Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeRelational Reasoning for Markov Chains in a Probabilistic Guarded Lambda Calculus
We extend the simply-typed guarded lambda-calculus with discrete probabilities and endow it with a program logic for reasoning about relational properties of guarded probabilistic computations. This provides a framework for programming and reasoning about infinite stochastic processes like Markov chains. We demonstrate the logic sound by interpreting its judgements in the topos of trees and by using probabilistic couplings for the semantics of relational assertions over distributions on discrete types. The program logic is designed to support syntax-directed proofs in the style of relational refinement types, but retains the expressiveness of higher-order logic extended with discrete distributions, and the ability to reason relationally about expressions that have different types or syntactic structure. In addition, our proof system leverages a well-known theorem from the coupling literature to justify better proof rules for relational reasoning about probabilistic expressions. We illustrate these benefits with a broad range of examples that were beyond the scope of previous systems, including shift couplings and lump couplings between random walks.
Systematic Relational Reasoning With Epistemic Graph Neural Networks
Developing models that can learn to reason is a notoriously challenging problem. We focus on reasoning in relational domains, where the use of Graph Neural Networks (GNNs) seems like a natural choice. However, previous work has shown that regular GNNs lack the ability to systematically generalize from training examples on test graphs requiring longer inference chains, which fundamentally limits their reasoning abilities. A common solution relies on neuro-symbolic methods that systematically reason by learning rules, but their scalability is often limited and they tend to make unrealistically strong assumptions, e.g.\ that the answer can always be inferred from a single relational path. We propose the Epistemic GNN (EpiGNN), a novel parameter-efficient and scalable GNN architecture with an epistemic inductive bias for systematic reasoning. Node embeddings in EpiGNNs are treated as epistemic states, and message passing is implemented accordingly. We show that EpiGNNs achieve state-of-the-art results on link prediction tasks that require systematic reasoning. Furthermore, for inductive knowledge graph completion, EpiGNNs rival the performance of state-of-the-art specialized approaches. Finally, we introduce two new benchmarks that go beyond standard relational reasoning by requiring the aggregation of information from multiple paths. Here, existing neuro-symbolic approaches fail, yet EpiGNNs learn to reason accurately. Code and datasets are available at https://github.com/erg0dic/gnn-sg.
Benchmarking and Understanding Compositional Relational Reasoning of LLMs
Compositional relational reasoning (CRR) is a hallmark of human intelligence, but we lack a clear understanding of whether and how existing transformer large language models (LLMs) can solve CRR tasks. To enable systematic exploration of the CRR capability of LLMs, we first propose a new synthetic benchmark called Generalized Associative Recall (GAR) by integrating and generalizing the essence of several tasks in mechanistic interpretability (MI) study in a unified framework. Evaluation shows that GAR is challenging enough for existing LLMs, revealing their fundamental deficiency in CRR. Meanwhile, it is easy enough for systematic MI study. Then, to understand how LLMs solve GAR tasks, we use attribution patching to discover the core circuits reused by Vicuna-33B across different tasks and a set of vital attention heads. Intervention experiments show that the correct functioning of these heads significantly impacts task performance. Especially, we identify two classes of heads whose activations represent the abstract notion of true and false in GAR tasks respectively. They play a fundamental role in CRR across various models and tasks. The dataset and code are available at https://github.com/Caiyun-AI/GAR.
LLMs for Relational Reasoning: How Far are We?
Large language models (LLMs) have revolutionized many areas (e.g. natural language processing, software engineering, etc.) by achieving state-of-the-art performance on extensive downstream tasks. Aiming to achieve robust and general artificial intelligence, there has been a surge of interest in investigating the reasoning ability of the LLMs. Whereas the textual and numerical reasoning benchmarks adopted by previous works are rather shallow and simple, it is hard to conclude that the LLMs possess strong reasoning ability by merely achieving positive results on these benchmarks. Recent efforts have demonstrated that the LLMs are poor at solving sequential decision-making problems that require common-sense planning by evaluating their performance on the reinforcement learning benchmarks. In this work, we conduct an in-depth assessment of several state-of-the-art LLMs' reasoning ability based on the inductive logic programming (ILP) benchmark, which is broadly recognized as a representative and challenging measurement for evaluating logic program induction/synthesis systems as it requires inducing strict cause-effect logic to achieve robust deduction on independent and identically distributed (IID) and out-of-distribution (OOD) test samples. Our evaluations illustrate that compared with the neural program induction systems which are much smaller in model size, the state-of-the-art LLMs are much poorer in terms of reasoning ability by achieving much lower performance and generalization using either natural language prompting or truth-value matrix prompting.
Reconstructing Groups of People with Hypergraph Relational Reasoning
Due to the mutual occlusion, severe scale variation, and complex spatial distribution, the current multi-person mesh recovery methods cannot produce accurate absolute body poses and shapes in large-scale crowded scenes. To address the obstacles, we fully exploit crowd features for reconstructing groups of people from a monocular image. A novel hypergraph relational reasoning network is proposed to formulate the complex and high-order relation correlations among individuals and groups in the crowd. We first extract compact human features and location information from the original high-resolution image. By conducting the relational reasoning on the extracted individual features, the underlying crowd collectiveness and interaction relationship can provide additional group information for the reconstruction. Finally, the updated individual features and the localization information are used to regress human meshes in camera coordinates. To facilitate the network training, we further build pseudo ground-truth on two crowd datasets, which may also promote future research on pose estimation and human behavior understanding in crowded scenes. The experimental results show that our approach outperforms other baseline methods both in crowded and common scenarios. The code and datasets are publicly available at https://github.com/boycehbz/GroupRec.
Self-Supervised Relational Reasoning for Representation Learning
In self-supervised learning, a system is tasked with achieving a surrogate objective by defining alternative targets on a set of unlabeled data. The aim is to build useful representations that can be used in downstream tasks, without costly manual annotation. In this work, we propose a novel self-supervised formulation of relational reasoning that allows a learner to bootstrap a signal from information implicit in unlabeled data. Training a relation head to discriminate how entities relate to themselves (intra-reasoning) and other entities (inter-reasoning), results in rich and descriptive representations in the underlying neural network backbone, which can be used in downstream tasks such as classification and image retrieval. We evaluate the proposed method following a rigorous experimental procedure, using standard datasets, protocols, and backbones. Self-supervised relational reasoning outperforms the best competitor in all conditions by an average 14% in accuracy, and the most recent state-of-the-art model by 3%. We link the effectiveness of the method to the maximization of a Bernoulli log-likelihood, which can be considered as a proxy for maximizing the mutual information, resulting in a more efficient objective with respect to the commonly used contrastive losses.
Recurrent Relational Networks
This paper is concerned with learning to solve tasks that require a chain of interdependent steps of relational inference, like answering complex questions about the relationships between objects, or solving puzzles where the smaller elements of a solution mutually constrain each other. We introduce the recurrent relational network, a general purpose module that operates on a graph representation of objects. As a generalization of Santoro et al. [2017]'s relational network, it can augment any neural network model with the capacity to do many-step relational reasoning. We achieve state of the art results on the bAbI textual question-answering dataset with the recurrent relational network, consistently solving 20/20 tasks. As bAbI is not particularly challenging from a relational reasoning point of view, we introduce Pretty-CLEVR, a new diagnostic dataset for relational reasoning. In the Pretty-CLEVR set-up, we can vary the question to control for the number of relational reasoning steps that are required to obtain the answer. Using Pretty-CLEVR, we probe the limitations of multi-layer perceptrons, relational and recurrent relational networks. Finally, we show how recurrent relational networks can learn to solve Sudoku puzzles from supervised training data, a challenging task requiring upwards of 64 steps of relational reasoning. We achieve state-of-the-art results amongst comparable methods by solving 96.6% of the hardest Sudoku puzzles.
Relational recurrent neural networks
Memory-based neural networks model temporal data by leveraging an ability to remember information for long periods. It is unclear, however, whether they also have an ability to perform complex relational reasoning with the information they remember. Here, we first confirm our intuitions that standard memory architectures may struggle at tasks that heavily involve an understanding of the ways in which entities are connected -- i.e., tasks involving relational reasoning. We then improve upon these deficits by using a new memory module -- a Relational Memory Core (RMC) -- which employs multi-head dot product attention to allow memories to interact. Finally, we test the RMC on a suite of tasks that may profit from more capable relational reasoning across sequential information, and show large gains in RL domains (e.g. Mini PacMan), program evaluation, and language modeling, achieving state-of-the-art results on the WikiText-103, Project Gutenberg, and GigaWord datasets.
RLIPv2: Fast Scaling of Relational Language-Image Pre-training
Relational Language-Image Pre-training (RLIP) aims to align vision representations with relational texts, thereby advancing the capability of relational reasoning in computer vision tasks. However, hindered by the slow convergence of RLIPv1 architecture and the limited availability of existing scene graph data, scaling RLIPv1 is challenging. In this paper, we propose RLIPv2, a fast converging model that enables the scaling of relational pre-training to large-scale pseudo-labelled scene graph data. To enable fast scaling, RLIPv2 introduces Asymmetric Language-Image Fusion (ALIF), a mechanism that facilitates earlier and deeper gated cross-modal fusion with sparsified language encoding layers. ALIF leads to comparable or better performance than RLIPv1 in a fraction of the time for pre-training and fine-tuning. To obtain scene graph data at scale, we extend object detection datasets with free-form relation labels by introducing a captioner (e.g., BLIP) and a designed Relation Tagger. The Relation Tagger assigns BLIP-generated relation texts to region pairs, thus enabling larger-scale relational pre-training. Through extensive experiments conducted on Human-Object Interaction Detection and Scene Graph Generation, RLIPv2 shows state-of-the-art performance on three benchmarks under fully-finetuning, few-shot and zero-shot settings. Notably, the largest RLIPv2 achieves 23.29mAP on HICO-DET without any fine-tuning, yields 32.22mAP with just 1% data and yields 45.09mAP with 100% data. Code and models are publicly available at https://github.com/JacobYuan7/RLIPv2.
CommonGen: A Constrained Text Generation Challenge for Generative Commonsense Reasoning
Recently, large-scale pre-trained language models have demonstrated impressive performance on several commonsense-reasoning benchmark datasets. However, building machines with commonsense to compose realistically plausible sentences remains challenging. In this paper, we present a constrained text generation task, CommonGen associated with a benchmark dataset, to explicitly test machines for the ability of generative commonsense reasoning. Given a set of common concepts (e.g., {dog, frisbee, catch, throw}); the task is to generate a coherent sentence describing an everyday scenario using these concepts (e.g., "a man throws a frisbee and his dog catches it"). The CommonGen task is challenging because it inherently requires 1) relational reasoning with background commonsense knowledge, and 2) compositional generalization ability to work on unseen concept combinations. Our dataset, constructed through a combination of crowdsourced and existing caption corpora, consists of 79k commonsense descriptions over 35k unique concept-sets. Experiments show that there is a large gap between state-of-the-art text generation models (e.g., T5) and human performance. Furthermore, we demonstrate that the learned generative commonsense reasoning capability can be transferred to improve downstream tasks such as CommonsenseQA by generating additional context.
An Explicitly Relational Neural Network Architecture
With a view to bridging the gap between deep learning and symbolic AI, we present a novel end-to-end neural network architecture that learns to form propositional representations with an explicitly relational structure from raw pixel data. In order to evaluate and analyse the architecture, we introduce a family of simple visual relational reasoning tasks of varying complexity. We show that the proposed architecture, when pre-trained on a curriculum of such tasks, learns to generate reusable representations that better facilitate subsequent learning on previously unseen tasks when compared to a number of baseline architectures. The workings of a successfully trained model are visualised to shed some light on how the architecture functions.
Large Language Models can Learn Rules
When prompted with a few examples and intermediate steps, large language models (LLMs) have demonstrated impressive performance in various reasoning tasks. However, prompting methods that rely on implicit knowledge in an LLM often generate incorrect answers when the implicit knowledge is wrong or inconsistent with the task. To tackle this problem, we present Hypotheses-to-Theories (HtT), a framework that learns a rule library for reasoning with LLMs. HtT contains two stages, an induction stage and a deduction stage. In the induction stage, an LLM is first asked to generate and verify rules over a set of training examples. Rules that appear and lead to correct answers sufficiently often are collected to form a rule library. In the deduction stage, the LLM is then prompted to employ the learned rule library to perform reasoning to answer test questions. Experiments on relational reasoning, numerical reasoning and concept learning problems show that HtT improves existing prompting methods, with an absolute gain of 10-30% in accuracy. The learned rules are also transferable to different models and to different forms of the same problem.
Mapping Natural Language Commands to Web Elements
The web provides a rich, open-domain environment with textual, structural, and spatial properties. We propose a new task for grounding language in this environment: given a natural language command (e.g., "click on the second article"), choose the correct element on the web page (e.g., a hyperlink or text box). We collected a dataset of over 50,000 commands that capture various phenomena such as functional references (e.g. "find who made this site"), relational reasoning (e.g. "article by john"), and visual reasoning (e.g. "top-most article"). We also implemented and analyzed three baseline models that capture different phenomena present in the dataset.
When can transformers reason with abstract symbols?
We investigate the capabilities of transformer large language models (LLMs) on relational reasoning tasks involving abstract symbols. Such tasks have long been studied in the neuroscience literature as fundamental building blocks for more complex abilities in programming, mathematics, and verbal reasoning. For (i) regression tasks, we prove that transformers generalize when trained, but require astonishingly large quantities of training data. For (ii) next-token-prediction tasks with symbolic labels, we show an "inverse scaling law": transformers fail to generalize as their embedding dimension increases. For both settings (i) and (ii), we propose subtle transformer modifications which can reduce the amount of data needed by adding two trainable parameters per head.
Graph-Aware Isomorphic Attention for Adaptive Dynamics in Transformers
We present an approach to modifying Transformer architectures by integrating graph-aware relational reasoning into the attention mechanism, merging concepts from graph neural networks and language modeling. Building on the inherent connection between attention and graph theory, we reformulate the Transformer's attention mechanism as a graph operation and propose Graph-Aware Isomorphic Attention. This method leverages advanced graph modeling strategies, including Graph Isomorphism Networks (GIN) and Principal Neighborhood Aggregation (PNA), to enrich the representation of relational structures. Our approach captures complex dependencies and generalizes across tasks, as evidenced by a reduced generalization gap and improved learning performance. Additionally, we expand the concept of graph-aware attention to introduce Sparse GIN-Attention, a fine-tuning approach that employs sparse GINs. By interpreting attention matrices as sparse adjacency graphs, this technique enhances the adaptability of pre-trained foundational models with minimal computational overhead, endowing them with graph-aware capabilities. Sparse GIN-Attention fine-tuning achieves improved training dynamics and better generalization compared to alternative methods like low-rank adaption (LoRA). We discuss latent graph-like structures within traditional attention mechanisms, offering a new lens through which Transformers can be understood. By evolving Transformers as hierarchical GIN models for relational reasoning. This perspective suggests profound implications for foundational model development, enabling the design of architectures that dynamically adapt to both local and global dependencies. Applications in bioinformatics, materials science, language modeling, and beyond could benefit from this synthesis of relational and sequential data modeling, setting the stage for interpretable and generalizable modeling strategies.
MLPs Learn In-Context on Regression and Classification Tasks
In-context learning (ICL), the remarkable ability to solve a task from only input exemplars, is often assumed to be a unique hallmark of Transformer models. By examining commonly employed synthetic ICL tasks, we demonstrate that multi-layer perceptrons (MLPs) can also learn in-context. Moreover, MLPs, and the closely related MLP-Mixer models, learn in-context competitively with Transformers given the same compute budget in this setting. We further show that MLPs outperform Transformers on a series of classical tasks from psychology designed to test relational reasoning, which are closely related to in-context classification. These results underscore a need for studying in-context learning beyond attention-based architectures, while also challenging strong prior arguments about MLPs' limited ability to solve relational tasks. Altogether, our results highlight the unexpected competence of MLPs, and support the growing interest in all-MLP alternatives to task-specific architectures.
Learning to Reason Deductively: Math Word Problem Solving as Complex Relation Extraction
Solving math word problems requires deductive reasoning over the quantities in the text. Various recent research efforts mostly relied on sequence-to-sequence or sequence-to-tree models to generate mathematical expressions without explicitly performing relational reasoning between quantities in the given context. While empirically effective, such approaches typically do not provide explanations for the generated expressions. In this work, we view the task as a complex relation extraction problem, proposing a novel approach that presents explainable deductive reasoning steps to iteratively construct target expressions, where each step involves a primitive operation over two quantities defining their relation. Through extensive experiments on four benchmark datasets, we show that the proposed model significantly outperforms existing strong baselines. We further demonstrate that the deductive procedure not only presents more explainable steps but also enables us to make more accurate predictions on questions that require more complex reasoning.
From Word Models to World Models: Translating from Natural Language to the Probabilistic Language of Thought
How does language inform our downstream thinking? In particular, how do humans make meaning from language -- and how can we leverage a theory of linguistic meaning to build machines that think in more human-like ways? In this paper, we propose rational meaning construction, a computational framework for language-informed thinking that combines neural models of language with probabilistic models for rational inference. We frame linguistic meaning as a context-sensitive mapping from natural language into a probabilistic language of thought (PLoT) -- a general-purpose symbolic substrate for probabilistic, generative world modeling. Our architecture integrates two powerful computational tools that have not previously come together: we model thinking with probabilistic programs, an expressive representation for flexible commonsense reasoning; and we model meaning construction with large language models (LLMs), which support broad-coverage translation from natural language utterances to code expressions in a probabilistic programming language. We illustrate our framework in action through examples covering four core domains from cognitive science: probabilistic reasoning, logical and relational reasoning, visual and physical reasoning, and social reasoning about agents and their plans. In each, we show that LLMs can generate context-sensitive translations that capture pragmatically-appropriate linguistic meanings, while Bayesian inference with the generated programs supports coherent and robust commonsense reasoning. We extend our framework to integrate cognitively-motivated symbolic modules to provide a unified commonsense thinking interface from language. Finally, we explore how language can drive the construction of world models themselves.
TRIP: Temporal Residual Learning with Image Noise Prior for Image-to-Video Diffusion Models
Recent advances in text-to-video generation have demonstrated the utility of powerful diffusion models. Nevertheless, the problem is not trivial when shaping diffusion models to animate static image (i.e., image-to-video generation). The difficulty originates from the aspect that the diffusion process of subsequent animated frames should not only preserve the faithful alignment with the given image but also pursue temporal coherence among adjacent frames. To alleviate this, we present TRIP, a new recipe of image-to-video diffusion paradigm that pivots on image noise prior derived from static image to jointly trigger inter-frame relational reasoning and ease the coherent temporal modeling via temporal residual learning. Technically, the image noise prior is first attained through one-step backward diffusion process based on both static image and noised video latent codes. Next, TRIP executes a residual-like dual-path scheme for noise prediction: 1) a shortcut path that directly takes image noise prior as the reference noise of each frame to amplify the alignment between the first frame and subsequent frames; 2) a residual path that employs 3D-UNet over noised video and static image latent codes to enable inter-frame relational reasoning, thereby easing the learning of the residual noise for each frame. Furthermore, both reference and residual noise of each frame are dynamically merged via attention mechanism for final video generation. Extensive experiments on WebVid-10M, DTDB and MSR-VTT datasets demonstrate the effectiveness of our TRIP for image-to-video generation. Please see our project page at https://trip-i2v.github.io/TRIP/.
Your Diffusion Model is Secretly a Zero-Shot Classifier
The recent wave of large-scale text-to-image diffusion models has dramatically increased our text-based image generation abilities. These models can generate realistic images for a staggering variety of prompts and exhibit impressive compositional generalization abilities. Almost all use cases thus far have solely focused on sampling; however, diffusion models can also provide conditional density estimates, which are useful for tasks beyond image generation. In this paper, we show that the density estimates from large-scale text-to-image diffusion models like Stable Diffusion can be leveraged to perform zero-shot classification without any additional training. Our generative approach to classification, which we call Diffusion Classifier, attains strong results on a variety of benchmarks and outperforms alternative methods of extracting knowledge from diffusion models. Although a gap remains between generative and discriminative approaches on zero-shot recognition tasks, we find that our diffusion-based approach has stronger multimodal relational reasoning abilities than competing discriminative approaches. Finally, we use Diffusion Classifier to extract standard classifiers from class-conditional diffusion models trained on ImageNet. Even though these models are trained with weak augmentations and no regularization, they approach the performance of SOTA discriminative classifiers. Overall, our results are a step toward using generative over discriminative models for downstream tasks. Results and visualizations at https://diffusion-classifier.github.io/
Breakpoint Transformers for Modeling and Tracking Intermediate Beliefs
Can we teach natural language understanding models to track their beliefs through intermediate points in text? We propose a representation learning framework called breakpoint modeling that allows for learning of this type. Given any text encoder and data marked with intermediate states (breakpoints) along with corresponding textual queries viewed as true/false propositions (i.e., the candidate beliefs of a model, consisting of information changing through time) our approach trains models in an efficient and end-to-end fashion to build intermediate representations that facilitate teaching and direct querying of beliefs at arbitrary points alongside solving other end tasks. To show the benefit of our approach, we experiment with a diverse set of NLU tasks including relational reasoning on CLUTRR and narrative understanding on bAbI. Using novel belief prediction tasks for both tasks, we show the benefit of our main breakpoint transformer, based on T5, over conventional representation learning approaches in terms of processing efficiency, prediction accuracy and prediction consistency, all with minimal to no effect on corresponding QA end tasks. To show the feasibility of incorporating our belief tracker into more complex reasoning pipelines, we also obtain SOTA performance on the three-tiered reasoning challenge for the TRIP benchmark (around 23-32% absolute improvement on Tasks 2-3).
Automatic Generation of Contrast Sets from Scene Graphs: Probing the Compositional Consistency of GQA
Recent works have shown that supervised models often exploit data artifacts to achieve good test scores while their performance severely degrades on samples outside their training distribution. Contrast sets (Gardneret al., 2020) quantify this phenomenon by perturbing test samples in a minimal way such that the output label is modified. While most contrast sets were created manually, requiring intensive annotation effort, we present a novel method which leverages rich semantic input representation to automatically generate contrast sets for the visual question answering task. Our method computes the answer of perturbed questions, thus vastly reducing annotation cost and enabling thorough evaluation of models' performance on various semantic aspects (e.g., spatial or relational reasoning). We demonstrate the effectiveness of our approach on the GQA dataset and its semantic scene graph image representation. We find that, despite GQA's compositionality and carefully balanced label distribution, two high-performing models drop 13-17% in accuracy compared to the original test set. Finally, we show that our automatic perturbation can be applied to the training set to mitigate the degradation in performance, opening the door to more robust models.
