increasingly growing. Considering these concerns, in this paper, we discuss the potential risk and impact of inappropriately using evaluation benchmarks and misleadingly interpreting the evaluation results. Specially, we focus on a special issue that would lead to inappropriate evaluation, \ie benchmark leakage, referring that the data related to evaluation sets is occasionally used for model training. This phenomenon now becomes more common since pre-training data is often prepared ahead of model test. We conduct extensive experiments to study the effect of benchmark leverage, and find that it can dramatically boost the evaluation results, which would finally lead to an unreliable assessment of model performance. To improve the use of existing evaluation benchmarks, we finally present several guidelines for both LLM developers and benchmark maintainers. We hope this work can draw attention to appropriate training and evaluation of LLMs.

Top Leaderboard Ranking = Top Coding Proficiency, Always? EvoEval: Evolving Coding Benchmarks via LLM

LLMs have become the go-to choice for code generation tasks, with an exponential increase in the training, development, and usage of LLMs specifically for code generation. To evaluate the ability of LLMs on code, both academic and industry practitioners rely on popular handcrafted benchmarks. However, prior benchmarks contain only a very limited set of problems, both in quantity and variety. Further, due to popularity and age, many benchmarks are prone to data leakage where example solutions can be readily found on the web and thus potentially in training data. Such limitations inevitably lead us to inquire: Is the leaderboard performance on existing benchmarks reliable and comprehensive enough to measure the program synthesis ability of LLMs? To address this, we introduce EvoEval -- a program synthesis benchmark suite created by evolving existing benchmarks into different targeted domains for a comprehensive evaluation of LLM coding abilities. Our study on 51 LLMs shows that compared to the high performance obtained on standard benchmarks like HumanEval, there is a significant drop in performance (on average 39.4%) when using EvoEval. Additionally, the decrease in performance can range from 19.6% to 47.7%, leading to drastic ranking changes amongst LLMs and showing potential overfitting of existing benchmarks. Furthermore, we showcase various insights, including the brittleness of instruction-following models when encountering rewording or subtle changes as well as the importance of learning problem composition and decomposition. EvoEval not only provides comprehensive benchmarks, but can be used to further evolve arbitrary problems to keep up with advances and the ever-changing landscape of LLMs for code. We have open-sourced our benchmarks, tools, and complete LLM generations at https://github.com/evo-eval/evoeval

From Crowdsourced Data to High-Quality Benchmarks: Arena-Hard and BenchBuilder Pipeline

The rapid evolution of language models has necessitated the development of more challenging benchmarks. Current static benchmarks often struggle to consistently distinguish between the capabilities of different models and fail to align with real-world user preferences. On the other hand, live crowd-sourced platforms like the Chatbot Arena collect a wide range of natural prompts and user feedback. However, these prompts vary in sophistication and the feedback cannot be applied offline to new models. In order to ensure that benchmarks keep up with the pace of LLM development, we address how one can evaluate benchmarks on their ability to confidently separate models and their alignment with human preference. Under these principles, we developed BenchBuilder, a living benchmark that filters high-quality prompts from live data sources to enable offline evaluation on fresh, challenging prompts. BenchBuilder identifies seven indicators of a high-quality prompt, such as the requirement for domain knowledge, and utilizes an LLM annotator to select a high-quality subset of prompts from various topic clusters. The LLM evaluation process employs an LLM judge to ensure a fully automated, high-quality, and constantly updating benchmark. We apply BenchBuilder on prompts from the Chatbot Arena to create Arena-Hard-Auto v0.1: 500 challenging user prompts from a wide range of tasks. Arena-Hard-Auto v0.1 offers 3x tighter confidence intervals than MT-Bench and achieves a state-of-the-art 89.1% agreement with human preference rankings, all at a cost of only $25 and without human labelers. The BenchBuilder pipeline enhances evaluation benchmarks and provides a valuable tool for developers, enabling them to extract high-quality benchmarks from extensive data with minimal effort.

CRUXEval-X: A Benchmark for Multilingual Code Reasoning, Understanding and Execution