Improving Embedded Knowledge Graph Multi-hop Question Answering by introducing Relational Chain Reasoning
Knowledge Graph Question Answering (KGQA) aims to answer user-questions from a knowledge graph (KG) by identifying the reasoning relations between topic entity and answer. As a complex branch task of KGQA, multi-hop KGQA requires reasoning over the multi-hop relational chain preserved in KG to arrive at the right answer. Despite recent successes, the existing works on answering multi-hop complex questions still face the following challenges: i) The absence of an explicit relational chain order reflected in user-question stems from a misunderstanding of a user's intentions. ii) Incorrectly capturing relational types on weak supervision of which dataset lacks intermediate reasoning chain annotations due to expensive labeling cost. iii) Failing to consider implicit relations between the topic entity and the answer implied in structured KG because of limited neighborhoods size constraint in subgraph retrieval-based algorithms.To address these issues in multi-hop KGQA, we propose a novel model herein, namely Relational Chain based Embedded KGQA (Rce-KGQA), which simultaneously utilizes the explicit relational chain revealed in natural language question and the implicit relational chain stored in structured KG. Our extensive empirical study on three open-domain benchmarks proves that our method significantly outperforms the state-of-the-art counterparts like GraftNet, PullNet and EmbedKGQA. Comprehensive ablation experiments also verify the effectiveness of our method on the multi-hop KGQA task. We have made our model's source code available at github: https://github.com/albert-jin/Rce-KGQA.
LM2: Large Memory Models
This paper introduces the Large Memory Model (LM2), a decoder-only Transformer architecture enhanced with an auxiliary memory module that aims to address the limitations of standard Transformers in multi-step reasoning, relational argumentation, and synthesizing information distributed over long contexts. The proposed LM2 incorporates a memory module that acts as a contextual representation repository, interacting with input tokens via cross attention and updating through gating mechanisms. To preserve the Transformers general-purpose capabilities, LM2 maintains the original information flow while integrating a complementary memory pathway. Experimental results on the BABILong benchmark demonstrate that the LM2model outperforms both the memory-augmented RMT model by 37.1% and the baseline Llama-3.2 model by 86.3% on average across tasks. LM2 exhibits exceptional capabilities in multi-hop inference, numerical reasoning, and large-context question-answering. On the MMLU dataset, it achieves a 5.0% improvement over a pre-trained vanilla model, demonstrating that its memory module does not degrade performance on general tasks. Further, in our analysis, we explore the memory interpretability, effectiveness of memory modules, and test-time behavior. Our findings emphasize the importance of explicit memory in enhancing Transformer architectures.
How Far Are We from Intelligent Visual Deductive Reasoning?
Vision-Language Models (VLMs) such as GPT-4V have recently demonstrated incredible strides on diverse vision language tasks. We dig into vision-based deductive reasoning, a more sophisticated but less explored realm, and find previously unexposed blindspots in the current SOTA VLMs. Specifically, we leverage Raven's Progressive Matrices (RPMs), to assess VLMs' abilities to perform multi-hop relational and deductive reasoning relying solely on visual clues. We perform comprehensive evaluations of several popular VLMs employing standard strategies such as in-context learning, self-consistency, and Chain-of-thoughts (CoT) on three diverse datasets, including the Mensa IQ test, IntelligenceTest, and RAVEN. The results reveal that despite the impressive capabilities of LLMs in text-based reasoning, we are still far from achieving comparable proficiency in visual deductive reasoning. We found that certain standard strategies that are effective when applied to LLMs do not seamlessly translate to the challenges presented by visual reasoning tasks. Moreover, a detailed analysis reveals that VLMs struggle to solve these tasks mainly because they are unable to perceive and comprehend multiple, confounding abstract patterns in RPM examples.
RAVEN: A Dataset for Relational and Analogical Visual rEasoNing
Dramatic progress has been witnessed in basic vision tasks involving low-level perception, such as object recognition, detection, and tracking. Unfortunately, there is still an enormous performance gap between artificial vision systems and human intelligence in terms of higher-level vision problems, especially ones involving reasoning. Earlier attempts in equipping machines with high-level reasoning have hovered around Visual Question Answering (VQA), one typical task associating vision and language understanding. In this work, we propose a new dataset, built in the context of Raven's Progressive Matrices (RPM) and aimed at lifting machine intelligence by associating vision with structural, relational, and analogical reasoning in a hierarchical representation. Unlike previous works in measuring abstract reasoning using RPM, we establish a semantic link between vision and reasoning by providing structure representation. This addition enables a new type of abstract reasoning by jointly operating on the structure representation. Machine reasoning ability using modern computer vision is evaluated in this newly proposed dataset. Additionally, we also provide human performance as a reference. Finally, we show consistent improvement across all models by incorporating a simple neural module that combines visual understanding and structure reasoning.
GraphText: Graph Reasoning in Text Space
Large Language Models (LLMs) have gained the ability to assimilate human knowledge and facilitate natural language interactions with both humans and other LLMs. However, despite their impressive achievements, LLMs have not made significant advancements in the realm of graph machine learning. This limitation arises because graphs encapsulate distinct relational data, making it challenging to transform them into natural language that LLMs understand. In this paper, we bridge this gap with a novel framework, GraphText, that translates graphs into natural language. GraphText derives a graph-syntax tree for each graph that encapsulates both the node attributes and inter-node relationships. Traversal of the tree yields a graph text sequence, which is then processed by an LLM to treat graph tasks as text generation tasks. Notably, GraphText offers multiple advantages. It introduces training-free graph reasoning: even without training on graph data, GraphText with ChatGPT can achieve on par with, or even surpassing, the performance of supervised-trained graph neural networks through in-context learning (ICL). Furthermore, GraphText paves the way for interactive graph reasoning, allowing both humans and LLMs to communicate with the model seamlessly using natural language. These capabilities underscore the vast, yet-to-be-explored potential of LLMs in the domain of graph machine learning.
Query Embedding on Hyper-relational Knowledge Graphs
Multi-hop logical reasoning is an established problem in the field of representation learning on knowledge graphs (KGs). It subsumes both one-hop link prediction as well as other more complex types of logical queries. Existing algorithms operate only on classical, triple-based graphs, whereas modern KGs often employ a hyper-relational modeling paradigm. In this paradigm, typed edges may have several key-value pairs known as qualifiers that provide fine-grained context for facts. In queries, this context modifies the meaning of relations, and usually reduces the answer set. Hyper-relational queries are often observed in real-world KG applications, and existing approaches for approximate query answering cannot make use of qualifier pairs. In this work, we bridge this gap and extend the multi-hop reasoning problem to hyper-relational KGs allowing to tackle this new type of complex queries. Building upon recent advancements in Graph Neural Networks and query embedding techniques, we study how to embed and answer hyper-relational conjunctive queries. Besides that, we propose a method to answer such queries and demonstrate in our experiments that qualifiers improve query answering on a diverse set of query patterns.
Knowledge Hypergraph Embedding Meets Relational Algebra
Embedding-based methods for reasoning in knowledge hypergraphs learn a representation for each entity and relation. Current methods do not capture the procedural rules underlying the relations in the graph. We propose a simple embedding-based model called ReAlE that performs link prediction in knowledge hypergraphs (generalized knowledge graphs) and can represent high-level abstractions in terms of relational algebra operations. We show theoretically that ReAlE is fully expressive and provide proofs and empirical evidence that it can represent a large subset of the primitive relational algebra operations, namely renaming, projection, set union, selection, and set difference. We also verify experimentally that ReAlE outperforms state-of-the-art models in knowledge hypergraph completion, and in representing each of these primitive relational algebra operations. For the latter experiment, we generate a synthetic knowledge hypergraph, for which we design an algorithm based on the Erdos-R'enyi model for generating random graphs.
Towards Foundation Models for Knowledge Graph Reasoning
Foundation models in language and vision have the ability to run inference on any textual and visual inputs thanks to the transferable representations such as a vocabulary of tokens in language. Knowledge graphs (KGs) have different entity and relation vocabularies that generally do not overlap. The key challenge of designing foundation models on KGs is to learn such transferable representations that enable inference on any graph with arbitrary entity and relation vocabularies. In this work, we make a step towards such foundation models and present ULTRA, an approach for learning universal and transferable graph representations. ULTRA builds relational representations as a function conditioned on their interactions. Such a conditioning strategy allows a pre-trained ULTRA model to inductively generalize to any unseen KG with any relation vocabulary and to be fine-tuned on any graph. Conducting link prediction experiments on 57 different KGs, we find that the zero-shot inductive inference performance of a single pre-trained ULTRA model on unseen graphs of various sizes is often on par or better than strong baselines trained on specific graphs. Fine-tuning further boosts the performance.
Towards Enhancing Relational Rules for Knowledge Graph Link Prediction
Graph neural networks (GNNs) have shown promising performance for knowledge graph reasoning. A recent variant of GNN called progressive relational graph neural network (PRGNN), utilizes relational rules to infer missing knowledge in relational digraphs and achieves notable results. However, during reasoning with PRGNN, two important properties are often overlooked: (1) the sequentiality of relation composition, where the order of combining different relations affects the semantics of the relational rules, and (2) the lagged entity information propagation, where the transmission speed of required information lags behind the appearance speed of new entities. Ignoring these properties leads to incorrect relational rule learning and decreased reasoning accuracy. To address these issues, we propose a novel knowledge graph reasoning approach, the Relational rUle eNhanced Graph Neural Network (RUN-GNN). Specifically, RUN-GNN employs a query related fusion gate unit to model the sequentiality of relation composition and utilizes a buffering update mechanism to alleviate the negative effect of lagged entity information propagation, resulting in higher-quality relational rule learning. Experimental results on multiple datasets demonstrate the superiority of RUN-GNN is superior on both transductive and inductive link prediction tasks.
BlendSQL: A Scalable Dialect for Unifying Hybrid Question Answering in Relational Algebra
Many existing end-to-end systems for hybrid question answering tasks can often be boiled down to a "prompt-and-pray" paradigm, where the user has limited control and insight into the intermediate reasoning steps used to achieve the final result. Additionally, due to the context size limitation of many transformer-based LLMs, it is often not reasonable to expect that the full structured and unstructured context will fit into a given prompt in a zero-shot setting, let alone a few-shot setting. We introduce BlendSQL, a superset of SQLite to act as a unified dialect for orchestrating reasoning across both unstructured and structured data. For hybrid question answering tasks involving multi-hop reasoning, we encode the full decomposed reasoning roadmap into a single interpretable BlendSQL query. Notably, we show that BlendSQL can scale to massive datasets and improve the performance of end-to-end systems while using 35% fewer tokens. Our code is available and installable as a package at https://github.com/parkervg/blendsql.
Visual Spatial Reasoning
Spatial relations are a basic part of human cognition. However, they are expressed in natural language in a variety of ways, and previous work has suggested that current vision-and-language models (VLMs) struggle to capture relational information. In this paper, we present Visual Spatial Reasoning (VSR), a dataset containing more than 10k natural text-image pairs with 65 types of spatial relations in English (such as: under, in front of, and facing). While using a seemingly simple annotation format, we show how the dataset includes challenging linguistic phenomena, such as varying reference frames. We demonstrate a large gap between human and model performance: the human ceiling is above 95%, while state-of-the-art models only achieve around 70%. We observe that VLMs' by-relation performances have little correlation with the number of training examples and the tested models are in general incapable of recognising relations concerning the orientations of objects.
Logic-induced Diagnostic Reasoning for Semi-supervised Semantic Segmentation
Recent advances in semi-supervised semantic segmentation have been heavily reliant on pseudo labeling to compensate for limited labeled data, disregarding the valuable relational knowledge among semantic concepts. To bridge this gap, we devise LogicDiag, a brand new neural-logic semi-supervised learning framework. Our key insight is that conflicts within pseudo labels, identified through symbolic knowledge, can serve as strong yet commonly ignored learning signals. LogicDiag resolves such conflicts via reasoning with logic-induced diagnoses, enabling the recovery of (potentially) erroneous pseudo labels, ultimately alleviating the notorious error accumulation problem. We showcase the practical application of LogicDiag in the data-hungry segmentation scenario, where we formalize the structured abstraction of semantic concepts as a set of logic rules. Extensive experiments on three standard semi-supervised semantic segmentation benchmarks demonstrate the effectiveness and generality of LogicDiag. Moreover, LogicDiag highlights the promising opportunities arising from the systematic integration of symbolic reasoning into the prevalent statistical, neural learning approaches.
KG-BART: Knowledge Graph-Augmented BART for Generative Commonsense Reasoning
Generative commonsense reasoning which aims to empower machines to generate sentences with the capacity of reasoning over a set of concepts is a critical bottleneck for text generation. Even the state-of-the-art pre-trained language generation models struggle at this task and often produce implausible and anomalous sentences. One reason is that they rarely consider incorporating the knowledge graph which can provide rich relational information among the commonsense concepts. To promote the ability of commonsense reasoning for text generation, we propose a novel knowledge graph augmented pre-trained language generation model KG-BART, which encompasses the complex relations of concepts through the knowledge graph and produces more logical and natural sentences as output. Moreover, KG-BART can leverage the graph attention to aggregate the rich concept semantics that enhances the model generalization on unseen concept sets. Experiments on benchmark CommonGen dataset verify the effectiveness of our proposed approach by comparing with several strong pre-trained language generation models, particularly KG-BART outperforms BART by 5.80, 4.60, in terms of BLEU-3, 4. Moreover, we also show that the generated context by our model can work as background scenarios to benefit downstream commonsense QA tasks.
MMRA: A Benchmark for Multi-granularity Multi-image Relational Association
Given the remarkable success that large visual language models (LVLMs) have achieved in image perception tasks, the endeavor to make LVMLs perceive the world like humans is drawing increasing attention. Current multi-modal benchmarks mainly focus on the objective fact or certain topic related potential knowledge within a image, but overlook the associative relations between multiple images. Therefore, we define a multi-image relation association task, and meticulously curate MMRA benchmark, a Multi-granularity Multi-image Relational Association benchmark, consisted of 1026 samples. In order to systematically and comprehensively evaluate mainstream LVLMs, we establish an associational relation system among images that contain 11 subtasks (e.g, UsageSimilarity, SubEvent, etc.) at two granularity levels (i.e., "image" and "entity") according to the relations in ConceptNet. Our experiments demonstrate that, on our MMRA benchmark, current mainstream LVLMs all have their own advantages and disadvantages across different subtasks. It is worth noting that, at the entity level, the performance of all models is worse than that of them at the image level, indicating that the fine-grained multi-image perception task is still challenging for LVLMs. The tasks related to spatial perception are relatively difficult for LVLMs to handle. Furthermore, we find that LVMLs exhibit a good ability to perceive image details, and the key to enhancing their multi-image association capability is to strengthen the reasoning ability of their language model component. All our codes and data are released at htthttps://github.com/Wusiwei0410/MMRA.
AvaTaR: Optimizing LLM Agents for Tool Usage via Contrastive Reasoning
Large language model (LLM) agents have demonstrated impressive capabilities in utilizing external tools and knowledge to boost accuracy and reduce hallucinations. However, developing prompting techniques that enable LLM agents to effectively use these tools and knowledge remains a heuristic and labor-intensive task. Here, we introduce AvaTaR, a novel and automated framework that optimizes an LLM agent to effectively leverage provided tools, improving performance on a given task. During optimization, we design a comparator module to iteratively deliver insightful and comprehensive prompts to the LLM agent by contrastively reasoning between positive and negative examples sampled from training data. We demonstrate AvaTaR on four complex multimodal retrieval datasets featuring textual, visual, and relational information, and three general question-answering (QA) datasets. We find AvaTaR consistently outperforms state-of-the-art approaches across all seven tasks, exhibiting strong generalization ability when applied to novel cases and achieving an average relative improvement of 14% on the Hit@1 metric for the retrieval datasets and 13% for the QA datasets. Code and dataset are available at https://github.com/zou-group/avatar.
Benchmarking Multi-Image Understanding in Vision and Language Models: Perception, Knowledge, Reasoning, and Multi-Hop Reasoning
The advancement of large language models (LLMs) has significantly broadened the scope of applications in natural language processing, with multi-modal LLMs extending these capabilities to integrate and interpret visual data. However, existing benchmarks for visual language models (VLMs) predominantly focus on single-image inputs, neglecting the crucial aspect of multi-image understanding. In this paper, we introduce a Multi-Image Relational Benchmark MIRB, designed to evaluate VLMs' ability to compare, analyze, and reason across multiple images. Our benchmark encompasses four categories: perception, visual world knowledge, reasoning, and multi-hop reasoning. Through a comprehensive evaluation of a wide range of open-source and closed-source models, we demonstrate that while open-source VLMs were shown to approach the performance of GPT-4V in single-image tasks, a significant performance gap remains in multi-image reasoning tasks. Our findings also reveal that even the state-of-the-art GPT-4V model struggles with our benchmark, underscoring the need for further research and development in this area. We believe our contribution of MIRB could serve as a testbed for developing the next-generation multi-modal models.
Simulation of Graph Algorithms with Looped Transformers
The execution of graph algorithms using neural networks has recently attracted significant interest due to promising empirical progress. This motivates further understanding of how neural networks can replicate reasoning steps with relational data. In this work, we study the ability of transformer networks to simulate algorithms on graphs from a theoretical perspective. The architecture that we utilize is a looped transformer with extra attention heads that interact with the graph. We prove by construction that this architecture can simulate algorithms such as Dijkstra's shortest path algorithm, Breadth- and Depth-First Search, and Kosaraju's strongly connected components algorithm. The width of the network does not increase with the size of the input graph, which implies that the network can simulate the above algorithms for any graph. Despite this property, we show that there is a limit to simulation in our solution due to finite precision. Finally, we show a Turing Completeness result with constant width when the extra attention heads are utilized.
ModelWriter: Text & Model-Synchronized Document Engineering Platform
The ModelWriter platform provides a generic framework for automated traceability analysis. In this paper, we demonstrate how this framework can be used to trace the consistency and completeness of technical documents that consist of a set of System Installation Design Principles used by Airbus to ensure the correctness of aircraft system installation. We show in particular, how the platform allows the integration of two types of reasoning: reasoning about the meaning of text using semantic parsing and description logic theorem proving; and reasoning about document structure using first-order relational logic and finite model finding for traceability analysis.
Automatic Relation-aware Graph Network Proliferation
Graph neural architecture search has sparked much attention as Graph Neural Networks (GNNs) have shown powerful reasoning capability in many relational tasks. However, the currently used graph search space overemphasizes learning node features and neglects mining hierarchical relational information. Moreover, due to diverse mechanisms in the message passing, the graph search space is much larger than that of CNNs. This hinders the straightforward application of classical search strategies for exploring complicated graph search space. We propose Automatic Relation-aware Graph Network Proliferation (ARGNP) for efficiently searching GNNs with a relation-guided message passing mechanism. Specifically, we first devise a novel dual relation-aware graph search space that comprises both node and relation learning operations. These operations can extract hierarchical node/relational information and provide anisotropic guidance for message passing on a graph. Second, analogous to cell proliferation, we design a network proliferation search paradigm to progressively determine the GNN architectures by iteratively performing network division and differentiation. The experiments on six datasets for four graph learning tasks demonstrate that GNNs produced by our method are superior to the current state-of-the-art hand-crafted and search-based GNNs. Codes are available at https://github.com/phython96/ARGNP.
A Survey on Knowledge Graphs: Representation, Acquisition and Applications
Human knowledge provides a formal understanding of the world. Knowledge graphs that represent structural relations between entities have become an increasingly popular research direction towards cognition and human-level intelligence. In this survey, we provide a comprehensive review of knowledge graph covering overall research topics about 1) knowledge graph representation learning, 2) knowledge acquisition and completion, 3) temporal knowledge graph, and 4) knowledge-aware applications, and summarize recent breakthroughs and perspective directions to facilitate future research. We propose a full-view categorization and new taxonomies on these topics. Knowledge graph embedding is organized from four aspects of representation space, scoring function, encoding models, and auxiliary information. For knowledge acquisition, especially knowledge graph completion, embedding methods, path inference, and logical rule reasoning, are reviewed. We further explore several emerging topics, including meta relational learning, commonsense reasoning, and temporal knowledge graphs. To facilitate future research on knowledge graphs, we also provide a curated collection of datasets and open-source libraries on different tasks. In the end, we have a thorough outlook on several promising research directions.
Concise and Organized Perception Facilitates Large Language Models for Deductive Reasoning
Exploiting large language models (LLMs) to tackle deductive reasoning has garnered growing attention. It still remains highly challenging to achieve satisfactory results in complex deductive problems, characterized by plenty of premises (i.e., facts or rules) entailing intricate relationships among entities and requiring multi-hop reasoning. One intuitive solution is to decompose the original task into smaller sub-tasks, and then chain the multiple casual reasoning steps together in a forward (e.g., Selection-Inference) or backward (e.g., LAMBADA) direction. However, these techniques inevitably necessitate a large number of overall stages, leading to computationally expensive operations and a higher possibility of making misleading steps. In addition to stage-by-stage decomposition, we draw inspiration from another aspect of human problem-solving. Humans tend to distill the most relevant information and organize their thoughts systematically (e.g., creating mind maps), which assists them in answering questions or drawing conclusions precisely and quickly. In light of this, we propose a novel reasoning approach named Concise and Organized Perception (COP). COP carefully analyzes the given statements to efficiently identify the most pertinent information while eliminating redundancy. It then prompts the LLMs in a more organized form that adapts to the model's inference process. By perceiving concise and organized proofs, the deductive reasoning abilities of LLMs can be better elicited, and the risk of acquiring errors caused by excessive reasoning stages is mitigated. Furthermore, our approach can be combined with the aforementioned ones to further boost their performance. Extensive experimental results on three popular deductive benchmarks (i.e., ProofWriter, PrOntoQA and PrOntoQA-OOD) show that COP significantly outperforms previous state-of-the-art methods.
Chain-of-Reasoning: Towards Unified Mathematical Reasoning in Large Language Models via a Multi-Paradigm Perspective
Large Language Models (LLMs) have made notable progress in mathematical reasoning, yet they often rely on single-paradigm reasoning that limits their effectiveness across diverse tasks. In this paper, we introduce Chain-of-Reasoning (CoR), a novel unified framework that integrates multiple reasoning paradigms--Natural Language Reasoning (NLR), Algorithmic Reasoning (AR), and Symbolic Reasoning (SR)--to enable synergistic collaboration. CoR generates multiple potential answers using different reasoning paradigms and synthesizes them into a coherent final solution. We propose a Progressive Paradigm Training (PPT) strategy that allows models to progressively master these paradigms, culminating in the development of CoR-Math-7B. Experimental results demonstrate that CoR-Math-7B significantly outperforms current SOTA models, achieving up to a 41.0% absolute improvement over GPT-4 in theorem proving tasks and a 7.9% improvement over RL-based methods in arithmetic tasks. These results showcase the enhanced mathematical comprehensive ability of our model, achieving significant performance gains on specific tasks and enabling zero-shot generalization across tasks.
Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models
Logical reasoning is fundamental for humans yet presents a substantial challenge in the domain of Artificial Intelligence. Initially, researchers used Knowledge Representation and Reasoning (KR) systems that did not scale and required non trivial manual effort. Recently, the emergence of large language models (LLMs) has demonstrated the ability to overcome various limitations of formal Knowledge Representation (KR) systems. Consequently, there is a growing interest in using LLMs for logical reasoning via natural language. This work strives to understand the proficiency of LLMs in logical reasoning by offering a brief review of the latest progress in this area; with a focus on the logical reasoning datasets, tasks, and the methods adopted to utilize LLMs for reasoning. To offer a thorough analysis, we have compiled a benchmark titled LogiGLUE. This includes 24 varied datasets encompassing deductive, abductive, and inductive reasoning. We have standardized these datasets into Seq2Seq tasks to facilitate straightforward training and evaluation for future research. Utilizing LogiGLUE as a foundation, we have trained an instruction fine tuned language model, resulting in LogiT5. We study single task training, multi task training, and a chain of thought knowledge distillation fine tuning technique to assess the performance of model across the different logical reasoning categories. By this comprehensive process, we aim to shed light on the capabilities and potential pathways for enhancing logical reasoning proficiency in LLMs, paving the way for more advanced and nuanced developments in this critical field.
From Complex to Simple: Unraveling the Cognitive Tree for Reasoning with Small Language Models
Reasoning is a distinctive human capacity, enabling us to address complex problems by breaking them down into a series of manageable cognitive steps. Yet, complex logical reasoning is still cumbersome for language models. Based on the dual process theory in cognitive science, we are the first to unravel the cognitive reasoning abilities of language models. Our framework employs an iterative methodology to construct a Cognitive Tree (CogTree). The root node of this tree represents the initial query, while the leaf nodes consist of straightforward questions that can be answered directly. This construction involves two main components: the implicit extraction module (referred to as the intuitive system) and the explicit reasoning module (referred to as the reflective system). The intuitive system rapidly generates multiple responses by utilizing in-context examples, while the reflective system scores these responses using comparative learning. The scores guide the intuitive system in its subsequent generation step. Our experimental results on two popular and challenging reasoning tasks indicate that it is possible to achieve a performance level comparable to that of GPT-3.5 (with 175B parameters), using a significantly smaller language model that contains fewer parameters (<=7B) than 5% of GPT-3.5.
Logical Reasoning in Large Language Models: A Survey
With the emergence of advanced reasoning models like OpenAI o3 and DeepSeek-R1, large language models (LLMs) have demonstrated remarkable reasoning capabilities. However, their ability to perform rigorous logical reasoning remains an open question. This survey synthesizes recent advancements in logical reasoning within LLMs, a critical area of AI research. It outlines the scope of logical reasoning in LLMs, its theoretical foundations, and the benchmarks used to evaluate reasoning proficiency. We analyze existing capabilities across different reasoning paradigms - deductive, inductive, abductive, and analogical - and assess strategies to enhance reasoning performance, including data-centric tuning, reinforcement learning, decoding strategies, and neuro-symbolic approaches. The review concludes with future directions, emphasizing the need for further exploration to strengthen logical reasoning in AI systems.
Analysing Mathematical Reasoning Abilities of Neural Models
Mathematical reasoning---a core ability within human intelligence---presents some unique challenges as a domain: we do not come to understand and solve mathematical problems primarily on the back of experience and evidence, but on the basis of inferring, learning, and exploiting laws, axioms, and symbol manipulation rules. In this paper, we present a new challenge for the evaluation (and eventually the design) of neural architectures and similar system, developing a task suite of mathematics problems involving sequential questions and answers in a free-form textual input/output format. The structured nature of the mathematics domain, covering arithmetic, algebra, probability and calculus, enables the construction of training and test splits designed to clearly illuminate the capabilities and failure-modes of different architectures, as well as evaluate their ability to compose and relate knowledge and learned processes. Having described the data generation process and its potential future expansions, we conduct a comprehensive analysis of models from two broad classes of the most powerful sequence-to-sequence architectures and find notable differences in their ability to resolve mathematical problems and generalize their knowledge.
Comparing Inferential Strategies of Humans and Large Language Models in Deductive Reasoning
Deductive reasoning plays a pivotal role in the formulation of sound and cohesive arguments. It allows individuals to draw conclusions that logically follow, given the truth value of the information provided. Recent progress in the domain of large language models (LLMs) has showcased their capability in executing deductive reasoning tasks. Nonetheless, a significant portion of research primarily assesses the accuracy of LLMs in solving such tasks, often overlooking a deeper analysis of their reasoning behavior. In this study, we draw upon principles from cognitive psychology to examine inferential strategies employed by LLMs, through a detailed evaluation of their responses to propositional logic problems. Our findings indicate that LLMs display reasoning patterns akin to those observed in humans, including strategies like supposition following or chain construction. Moreover, our research demonstrates that the architecture and scale of the model significantly affect its preferred method of reasoning, with more advanced models tending to adopt strategies more frequently than less sophisticated ones. Importantly, we assert that a model's accuracy, that is the correctness of its final conclusion, does not necessarily reflect the validity of its reasoning process. This distinction underscores the necessity for more nuanced evaluation procedures in the field.
Logical Reasoning over Natural Language as Knowledge Representation: A Survey
Logical reasoning is central to human cognition and intelligence. Past research of logical reasoning within AI uses formal language as knowledge representation~(and symbolic reasoners). However, reasoning with formal language has proved challenging~(e.g., brittleness and knowledge-acquisition bottleneck). This paper provides a comprehensive overview on a new paradigm of logical reasoning, which uses natural language as knowledge representation~(and pretrained language models as reasoners), including philosophical definition and categorization of logical reasoning, advantages of the new paradigm, benchmarks and methods, challenges of the new paradigm, desirable tasks & methods in the future, and relation to related NLP fields. This new paradigm is promising since it not only alleviates many challenges of formal representation but also has advantages over end-to-end neural methods.
Towards Reasoning in Large Language Models: A Survey
Reasoning is a fundamental aspect of human intelligence that plays a crucial role in activities such as problem solving, decision making, and critical thinking. In recent years, large language models (LLMs) have made significant progress in natural language processing, and there is observation that these models may exhibit reasoning abilities when they are sufficiently large. However, it is not yet clear to what extent LLMs are capable of reasoning. This paper provides a comprehensive overview of the current state of knowledge on reasoning in LLMs, including techniques for improving and eliciting reasoning in these models, methods and benchmarks for evaluating reasoning abilities, findings and implications of previous research in this field, and suggestions on future directions. Our aim is to provide a detailed and up-to-date review of this topic and stimulate meaningful discussion and future work.
Are Large Language Models Really Good Logical Reasoners? A Comprehensive Evaluation and Beyond
Logical reasoning consistently plays a fundamental and significant role in the domains of knowledge engineering and artificial intelligence. Recently, Large Language Models (LLMs) have emerged as a noteworthy innovation in natural language processing (NLP), exhibiting impressive achievements across various classic NLP tasks. However, the question of whether LLMs can effectively address the task of logical reasoning, which requires gradual cognitive inference similar to human intelligence, remains unanswered. To this end, we aim to bridge this gap and provide comprehensive evaluations in this paper. Firstly, to offer systematic evaluations, we select fifteen typical logical reasoning datasets and organize them into deductive, inductive, abductive and mixed-form reasoning settings. Considering the comprehensiveness of evaluations, we include three representative LLMs (i.e., text-davinci-003, ChatGPT and BARD) and evaluate them on all selected datasets under zero-shot, one-shot and three-shot settings. Secondly, different from previous evaluations relying only on simple metrics (e.g., accuracy), we propose fine-level evaluations from objective and subjective manners, covering both answers and explanations. Additionally, to uncover the logical flaws of LLMs, problematic cases will be attributed to five error types from two dimensions, i.e., evidence selection process and reasoning process. Thirdly, to avoid the influences of knowledge bias and purely focus on benchmarking the logical reasoning capability of LLMs, we propose a new dataset with neutral content. It contains 3,000 samples and covers deductive, inductive and abductive settings. Based on the in-depth evaluations, this paper finally forms a general evaluation scheme of logical reasoning capability from six dimensions. It reflects the pros and cons of LLMs and gives guiding directions for future works.
Language Models can be Logical Solvers
Logical reasoning is a fundamental aspect of human intelligence and a key component of tasks like problem-solving and decision-making. Recent advancements have enabled Large Language Models (LLMs) to potentially exhibit reasoning capabilities, but complex logical reasoning remains a challenge. The state-of-the-art, solver-augmented language models, use LLMs to parse natural language logical questions into symbolic representations first and then adopt external logical solvers to take in the symbolic representations and output the answers. Despite their impressive performance, any parsing errors will inevitably result in the failure of the execution of the external logical solver and no answer to the logical questions. In this paper, we introduce LoGiPT, a novel language model that directly emulates the reasoning processes of logical solvers and bypasses the parsing errors by learning to strict adherence to solver syntax and grammar. LoGiPT is fine-tuned on a newly constructed instruction-tuning dataset derived from revealing and refining the invisible reasoning process of deductive solvers. Experimental results on two public deductive reasoning datasets demonstrate that LoGiPT outperforms state-of-the-art solver-augmented LMs and few-shot prompting methods on competitive LLMs like ChatGPT or GPT-4.
Reasoning on Graphs: Faithful and Interpretable Large Language Model Reasoning
Large language models (LLMs) have demonstrated impressive reasoning abilities in complex tasks. However, they lack up-to-date knowledge and experience hallucinations during reasoning, which can lead to incorrect reasoning processes and diminish their performance and trustworthiness. Knowledge graphs (KGs), which capture vast amounts of facts in a structured format, offer a reliable source of knowledge for reasoning. Nevertheless, existing KG-based LLM reasoning methods only treat KGs as factual knowledge bases and overlook the importance of their structural information for reasoning. In this paper, we propose a novel method called reasoning on graphs (RoG) that synergizes LLMs with KGs to enable faithful and interpretable reasoning. Specifically, we present a planning-retrieval-reasoning framework, where RoG first generates relation paths grounded by KGs as faithful plans. These plans are then used to retrieve valid reasoning paths from the KGs for LLMs to conduct faithful reasoning. Furthermore, RoG not only distills knowledge from KGs to improve the reasoning ability of LLMs through training but also allows seamless integration with any arbitrary LLMs during inference. Extensive experiments on two benchmark KGQA datasets demonstrate that RoG achieves state-of-the-art performance on KG reasoning tasks and generates faithful and interpretable reasoning results.
Assessing Logical Reasoning Capabilities of Encoder-Only Transformer Models
Logical reasoning is central to complex human activities, such as thinking, debating, and planning; it is also a central component of many AI systems as well. In this paper, we investigate the extent to which encoder-only transformer language models (LMs) can reason according to logical rules. We ask whether those LMs can deduce theorems in propositional calculus and first-order logic; if their relative success in these problems reflects general logical capabilities; and which layers contribute the most to the task. First, we show for several encoder-only LMs that they can be trained, to a reasonable degree, to determine logical validity on various datasets. Next, by cross-probing fine-tuned models on these datasets, we show that LMs have difficulty in transferring their putative logical reasoning ability, which suggests that they may have learned dataset-specific features, instead of a general capability. Finally, we conduct a layerwise probing experiment, which shows that the hypothesis classification task is mostly solved through higher layers.
Enhancing Logical Reasoning in Large Language Models to Facilitate Legal Applications
Language serves as a vehicle for conveying thought, enabling communication among individuals. The ability to distinguish between diverse concepts, identify fairness and injustice, and comprehend a range of legal notions fundamentally relies on logical reasoning. Large Language Models (LLMs) attempt to emulate human language understanding and generation, but their competency in logical reasoning remains limited. This paper seeks to address the philosophical question: How can we effectively teach logical reasoning to LLMs while maintaining a deep understanding of the intricate relationship between language and logic? By focusing on bolstering LLMs' capabilities in logical reasoning, we aim to expand their applicability in law and other logic-intensive disciplines. To this end, we propose a Reinforcement Learning from Logical Feedback (RLLF) approach, which serves as a potential framework for refining LLMs' reasoning capacities. Through RLLF and a revised evaluation methodology, we explore new avenues for research in this domain and contribute to the development of LLMs capable of handling complex legal reasoning tasks while acknowledging the fundamental connection between language and logic.
Deductive Verification of Chain-of-Thought Reasoning
Large Language Models (LLMs) significantly benefit from Chain-of-Thought (CoT) prompting in performing various reasoning tasks. While CoT allows models to produce more comprehensive reasoning processes, its emphasis on intermediate reasoning steps can inadvertently introduce hallucinations and accumulated errors, thereby limiting models' ability to solve complex reasoning tasks. Inspired by how humans engage in careful and meticulous deductive logical reasoning processes to solve tasks, we seek to enable language models to perform explicit and rigorous deductive reasoning, and also ensure the trustworthiness of their reasoning process through self-verification. However, directly verifying the validity of an entire deductive reasoning process is challenging, even with advanced models like ChatGPT. In light of this, we propose to decompose a reasoning verification process into a series of step-by-step subprocesses, each only receiving their necessary context and premises. To facilitate this procedure, we propose Natural Program, a natural language-based deductive reasoning format. Our approach enables models to generate precise reasoning steps where subsequent steps are more rigorously grounded on prior steps. It also empowers language models to carry out reasoning self-verification in a step-by-step manner. By integrating this verification process into each deductive reasoning stage, we significantly enhance the rigor and trustfulness of generated reasoning steps. Along this process, we also improve the answer correctness on complex reasoning tasks. Code will be released at https://github.com/lz1oceani/verify_cot.
Are Rules Meant to be Broken? Understanding Multilingual Moral Reasoning as a Computational Pipeline with UniMoral
Moral reasoning is a complex cognitive process shaped by individual experiences and cultural contexts and presents unique challenges for computational analysis. While natural language processing (NLP) offers promising tools for studying this phenomenon, current research lacks cohesion, employing discordant datasets and tasks that examine isolated aspects of moral reasoning. We bridge this gap with UniMoral, a unified dataset integrating psychologically grounded and social-media-derived moral dilemmas annotated with labels for action choices, ethical principles, contributing factors, and consequences, alongside annotators' moral and cultural profiles. Recognizing the cultural relativity of moral reasoning, UniMoral spans six languages, Arabic, Chinese, English, Hindi, Russian, and Spanish, capturing diverse socio-cultural contexts. We demonstrate UniMoral's utility through a benchmark evaluations of three large language models (LLMs) across four tasks: action prediction, moral typology classification, factor attribution analysis, and consequence generation. Key findings reveal that while implicitly embedded moral contexts enhance the moral reasoning capability of LLMs, there remains a critical need for increasingly specialized approaches to further advance moral reasoning in these models.
Inferring Implicit Relations in Complex Questions with Language Models
A prominent challenge for modern language understanding systems is the ability to answer implicit reasoning questions, where the required reasoning steps for answering the question are not mentioned in the text explicitly. In this work, we investigate why current models struggle with implicit reasoning question answering (QA) tasks, by decoupling inference of reasoning steps from their execution. We define a new task of implicit relation inference and construct a benchmark, IMPLICITRELATIONS, where given a question, a model should output a list of concept-relation pairs, where the relations describe the implicit reasoning steps required for answering the question. Using IMPLICITRELATIONS, we evaluate models from the GPT-3 family and find that, while these models struggle on the implicit reasoning QA task, they often succeed at inferring implicit relations. This suggests that the challenge in implicit reasoning questions does not stem from the need to plan a reasoning strategy alone, but to do it while also retrieving and reasoning over relevant information.
Natural Language Reasoning, A Survey
This survey paper proposes a clearer view of natural language reasoning in the field of Natural Language Processing (NLP), both conceptually and practically. Conceptually, we provide a distinct definition for natural language reasoning in NLP, based on both philosophy and NLP scenarios, discuss what types of tasks require reasoning, and introduce a taxonomy of reasoning. Practically, we conduct a comprehensive literature review on natural language reasoning in NLP, mainly covering classical logical reasoning, natural language inference, multi-hop question answering, and commonsense reasoning. The paper also identifies and views backward reasoning, a powerful paradigm for multi-step reasoning, and introduces defeasible reasoning as one of the most important future directions in natural language reasoning research. We focus on single-modality unstructured natural language text, excluding neuro-symbolic techniques and mathematical reasoning.
Advancing Reasoning in Large Language Models: Promising Methods and Approaches
Large Language Models (LLMs) have succeeded remarkably in various natural language processing (NLP) tasks, yet their reasoning capabilities remain a fundamental challenge. While LLMs exhibit impressive fluency and factual recall, their ability to perform complex reasoning-spanning logical deduction, mathematical problem-solving, commonsense inference, and multi-step reasoning-often falls short of human expectations. This survey provides a comprehensive review of emerging techniques enhancing reasoning in LLMs. We categorize existing methods into key approaches, including prompting strategies (e.g., Chain-of-Thought reasoning, Self-Consistency, and Tree-of-Thought reasoning), architectural innovations (e.g., retrieval-augmented models, modular reasoning networks, and neuro-symbolic integration), and learning paradigms (e.g., fine-tuning with reasoning-specific datasets, reinforcement learning, and self-supervised reasoning objectives). Additionally, we explore evaluation frameworks used to assess reasoning in LLMs and highlight open challenges, such as hallucinations, robustness, and reasoning generalization across diverse tasks. By synthesizing recent advancements, this survey aims to provide insights into promising directions for future research and practical applications of reasoning-augmented LLMs.
Scaling Synthetic Logical Reasoning Datasets with Context-Sensitive Declarative Grammars
Logical reasoning remains a challenge for natural language processing, but it can be improved by training language models to mimic theorem provers on procedurally generated problems. Previous work used domain-specific proof generation algorithms, which biases reasoning toward specific proof traces and limits auditability and extensibility. We present a simpler and more general declarative framework with flexible context-sensitive rules binding multiple languages (specifically, simplified English and the TPTP theorem-proving language). We construct first-order logic problems by selecting up to 32 premises and one hypothesis. We demonstrate that using semantic constraints during generation and careful English verbalization of predicates enhances logical reasoning without hurting natural English tasks. We use relatively small DeBERTa-v3 models to achieve state-of-the-art accuracy on the FOLIO human-authored logic dataset, surpassing GPT-4 in accuracy with or without an external solver by 12%.
Do Vision-Language Models Really Understand Visual Language?
Visual language is a system of communication that conveys information through symbols, shapes, and spatial arrangements. Diagrams are a typical example of a visual language depicting complex concepts and their relationships in the form of an image. The symbolic nature of diagrams presents significant challenges for building models capable of understanding them. Yet, recent studies seem to suggest that Large Vision-Language Models (LVLMs) can even tackle complex reasoning tasks involving diagrams. In this paper, we investigate this phenomenon by developing a comprehensive test suite to evaluate the diagram comprehension capability of LVLMs. Our test suite uses a variety of questions focused on concept entities and their relationships over a set of synthetic as well as real diagrams across several domains to evaluate the recognition and reasoning abilities of models. Our evaluation of three LVLMs (GPT-4V, GPT-4o, and Gemini) shows that while these models can accurately identify and reason about entities, their ability to understand relationships is notably limited. Further testing reveals that the decent performance on diagram understanding largely stems from leveraging their background knowledge as shortcuts to identify and reason about the relational information. Thus, we conclude that LVLMs have a limited capability for genuine diagram understanding, and their impressive performance in diagram reasoning is an illusion emanating from other confounding factors, such as the background knowledge in the models.
Large Language Model for Science: A Study on P vs. NP
In this work, we use large language models (LLMs) to augment and accelerate research on the P versus NP problem, one of the most important open problems in theoretical computer science and mathematics. Specifically, we propose Socratic reasoning, a general framework that promotes in-depth thinking with LLMs for complex problem-solving. Socratic reasoning encourages LLMs to recursively discover, solve, and integrate problems while facilitating self-evaluation and refinement. Our pilot study on the P vs. NP problem shows that GPT-4 successfully produces a proof schema and engages in rigorous reasoning throughout 97 dialogue turns, concluding "P neq NP", which is in alignment with (Xu and Zhou, 2023). The investigation uncovers novel insights within the extensive solution space of LLMs, shedding light on LLM for Science.
Chain of Logic: Rule-Based Reasoning with Large Language Models
Rule-based reasoning, a fundamental type of legal reasoning, enables us to draw conclusions by accurately applying a rule to a set of facts. We explore causal language models as rule-based reasoners, specifically with respect to compositional rules - rules consisting of multiple elements which form a complex logical expression. Reasoning about compositional rules is challenging because it requires multiple reasoning steps, and attending to the logical relationships between elements. We introduce a new prompting method, Chain of Logic, which elicits rule-based reasoning through decomposition (solving elements as independent threads of logic), and recomposition (recombining these sub-answers to resolve the underlying logical expression). This method was inspired by the IRAC (Issue, Rule, Application, Conclusion) framework, a sequential reasoning approach used by lawyers. We evaluate chain of logic across eight rule-based reasoning tasks involving three distinct compositional rules from the LegalBench benchmark and demonstrate it consistently outperforms other prompting methods, including chain of thought and self-ask, using open-source and commercial language models.
Enhancing Zero-Shot Chain-of-Thought Reasoning in Large Language Models through Logic
Recent advancements in large language models have showcased their remarkable generalizability across various domains. However, their reasoning abilities still have significant room for improvement, especially when confronted with scenarios requiring multi-step reasoning. Although large language models possess extensive knowledge, their behavior, particularly in terms of reasoning, often fails to effectively utilize this knowledge to establish a coherent thinking paradigm. Generative language models sometimes show hallucinations as their reasoning procedures are unconstrained by logical principles. Aiming to improve the zero-shot chain-of-thought reasoning ability of large language models, we propose Logical Chain-of-Thought (LogiCoT), a neurosymbolic framework that leverages principles from symbolic logic to verify and revise the reasoning processes accordingly. Experimental evaluations conducted on language tasks in diverse domains, including arithmetic, commonsense, symbolic, causal inference, and social problems, demonstrate the efficacy of the enhanced reasoning paradigm by logic.
Are LLMs classical or nonmonotonic reasoners? Lessons from generics
Recent scholarship on reasoning in LLMs has supplied evidence of impressive performance and flexible adaptation to machine generated or human feedback. Nonmonotonic reasoning, crucial to human cognition for navigating the real world, remains a challenging, yet understudied task. In this work, we study nonmonotonic reasoning capabilities of seven state-of-the-art LLMs in one abstract and one commonsense reasoning task featuring generics, such as 'Birds fly', and exceptions, 'Penguins don't fly' (see Fig. 1). While LLMs exhibit reasoning patterns in accordance with human nonmonotonic reasoning abilities, they fail to maintain stable beliefs on truth conditions of generics at the addition of supporting examples ('Owls fly') or unrelated information ('Lions have manes'). Our findings highlight pitfalls in attributing human reasoning behaviours to LLMs, as well as assessing general capabilities, while consistent reasoning remains elusive.