Code benchmarks such as HumanEval are widely adopted to evaluate Large Language Models' (LLMs) coding capabilities. However, there is an unignorable programming language bias in existing code benchmarks -- over 95% code generation benchmarks are dominated by Python, leaving the LLMs' capabilities in other programming languages such as Java and C/C++ unknown. Moreover, coding task bias is also crucial. Most benchmarks focus on code generation capability, while benchmarks for code reasoning (given input, reasoning output; and given output, reasoning input), an essential coding capability, are insufficient. Yet, constructing multi-lingual benchmarks can be expensive and labor-intensive, and codes in contest websites such as Leetcode suffer from data contamination during training. To fill this gap, we propose CRUXEVAL-X, a multi-lingual code reasoning benchmark that contains 19 programming languages. It comprises at least 600 subjects for each language, along with 19K content-consistent tests in total. In particular, the construction pipeline of CRUXEVAL-X works in a fully automated and test-guided manner, which iteratively generates and repairs based on execution feedback. Also, to cross language barriers (e.g., dynamic/static type systems in Python/C++), we formulated various transition rules between language pairs to facilitate translation. Our intensive evaluation of 24 representative LLMs reveals the correlation between language pairs. For example, TypeScript and JavaScript show a significant positive correlation, while Racket has less correlation with other languages. More interestingly, even a model trained solely on Python can achieve at most 34.4% Pass@1 in other languages, revealing the cross-language generalization of LLMs.

The Fault in our Stars: Quality Assessment of Code Generation Benchmarks

Large Language Models (LLMs) are gaining popularity among software engineers. A crucial aspect of developing effective code generation LLMs is to evaluate these models using a robust benchmark. Evaluation benchmarks with quality issues can provide a false sense of performance. In this work, we conduct the first-of-its-kind study of the quality of prompts within benchmarks used to compare the performance of different code generation models. To conduct this study, we analyzed 3,566 prompts from 9 code generation benchmarks to identify quality issues in them. We also investigated whether fixing the identified quality issues in the benchmarks' prompts affects a model's performance. We also studied memorization issues of the evaluation dataset, which can put into question a benchmark's trustworthiness. We found that code generation evaluation benchmarks mainly focused on Python and coding exercises and had very limited contextual dependencies to challenge the model. These datasets and the developers' prompts suffer from quality issues like spelling and grammatical errors, unclear sentences to express developers' intent, and not using proper documentation style. Fixing all these issues in the benchmarks can lead to a better performance for Python code generation, but not a significant improvement was observed for Java code generation. We also found evidence that GPT-3.5-Turbo and CodeGen-2.5 models may have data contamination issues.

A Review of Safe Reinforcement Learning: Methods, Theory and Applications

Reinforcement learning (RL) has achieved tremendous success in many complex decision making tasks. When it comes to deploying RL in the real world, safety concerns are usually raised, leading to a growing demand for safe RL algorithms, such as in autonomous driving and robotics scenarios. While safety control has a long history, the study of safe RL algorithms is still in the early stages. To establish a good foundation for future research in this thread, in this paper, we provide a review for safe RL from the perspectives of methods, theory and applications. Firstly, we review the progress of safe RL from five dimensions and come up with five problems that are crucial for safe RL being deployed in real-world applications, coined as "2H3W". Secondly, we analyze the theory and algorithm progress from the perspectives of answering the "2H3W" problems. Then, the sample complexity of safe RL methods is reviewed and discussed, followed by an introduction of the applications and benchmarks of safe RL algorithms. Finally, we open the discussion of the challenging problems in safe RL, hoping to inspire more future research on this thread. To advance the study of safe RL algorithms, we release a benchmark suite, an open-sourced repository containing the implementations of major safe RL algorithms, along with tutorials at the link: https://github.com/chauncygu/Safe-Reinforcement-Learning-Baselines.git.

SciKnowEval: Evaluating Multi-level Scientific Knowledge of Large Language Models

The burgeoning utilization of Large Language Models (LLMs) in scientific research necessitates advanced benchmarks capable of evaluating their understanding and application of scientific knowledge comprehensively. To address this need, we introduce the SciKnowEval benchmark, a novel framework that systematically evaluates LLMs across five progressive levels of scientific knowledge: studying extensively, inquiring earnestly, thinking profoundly, discerning clearly, and practicing assiduously. These levels aim to assess the breadth and depth of scientific knowledge in LLMs, including knowledge coverage, inquiry and exploration capabilities, reflection and reasoning abilities, ethic and safety considerations, as well as practice proficiency. Specifically, we take biology and chemistry as the two instances of SciKnowEval and construct a dataset encompassing 50K multi-level scientific problems and solutions. By leveraging this dataset, we benchmark 20 leading open-source and proprietary LLMs using zero-shot and few-shot prompting strategies. The results reveal that despite achieving state-of-the-art performance, the proprietary LLMs still have considerable room for improvement, particularly in addressing scientific computations and applications. We anticipate that SciKnowEval will establish a comprehensive standard for benchmarking LLMs in science research and discovery, and promote the development of LLMs that integrate scientific knowledge with strong safety awareness. The dataset and code are publicly available at https://github.com/hicai-zju/sciknoweval .