Proceedings of the First International Workshop on Next-Generation Language Models for Knowledge Representation and Reasoning (NeLaMKRR 2024)
Reasoning is an essential component of human intelligence as it plays a fundamental role in our ability to think critically, support responsible decisions, and solve challenging problems. Traditionally, AI has addressed reasoning in the context of logic-based representations of knowledge. However, the recent leap forward in natural language processing, with the emergence of language models based on transformers, is hinting at the possibility that these models exhibit reasoning abilities, particularly as they grow in size and are trained on more data. Despite ongoing discussions about what reasoning is in language models, it is still not easy to pin down to what extent these models are actually capable of reasoning. The goal of this workshop is to create a platform for researchers from different disciplines and/or AI perspectives, to explore approaches and techniques with the aim to reconcile reasoning between language models using transformers and using logic-based representations. The specific objectives include analyzing the reasoning abilities of language models measured alongside KR methods, injecting KR-style reasoning abilities into language models (including by neuro-symbolic means), and formalizing the kind of reasoning language models carry out. This exploration aims to uncover how language models can effectively integrate and leverage knowledge and reasoning with it, thus improving their application and utility in areas where precision and reliability are a key requirement.
Learning To Teach Large Language Models Logical Reasoning
Large language models (LLMs) have gained enormous attention from both academia and industry, due to their exceptional ability in language generation and extremely powerful generalization. However, current LLMs still output unreliable content in practical reasoning tasks due to their inherent issues (e.g., hallucination). To better disentangle this problem, in this paper, we conduct an in-depth investigation to systematically explore the capability of LLMs in logical reasoning. More in detail, we first investigate the deficiency of LLMs in logical reasoning on different tasks, including event relation extraction and deductive reasoning. Our study demonstrates that LLMs are not good reasoners in solving tasks with rigorous reasoning and will produce counterfactual answers, which require us to iteratively refine. Therefore, we comprehensively explore different strategies to endow LLMs with logical reasoning ability, and thus enable them to generate more logically consistent answers across different scenarios. Based on our approach, we also contribute a synthesized dataset (LLM-LR) involving multi-hop reasoning for evaluation and pre-training. Extensive quantitative and qualitative analyses on different tasks also validate the effectiveness and necessity of teaching LLMs with logic and provide insights for solving practical tasks with LLMs in future work.
Reasoning with Language Model Prompting: A Survey
Reasoning, as an essential ability for complex problem-solving, can provide back-end support for various real-world applications, such as medical diagnosis, negotiation, etc. This paper provides a comprehensive survey of cutting-edge research on reasoning with language model prompting. We introduce research works with comparisons and summaries and provide systematic resources to help beginners. We also discuss the potential reasons for emerging such reasoning abilities and highlight future research directions. Resources are available at https://github.com/zjunlp/Prompt4ReasoningPapers (updated periodically).
Solving Math Word Problems via Cooperative Reasoning induced Language Models
Large-scale pre-trained language models (PLMs) bring new opportunities to challenging problems, especially those that need high-level intelligence, such as the math word problem (MWPs). However, directly applying existing PLMs to MWPs can fail as the generation process lacks sufficient supervision and thus lacks fast adaptivity as humans. We notice that human reasoning has a dual reasoning framework that consists of an immediate reaction system (system 1) and a delicate reasoning system (system 2), where the entire reasoning is determined by their interaction. This inspires us to develop a cooperative reasoning-induced PLM for solving MWPs, called Cooperative Reasoning (CoRe), resulting in a human-like reasoning architecture with system 1 as the generator and system 2 as the verifier. In our approach, the generator is responsible for generating reasoning paths, and the verifiers are used to supervise the evaluation in order to obtain reliable feedback for the generator. We evaluate our CoRe framework on several mathematical reasoning datasets and achieve decent improvement over state-of-the-art methods, up to 9.6% increase over best baselines. Our codes are available at https://github.com/TianHongZXY/CoRe
Reasoning with Graphs: Structuring Implicit Knowledge to Enhance LLMs Reasoning
Large language models (LLMs) have demonstrated remarkable success across a wide range of tasks; however, they still encounter challenges in reasoning tasks that require understanding and inferring relationships between distinct pieces of information within text sequences. This challenge is particularly pronounced in tasks involving multi-step processes, such as logical reasoning and multi-hop question answering, where understanding implicit relationships between entities and leveraging multi-hop connections in the given context are crucial. Graphs, as fundamental data structures, explicitly represent pairwise relationships between entities, thereby offering the potential to enhance LLMs' reasoning capabilities. External graphs have proven effective in supporting LLMs across multiple tasks. However, in many reasoning tasks, no pre-existing graph structure is provided. Can we structure implicit knowledge derived from context into graphs to assist LLMs in reasoning? In this paper, we propose Reasoning with Graphs (RwG) by first constructing explicit graphs from the context and then leveraging these graphs to enhance LLM reasoning performance on reasoning tasks. Extensive experiments demonstrate the effectiveness of the proposed method in improving both logical reasoning and multi-hop question answering tasks.
Rethinking Complex Queries on Knowledge Graphs with Neural Link Predictors
Reasoning on knowledge graphs is a challenging task because it utilizes observed information to predict the missing one. Particularly, answering complex queries based on first-order logic is one of the crucial tasks to verify learning to reason abilities for generalization and composition. Recently, the prevailing method is query embedding which learns the embedding of a set of entities and treats logic operations as set operations and has shown great empirical success. Though there has been much research following the same formulation, many of its claims lack a formal and systematic inspection. In this paper, we rethink this formulation and justify many of the previous claims by characterizing the scope of queries investigated previously and precisely identifying the gap between its formulation and its goal, as well as providing complexity analysis for the currently investigated queries. Moreover, we develop a new dataset containing ten new types of queries with features that have never been considered and therefore can provide a thorough investigation of complex queries. Finally, we propose a new neural-symbolic method, Fuzzy Inference with Truth value (FIT), where we equip the neural link predictors with fuzzy logic theory to support end-to-end learning using complex queries with provable reasoning capability. Empirical results show that our method outperforms previous methods significantly in the new dataset and also surpasses previous methods in the existing dataset at the same time.
Language models show human-like content effects on reasoning
Abstract reasoning is a key ability for an intelligent system. Large language models achieve above-chance performance on abstract reasoning tasks, but exhibit many imperfections. However, human abstract reasoning is also imperfect, and depends on our knowledge and beliefs about the content of the reasoning problem. For example, humans reason much more reliably about logical rules that are grounded in everyday situations than arbitrary rules about abstract attributes. The training experiences of language models similarly endow them with prior expectations that reflect human knowledge and beliefs. We therefore hypothesized that language models would show human-like content effects on abstract reasoning problems. We explored this hypothesis across three logical reasoning tasks: natural language inference, judging the logical validity of syllogisms, and the Wason selection task (Wason, 1968). We find that state of the art large language models (with 7 or 70 billion parameters; Hoffman et al., 2022) reflect many of the same patterns observed in humans across these tasks -- like humans, models reason more effectively about believable situations than unrealistic or abstract ones. Our findings have implications for understanding both these cognitive effects, and the factors that contribute to language model performance.
Complex Logical Reasoning over Knowledge Graphs using Large Language Models
Reasoning over knowledge graphs (KGs) is a challenging task that requires a deep understanding of the complex relationships between entities and the underlying logic of their relations. Current approaches rely on learning geometries to embed entities in vector space for logical query operations, but they suffer from subpar performance on complex queries and dataset-specific representations. In this paper, we propose a novel decoupled approach, Language-guided Abstract Reasoning over Knowledge graphs (LARK), that formulates complex KG reasoning as a combination of contextual KG search and logical query reasoning, to leverage the strengths of graph extraction algorithms and large language models (LLM), respectively. Our experiments demonstrate that the proposed approach outperforms state-of-the-art KG reasoning methods on standard benchmark datasets across several logical query constructs, with significant performance gain for queries of higher complexity. Furthermore, we show that the performance of our approach improves proportionally to the increase in size of the underlying LLM, enabling the integration of the latest advancements in LLMs for logical reasoning over KGs. Our work presents a new direction for addressing the challenges of complex KG reasoning and paves the way for future research in this area.
Relevant or Random: Can LLMs Truly Perform Analogical Reasoning?
Analogical reasoning is a unique ability of humans to address unfamiliar challenges by transferring strategies from relevant past experiences. One key finding in psychology is that compared with irrelevant past experiences, recalling relevant ones can help humans better handle new tasks. Coincidentally, the NLP community has also recently found that self-generating relevant examples in the context can help large language models (LLMs) better solve a given problem than hand-crafted prompts. However, it is yet not clear whether relevance is the key factor eliciting such capability, i.e., can LLMs benefit more from self-generated relevant examples than irrelevant ones? In this work, we systematically explore whether LLMs can truly perform analogical reasoning on a diverse set of reasoning tasks. With extensive experiments and analysis, we show that self-generated random examples can surprisingly achieve comparable or even better performance, e.g., 4% performance boost on GSM8K with random biological examples. We find that the accuracy of self-generated examples is the key factor and subsequently design two improved methods with significantly reduced inference costs. Overall, we aim to advance a deeper understanding of LLM analogical reasoning and hope this work stimulates further research in the design of self-generated contexts.
LogiDynamics: Unraveling the Dynamics of Logical Inference in Large Language Model Reasoning
Modern large language models (LLMs) employ various forms of logical inference, both implicitly and explicitly, when addressing reasoning tasks. Understanding how to optimally leverage these inference paradigms is critical for advancing LLMs' reasoning capabilities. This paper adopts an exploratory approach by introducing a controlled evaluation environment for analogical reasoning -- a fundamental cognitive task -- that is systematically parameterized across three dimensions: modality (textual, visual, symbolic), difficulty (easy, medium, hard), and task format (multiple-choice or free-text generation). We analyze the comparative dynamics of inductive, abductive, and deductive inference pipelines across these dimensions, and demonstrate that our findings generalize to broader in-context learning tasks. Additionally, we investigate advanced paradigms such as hypothesis selection, verification, and refinement, revealing their potential to scale up logical inference in LLM reasoning. This exploratory study provides a foundation for future research in enhancing LLM reasoning through systematic logical inference strategies.
LIMO: Less is More for Reasoning
We present a fundamental discovery that challenges our understanding of how complex reasoning emerges in large language models. While conventional wisdom suggests that sophisticated reasoning tasks demand extensive training data (>100,000 examples), we demonstrate that complex mathematical reasoning abilities can be effectively elicited with surprisingly few examples. Through comprehensive experiments, our proposed model LIMO demonstrates unprecedented performance in mathematical reasoning. With merely 817 curated training samples, LIMO achieves 57.1% accuracy on AIME and 94.8% on MATH, improving from previous SFT-based models' 6.5% and 59.2% respectively, while only using 1% of the training data required by previous approaches. LIMO demonstrates exceptional out-of-distribution generalization, achieving 40.5% absolute improvement across 10 diverse benchmarks, outperforming models trained on 100x more data, challenging the notion that SFT leads to memorization rather than generalization. Based on these results, we propose the Less-Is-More Reasoning Hypothesis (LIMO Hypothesis): In foundation models where domain knowledge has been comprehensively encoded during pre-training, sophisticated reasoning capabilities can emerge through minimal but precisely orchestrated demonstrations of cognitive processes. This hypothesis posits that the elicitation threshold for complex reasoning is determined by two key factors: (1) the completeness of the model's encoded knowledge foundation during pre-training, and (2) the effectiveness of post-training examples as "cognitive templates" that show the model how to utilize its knowledge base to solve complex reasoning tasks. To facilitate reproducibility and future research in data-efficient reasoning, we release LIMO as a comprehensive open-source suite at https://github.com/GAIR-NLP/LIMO.
A Survey of Deep Learning for Mathematical Reasoning
Mathematical reasoning is a fundamental aspect of human intelligence and is applicable in various fields, including science, engineering, finance, and everyday life. The development of artificial intelligence (AI) systems capable of solving math problems and proving theorems has garnered significant interest in the fields of machine learning and natural language processing. For example, mathematics serves as a testbed for aspects of reasoning that are challenging for powerful deep learning models, driving new algorithmic and modeling advances. On the other hand, recent advances in large-scale neural language models have opened up new benchmarks and opportunities to use deep learning for mathematical reasoning. In this survey paper, we review the key tasks, datasets, and methods at the intersection of mathematical reasoning and deep learning over the past decade. We also evaluate existing benchmarks and methods, and discuss future research directions in this domain.
Contrastive Chain-of-Thought Prompting
Despite the success of chain of thought in enhancing language model reasoning, the underlying process remains less well understood. Although logically sound reasoning appears inherently crucial for chain of thought, prior studies surprisingly reveal minimal impact when using invalid demonstrations instead. Furthermore, the conventional chain of thought does not inform language models on what mistakes to avoid, which potentially leads to more errors. Hence, inspired by how humans can learn from both positive and negative examples, we propose contrastive chain of thought to enhance language model reasoning. Compared to the conventional chain of thought, our approach provides both valid and invalid reasoning demonstrations, to guide the model to reason step-by-step while reducing reasoning mistakes. To improve generalization, we introduce an automatic method to construct contrastive demonstrations. Our experiments on reasoning benchmarks demonstrate that contrastive chain of thought can serve as a general enhancement of chain-of-thought prompting.
SocialGPT: Prompting LLMs for Social Relation Reasoning via Greedy Segment Optimization
Social relation reasoning aims to identify relation categories such as friends, spouses, and colleagues from images. While current methods adopt the paradigm of training a dedicated network end-to-end using labeled image data, they are limited in terms of generalizability and interpretability. To address these issues, we first present a simple yet well-crafted framework named {\name}, which combines the perception capability of Vision Foundation Models (VFMs) and the reasoning capability of Large Language Models (LLMs) within a modular framework, providing a strong baseline for social relation recognition. Specifically, we instruct VFMs to translate image content into a textual social story, and then utilize LLMs for text-based reasoning. {\name} introduces systematic design principles to adapt VFMs and LLMs separately and bridge their gaps. Without additional model training, it achieves competitive zero-shot results on two databases while offering interpretable answers, as LLMs can generate language-based explanations for the decisions. The manual prompt design process for LLMs at the reasoning phase is tedious and an automated prompt optimization method is desired. As we essentially convert a visual classification task into a generative task of LLMs, automatic prompt optimization encounters a unique long prompt optimization issue. To address this issue, we further propose the Greedy Segment Prompt Optimization (GSPO), which performs a greedy search by utilizing gradient information at the segment level. Experimental results show that GSPO significantly improves performance, and our method also generalizes to different image styles. The code is available at https://github.com/Mengzibin/SocialGPT.
Imitate, Explore, and Self-Improve: A Reproduction Report on Slow-thinking Reasoning Systems
Recently, slow-thinking reasoning systems, such as o1, have demonstrated remarkable capabilities in solving complex reasoning tasks. These systems typically engage in an extended thinking process before responding to a query, allowing them to generate more thorough, accurate, and well-reasoned solutions. These systems are primarily developed and maintained by industry, with their core techniques not publicly disclosed. In response, an increasing number of studies from the research community aim to explore the technical foundations underlying these powerful reasoning systems. Building on these prior efforts, this paper presents a reproduction report on implementing o1-like reasoning systems. We introduce an "imitate, explore, and self-improve" framework as our primary technical approach to train the reasoning model. In the initial phase, we use distilled long-form thought data to fine-tune the reasoning model, enabling it to invoke a slow-thinking mode. The model is then encouraged to explore challenging problems by generating multiple rollouts, which can result in increasingly more high-quality trajectories that lead to correct answers. Furthermore, the model undergoes self-improvement by iteratively refining its training dataset. To verify the effectiveness of this approach, we conduct extensive experiments on three challenging benchmarks. The experimental results demonstrate that our approach achieves competitive performance compared to industry-level reasoning systems on these benchmarks.
Efficient Tool Use with Chain-of-Abstraction Reasoning
To achieve faithful reasoning that aligns with human expectations, large language models (LLMs) need to ground their reasoning to real-world knowledge (e.g., web facts, math and physical rules). Tools help LLMs access this external knowledge, but there remains challenges for fine-tuning LLM agents (e.g., Toolformer) to invoke tools in multi-step reasoning problems, where inter-connected tool calls require holistic and efficient tool usage planning. In this work, we propose a new method for LLMs to better leverage tools in multi-step reasoning. Our method, Chain-of-Abstraction (CoA), trains LLMs to first decode reasoning chains with abstract placeholders, and then call domain tools to reify each reasoning chain by filling in specific knowledge. This planning with abstract chains enables LLMs to learn more general reasoning strategies, which are robust to shifts of domain knowledge (e.g., math results) relevant to different reasoning questions. It also allows LLMs to perform decoding and calling of external tools in parallel, which avoids the inference delay caused by waiting for tool responses. In mathematical reasoning and Wiki QA domains, we show that our method consistently outperforms previous chain-of-thought and tool-augmented baselines on both in-distribution and out-of-distribution test sets, with an average ~6% absolute QA accuracy improvement. LLM agents trained with our method also show more efficient tool use, with inference speed being on average ~1.4x faster than baseline tool-augmented LLMs.
LAMBADA: Backward Chaining for Automated Reasoning in Natural Language
Remarkable progress has been made on automated reasoning with natural text, by using Language Models (LMs) and methods such as Chain-of-Thought and Selection-Inference. These techniques search for proofs in the forward direction from axioms to the conclusion, which suffers from a combinatorial explosion of the search space, and thus high failure rates for problems requiring longer chains of reasoning. The classical automated reasoning literature has shown that reasoning in the backward direction (i.e. from the intended conclusion to supporting axioms) is significantly more efficient at proof-finding. Importing this intuition into the LM setting, we develop a Backward Chaining algorithm, called LAMBADA, that decomposes reasoning into four sub-modules. These sub-modules are simply implemented by few-shot prompted LM inference. We show that LAMBADA achieves sizable accuracy boosts over state-of-the-art forward reasoning methods on challenging logical reasoning datasets, particularly when deep and accurate proof chains are required.
ProcBench: Benchmark for Multi-Step Reasoning and Following Procedure
Reasoning is central to a wide range of intellectual activities, and while the capabilities of large language models (LLMs) continue to advance, their performance in reasoning tasks remains limited. The processes and mechanisms underlying reasoning are not yet fully understood, but key elements include path exploration, selection of relevant knowledge, and multi-step inference. Problems are solved through the synthesis of these components. In this paper, we propose a benchmark that focuses on a specific aspect of reasoning ability: the direct evaluation of multi-step inference. To this end, we design a special reasoning task where multi-step inference is specifically focused by largely eliminating path exploration and implicit knowledge utilization. Our dataset comprises pairs of explicit instructions and corresponding questions, where the procedures necessary for solving the questions are entirely detailed within the instructions. This setup allows models to solve problems solely by following the provided directives. By constructing problems that require varying numbers of steps to solve and evaluating responses at each step, we enable a thorough assessment of state-of-the-art LLMs' ability to follow instructions. To ensure the robustness of our evaluation, we include multiple distinct tasks. Furthermore, by comparing accuracy across tasks, utilizing step-aware metrics, and applying separately defined measures of complexity, we conduct experiments that offer insights into the capabilities and limitations of LLMs in reasoning tasks. Our findings have significant implications for the development of LLMs and highlight areas for future research in advancing their reasoning abilities. Our dataset is available at https://huggingface.co/datasets/ifujisawa/procbench and code at https://github.com/ifujisawa/proc-bench.
Conic10K: A Challenging Math Problem Understanding and Reasoning Dataset
Mathematical understanding and reasoning are crucial tasks for assessing the capabilities of artificial intelligence (AI). However, existing benchmarks either require just a few steps of reasoning, or only contain a small amount of data in one specific topic, making it hard to analyse AI's behaviour with reference to different problems within a specific topic in detail. In this work, we propose Conic10K, a challenging math problem dataset on conic sections in Chinese senior high school education. Our dataset contains various problems with different reasoning depths, while only the knowledge from conic sections is required. Since the dataset only involves a narrow range of knowledge, it is easy to separately analyse the knowledge a model possesses and the reasoning ability it has. For each problem, we provide a high-quality formal representation, the reasoning steps, and the final solution. Experiments show that existing large language models, including GPT-4, exhibit weak performance on complex reasoning. We hope that our findings could inspire more advanced techniques for precise natural language understanding and reasoning. Our dataset and codes are available at https://github.com/whyNLP/Conic10K.
Enhancing Reasoning Capabilities of Large Language Models: A Graph-Based Verification Approach
Large Language Models (LLMs) have showcased impressive reasoning capabilities, particularly when guided by specifically designed prompts in complex reasoning tasks such as math word problems. These models typically solve tasks using a chain-of-thought approach, which not only bolsters their reasoning abilities but also provides valuable insights into their problem-solving process. However, there is still significant room for enhancing the reasoning abilities of LLMs. Some studies suggest that the integration of an LLM output verifier can boost reasoning accuracy without necessitating additional model training. In this paper, we follow these studies and introduce a novel graph-based method to further augment the reasoning capabilities of LLMs. We posit that multiple solutions to a reasoning task, generated by an LLM, can be represented as a reasoning graph due to the logical connections between intermediate steps from different reasoning paths. Therefore, we propose the Reasoning Graph Verifier (RGV) to analyze and verify the solutions generated by LLMs. By evaluating these graphs, models can yield more accurate and reliable results.Our experimental results show that our graph-based verification method not only significantly enhances the reasoning abilities of LLMs but also outperforms existing verifier methods in terms of improving these models' reasoning performance.
Logic-of-Thought: Injecting Logic into Contexts for Full Reasoning in Large Language Models
Large Language Models (LLMs) have demonstrated remarkable capabilities across various tasks but their performance in complex logical reasoning tasks remains unsatisfactory. Although some prompting methods, such as Chain-of-Thought, can improve the reasoning ability of LLMs to some extent, they suffer from an unfaithful issue where derived conclusions may not align with the generated reasoning chain. To address this issue, some studies employ the approach of propositional logic to further enhance logical reasoning abilities of LLMs. However, the potential omissions in the extraction of logical expressions in these methods can cause information loss in the logical reasoning process, thereby generating incorrect results. To this end, we propose Logic-of-Thought (LoT) prompting which employs propositional logic to generate expanded logical information from input context, and utilizes the generated logical information as an additional augmentation to the input prompts, thereby enhancing the capability of logical reasoning. The LoT is orthogonal to existing prompting methods and can be seamlessly integrated with them. Extensive experiments demonstrate that LoT boosts the performance of various prompting methods with a striking margin across five logical reasoning tasks. In particular, the LoT enhances Chain-of-Thought's performance on the ReClor dataset by +4.35%; moreover, it improves Chain-of-Thought with Self-Consistency's performance on LogiQA by +5%; additionally, it boosts performance of Tree-of-Thoughts on ProofWriter dataset by +8%.
Phenomenal Yet Puzzling: Testing Inductive Reasoning Capabilities of Language Models with Hypothesis Refinement
The ability to derive underlying principles from a handful of observations and then generalize to novel situations -- known as inductive reasoning -- is central to human intelligence. Prior work suggests that language models (LMs) often fall short on inductive reasoning, despite achieving impressive success on research benchmarks. In this work, we conduct a systematic study of the inductive reasoning capabilities of LMs through iterative hypothesis refinement, a technique that more closely mirrors the human inductive process than standard input-output prompting. Iterative hypothesis refinement employs a three-step process: proposing, selecting, and refining hypotheses in the form of textual rules. By examining the intermediate rules, we observe that LMs are phenomenal hypothesis proposers (i.e., generating candidate rules), and when coupled with a (task-specific) symbolic interpreter that is able to systematically filter the proposed set of rules, this hybrid approach achieves strong results across inductive reasoning benchmarks that require inducing causal relations, language-like instructions, and symbolic concepts. However, they also behave as puzzling inductive reasoners, showing notable performance gaps between rule induction (i.e., identifying plausible rules) and rule application (i.e., applying proposed rules to instances), suggesting that LMs are proposing hypotheses without being able to actually apply the rules. Through empirical and human analyses, we further reveal several discrepancies between the inductive reasoning processes of LMs and humans, shedding light on both the potentials and limitations of using LMs in inductive reasoning tasks.
Making Large Language Models Better Reasoners with Alignment
Reasoning is a cognitive process of using evidence to reach a sound conclusion. The reasoning capability is essential for large language models (LLMs) to serve as the brain of the artificial general intelligence agent. Recent studies reveal that fine-tuning LLMs on data with the chain of thought (COT) reasoning process can significantly enhance their reasoning capabilities. However, we find that the fine-tuned LLMs suffer from an Assessment Misalignment problem, i.e., they frequently assign higher scores to subpar COTs, leading to potential limitations in their reasoning abilities. To address this problem, we introduce an Alignment Fine-Tuning (AFT) paradigm, which involves three steps: 1) fine-tuning LLMs with COT training data; 2) generating multiple COT responses for each question, and categorizing them into positive and negative ones based on whether they achieve the correct answer; 3) calibrating the scores of positive and negative responses given by LLMs with a novel constraint alignment loss. Specifically, the constraint alignment loss has two objectives: a) Alignment, which guarantees that positive scores surpass negative scores to encourage answers with high-quality COTs; b) Constraint, which keeps the negative scores confined to a reasonable range to prevent the model degradation. Beyond just the binary positive and negative feedback, the constraint alignment loss can be seamlessly adapted to the ranking situations when ranking feedback is accessible. Furthermore, we also delve deeply into recent ranking-based alignment methods, such as DPO, RRHF, and PRO, and discover that the constraint, which has been overlooked by these approaches, is also crucial for their performance. Extensive experiments on four reasoning benchmarks with both binary and ranking feedback demonstrate the effectiveness of AFT.
From System 1 to System 2: A Survey of Reasoning Large Language Models
Achieving human-level intelligence requires refining the transition from the fast, intuitive System 1 to the slower, more deliberate System 2 reasoning. While System 1 excels in quick, heuristic decisions, System 2 relies on logical reasoning for more accurate judgments and reduced biases. Foundational Large Language Models (LLMs) excel at fast decision-making but lack the depth for complex reasoning, as they have not yet fully embraced the step-by-step analysis characteristic of true System 2 thinking. Recently, reasoning LLMs like OpenAI's o1/o3 and DeepSeek's R1 have demonstrated expert-level performance in fields such as mathematics and coding, closely mimicking the deliberate reasoning of System 2 and showcasing human-like cognitive abilities. This survey begins with a brief overview of the progress in foundational LLMs and the early development of System 2 technologies, exploring how their combination has paved the way for reasoning LLMs. Next, we discuss how to construct reasoning LLMs, analyzing their features, the core methods enabling advanced reasoning, and the evolution of various reasoning LLMs. Additionally, we provide an overview of reasoning benchmarks, offering an in-depth comparison of the performance of representative reasoning LLMs. Finally, we explore promising directions for advancing reasoning LLMs and maintain a real-time https://github.com/zzli2022/Awesome-Slow-Reason-System{GitHub Repository} to track the latest developments. We hope this survey will serve as a valuable resource to inspire innovation and drive progress in this rapidly evolving field.
Language Models as Inductive Reasoners
Inductive reasoning is a core component of human intelligence. In the past research of inductive reasoning within computer science, formal language is used as representations of knowledge (facts and rules, more specifically). However, formal language can cause systematic problems for inductive reasoning such as disability of handling raw input such as natural language, sensitiveness to mislabeled data, and incapacity to handle ambiguous input. To this end, we propose a new paradigm (task) for inductive reasoning, which is to induce natural language rules from natural language facts, and create a dataset termed DEER containing 1.2k rule-fact pairs for the task, where rules and facts are written in natural language. New automatic metrics are also proposed and analysed for the evaluation of this task. With DEER, we investigate a modern approach for inductive reasoning where we use natural language as representation for knowledge instead of formal language and use pretrained language models as ''reasoners''. Moreover, we provide the first and comprehensive analysis of how well pretrained language models can induce natural language rules from natural language facts. We also propose a new framework drawing insights from philosophy literature for this task, which we show in the experiment section that surpasses baselines in both automatic and human evaluations. We discuss about our future perspectives for inductive reasoning in Section 7. Dataset and code are available at https://github.com/ZonglinY/Inductive_Reasoning.
Large Language Models for Mathematical Reasoning: Progresses and Challenges
Mathematical reasoning serves as a cornerstone for assessing the fundamental cognitive capabilities of human intelligence. In recent times, there has been a notable surge in the development of Large Language Models (LLMs) geared towards the automated resolution of mathematical problems. However, the landscape of mathematical problem types is vast and varied, with LLM-oriented techniques undergoing evaluation across diverse datasets and settings. This diversity makes it challenging to discern the true advancements and obstacles within this burgeoning field. This survey endeavors to address four pivotal dimensions: i) a comprehensive exploration of the various mathematical problems and their corresponding datasets that have been investigated; ii) an examination of the spectrum of LLM-oriented techniques that have been proposed for mathematical problem-solving; iii) an overview of factors and concerns affecting LLMs in solving math; and iv) an elucidation of the persisting challenges within this domain. To the best of our knowledge, this survey stands as one of the first extensive examinations of the landscape of LLMs in the realm of mathematics, providing a holistic perspective on the current state, accomplishments, and future challenges in this rapidly evolving field.
GeomVerse: A Systematic Evaluation of Large Models for Geometric Reasoning
Large language models have shown impressive results for multi-hop mathematical reasoning when the input question is only textual. Many mathematical reasoning problems, however, contain both text and image. With the ever-increasing adoption of vision language models (VLMs), understanding their reasoning abilities for such problems is crucial. In this paper, we evaluate the reasoning capabilities of VLMs along various axes through the lens of geometry problems. We procedurally create a synthetic dataset of geometry questions with controllable difficulty levels along multiple axes, thus enabling a systematic evaluation. The empirical results obtained using our benchmark for state-of-the-art VLMs indicate that these models are not as capable in subjects like geometry (and, by generalization, other topics requiring similar reasoning) as suggested by previous benchmarks. This is made especially clear by the construction of our benchmark at various depth levels, since solving higher-depth problems requires long chains of reasoning rather than additional memorized knowledge. We release the dataset for further research in this area.
Inductive or Deductive? Rethinking the Fundamental Reasoning Abilities of LLMs
Reasoning encompasses two typical types: deductive reasoning and inductive reasoning. Despite extensive research into the reasoning capabilities of Large Language Models (LLMs), most studies have failed to rigorously differentiate between inductive and deductive reasoning, leading to a blending of the two. This raises an essential question: In LLM reasoning, which poses a greater challenge - deductive or inductive reasoning? While the deductive reasoning capabilities of LLMs, (i.e. their capacity to follow instructions in reasoning tasks), have received considerable attention, their abilities in true inductive reasoning remain largely unexplored. To investigate into the true inductive reasoning capabilities of LLMs, we propose a novel framework, SolverLearner. This framework enables LLMs to learn the underlying function (i.e., y = f_w(x)), that maps input data points (x) to their corresponding output values (y), using only in-context examples. By focusing on inductive reasoning and separating it from LLM-based deductive reasoning, we can isolate and investigate inductive reasoning of LLMs in its pure form via SolverLearner. Our observations reveal that LLMs demonstrate remarkable inductive reasoning capabilities through SolverLearner, achieving near-perfect performance with ACC of 1 in most cases. Surprisingly, despite their strong inductive reasoning abilities, LLMs tend to relatively lack deductive reasoning capabilities, particularly in tasks involving ``counterfactual'' reasoning.
Critical-Questions-of-Thought: Steering LLM reasoning with Argumentative Querying
Studies have underscored how, regardless of the recent breakthrough and swift advances in AI research, even state-of-the-art Large Language models (LLMs) continue to struggle when performing logical and mathematical reasoning. The results seem to suggest that LLMs still work as (highly advanced) data pattern identifiers, scoring poorly when attempting to generalise and solve reasoning problems the models have never previously seen or that are not close to samples presented in their training data. To address this compelling concern, this paper makes use of the notion of critical questions from the literature on argumentation theory, focusing in particular on Toulmin's model of argumentation. We show that employing these critical questions can improve the reasoning capabilities of LLMs. By probing the rationale behind the models' reasoning process, the LLM can assess whether some logical mistake is occurring and correct it before providing the final reply to the user prompt. The underlying idea is drawn from the gold standard of any valid argumentative procedure: the conclusion is valid if it is entailed by accepted premises. Or, to paraphrase such Aristotelian principle in a real-world approximation, characterised by incomplete information and presumptive logic, the conclusion is valid if not proved otherwise. This approach successfully steers the models' output through a reasoning pipeline, resulting in better performance against the baseline and its Chain-of-Thought (CoT) implementation. To this end, an extensive evaluation of the proposed approach on the MT-Bench Reasoning and Math tasks across a range of LLMs is provided.
Chain-of-Knowledge: Integrating Knowledge Reasoning into Large Language Models by Learning from Knowledge Graphs
Large Language Models (LLMs) have exhibited impressive proficiency in various natural language processing (NLP) tasks, which involve increasingly complex reasoning. Knowledge reasoning, a primary type of reasoning, aims at deriving new knowledge from existing one.While it has been widely studied in the context of knowledge graphs (KGs), knowledge reasoning in LLMs remains underexplored. In this paper, we introduce Chain-of-Knowledge, a comprehensive framework for knowledge reasoning, including methodologies for both dataset construction and model learning. For dataset construction, we create KnowReason via rule mining on KGs. For model learning, we observe rule overfitting induced by naive training. Hence, we enhance CoK with a trial-and-error mechanism that simulates the human process of internal knowledge exploration. We conduct extensive experiments with KnowReason. Our results show the effectiveness of CoK in refining LLMs in not only knowledge reasoning, but also general reasoning benchmarkms.
Pushing the Limits of Rule Reasoning in Transformers through Natural Language Satisfiability
Investigating the reasoning abilities of transformer models, and discovering new challenging tasks for them, has been a topic of much interest. Recent studies have found these models to be surprisingly strong at performing deductive reasoning over formal logical theories expressed in natural language. A shortcoming of these studies, however, is that they do not take into account that logical theories, when sampled uniformly at random, do not necessarily lead to hard instances. We propose a new methodology for creating challenging algorithmic reasoning datasets that focus on natural language satisfiability (NLSat) problems. The key idea is to draw insights from empirical sampling of hard propositional SAT problems and from complexity-theoretic studies of language. This methodology allows us to distinguish easy from hard instances, and to systematically increase the complexity of existing reasoning benchmarks such as RuleTaker. We find that current transformers, given sufficient training data, are surprisingly robust at solving the resulting NLSat problems of substantially increased difficulty. They also exhibit some degree of scale-invariance - the ability to generalize to problems of larger size and scope. Our results, however, reveal important limitations too: a careful sampling of training data is crucial for building models that generalize to larger problems, and transformer models' limited scale-invariance suggests they are far from learning robust deductive reasoning algorithms.
Language Models with Rationality
While large language models (LLMs) are proficient at question-answering (QA), it is not always clear how (or even if) an answer follows from their latent "beliefs". This lack of interpretability is a growing impediment to widespread use of LLMs. To address this, our goals are to make model beliefs and their inferential relationships explicit, and to resolve inconsistencies that may exist, so that answers are supported by interpretable chains of reasoning drawn from a consistent network of beliefs. Our approach, which we call REFLEX, is to add a rational, self-reflecting layer on top of the LLM. First, given a question, we construct a belief graph using a backward-chaining process to materialize relevant model beliefs (including beliefs about answer candidates) and their inferential relationships. Second, we identify and minimize contradictions in that graph using a formal constraint reasoner. We find that REFLEX significantly improves consistency (by 8%-11% absolute) without harming overall answer accuracy, resulting in answers supported by faithful chains of reasoning drawn from a more consistent belief system. This suggests a new style of system architecture in which an LLM extended with a rational layer can provide an interpretable window into system beliefs, add a systematic reasoning capability, and repair latent inconsistencies present in the LLM.
Learning Planning-based Reasoning by Trajectories Collection and Process Reward Synthesizing
Large Language Models (LLMs) have demonstrated significant potential in handling complex reasoning tasks through step-by-step rationale generation. However, recent studies have raised concerns regarding the hallucination and flaws in their reasoning process. Substantial efforts are being made to improve the reliability and faithfulness of the generated rationales. Some approaches model reasoning as planning, while others focus on annotating for process supervision. Nevertheless, the planning-based search process often results in high latency due to the frequent assessment of intermediate reasoning states and the extensive exploration space. Additionally, supervising the reasoning process with human annotation is costly and challenging to scale for LLM training. To address these issues, in this paper, we propose a framework to learn planning-based reasoning through direct preference optimization (DPO) on collected trajectories, which are ranked according to synthesized process rewards. Our results on challenging logical reasoning benchmarks demonstrate the effectiveness of our learning framework, showing that our 7B model can surpass the strong counterparts like GPT-3.5-Turbo.
Quantifying Logical Consistency in Transformers via Query-Key Alignment
Large language models (LLMs) have demonstrated impressive performance in various natural language processing tasks, yet their ability to perform multi-step logical reasoning remains an open challenge. Although Chain-of-Thought prompting has improved logical reasoning by enabling models to generate intermediate steps, it lacks mechanisms to assess the coherence of these logical transitions. In this paper, we propose a novel, lightweight evaluation strategy for logical reasoning that uses query-key alignments inside transformer attention heads. By computing a single forward pass and extracting a "QK-score" from carefully chosen heads, our method reveals latent representations that reliably separate valid from invalid inferences, offering a scalable alternative to traditional ablation-based techniques. We also provide an empirical validation on multiple logical reasoning benchmarks, demonstrating improved robustness of our evaluation method against distractors and increased reasoning depth. The experiments were conducted on a diverse set of models, ranging from 1.5B to 70B parameters.
Large Language Models and Mathematical Reasoning Failures
This paper investigates the mathematical reasoning capabilities of large language models (LLMs) using 50 newly constructed high-school-level word problems. Unlike prior studies that focus solely on answer correctness, we rigorously analyze both final answers and solution steps to identify reasoning failures. Evaluating eight state-of-the-art models - including Mixtral, Llama, Gemini, GPT-4o, and OpenAI's o1 variants - we find that while newer models (e.g., o3-mini, deepseek-r1) achieve higher accuracy, all models exhibit errors in spatial reasoning, strategic planning, and arithmetic, sometimes producing correct answers through flawed logic. Common failure modes include unwarranted assumptions, over-reliance on numerical patterns, and difficulty translating physical intuition into mathematical steps. Manual analysis reveals that models struggle with problems requiring multi-step deduction or real-world knowledge, despite possessing broad mathematical knowledge. Our results underscore the importance of evaluating reasoning processes, not just answers, and caution against overestimating LLMs' problem-solving proficiency. The study highlights persistent gaps in LLMs' generalization abilities, emphasizing the need for targeted improvements in structured reasoning and constraint handling.
Graph-constrained Reasoning: Faithful Reasoning on Knowledge Graphs with Large Language Models
Large language models (LLMs) have demonstrated impressive reasoning abilities, but they still struggle with faithful reasoning due to knowledge gaps and hallucinations. To address these issues, knowledge graphs (KGs) have been utilized to enhance LLM reasoning through their structured knowledge. However, existing KG-enhanced methods, either retrieval-based or agent-based, encounter difficulties in accurately retrieving knowledge and efficiently traversing KGs at scale. In this work, we introduce graph-constrained reasoning (GCR), a novel framework that bridges structured knowledge in KGs with unstructured reasoning in LLMs. To eliminate hallucinations, GCR ensures faithful KG-grounded reasoning by integrating KG structure into the LLM decoding process through KG-Trie, a trie-based index that encodes KG reasoning paths. KG-Trie constrains the decoding process, allowing LLMs to directly reason on graphs and generate faithful reasoning paths grounded in KGs. Additionally, GCR leverages a lightweight KG-specialized LLM for graph-constrained reasoning alongside a powerful general LLM for inductive reasoning over multiple reasoning paths, resulting in accurate reasoning with zero reasoning hallucination. Extensive experiments on several KGQA benchmarks demonstrate that GCR achieves state-of-the-art performance and exhibits strong zero-shot generalizability to unseen KGs without additional training.
Certified Reasoning with Language Models
Language models often achieve higher accuracy when reasoning step-by-step in complex tasks. However, their reasoning can be unsound, inconsistent, or rely on undesirable prior assumptions. To tackle these issues, we introduce a class of tools for language models called guides that use state and incremental constraints to guide generation. A guide can be invoked by the model to constrain its own generation to a set of valid statements given by the tool. In turn, the model's choices can change the guide's state. We show how a general system for logical reasoning can be used as a guide, which we call LogicGuide. Given a reasoning problem in natural language, a model can formalize its assumptions for LogicGuide and then guarantee that its reasoning steps are sound. In experiments with the PrOntoQA and ProofWriter reasoning datasets, LogicGuide significantly improves the performance of GPT-3, GPT-3.5 Turbo and LLaMA (accuracy gains up to 35%). LogicGuide also drastically reduces content effects: the interference of prior and current assumptions that both humans and language models have been shown to suffer from. Finally, we explore bootstrapping LLaMA 13B from its own reasoning and find that LogicGuide is critical: by training only on certified self-generated reasoning, LLaMA can self-improve, avoiding learning from its own hallucinations.
COLD: Causal reasOning in cLosed Daily activities
Large Language Models (LLMs) have shown state-of-the-art performance in a variety of tasks, including arithmetic and reasoning; however, to gauge the intellectual capabilities of LLMs, causal reasoning has become a reliable proxy for validating a general understanding of the mechanics and intricacies of the world similar to humans. Previous works in natural language processing (NLP) have either focused on open-ended causal reasoning via causal commonsense reasoning (CCR) or framed a symbolic representation-based question answering for theoretically backed-up analysis via a causal inference engine. The former adds an advantage of real-world grounding but lacks theoretically backed-up analysis/validation, whereas the latter is far from real-world grounding. In this work, we bridge this gap by proposing the COLD (Causal reasOning in cLosed Daily activities) framework, which is built upon human understanding of daily real-world activities to reason about the causal nature of events. We show that the proposed framework facilitates the creation of enormous causal queries (~ 9 million) and comes close to the mini-turing test, simulating causal reasoning to evaluate the understanding of a daily real-world task. We evaluate multiple LLMs on the created causal queries and find that causal reasoning is challenging even for activities trivial to humans. We further explore (the causal reasoning abilities of LLMs) using the backdoor criterion to determine the causal strength between events.
KOR-Bench: Benchmarking Language Models on Knowledge-Orthogonal Reasoning Tasks
In this paper, we introduce Knowledge-Orthogonal Reasoning (KOR), which minimizes the impact of domain-specific knowledge for a more accurate evaluation of models' reasoning abilities in out-of-distribution scenarios. Based on this concept, we propose the Knowledge-Orthogonal Reasoning Benchmark (KOR-Bench), encompassing five task categories: Operation, Logic, Cipher, Puzzle, and Counterfactual. KOR-Bench emphasizes the effectiveness of models in applying new rule descriptions to solve novel rule-driven questions, revealing that top-performing models like Claude-3.5-Sonnet and GPT-4o only achieve 58.96% and 58.00% accuracy, respectively. We conduct thorough analyses to identify bottlenecks in the Cipher task using Stepwise Prompting, discovering that two rounds of Self-Correction yield optimal results. Complex Task Processing evaluates model performance across three integrated tasks, while we also explore the impact of Tricks on the Puzzle task and visualize rule-focused attention to enhance our understanding of model behavior. We aim for KOR-Bench to be a valuable resource for enhancing models' reasoning capabilities and fostering further research in this field.
Large Language Models are In-Context Semantic Reasoners rather than Symbolic Reasoners
The emergent few-shot reasoning capabilities of Large Language Models (LLMs) have excited the natural language and machine learning community over recent years. Despite of numerous successful applications, the underlying mechanism of such in-context capabilities still remains unclear. In this work, we hypothesize that the learned semantics of language tokens do the most heavy lifting during the reasoning process. Different from human's symbolic reasoning process, the semantic representations of LLMs could create strong connections among tokens, thus composing a superficial logical chain. To test our hypothesis, we decouple semantics from the language reasoning process and evaluate three kinds of reasoning abilities, i.e., deduction, induction and abduction. Our findings reveal that semantics play a vital role in LLMs' in-context reasoning -- LLMs perform significantly better when semantics are consistent with commonsense but struggle to solve symbolic or counter-commonsense reasoning tasks by leveraging in-context new knowledge. The surprising observations question whether modern LLMs have mastered the inductive, deductive and abductive reasoning abilities as in human intelligence, and motivate research on unveiling the magic existing within the black-box LLMs. On the whole, our analysis provides a novel perspective on the role of semantics in developing and evaluating language models' reasoning abilities. Code is available at {https://github.com/XiaojuanTang/ICSR}.