CORE-Bench: Fostering the Credibility of Published Research Through a Computational Reproducibility Agent Benchmark

AI agents have the potential to aid users on a variety of consequential tasks, including conducting scientific research. To spur the development of useful agents, we need benchmarks that are challenging, but more crucially, directly correspond to real-world tasks of interest. This paper introduces such a benchmark, designed to measure the accuracy of AI agents in tackling a crucial yet surprisingly challenging aspect of scientific research: computational reproducibility. This task, fundamental to the scientific process, involves reproducing the results of a study using the provided code and data. We introduce CORE-Bench (Computational Reproducibility Agent Benchmark), a benchmark consisting of 270 tasks based on 90 scientific papers across three disciplines (computer science, social science, and medicine). Tasks in CORE-Bench consist of three difficulty levels and include both language-only and vision-language tasks. We provide an evaluation system to measure the accuracy of agents in a fast and parallelizable way, saving days of evaluation time for each run compared to a sequential implementation. We evaluated two baseline agents: the general-purpose AutoGPT and a task-specific agent called CORE-Agent. We tested both variants using two underlying language models: GPT-4o and GPT-4o-mini. The best agent achieved an accuracy of 21% on the hardest task, showing the vast scope for improvement in automating routine scientific tasks. Having agents that can reproduce existing work is a necessary step towards building agents that can conduct novel research and could verify and improve the performance of other research agents. We hope that CORE-Bench can improve the state of reproducibility and spur the development of future research agents.

MMBench: Is Your Multi-modal Model an All-around Player?

Large vision-language models have recently achieved remarkable progress, exhibiting great perception and reasoning abilities concerning visual information. However, how to effectively evaluate these large vision-language models remains a major obstacle, hindering future model development. Traditional benchmarks like VQAv2 or COCO Caption provide quantitative performance measurements but suffer from a lack of fine-grained ability assessment and non-robust evaluation metrics. Recent subjective benchmarks, such as OwlEval, offer comprehensive evaluations of a model's abilities by incorporating human labor, but they are not scalable and display significant bias. In response to these challenges, we propose MMBench, a novel multi-modality benchmark. MMBench methodically develops a comprehensive evaluation pipeline, primarily comprised of two elements. The first element is a meticulously curated dataset that surpasses existing similar benchmarks in terms of the number and variety of evaluation questions and abilities. The second element introduces a novel CircularEval strategy and incorporates the use of ChatGPT. This implementation is designed to convert free-form predictions into pre-defined choices, thereby facilitating a more robust evaluation of the model's predictions. MMBench is a systematically-designed objective benchmark for robustly evaluating the various abilities of vision-language models. We hope MMBench will assist the research community in better evaluating their models and encourage future advancements in this domain. Project page: https://opencompass.org.cn/mmbench.

MedAgentsBench: Benchmarking Thinking Models and Agent Frameworks for Complex Medical Reasoning

Large Language Models (LLMs) have shown impressive performance on existing medical question-answering benchmarks. This high performance makes it increasingly difficult to meaningfully evaluate and differentiate advanced methods. We present MedAgentsBench, a benchmark that focuses on challenging medical questions requiring multi-step clinical reasoning, diagnosis formulation, and treatment planning-scenarios where current models still struggle despite their strong performance on standard tests. Drawing from seven established medical datasets, our benchmark addresses three key limitations in existing evaluations: (1) the prevalence of straightforward questions where even base models achieve high performance, (2) inconsistent sampling and evaluation protocols across studies, and (3) lack of systematic analysis of the interplay between performance, cost, and inference time. Through experiments with various base models and reasoning methods, we demonstrate that the latest thinking models, DeepSeek R1 and OpenAI o3, exhibit exceptional performance in complex medical reasoning tasks. Additionally, advanced search-based agent methods offer promising performance-to-cost ratios compared to traditional approaches. Our analysis reveals substantial performance gaps between model families on complex questions and identifies optimal model selections for different computational constraints. Our benchmark and evaluation framework are publicly available at https://github.com/gersteinlab/medagents-benchmark.

Accident Risk Prediction based on Heterogeneous Sparse Data: New Dataset and Insights

Reducing traffic accidents is an important public safety challenge, therefore, accident analysis and prediction has been a topic of much research over the past few decades. Using small-scale datasets with limited coverage, being dependent on extensive set of data, and being not applicable for real-time purposes are the important shortcomings of the existing studies. To address these challenges, we propose a new solution for real-time traffic accident prediction using easy-to-obtain, but sparse data. Our solution relies on a deep-neural-network model (which we have named DAP, for Deep Accident Prediction); which utilizes a variety of data attributes such as traffic events, weather data, points-of-interest, and time. DAP incorporates multiple components including a recurrent (for time-sensitive data), a fully connected (for time-insensitive data), and a trainable embedding component (to capture spatial heterogeneity). To fill the data gap, we have - through a comprehensive process of data collection, integration, and augmentation - created a large-scale publicly available database of accident information named US-Accidents. By employing the US-Accidents dataset and through an extensive set of experiments across several large cities, we have evaluated our proposal against several baselines. Our analysis and results show significant improvements to predict rare accident events. Further, we have shown the impact of traffic information, time, and points-of-interest data for real-time accident prediction.