Language Models Are Greedy Reasoners: A Systematic Formal Analysis of Chain-of-Thought
Large language models (LLMs) have shown remarkable reasoning capabilities given chain-of-thought prompts (examples with intermediate reasoning steps). Existing benchmarks measure reasoning ability indirectly, by evaluating accuracy on downstream tasks such as mathematical reasoning. However, it is unclear how these models obtain the answers and whether they rely on simple heuristics rather than the generated chain-of-thought. To enable systematic exploration of the reasoning ability of LLMs, we present a new synthetic question-answering dataset called PrOntoQA, where each example is generated from a synthetic world model represented in first-order logic. This allows us to parse the generated chain-of-thought into symbolic proofs for formal analysis. Our analysis on InstructGPT and GPT-3 shows that LLMs are quite capable of making correct individual deduction steps, and so are generally capable of reasoning, even in fictional contexts. However, they have difficulty with proof planning: When multiple valid deduction steps are available, they are not able to systematically explore the different options.
Logic Contrastive Reasoning with Lightweight Large Language Model for Math Word Problems
This study focuses on improving the performance of lightweight Large Language Models (LLMs) in mathematical reasoning tasks. We introduce a novel method for measuring mathematical logic similarity and design an automatic screening mechanism to construct a set of reference problems that integrate both semantic and logical similarity. By employing carefully crafted positive and negative example prompts, we guide the model towards adopting sound reasoning logic. To the best of our knowledge, this is the first attempt to utilize retrieval-enhanced generation for mathematical problem-solving. Experimental results demonstrate that our method achieves a 15.8% improvement over the Chain of Thought approach on the SVAMP dataset and a 21.5 % improvement on the GSM8K dataset. Further application of this method to a large-scale model with 175 billion parameters yields performance comparable to the best results on both aforementioned datasets. Finally, we conduct an analysis of errors during the reasoning process, providing valuable insights and directions for future research on reasoning tasks using large language models.
Dynamic Prompt Learning via Policy Gradient for Semi-structured Mathematical Reasoning
Mathematical reasoning, a core ability of human intelligence, presents unique challenges for machines in abstract thinking and logical reasoning. Recent large pre-trained language models such as GPT-3 have achieved remarkable progress on mathematical reasoning tasks written in text form, such as math word problems (MWP). However, it is unknown if the models can handle more complex problems that involve math reasoning over heterogeneous information, such as tabular data. To fill the gap, we present Tabular Math Word Problems (TabMWP), a new dataset containing 38,431 open-domain grade-level problems that require mathematical reasoning on both textual and tabular data. Each question in TabMWP is aligned with a tabular context, which is presented as an image, semi-structured text, and a structured table. There are two types of questions: free-text and multi-choice, and each problem is annotated with gold solutions to reveal the multi-step reasoning process. We evaluate different pre-trained models on TabMWP, including the GPT-3 model in a few-shot setting. As earlier studies suggest, since few-shot GPT-3 relies on the selection of in-context examples, its performance is unstable and can degrade to near chance. The unstable issue is more severe when handling complex problems like TabMWP. To mitigate this, we further propose a novel approach, PromptPG, which utilizes policy gradient to learn to select in-context examples from a small amount of training data and then constructs the corresponding prompt for the test example. Experimental results show that our method outperforms the best baseline by 5.31% on the accuracy metric and reduces the prediction variance significantly compared to random selection, which verifies its effectiveness in selecting in-context examples.
Reasoning Language Models: A Blueprint
Reasoning language models (RLMs), also known as Large Reasoning Models (LRMs), such as OpenAI's o1 and o3, DeepSeek-V3, and Alibaba's QwQ, have redefined AI's problem-solving capabilities by extending large language models (LLMs) with advanced reasoning mechanisms. Yet, their high costs, proprietary nature, and complex architectures - uniquely combining Reinforcement Learning (RL), search heuristics, and LLMs - present accessibility and scalability challenges. To address these, we propose a comprehensive blueprint that organizes RLM components into a modular framework, based on a survey and analysis of all RLM works. This blueprint incorporates diverse reasoning structures (chains, trees, graphs, and nested forms), reasoning strategies (e.g., Monte Carlo Tree Search, Beam Search), RL concepts (policy, value models and others), and supervision schemes (Output-Based and Process-Based Supervision). We also provide detailed mathematical formulations and algorithmic specifications to simplify RLM implementation. By showing how schemes like LLaMA-Berry, QwQ, Journey Learning, and Graph of Thoughts fit as special cases, we demonstrate the blueprint's versatility and unifying potential. To illustrate its utility, we introduce x1, a modular implementation for rapid RLM prototyping and experimentation. Using x1 and a literature review, we provide key insights, such as multi-phase training for policy and value models, and the importance of familiar training distributions. Finally, we outline how RLMs can integrate with a broader LLM ecosystem, including tools and databases. Our work demystifies RLM construction, democratizes advanced reasoning capabilities, and fosters innovation, aiming to mitigate the gap between "rich AI" and "poor AI" by lowering barriers to RLM development and experimentation.
Towards Large Reasoning Models: A Survey of Reinforced Reasoning with Large Language Models
Language has long been conceived as an essential tool for human reasoning. The breakthrough of Large Language Models (LLMs) has sparked significant research interest in leveraging these models to tackle complex reasoning tasks. Researchers have moved beyond simple autoregressive token generation by introducing the concept of "thought" -- a sequence of tokens representing intermediate steps in the reasoning process. This innovative paradigm enables LLMs' to mimic complex human reasoning processes, such as tree search and reflective thinking. Recently, an emerging trend of learning to reason has applied reinforcement learning (RL) to train LLMs to master reasoning processes. This approach enables the automatic generation of high-quality reasoning trajectories through trial-and-error search algorithms, significantly expanding LLMs' reasoning capacity by providing substantially more training data. Furthermore, recent studies demonstrate that encouraging LLMs to "think" with more tokens during test-time inference can further significantly boost reasoning accuracy. Therefore, the train-time and test-time scaling combined to show a new research frontier -- a path toward Large Reasoning Model. The introduction of OpenAI's o1 series marks a significant milestone in this research direction. In this survey, we present a comprehensive review of recent progress in LLM reasoning. We begin by introducing the foundational background of LLMs and then explore the key technical components driving the development of large reasoning models, with a focus on automated data construction, learning-to-reason techniques, and test-time scaling. We also analyze popular open-source projects at building large reasoning models, and conclude with open challenges and future research directions.
Thought-Path Contrastive Learning via Premise-Oriented Data Augmentation for Logical Reading Comprehension
Logical reading comprehension is a challenging task that entails grasping the underlying semantics of text and applying reasoning to deduce the correct answer. Prior researches have primarily focused on enhancing logical reasoning capabilities through Chain-of-Thought (CoT) or data augmentation. However, previous work constructing chain-of-thought rationales concentrates solely on analyzing correct options, neglecting the incorrect alternatives. Addtionally, earlier efforts on data augmentation by altering contexts rely on rule-based methods, which result in generated contexts that lack diversity and coherence. To address these issues, we propose a Premise-Oriented Data Augmentation (PODA) framework. This framework can generate CoT rationales including analyses for both correct and incorrect options, while constructing diverse and high-quality counterfactual contexts from incorrect candidate options. We integrate summarizing premises and identifying premises for each option into rationales. Subsequently, we employ multi-step prompts with identified premises to construct counterfactual context. To facilitate the model's capabilities to better differentiate the reasoning process associated with each option, we introduce a novel thought-path contrastive learning method that compares reasoning paths between the original and counterfactual samples. Experimental results on three representative LLMs demonstrate that our method can improve the baselines substantially across two challenging logical reasoning benchmarks (ReClor and LogiQA 2.0). The data and code are released at https://github.com/lalalamdbf/TPReasoner.
On the Diagram of Thought
We introduce Diagram of Thought (DoT), a framework that models iterative reasoning in large language models (LLMs) as the construction of a directed acyclic graph (DAG) within a single model. Unlike traditional approaches that represent reasoning as linear chains or trees, DoT organizes propositions, critiques, refinements, and verifications into a cohesive DAG structure, allowing the model to explore complex reasoning pathways while maintaining logical consistency. Each node in the diagram corresponds to a proposition that has been proposed, critiqued, refined, or verified, enabling the LLM to iteratively improve its reasoning through natural language feedback. By leveraging auto-regressive next-token prediction with role-specific tokens, DoT facilitates seamless transitions between proposing ideas and critically evaluating them, providing richer feedback than binary signals. Furthermore, we formalize the DoT framework using Topos Theory, providing a mathematical foundation that ensures logical consistency and soundness in the reasoning process. This approach enhances both the training and inference processes within a single LLM, eliminating the need for multiple models or external control mechanisms. DoT offers a conceptual framework for designing next-generation reasoning-specialized models, emphasizing training efficiency, robust reasoning capabilities, and theoretical grounding. The code is available at https://github.com/diagram-of-thought/diagram-of-thought.
Unlocking the Capabilities of Thought: A Reasoning Boundary Framework to Quantify and Optimize Chain-of-Thought
Chain-of-Thought (CoT) reasoning has emerged as a promising approach for enhancing the performance of large language models (LLMs) on complex reasoning tasks. Recently, a series of studies attempt to explain the mechanisms underlying CoT, aiming to deepen the understanding of its efficacy. Nevertheless, the existing research faces two major challenges: (1) a lack of quantitative metrics to assess CoT capabilities and (2) a dearth of guidance on optimizing CoT performance. Motivated by this, in this work, we introduce a novel reasoning boundary framework (RBF) to address these challenges. To solve the lack of quantification, we first define a reasoning boundary (RB) to quantify the upper-bound of CoT and establish a combination law for RB, enabling a practical quantitative approach applicable to various real-world CoT tasks. To address the lack of optimization, we propose three categories of RBs. We further optimize these categories with combination laws focused on RB promotion and reasoning path optimization for CoT improvement. Through extensive experiments on 27 models and 5 tasks, the study validates the existence and rationality of the proposed framework. Furthermore, it explains the effectiveness of 10 CoT strategies and guides optimization from two perspectives. We hope this work can provide a comprehensive understanding of the boundaries and optimization strategies for reasoning in LLMs. Our code and data are available at https://github.com/LightChen233/reasoning-boundary.
FewRel: A Large-Scale Supervised Few-Shot Relation Classification Dataset with State-of-the-Art Evaluation
We present a Few-Shot Relation Classification Dataset (FewRel), consisting of 70, 000 sentences on 100 relations derived from Wikipedia and annotated by crowdworkers. The relation of each sentence is first recognized by distant supervision methods, and then filtered by crowdworkers. We adapt the most recent state-of-the-art few-shot learning methods for relation classification and conduct a thorough evaluation of these methods. Empirical results show that even the most competitive few-shot learning models struggle on this task, especially as compared with humans. We also show that a range of different reasoning skills are needed to solve our task. These results indicate that few-shot relation classification remains an open problem and still requires further research. Our detailed analysis points multiple directions for future research. All details and resources about the dataset and baselines are released on http://zhuhao.me/fewrel.
Inductive Logical Query Answering in Knowledge Graphs
Formulating and answering logical queries is a standard communication interface for knowledge graphs (KGs). Alleviating the notorious incompleteness of real-world KGs, neural methods achieved impressive results in link prediction and complex query answering tasks by learning representations of entities, relations, and queries. Still, most existing query answering methods rely on transductive entity embeddings and cannot generalize to KGs containing new entities without retraining the entity embeddings. In this work, we study the inductive query answering task where inference is performed on a graph containing new entities with queries over both seen and unseen entities. To this end, we devise two mechanisms leveraging inductive node and relational structure representations powered by graph neural networks (GNNs). Experimentally, we show that inductive models are able to perform logical reasoning at inference time over unseen nodes generalizing to graphs up to 500% larger than training ones. Exploring the efficiency--effectiveness trade-off, we find the inductive relational structure representation method generally achieves higher performance, while the inductive node representation method is able to answer complex queries in the inference-only regime without any training on queries and scales to graphs of millions of nodes. Code is available at https://github.com/DeepGraphLearning/InductiveQE.
Embedding Entities and Relations for Learning and Inference in Knowledge Bases
We consider learning representations of entities and relations in KBs using the neural-embedding approach. We show that most existing models, including NTN (Socher et al., 2013) and TransE (Bordes et al., 2013b), can be generalized under a unified learning framework, where entities are low-dimensional vectors learned from a neural network and relations are bilinear and/or linear mapping functions. Under this framework, we compare a variety of embedding models on the link prediction task. We show that a simple bilinear formulation achieves new state-of-the-art results for the task (achieving a top-10 accuracy of 73.2% vs. 54.7% by TransE on Freebase). Furthermore, we introduce a novel approach that utilizes the learned relation embeddings to mine logical rules such as "BornInCity(a,b) and CityInCountry(b,c) => Nationality(a,c)". We find that embeddings learned from the bilinear objective are particularly good at capturing relational semantics and that the composition of relations is characterized by matrix multiplication. More interestingly, we demonstrate that our embedding-based rule extraction approach successfully outperforms a state-of-the-art confidence-based rule mining approach in mining Horn rules that involve compositional reasoning.
Typhoon T1: An Open Thai Reasoning Model
This paper introduces Typhoon T1, an open effort to develop an open Thai reasoning model. A reasoning model is a relatively new type of generative model built on top of large language models (LLMs). A reasoning model generates a long chain of thought before arriving at a final answer, an approach found to improve performance on complex tasks. However, details on developing such a model are limited, especially for reasoning models that can generate traces in a low-resource language. Typhoon T1 presents an open effort that dives into the details of developing a reasoning model in a more cost-effective way by leveraging supervised fine-tuning using open datasets, instead of reinforcement learning. This paper shares the details about synthetic data generation and training, as well as our dataset and model weights. Additionally, we provide insights gained from developing a reasoning model that generalizes across domains and is capable of generating reasoning traces in a low-resource language, using Thai as an example. We hope this open effort provides a foundation for further research in this field.
Faithful Logical Reasoning via Symbolic Chain-of-Thought
While the recent Chain-of-Thought (CoT) technique enhances the reasoning ability of large language models (LLMs) with the theory of mind, it might still struggle in handling logical reasoning that relies much on symbolic expressions and rigid deducing rules. To strengthen the logical reasoning capability of LLMs, we propose a novel Symbolic Chain-of-Thought, namely SymbCoT, a fully LLM-based framework that integrates symbolic expressions and logic rules with CoT prompting. Technically, building upon an LLM, SymbCoT 1) first translates the natural language context into the symbolic format, and then 2) derives a step-by-step plan to solve the problem with symbolic logical rules, 3) followed by a verifier to check the translation and reasoning chain. Via thorough evaluations on 5 standard datasets with both First-Order Logic and Constraint Optimization symbolic expressions, SymbCoT shows striking improvements over the CoT method consistently, meanwhile refreshing the current state-of-the-art performances. We further demonstrate that our system advances in more faithful, flexible, and explainable logical reasoning. To our knowledge, this is the first to combine symbolic expressions and rules into CoT for logical reasoning with LLMs. Code is open at https://github.com/Aiden0526/SymbCoT.
Reframing Spatial Reasoning Evaluation in Language Models: A Real-World Simulation Benchmark for Qualitative Reasoning
Spatial reasoning plays a vital role in both human cognition and machine intelligence, prompting new research into language models' (LMs) capabilities in this regard. However, existing benchmarks reveal shortcomings in evaluating qualitative spatial reasoning (QSR). These benchmarks typically present oversimplified scenarios or unclear natural language descriptions, hindering effective evaluation. We present a novel benchmark for assessing QSR in LMs, which is grounded in realistic 3D simulation data, offering a series of diverse room layouts with various objects and their spatial relationships. This approach provides a more detailed and context-rich narrative for spatial reasoning evaluation, diverging from traditional, toy-task-oriented scenarios. Our benchmark encompasses a broad spectrum of qualitative spatial relationships, including topological, directional, and distance relations. These are presented with different viewing points, varied granularities, and density of relation constraints to mimic real-world complexities. A key contribution is our logic-based consistency-checking tool, which enables the assessment of multiple plausible solutions, aligning with real-world scenarios where spatial relationships are often open to interpretation. Our benchmark evaluation of advanced LMs reveals their strengths and limitations in spatial reasoning. They face difficulties with multi-hop spatial reasoning and interpreting a mix of different view descriptions, pointing to areas for future improvement.
Testing the General Deductive Reasoning Capacity of Large Language Models Using OOD Examples
Given the intractably large size of the space of proofs, any model that is capable of general deductive reasoning must generalize to proofs of greater complexity. Recent studies have shown that large language models (LLMs) possess some abstract deductive reasoning ability given chain-of-thought prompts. However, they have primarily been tested on proofs using modus ponens or of a specific size, and from the same distribution as the in-context examples. To measure the general deductive reasoning ability of LLMs, we test on a broad set of deduction rules and measure their ability to generalize to more complex proofs from simpler demonstrations from multiple angles: depth-, width-, and compositional generalization. To facilitate systematic exploration, we construct a new synthetic and programmable reasoning dataset that enables control over deduction rules and proof complexity. Our experiments on four LLMs of various sizes and training objectives show that they are able to generalize to longer and compositional proofs. However, they require explicit demonstrations to produce hypothetical subproofs, specifically in proof by cases and proof by contradiction.
Contrastive Learning for Inference in Dialogue
Inference, especially those derived from inductive processes, is a crucial component in our conversation to complement the information implicitly or explicitly conveyed by a speaker. While recent large language models show remarkable advances in inference tasks, their performance in inductive reasoning, where not all information is present in the context, is far behind deductive reasoning. In this paper, we analyze the behavior of the models based on the task difficulty defined by the semantic information gap -- which distinguishes inductive and deductive reasoning (Johnson-Laird, 1988, 1993). Our analysis reveals that the disparity in information between dialogue contexts and desired inferences poses a significant challenge to the inductive inference process. To mitigate this information gap, we investigate a contrastive learning approach by feeding negative samples. Our experiments suggest negative samples help models understand what is wrong and improve their inference generations.
AR-LSAT: Investigating Analytical Reasoning of Text
Analytical reasoning is an essential and challenging task that requires a system to analyze a scenario involving a set of particular circumstances and perform reasoning over it to make conclusions. In this paper, we study the challenge of analytical reasoning of text and introduce a new dataset consisting of questions from the Law School Admission Test from 1991 to 2016. We analyze what knowledge understanding and reasoning abilities are required to do well on this task. Furthermore, to address this reasoning challenge, we design two different baselines: (1) a Transformer-based method which leverages the state-of-the-art pre-trained language models and (2) Analytical Reasoning Machine (ARM), a logical-level reasoning framework extracting symbolic knowledge (e.g, participants, facts, logical functions) to deduce legitimate solutions. In our experiments, we find that the Transformer-based models struggle to solve this task as their performance is close to random guess and ARM achieves better performance by leveraging symbolic knowledge and interpretable reasoning steps. Results show that both methods still lag far behind human performance, which leave further space for future research.
Cumulative Reasoning with Large Language Models
While language models are powerful and versatile, they often fail to address highly complex problems. This is because solving complex problems requires deliberate thinking, which has been only minimally guided during training. In this paper, we propose a new method called Cumulative Reasoning (CR), which employs language models in a cumulative and iterative manner to emulate human thought processes. By decomposing tasks into smaller components, CR streamlines the problem-solving process, rendering it both more manageable and effective. For logical inference tasks, CR consistently outperforms existing methods with an improvement up to 9.3%, and achieves the astonishing accuracy of 98.04% on the curated FOLIO wiki dataset. In the context of the Game of 24, CR achieves an accuracy of 98%, which signifies a substantial enhancement of 24% over the previous state-of-the-art method. Finally, on the MATH dataset, we establish new state-of-the-art results with 58.0% overall accuracy, surpassing the previous best approach by a margin of 4.2%, and achieving 43% relative improvement on the hardest level 5 problems (22.4% to 32.1%). Code is available at https://github.com/iiis-ai/cumulative-reasoning.
Step Guided Reasoning: Improving Mathematical Reasoning using Guidance Generation and Step Reasoning
Mathematical reasoning has been challenging for large language models (LLMs). However, the introduction of step-by-step Chain-of-Thought (CoT) inference has significantly advanced the mathematical capabilities of LLMs. Despite this progress, current approaches either necessitate extensive inference datasets for training or depend on few-shot methods that frequently compromise computational accuracy. To address these bottlenecks in mathematical reasoning, we propose a novel method called Step Guidied Reasoning, which is more stable and generalizable than few-shot methods and does not involve further fine-tuning of the model. In this approach, LLMs reflect on small reasoning steps, similar to how humans deliberate and focus attention on what to do next. By incorporating this reflective process into the inference stage, LLMs can effectively guide their reasoning from one step to the next. Through extensive experiments, we demonstrate the significant effect of Step Guidied Reasoning in augmenting mathematical performance in state-of-the-art language models. Qwen2-72B-Instruct outperforms its math-specific counterpart, Qwen2.5-72B-Math-Instruct, on MMLU- STEM with a score of 90.9%, compared to 87.3%. The average scores of Qwen2-7B-Instruct and Qwen2-72B-Instruct increase from 27.1% to 36.3% and from 36.5% to 47.4% on the mathematics domain, respectively.
ChatRule: Mining Logical Rules with Large Language Models for Knowledge Graph Reasoning
Logical rules are essential for uncovering the logical connections between relations, which could improve the reasoning performance and provide interpretable results on knowledge graphs (KGs). Although there have been many efforts to mine meaningful logical rules over KGs, existing methods suffer from the computationally intensive searches over the rule space and a lack of scalability for large-scale KGs. Besides, they often ignore the semantics of relations which is crucial for uncovering logical connections. Recently, large language models (LLMs) have shown impressive performance in the field of natural language processing and various applications, owing to their emergent ability and generalizability. In this paper, we propose a novel framework, ChatRule, unleashing the power of large language models for mining logical rules over knowledge graphs. Specifically, the framework is initiated with an LLM-based rule generator, leveraging both the semantic and structural information of KGs to prompt LLMs to generate logical rules. To refine the generated rules, a rule ranking module estimates the rule quality by incorporating facts from existing KGs. Last, a rule validator harnesses the reasoning ability of LLMs to validate the logical correctness of ranked rules through chain-of-thought reasoning. ChatRule is evaluated on four large-scale KGs, w.r.t. different rule quality metrics and downstream tasks, showing the effectiveness and scalability of our method.
Training Large Language Models to Reason in a Continuous Latent Space
Large language models (LLMs) are restricted to reason in the "language space", where they typically express the reasoning process with a chain-of-thought (CoT) to solve a complex reasoning problem. However, we argue that language space may not always be optimal for reasoning. For example, most word tokens are primarily for textual coherence and not essential for reasoning, while some critical tokens require complex planning and pose huge challenges to LLMs. To explore the potential of LLM reasoning in an unrestricted latent space instead of using natural language, we introduce a new paradigm Coconut (Chain of Continuous Thought). We utilize the last hidden state of the LLM as a representation of the reasoning state (termed "continuous thought"). Rather than decoding this into a word token, we feed it back to the LLM as the subsequent input embedding directly in the continuous space. Experiments show that Coconut can effectively augment the LLM on several reasoning tasks. This novel latent reasoning paradigm leads to emergent advanced reasoning patterns: the continuous thought can encode multiple alternative next reasoning steps, allowing the model to perform a breadth-first search (BFS) to solve the problem, rather than prematurely committing to a single deterministic path like CoT. Coconut outperforms CoT in certain logical reasoning tasks that require substantial backtracking during planning, with fewer thinking tokens during inference. These findings demonstrate the promise of latent reasoning and offer valuable insights for future research.
Calibrating Reasoning in Language Models with Internal Consistency
Large language models (LLMs) have demonstrated impressive capabilities in various reasoning tasks, aided by techniques like chain-of-thought (CoT) prompting that elicits verbalized reasoning. However, LLMs often generate text with obvious mistakes and contradictions, raising doubts about their ability to robustly process and utilize generated rationales. In this work, we investigate CoT reasoning in LLMs through the lens of internal representations, focusing on how these representations are influenced by generated rationales. Our preliminary analysis reveals that while generated rationales improve answer accuracy, inconsistencies emerge between the model's internal representations in middle layers and those in final layers, potentially undermining the reliability of their reasoning processes. To address this, we propose internal consistency as a measure of the model's confidence by examining the agreement of latent predictions decoded from intermediate layers. Extensive empirical studies across different models and datasets demonstrate that internal consistency effectively distinguishes between correct and incorrect reasoning paths. Motivated by this, we propose a new approach to calibrate CoT reasoning by up-weighting reasoning paths with high internal consistency, resulting in a significant boost in reasoning performance. Further analysis uncovers distinct patterns in attention and feed-forward modules across layers, providing insights into the emergence of internal inconsistency. In summary, our results demonstrate the potential of using internal representations for self-evaluation of LLMs.
A Survey of Chain of Thought Reasoning: Advances, Frontiers and Future
Chain-of-thought reasoning, a cognitive process fundamental to human intelligence, has garnered significant attention in the realm of artificial intelligence and natural language processing. However, there still remains a lack of a comprehensive survey for this arena. To this end, we take the first step and present a thorough survey of this research field carefully and widely. We use X-of-Thought to refer to Chain-of-Thought in a broad sense. In detail, we systematically organize the current research according to the taxonomies of methods, including XoT construction, XoT structure variants, and enhanced XoT. Additionally, we describe XoT with frontier applications, covering planning, tool use, and distillation. Furthermore, we address challenges and discuss some future directions, including faithfulness, multi-modal, and theory. We hope this survey serves as a valuable resource for researchers seeking to innovate within the domain of chain-of-thought reasoning.
LlamaV-o1: Rethinking Step-by-step Visual Reasoning in LLMs
Reasoning is a fundamental capability for solving complex multi-step problems, particularly in visual contexts where sequential step-wise understanding is essential. Existing approaches lack a comprehensive framework for evaluating visual reasoning and do not emphasize step-wise problem-solving. To this end, we propose a comprehensive framework for advancing step-by-step visual reasoning in large language models (LMMs) through three key contributions. First, we introduce a visual reasoning benchmark specifically designed to evaluate multi-step reasoning tasks. The benchmark presents a diverse set of challenges with eight different categories ranging from complex visual perception to scientific reasoning with over 4k reasoning steps in total, enabling robust evaluation of LLMs' abilities to perform accurate and interpretable visual reasoning across multiple steps. Second, we propose a novel metric that assesses visual reasoning quality at the granularity of individual steps, emphasizing both correctness and logical coherence. The proposed metric offers deeper insights into reasoning performance compared to traditional end-task accuracy metrics. Third, we present a new multimodal visual reasoning model, named LlamaV-o1, trained using a multi-step curriculum learning approach, where tasks are progressively organized to facilitate incremental skill acquisition and problem-solving. The proposed LlamaV-o1 is designed for multi-step reasoning and learns step-by-step through a structured training paradigm. Extensive experiments show that our LlamaV-o1 outperforms existing open-source models and performs favorably against close-source proprietary models. Compared to the recent Llava-CoT, our LlamaV-o1 achieves an average score of 67.3 with an absolute gain of 3.8\% across six benchmarks while being 5 times faster during inference scaling. Our benchmark, model, and code are publicly available.
When to Make Exceptions: Exploring Language Models as Accounts of Human Moral Judgment
AI systems are becoming increasingly intertwined with human life. In order to effectively collaborate with humans and ensure safety, AI systems need to be able to understand, interpret and predict human moral judgments and decisions. Human moral judgments are often guided by rules, but not always. A central challenge for AI safety is capturing the flexibility of the human moral mind -- the ability to determine when a rule should be broken, especially in novel or unusual situations. In this paper, we present a novel challenge set consisting of rule-breaking question answering (RBQA) of cases that involve potentially permissible rule-breaking -- inspired by recent moral psychology studies. Using a state-of-the-art large language model (LLM) as a basis, we propose a novel moral chain of thought (MORALCOT) prompting strategy that combines the strengths of LLMs with theories of moral reasoning developed in cognitive science to predict human moral judgments. MORALCOT outperforms seven existing LLMs by 6.2% F1, suggesting that modeling human reasoning might be necessary to capture the flexibility of the human moral mind. We also conduct a detailed error analysis to suggest directions for future work to improve AI safety using RBQA. Our data is open-sourced at https://huggingface.co/datasets/feradauto/MoralExceptQA and code at https://github.com/feradauto/MoralCoT
OlaGPT: Empowering LLMs With Human-like Problem-Solving Abilities
In most current research, large language models (LLMs) are able to perform reasoning tasks by generating chains of thought through the guidance of specific prompts. However, there still exists a significant discrepancy between their capability in solving complex reasoning problems and that of humans. At present, most approaches focus on chains of thought (COT) and tool use, without considering the adoption and application of human cognitive frameworks. It is well-known that when confronting complex reasoning challenges, humans typically employ various cognitive abilities, and necessitate interaction with all aspects of tools, knowledge, and the external environment information to accomplish intricate tasks. This paper introduces a novel intelligent framework, referred to as OlaGPT. OlaGPT carefully studied a cognitive architecture framework, and propose to simulate certain aspects of human cognition. The framework involves approximating different cognitive modules, including attention, memory, reasoning, learning, and corresponding scheduling and decision-making mechanisms. Inspired by the active learning mechanism of human beings, it proposes a learning unit to record previous mistakes and expert opinions, and dynamically refer to them to strengthen their ability to solve similar problems. The paper also outlines common effective reasoning frameworks for human problem-solving and designs Chain-of-Thought (COT) templates accordingly. A comprehensive decision-making mechanism is also proposed to maximize model accuracy. The efficacy of OlaGPT has been stringently evaluated on multiple reasoning datasets, and the experimental outcomes reveal that OlaGPT surpasses state-of-the-art benchmarks, demonstrating its superior performance. Our implementation of OlaGPT is available on GitHub: https://github.com/oladata-team/OlaGPT.
Learning Deductive Reasoning from Synthetic Corpus based on Formal Logic
We study a synthetic corpus based approach for language models (LMs) to acquire logical deductive reasoning ability. The previous studies generated deduction examples using specific sets of deduction rules. However, these rules were limited or otherwise arbitrary, limiting the generalizability of acquired reasoning ability. We rethink this and adopt a well-grounded set of deduction rules based on formal logic theory, which can derive any other deduction rules when combined in a multistep way. Then, using the proposed corpora, which we name FLD (Formal Logic Deduction), we first evaluate and analyze the logical reasoning ability of the latest LLMs. Even GPT-4 can solve only half of the problems, suggesting that pure logical reasoning isolated from knowledge is still challenging for the LLMs, and additional training specialized in logical reasoning is indeed essential. We next empirically verify that LMs trained on FLD corpora acquire more generalizable reasoning ability. Furthermore, we identify the aspects of reasoning ability on which deduction corpora can enhance LMs and those on which they cannot, and discuss future directions on each aspect. The released corpora serve both as learning resources and as challenging benchmarks.
Relational Knowledge Distillation
Knowledge distillation aims at transferring knowledge acquired in one model (a teacher) to another model (a student) that is typically smaller. Previous approaches can be expressed as a form of training the student to mimic output activations of individual data examples represented by the teacher. We introduce a novel approach, dubbed relational knowledge distillation (RKD), that transfers mutual relations of data examples instead. For concrete realizations of RKD, we propose distance-wise and angle-wise distillation losses that penalize structural differences in relations. Experiments conducted on different tasks show that the proposed method improves educated student models with a significant margin. In particular for metric learning, it allows students to outperform their teachers' performance, achieving the state of the arts on standard benchmark datasets.
Chain-of-Thought Prompting Elicits Reasoning in Large Language Models
We explore how generating a chain of thought -- a series of intermediate reasoning steps -- significantly improves the ability of large language models to perform complex reasoning. In particular, we show how such reasoning abilities emerge naturally in sufficiently large language models via a simple method called chain of thought prompting, where a few chain of thought demonstrations are provided as exemplars in prompting. Experiments on three large language models show that chain of thought prompting improves performance on a range of arithmetic, commonsense, and symbolic reasoning tasks. The empirical gains can be striking. For instance, prompting a 540B-parameter language model with just eight chain of thought exemplars achieves state of the art accuracy on the GSM8K benchmark of math word problems, surpassing even finetuned GPT-3 with a verifier.
Whiteboard-of-Thought: Thinking Step-by-Step Across Modalities
When presented with questions involving visual thinking, humans naturally switch reasoning modalities, often forming mental images or drawing visual aids. Large language models have shown promising results in arithmetic and symbolic reasoning by expressing intermediate reasoning in text as a chain of thought, yet struggle to extend this capability to answer text queries that are easily solved by visual reasoning, even with extensive multimodal pretraining. We introduce a simple method, whiteboard-of-thought prompting, to unlock the visual reasoning capabilities of multimodal large language models across modalities. Whiteboard-of-thought prompting provides multimodal large language models with a metaphorical `whiteboard' to draw out reasoning steps as images, then returns these images back to the model for further processing. We find this can be accomplished with no demonstrations or specialized modules, instead leveraging models' existing ability to write code with libraries such as Matplotlib and Turtle. This simple approach shows state-of-the-art results on four difficult natural language tasks that involve visual and spatial reasoning. We identify multiple settings where GPT-4o using chain-of-thought fails dramatically, including more than one where it achieves 0% accuracy, while whiteboard-of-thought enables up to 92% accuracy in these same settings. We present a detailed exploration of where the technique succeeds as well as its sources of error.
MERIt: Meta-Path Guided Contrastive Learning for Logical Reasoning
Logical reasoning is of vital importance to natural language understanding. Previous studies either employ graph-based models to incorporate prior knowledge about logical relations, or introduce symbolic logic into neural models through data augmentation. These methods, however, heavily depend on annotated training data, and thus suffer from over-fitting and poor generalization problems due to the dataset sparsity. To address these two problems, in this paper, we propose MERIt, a MEta-path guided contrastive learning method for logical ReasonIng of text, to perform self-supervised pre-training on abundant unlabeled text data. Two novel strategies serve as indispensable components of our method. In particular, a strategy based on meta-path is devised to discover the logical structure in natural texts, followed by a counterfactual data augmentation strategy to eliminate the information shortcut induced by pre-training. The experimental results on two challenging logical reasoning benchmarks, i.e., ReClor and LogiQA, demonstrate that our method outperforms the SOTA baselines with significant improvements.
Implicit Chain of Thought Reasoning via Knowledge Distillation
To augment language models with the ability to reason, researchers usually prompt or finetune them to produce chain of thought reasoning steps before producing the final answer. However, although people use natural language to reason effectively, it may be that LMs could reason more effectively with some intermediate computation that is not in natural language. In this work, we explore an alternative reasoning approach: instead of explicitly producing the chain of thought reasoning steps, we use the language model's internal hidden states to perform implicit reasoning. The implicit reasoning steps are distilled from a teacher model trained on explicit chain-of-thought reasoning, and instead of doing reasoning "horizontally" by producing intermediate words one-by-one, we distill it such that the reasoning happens "vertically" among the hidden states in different layers. We conduct experiments on a multi-digit multiplication task and a grade school math problem dataset and find that this approach enables solving tasks previously not solvable without explicit chain-of-thought, at a speed comparable to no chain-of-thought.
Hypothesis Search: Inductive Reasoning with Language Models
Inductive reasoning is a core problem-solving capacity: humans can identify underlying principles from a few examples, which can then be robustly generalized to novel scenarios. Recent work has evaluated large language models (LLMs) on inductive reasoning tasks by directly prompting them yielding "in context learning." This can work well for straightforward inductive tasks, but performs very poorly on more complex tasks such as the Abstraction and Reasoning Corpus (ARC). In this work, we propose to improve the inductive reasoning ability of LLMs by generating explicit hypotheses at multiple levels of abstraction: we prompt the LLM to propose multiple abstract hypotheses about the problem, in natural language, then implement the natural language hypotheses as concrete Python programs. These programs can be directly verified by running on the observed examples and generalized to novel inputs. Because of the prohibitive cost of generation with state-of-the-art LLMs, we consider a middle step to filter the set of hypotheses that will be implemented into programs: we either ask the LLM to summarize into a smaller set of hypotheses, or ask human annotators to select a subset of the hypotheses. We verify our pipeline's effectiveness on the ARC visual inductive reasoning benchmark, its variant 1D-ARC, and string transformation dataset SyGuS. On a random 40-problem subset of ARC, our automated pipeline using LLM summaries achieves 27.5% accuracy, significantly outperforming the direct prompting baseline (accuracy of 12.5%). With the minimal human input of selecting from LLM-generated candidates, the performance is boosted to 37.5%. (And we argue this is a lower bound on the performance of our approach without filtering.) Our ablation studies show that abstract hypothesis generation and concrete program representations are both beneficial for LLMs to perform inductive reasoning tasks.
We-Math: Does Your Large Multimodal Model Achieve Human-like Mathematical Reasoning?
Visual mathematical reasoning, as a fundamental visual reasoning ability, has received widespread attention from the Large Multimodal Models (LMMs) community. Existing benchmarks, such as MathVista and MathVerse, focus more on the result-oriented performance but neglect the underlying principles in knowledge acquisition and generalization. Inspired by human-like mathematical reasoning, we introduce WE-MATH, the first benchmark specifically designed to explore the problem-solving principles beyond end-to-end performance. We meticulously collect and categorize 6.5K visual math problems, spanning 67 hierarchical knowledge concepts and five layers of knowledge granularity. We decompose composite problems into sub-problems according to the required knowledge concepts and introduce a novel four-dimensional metric, namely Insufficient Knowledge (IK), Inadequate Generalization (IG), Complete Mastery (CM), and Rote Memorization (RM), to hierarchically assess inherent issues in LMMs' reasoning process. With WE-MATH, we conduct a thorough evaluation of existing LMMs in visual mathematical reasoning and reveal a negative correlation between solving steps and problem-specific performance. We confirm the IK issue of LMMs can be effectively improved via knowledge augmentation strategies. More notably, the primary challenge of GPT-4o has significantly transitioned from IK to IG, establishing it as the first LMM advancing towards the knowledge generalization stage. In contrast, other LMMs exhibit a marked inclination towards Rote Memorization - they correctly solve composite problems involving multiple knowledge concepts yet fail to answer sub-problems. We anticipate that WE-MATH will open new pathways for advancements in visual mathematical reasoning for LMMs. The WE-MATH data and evaluation code are available at https://github.com/We-Math/We-Math.
Knowledge Sheaves: A Sheaf-Theoretic Framework for Knowledge Graph Embedding
Knowledge graph embedding involves learning representations of entities -- the vertices of the graph -- and relations -- the edges of the graph -- such that the resulting representations encode the known factual information represented by the knowledge graph and can be used in the inference of new relations. We show that knowledge graph embedding is naturally expressed in the topological and categorical language of cellular sheaves: a knowledge graph embedding can be described as an approximate global section of an appropriate knowledge sheaf over the graph, with consistency constraints induced by the knowledge graph's schema. This approach provides a generalized framework for reasoning about knowledge graph embedding models and allows for the expression of a wide range of prior constraints on embeddings. Further, the resulting embeddings can be easily adapted for reasoning over composite relations without special training. We implement these ideas to highlight the benefits of the extensions inspired by this new perspective.
Transformers as Soft Reasoners over Language
Beginning with McCarthy's Advice Taker (1959), AI has pursued the goal of providing a system with explicit, general knowledge and having the system reason over that knowledge. However, expressing the knowledge in a formal (logical or probabilistic) representation has been a major obstacle to this research. This paper investigates a modern approach to this problem where the facts and rules are provided as natural language sentences, thus bypassing a formal representation. We train transformers to reason (or emulate reasoning) over these sentences using synthetically generated data. Our models, that we call RuleTakers, provide the first empirical demonstration that this kind of soft reasoning over language is learnable, can achieve high (99%) accuracy, and generalizes to test data requiring substantially deeper chaining than seen during training (95%+ scores). We also demonstrate that the models transfer well to two hand-authored rulebases, and to rulebases paraphrased into more natural language. These findings are significant as it suggests a new role for transformers, namely as limited "soft theorem provers" operating over explicit theories in language. This in turn suggests new possibilities for explainability, correctability, and counterfactual reasoning in question-answering.
Tab-CoT: Zero-shot Tabular Chain of Thought
The chain-of-though (CoT) prompting methods were successful in various natural language processing (NLP) tasks thanks to their ability to unveil the underlying complex reasoning processes. Such reasoning processes typically exhibit implicitly structured steps. Recent efforts also started investigating methods to encourage more explicitly structured reasoning procedures to be captured. In this work, we propose Tab-CoT, a novel tabular-format CoT prompting method, which allows the complex reasoning process to be explicitly modelled in a highly structured manner. Despite its simplicity, we show that our approach is capable of performing reasoning across multiple dimensions (i.e., both rows and columns). We demonstrate our approach's strong zero-shot and few-shot capabilities through extensive experiments on a range of reasoning tasks.
When Reasoning Meets Information Aggregation: A Case Study with Sports Narratives
Reasoning is most powerful when an LLM accurately aggregates relevant information. We examine the critical role of information aggregation in reasoning by requiring the LLM to analyze sports narratives. To succeed at this task, an LLM must infer points from actions, identify related entities, attribute points accurately to players and teams, and compile key statistics to draw conclusions. We conduct comprehensive experiments with real NBA basketball data and present SportsGen, a new method to synthesize game narratives. By synthesizing data, we can rigorously evaluate LLMs' reasoning capabilities under complex scenarios with varying narrative lengths and density of information. Our findings show that most models, including GPT-4o, often fail to accurately aggregate basketball scores due to frequent scoring patterns. Open-source models like Llama-3 further suffer from significant score hallucinations. Finally, the effectiveness of reasoning is influenced by narrative complexity, information density, and domain-specific terms, highlighting the challenges in analytical reasoning tasks.
CHAMP: A Competition-level Dataset for Fine-Grained Analyses of LLMs' Mathematical Reasoning Capabilities
Recent large language models (LLMs) have shown indications of mathematical reasoning ability. However it has not been clear how they would fare on more challenging competition-level problems. And while self-generated verbalizations of intermediate reasoning steps (i.e., chain-of-thought prompting) have been shown to be helpful, whether LLMs can make use of helpful side information such as problem-specific hints has not been investigated before. In this paper, we propose a challenging benchmark dataset for enabling such analyses. The Concept and Hint-Annotated Math Problems (CHAMP) consists of high school math competition problems, annotated with concepts, or general math facts, and hints, or problem-specific tricks. These annotations allow us to explore the effects of additional information, such as relevant hints, misleading concepts, or related problems. This benchmark is difficult, with the best model only scoring 58.1% in standard settings. With concepts and hints, performance sometimes improves, indicating that some models can make use of such side information. We further annotate model-generated solutions for their correctness. Using this corpus, we find that models often arrive at the correct final answer through wrong reasoning steps. In addition, we test whether models are able to verify these solutions, and find that most models struggle. The dataset and code are available on the project website.
Crystal: Introspective Reasoners Reinforced with Self-Feedback
Extensive work has shown that the performance and interpretability of commonsense reasoning can be improved via knowledge-augmented reasoning methods, where the knowledge that underpins the reasoning process is explicitly verbalized and utilized. However, existing implementations, including "chain-of-thought" and its variants, fall short in capturing the introspective nature of knowledge required in commonsense reasoning, and in accounting for the mutual adaptation between the generation and utilization of knowledge. We propose a novel method to develop an introspective commonsense reasoner, Crystal. To tackle commonsense problems, it first introspects for knowledge statements related to the given question, and subsequently makes an informed prediction that is grounded in the previously introspected knowledge. The knowledge introspection and knowledge-grounded reasoning modes of the model are tuned via reinforcement learning to mutually adapt, where the reward derives from the feedback given by the model itself. Experiments show that Crystal significantly outperforms both the standard supervised finetuning and chain-of-thought distilled methods, and enhances the transparency of the commonsense reasoning process. Our work ultimately validates the feasibility and potential of reinforcing a neural model with self-feedback.
Aggregation of Reasoning: A Hierarchical Framework for Enhancing Answer Selection in Large Language Models
Recent advancements in Chain-of-Thought prompting have facilitated significant breakthroughs for Large Language Models (LLMs) in complex reasoning tasks. Current research enhances the reasoning performance of LLMs by sampling multiple reasoning chains and ensembling based on the answer frequency. However, this approach fails in scenarios where the correct answers are in the minority. We identify this as a primary factor constraining the reasoning capabilities of LLMs, a limitation that cannot be resolved solely based on the predicted answers. To address this shortcoming, we introduce a hierarchical reasoning aggregation framework AoR (Aggregation of Reasoning), which selects answers based on the evaluation of reasoning chains. Additionally, AoR incorporates dynamic sampling, adjusting the number of reasoning chains in accordance with the complexity of the task. Experimental results on a series of complex reasoning tasks show that AoR outperforms prominent ensemble methods. Further analysis reveals that AoR not only adapts various LLMs but also achieves a superior performance ceiling when compared to current methods.
Response: Emergent analogical reasoning in large language models
In their recent Nature Human Behaviour paper, "Emergent analogical reasoning in large language models," (Webb, Holyoak, and Lu, 2023) the authors argue that "large language models such as GPT-3 have acquired an emergent ability to find zero-shot solutions to a broad range of analogy problems." In this response, we provide counterexamples of the letter string analogies. In our tests, GPT-3 fails to solve even the easiest variants of the problems presented in the original paper. Zero-shot reasoning is an extraordinary claim that requires extraordinary evidence. We do not see that evidence in our experiments. To strengthen claims of humanlike reasoning such as zero-shot reasoning, it is important that the field develop approaches that rule out data memorization.