A Comprehensive Benchmark for COVID-19 Predictive Modeling Using Electronic Health Records in Intensive Care

The COVID-19 pandemic has posed a heavy burden to the healthcare system worldwide and caused huge social disruption and economic loss. Many deep learning models have been proposed to conduct clinical predictive tasks such as mortality prediction for COVID-19 patients in intensive care units using Electronic Health Record (EHR) data. Despite their initial success in certain clinical applications, there is currently a lack of benchmarking results to achieve a fair comparison so that we can select the optimal model for clinical use. Furthermore, there is a discrepancy between the formulation of traditional prediction tasks and real-world clinical practice in intensive care. To fill these gaps, we propose two clinical prediction tasks, Outcome-specific length-of-stay prediction and Early mortality prediction for COVID-19 patients in intensive care units. The two tasks are adapted from the naive length-of-stay and mortality prediction tasks to accommodate the clinical practice for COVID-19 patients. We propose fair, detailed, open-source data-preprocessing pipelines and evaluate 17 state-of-the-art predictive models on two tasks, including 5 machine learning models, 6 basic deep learning models and 6 deep learning predictive models specifically designed for EHR data. We provide benchmarking results using data from two real-world COVID-19 EHR datasets. One dataset is publicly available without needing any inquiry and another dataset can be accessed on request. We provide fair, reproducible benchmarking results for two tasks. We deploy all experiment results and models on an online platform. We also allow clinicians and researchers to upload their data to the platform and get quick prediction results using our trained models. We hope our efforts can further facilitate deep learning and machine learning research for COVID-19 predictive modeling.

GraphFM: A Comprehensive Benchmark for Graph Foundation Model

Foundation Models (FMs) serve as a general class for the development of artificial intelligence systems, offering broad potential for generalization across a spectrum of downstream tasks. Despite extensive research into self-supervised learning as the cornerstone of FMs, several outstanding issues persist in Graph Foundation Models that rely on graph self-supervised learning, namely: 1) Homogenization. The extent of generalization capability on downstream tasks remains unclear. 2) Scalability. It is unknown how effectively these models can scale to large datasets. 3) Efficiency. The training time and memory usage of these models require evaluation. 4) Training Stop Criteria. Determining the optimal stopping strategy for pre-training across multiple tasks to maximize performance on downstream tasks. To address these questions, we have constructed a rigorous benchmark that thoroughly analyzes and studies the generalization and scalability of self-supervised Graph Neural Network (GNN) models. Regarding generalization, we have implemented and compared the performance of various self-supervised GNN models, trained to generate node representations, across tasks such as node classification, link prediction, and node clustering. For scalability, we have compared the performance of various models after training using full-batch and mini-batch strategies. Additionally, we have assessed the training efficiency of these models by conducting experiments to test their GPU memory usage and throughput. Through these experiments, we aim to provide insights to motivate future research. The code for this benchmark is publicly available at https://github.com/NYUSHCS/GraphFM.

LexEval: A Comprehensive Chinese Legal Benchmark for Evaluating Large Language Models

Large language models (LLMs) have made significant progress in natural language processing tasks and demonstrate considerable potential in the legal domain. However, legal applications demand high standards of accuracy, reliability, and fairness. Applying existing LLMs to legal systems without careful evaluation of their potential and limitations could pose significant risks in legal practice. To this end, we introduce a standardized comprehensive Chinese legal benchmark LexEval. This benchmark is notable in the following three aspects: (1) Ability Modeling: We propose a new taxonomy of legal cognitive abilities to organize different tasks. (2) Scale: To our knowledge, LexEval is currently the largest Chinese legal evaluation dataset, comprising 23 tasks and 14,150 questions. (3) Data: we utilize formatted existing datasets, exam datasets and newly annotated datasets by legal experts to comprehensively evaluate the various capabilities of LLMs. LexEval not only focuses on the ability of LLMs to apply fundamental legal knowledge but also dedicates efforts to examining the ethical issues involved in their application. We evaluated 38 open-source and commercial LLMs and obtained some interesting findings. The experiments and findings offer valuable insights into the challenges and potential solutions for developing Chinese legal systems and LLM evaluation pipelines. The LexEval dataset and leaderboard are publicly available at https://github.com/CSHaitao/LexEval and will be continuously updated.