REL: Working out is all you need
Recent developments, particularly OpenAI's O1 model, have demonstrated the remarkable potential of Large Language Models (LLMs) for complex reasoning tasks. Through analysis of O1's outputs and provided sample Chain-of-Thought (CoT) demonstrations, we observe that it approaches problem-solving in a distinctly human-like manner, systematically brainstorming ideas, testing hypotheses, verifying results, and planning comprehensive solutions. These sophisticated reasoning capabilities remain notably absent in other state-of-the-art language models. In this paper, we hypothesize that this performance gap stems from the limited availability of high-quality reasoning process data in current training sets. We demonstrate that by constructing a specialized dataset focused on explicit problem-solving workflows ("worked solutions"), we can elicit substantially improved planning capabilities from existing models. Additionally, we propose the Reasoning Enhancement Loop (REL), a method for generating synthetic worked solutions.
VERUS-LM: a Versatile Framework for Combining LLMs with Symbolic Reasoning
A recent approach to neurosymbolic reasoning is to explicitly combine the strengths of large language models (LLMs) and symbolic solvers to tackle complex reasoning tasks. However, current approaches face significant limitations, including poor generalizability due to task-specific prompts, inefficiencies caused by the lack of separation between knowledge and queries, and restricted inferential capabilities. These shortcomings hinder their scalability and applicability across diverse domains. In this paper, we introduce VERUS-LM, a novel framework designed to address these challenges. VERUS-LM employs a generic prompting mechanism, clearly separates domain knowledge from queries, and supports a wide range of different logical reasoning tasks. This framework enhances adaptability, reduces computational cost, and allows for richer forms of reasoning, such as optimization and constraint satisfaction. We show that our approach succeeds in diverse reasoning on a novel dataset, markedly outperforming LLMs. Additionally, our system achieves competitive results on common reasoning benchmarks when compared to other state-of-the-art approaches, and significantly surpasses them on the difficult AR-LSAT dataset. By pushing the boundaries of hybrid reasoning, VERUS-LM represents a significant step towards more versatile neurosymbolic AI systems
The Impact of Symbolic Representations on In-context Learning for Few-shot Reasoning
Pre-trained language models (LMs) have shown remarkable reasoning performance using explanations (or ``chain-of-thought'' (CoT)) for in-context learning. On the other hand, these reasoning tasks are usually presumed to be more approachable for symbolic programming. To make progress towards understanding in-context learning, we curate synthetic datasets containing equivalent (natural, symbolic) data pairs, where symbolic examples contain first-order logic rules and predicates from knowledge bases (KBs). Then we revisit neuro-symbolic approaches and use Language Models as Logic Programmer (LMLP) that learns from demonstrations containing logic rules and corresponding examples to iteratively reason over KBs, recovering Prolog's backward chaining algorithm. Comprehensive experiments are included to systematically compare LMLP with CoT in deductive reasoning settings, showing that LMLP enjoys more than 25% higher accuracy than CoT on length generalization benchmarks even with fewer parameters.
E-KAR: A Benchmark for Rationalizing Natural Language Analogical Reasoning
The ability to recognize analogies is fundamental to human cognition. Existing benchmarks to test word analogy do not reveal the underneath process of analogical reasoning of neural models. Holding the belief that models capable of reasoning should be right for the right reasons, we propose a first-of-its-kind Explainable Knowledge-intensive Analogical Reasoning benchmark (E-KAR). Our benchmark consists of 1,655 (in Chinese) and 1,251 (in English) problems sourced from the Civil Service Exams, which require intensive background knowledge to solve. More importantly, we design a free-text explanation scheme to explain whether an analogy should be drawn, and manually annotate them for each and every question and candidate answer. Empirical results suggest that this benchmark is very challenging for some state-of-the-art models for both explanation generation and analogical question answering tasks, which invites further research in this area.
Evaluating and Improving Tool-Augmented Computation-Intensive Math Reasoning
Chain-of-thought prompting~(CoT) and tool augmentation have been validated in recent work as effective practices for improving large language models~(LLMs) to perform step-by-step reasoning on complex math-related tasks. However, most existing math reasoning datasets may be not able to fully evaluate and analyze the ability of LLMs in manipulating tools and performing reasoning, as they may only require very few invocations of tools or miss annotations for evaluating intermediate reasoning steps. To address the issue, we construct CARP, a new Chinese dataset consisting of 4,886 computation-intensive algebra problems with formulated annotations on intermediate steps. In CARP, we test four LLMs with CoT prompting, and find that they are all prone to make mistakes at the early steps of the solution, leading to wrong answers. Based on this finding, we propose a new approach that can deliberate the reasoning steps with tool interfaces, namely DELI. In DELI, we first initialize a step-by-step solution based on retrieved exemplars, then iterate two deliberation procedures that check and refine the intermediate steps of the generated solution, from the perspectives of tool manipulation and natural language reasoning, until obtaining converged solutions or reaching the maximum turn. Experimental results on CARP and six other datasets show that the proposed DELI mostly outperforms competitive baselines, and can further boost the performance of existing CoT methods. Our data and code are available in https://github.com/RUCAIBox/CARP.
RelBench: A Benchmark for Deep Learning on Relational Databases
We present RelBench, a public benchmark for solving predictive tasks over relational databases with graph neural networks. RelBench provides databases and tasks spanning diverse domains and scales, and is intended to be a foundational infrastructure for future research. We use RelBench to conduct the first comprehensive study of Relational Deep Learning (RDL) (Fey et al., 2024), which combines graph neural network predictive models with (deep) tabular models that extract initial entity-level representations from raw tables. End-to-end learned RDL models fully exploit the predictive signal encoded in primary-foreign key links, marking a significant shift away from the dominant paradigm of manual feature engineering combined with tabular models. To thoroughly evaluate RDL against this prior gold-standard, we conduct an in-depth user study where an experienced data scientist manually engineers features for each task. In this study, RDL learns better models whilst reducing human work needed by more than an order of magnitude. This demonstrates the power of deep learning for solving predictive tasks over relational databases, opening up many new research opportunities enabled by RelBench.
ROCK: Causal Inference Principles for Reasoning about Commonsense Causality
Commonsense causality reasoning (CCR) aims at identifying plausible causes and effects in natural language descriptions that are deemed reasonable by an average person. Although being of great academic and practical interest, this problem is still shadowed by the lack of a well-posed theoretical framework; existing work usually relies on deep language models wholeheartedly, and is potentially susceptible to confounding co-occurrences. Motivated by classical causal principles, we articulate the central question of CCR and draw parallels between human subjects in observational studies and natural languages to adopt CCR to the potential-outcomes framework, which is the first such attempt for commonsense tasks. We propose a novel framework, ROCK, to Reason O(A)bout Commonsense K(C)ausality, which utilizes temporal signals as incidental supervision, and balances confounding effects using temporal propensities that are analogous to propensity scores. The ROCK implementation is modular and zero-shot, and demonstrates good CCR capabilities.
LINC: A Neurosymbolic Approach for Logical Reasoning by Combining Language Models with First-Order Logic Provers
Logical reasoning, i.e., deductively inferring the truth value of a conclusion from a set of premises, is an important task for artificial intelligence with wide potential impacts on science, mathematics, and society. While many prompting-based strategies have been proposed to enable Large Language Models (LLMs) to do such reasoning more effectively, they still appear unsatisfactory, often failing in subtle and unpredictable ways. In this work, we investigate the validity of instead reformulating such tasks as modular neurosymbolic programming, which we call LINC: Logical Inference via Neurosymbolic Computation. In LINC, the LLM acts as a semantic parser, translating premises and conclusions from natural language to expressions in first-order logic. These expressions are then offloaded to an external theorem prover, which symbolically performs deductive inference. Leveraging this approach, we observe significant performance gains on FOLIO and a balanced subset of ProofWriter for three different models in nearly all experimental conditions we evaluate. On ProofWriter, augmenting the comparatively small open-source StarCoder+ (15.5B parameters) with LINC even outperforms GPT-3.5 and GPT-4 with Chain-of-Thought (CoT) prompting by an absolute 38% and 10%, respectively. When used with GPT-4, LINC scores 26% higher than CoT on ProofWriter while performing comparatively on FOLIO. Further analysis reveals that although both methods on average succeed roughly equally often on this dataset, they exhibit distinct and complementary failure modes. We thus provide promising evidence for how logical reasoning over natural language can be tackled through jointly leveraging LLMs alongside symbolic provers. All corresponding code is publicly available at https://github.com/benlipkin/linc
Logic Diffusion for Knowledge Graph Reasoning
Most recent works focus on answering first order logical queries to explore the knowledge graph reasoning via multi-hop logic predictions. However, existing reasoning models are limited by the circumscribed logical paradigms of training samples, which leads to a weak generalization of unseen logic. To address these issues, we propose a plug-in module called Logic Diffusion (LoD) to discover unseen queries from surroundings and achieves dynamical equilibrium between different kinds of patterns. The basic idea of LoD is relation diffusion and sampling sub-logic by random walking as well as a special training mechanism called gradient adaption. Besides, LoD is accompanied by a novel loss function to further achieve the robust logical diffusion when facing noisy data in training or testing sets. Extensive experiments on four public datasets demonstrate the superiority of mainstream knowledge graph reasoning models with LoD over state-of-the-art. Moreover, our ablation study proves the general effectiveness of LoD on the noise-rich knowledge graph.
From Heuristic to Analytic: Cognitively Motivated Strategies for Coherent Physical Commonsense Reasoning
Pre-trained language models (PLMs) have shown impressive performance in various language tasks. However, they are prone to spurious correlations, and often generate illusory information. In real-world applications, PLMs should justify decisions with formalized, coherent reasoning chains, but this challenge remains under-explored. Cognitive psychology theorizes that humans are capable of utilizing fast and intuitive heuristic thinking to make decisions based on past experience, then rationalizing the decisions through slower and deliberative analytic reasoning. We incorporate these interlinked dual processes in fine-tuning and in-context learning with PLMs, applying them to two language understanding tasks that require coherent physical commonsense reasoning. We show that our proposed Heuristic-Analytic Reasoning (HAR) strategies drastically improve the coherence of rationalizations for model decisions, yielding state-of-the-art results on Tiered Reasoning for Intuitive Physics (TRIP). We also find that this improved coherence is a direct result of more faithful attention to relevant language context in each step of reasoning. Our findings suggest that human-like reasoning strategies can effectively improve the coherence and reliability of PLM reasoning.
Boosting Language Models Reasoning with Chain-of-Knowledge Prompting
Recently, Chain-of-Thought (CoT) prompting has delivered success on complex reasoning tasks, which aims at designing a simple prompt like ``Let's think step by step'' or multiple in-context exemplars with well-designed rationales to elicit Large Language Models (LLMs) to generate intermediate reasoning steps. However, the generated rationales often come with mistakes, making unfactual and unfaithful reasoning chains. To mitigate this brittleness, we propose a novel Chain-of-Knowledge (CoK) prompting, where we aim at eliciting LLMs to generate explicit pieces of knowledge evidence in the form of structure triple. This is inspired by our human behaviors, i.e., we can draw a mind map or knowledge map as the reasoning evidence in the brain before answering a complex question. Benefiting from CoK, we additionally introduce a F^2-Verification method to estimate the reliability of the reasoning chains in terms of factuality and faithfulness. For the unreliable response, the wrong evidence can be indicated to prompt the LLM to rethink. Extensive experiments demonstrate that our method can further improve the performance of commonsense, factual, symbolic, and arithmetic reasoning tasks.
Learning From Correctness Without Prompting Makes LLM Efficient Reasoner
Large language models (LLMs) have demonstrated outstanding performance across various tasks, yet they still exhibit limitations such as hallucination, unfaithful reasoning, and toxic content. One potential approach to mitigate these issues is learning from human or external feedback (e.g. tools). In this paper, we introduce an intrinsic self-correct reasoning framework for LLMs that eliminates the need for human feedback, external tools, and handcraft prompts. The proposed framework, based on a multi-step reasoning paradigm Learning from Correctness (LeCo), improves reasoning performance without needing to learn from errors. This paradigm prioritizes learning from correct reasoning steps, and a unique method to measure confidence for each reasoning step based on generation logits. Experimental results across various multi-step reasoning tasks demonstrate the effectiveness of the framework in improving reasoning performance with reduced token consumption.
K-Level Reasoning with Large Language Models
While Large Language Models (LLMs) have demonstrated their proficiency in complex reasoning tasks, their performance in dynamic, interactive, and competitive scenarios - such as business strategy and stock market analysis - remains underexplored. To bridge this gap, we formally explore the dynamic reasoning capabilities of LLMs for decision-making in rapidly evolving environments. We introduce two game theory-based pilot challenges that mirror the complexities of real-world dynamic decision-making. These challenges are well-defined, enabling clear, controllable, and precise evaluation of LLMs' dynamic reasoning abilities. Through extensive experiments, we find that existing reasoning methods tend to falter in dynamic settings that require k-level thinking - a key concept not tackled by previous works. To address this, we propose a novel reasoning approach for LLMs, named "K-Level Reasoning". This approach adopts the perspective of rivals to recursively employ k-level thinking based on available historical information, which significantly improves the prediction accuracy of rivals' subsequent moves and informs more strategic decision-making. This research not only sets a robust quantitative benchmark for the assessment of dynamic reasoning but also markedly enhances the proficiency of LLMs in dynamic contexts.
GLoRE: Evaluating Logical Reasoning of Large Language Models
Recently, large language models (LLMs), including notable models such as GPT-4 and burgeoning community models, have showcased significant general language understanding abilities. However, there has been a scarcity of attempts to assess the logical reasoning capacities of these LLMs, an essential facet of natural language understanding. To encourage further investigation in this area, we introduce GLoRE, a meticulously assembled General Logical Reasoning Evaluation benchmark comprised of 12 datasets that span three different types of tasks. Our experimental results show that compared to the performance of human and supervised fine-tuning, the logical reasoning capabilities of open LLM models necessitate additional improvement; ChatGPT and GPT-4 show a strong capability of logical reasoning, with GPT-4 surpassing ChatGPT by a large margin. We propose a self-consistency probing method to enhance the accuracy of ChatGPT and a fine-tuned method to boost the performance of an open LLM. We release the datasets and evaluation programs to facilitate future research.
Exploring the Limit of Outcome Reward for Learning Mathematical Reasoning
Reasoning abilities, especially those for solving complex math problems, are crucial components of general intelligence. Recent advances by proprietary companies, such as o-series models of OpenAI, have made remarkable progress on reasoning tasks. However, the complete technical details remain unrevealed, and the techniques that are believed certainly to be adopted are only reinforcement learning (RL) and the long chain of thoughts. This paper proposes a new RL framework, termed OREAL, to pursue the performance limit that can be achieved through Outcome REwArd-based reinforcement Learning for mathematical reasoning tasks, where only binary outcome rewards are easily accessible. We theoretically prove that behavior cloning on positive trajectories from best-of-N (BoN) sampling is sufficient to learn the KL-regularized optimal policy in binary feedback environments. This formulation further implies that the rewards of negative samples should be reshaped to ensure the gradient consistency between positive and negative samples. To alleviate the long-existing difficulties brought by sparse rewards in RL, which are even exacerbated by the partial correctness of the long chain of thought for reasoning tasks, we further apply a token-level reward model to sample important tokens in reasoning trajectories for learning. With OREAL, for the first time, a 7B model can obtain 94.0 pass@1 accuracy on MATH-500 through RL, being on par with 32B models. OREAL-32B also surpasses previous 32B models trained by distillation with 95.0 pass@1 accuracy on MATH-500. Our investigation also indicates the importance of initial policy models and training queries for RL. Code, models, and data will be released to benefit future researchhttps://github.com/InternLM/OREAL.
JustLogic: A Comprehensive Benchmark for Evaluating Deductive Reasoning in Large Language Models
Logical reasoning is a critical component of Large Language Models (LLMs), and substantial research efforts in recent years have aimed to enhance their deductive reasoning capabilities. However, existing deductive reasoning benchmarks, which are crucial for evaluating and advancing LLMs, are inadequate due to their lack of task complexity, presence of prior knowledge as a confounder, and superficial error analysis. To address these deficiencies, we introduce JustLogic, a synthetically generated deductive reasoning benchmark designed for rigorous evaluation of LLMs. JustLogic is (i) highly complex, capable of generating a diverse range of linguistic patterns, vocabulary, and argument structures; (ii) prior knowledge independent, eliminating the advantage of models possessing prior knowledge and ensuring that only deductive reasoning is used to answer questions; and (iii) capable of in-depth error analysis on the heterogeneous effects of reasoning depth and argument form on model accuracy. Our experimental results on JustLogic reveal that most state-of-the-art (SOTA) LLMs perform significantly worse than the human average, demonstrating substantial room for model improvement. All code and data are available at https://github.com/michaelchen-lab/JustLogic
Towards Reasoning Ability of Small Language Models
Reasoning has long been viewed as an emergent property of large language models (LLMs), appearing at or above a certain scale (sim100B parameters). However, recent studies challenge this assumption, showing that small language models (SLMs) can also achieve competitive reasoning performance. SLMs are increasingly favored for their efficiency and deployability. However, there is a lack of systematic study on the reasoning abilities of diverse SLMs, including those trained from scratch or derived from LLMs through quantization, pruning, and distillation. This raises a critical question: Can SLMs achieve reasoning abilities comparable to LLMs? In this work, we systematically survey, benchmark, and analyze 72 SLMs from six model families across 14 reasoning benchmarks. For reliable evaluation, we examine four evaluation methods and compare four LLM judges against human evaluations on 800 data points. We repeat all experiments three times to ensure a robust performance assessment. Additionally, we analyze the impact of different prompting strategies in small models. Beyond accuracy, we also evaluate model robustness under adversarial conditions and intermediate reasoning steps. Our findings challenge the assumption that scaling is the only way to achieve strong reasoning. Instead, we foresee a future where SLMs with strong reasoning capabilities can be developed through structured training or post-training compression. They can serve as efficient alternatives to LLMs for reasoning-intensive tasks.
GSM-Symbolic: Understanding the Limitations of Mathematical Reasoning in Large Language Models
Recent advancements in Large Language Models (LLMs) have sparked interest in their formal reasoning capabilities, particularly in mathematics. The GSM8K benchmark is widely used to assess the mathematical reasoning of models on grade-school-level questions. While the performance of LLMs on GSM8K has significantly improved in recent years, it remains unclear whether their mathematical reasoning capabilities have genuinely advanced, raising questions about the reliability of the reported metrics. To address these concerns, we conduct a large-scale study on several SOTA open and closed models. To overcome the limitations of existing evaluations, we introduce GSM-Symbolic, an improved benchmark created from symbolic templates that allow for the generation of a diverse set of questions. GSM-Symbolic enables more controllable evaluations, providing key insights and more reliable metrics for measuring the reasoning capabilities of models.Our findings reveal that LLMs exhibit noticeable variance when responding to different instantiations of the same question. Specifically, the performance of all models declines when only the numerical values in the question are altered in the GSM-Symbolic benchmark. Furthermore, we investigate the fragility of mathematical reasoning in these models and show that their performance significantly deteriorates as the number of clauses in a question increases. We hypothesize that this decline is because current LLMs cannot perform genuine logical reasoning; they replicate reasoning steps from their training data. Adding a single clause that seems relevant to the question causes significant performance drops (up to 65%) across all state-of-the-art models, even though the clause doesn't contribute to the reasoning chain needed for the final answer. Overall, our work offers a more nuanced understanding of LLMs' capabilities and limitations in mathematical reasoning.
Why think step by step? Reasoning emerges from the locality of experience
Humans have a powerful and mysterious capacity to reason. By working through a series of purely mental steps, we can make inferences we would not be capable of making directly -- despite the fact that we get no additional data from the world. Similarly, when large language models generate a series of intermediate steps (a chain of thought) before answering a question, they often produce better answers than they otherwise would. We investigate why and how chain-of-thought reasoning is useful in language models, testing the hypothesis that reasoning is effective when training data consists of local clusters of variables that influence each other strongly. These training conditions enable the chaining of accurate local inferences in order to estimate relationships between variables that were not seen together in training. We prove that there will exist a "reasoning gap", where reasoning through intermediate variables improves inference, for the simple case of an autoregressive density estimator trained on local samples from a chain-structured probabilistic model. We then test our hypothesis empirically in more complex models, training an autoregressive language model on samples from Bayes nets but only including a subset of variables in each sample. We test language models' ability to match conditional probabilities with and without intermediate reasoning steps, finding that intermediate steps are only helpful when the training data is locally structured with respect to dependencies between variables and that the combination of locally-structured observations and reasoning is much more data-efficient than training on all variables. Our results illustrate how the effectiveness of reasoning step by step is rooted in the local statistical structure of the training data.
PathReasoner: Modeling Reasoning Path with Equivalent Extension for Logical Question Answering
Logical reasoning task has attracted great interest since it was proposed. Faced with such a task, current competitive models, even large language models (e.g., ChatGPT and PaLM 2), still perform badly. Previous promising LMs struggle in logical consistency modeling and logical structure perception. To this end, we model the logical reasoning task by transforming each logical sample into reasoning paths and propose an architecture PathReasoner. It addresses the task from the views of both data and model. To expand the diversity of the logical samples, we propose an atom extension strategy supported by equivalent logical formulas, to form new reasoning paths. From the model perspective, we design a stack of transformer-style blocks. In particular, we propose a path-attention module to joint model in-atom and cross-atom relations with the high-order diffusion strategy. Experiments show that PathReasoner achieves competitive performances on two logical reasoning benchmarks and great generalization abilities.
In-situ graph reasoning and knowledge expansion using Graph-PReFLexOR
The pursuit of automated scientific discovery has fueled progress from symbolic logic to modern AI, forging new frontiers in reasoning and pattern recognition. Transformers function as potential systems, where every possible relationship remains latent potentiality until tasks impose constraints, akin to measurement. Yet, refining their sampling requires more than probabilistic selection: solutions must conform to specific structures or rules, ensuring consistency and the invocation of general principles. We present Graph-PReFLexOR (Graph-based Preference-based Recursive Language Modeling for Exploratory Optimization of Reasoning), a framework that combines graph reasoning with symbolic abstraction to dynamically expand domain knowledge. Inspired by reinforcement learning, Graph-PReFLexOR defines reasoning as a structured mapping, where tasks yield knowledge graphs, abstract patterns, and ultimately, final answers. Inspired by category theory, it encodes concepts as nodes and their relationships as edges, supporting hierarchical inference and adaptive learning through isomorphic representations. Demonstrations include hypothesis generation, materials design, and creative reasoning, such as discovering relationships between mythological concepts like 'thin places' with materials science. We propose a 'knowledge garden growth' strategy that integrates insights across domains, promoting interdisciplinary connections. Results with a 3-billion-parameter Graph-PReFLexOR model show superior reasoning depth and adaptability, underscoring the potential for transparent, multidisciplinary AI-driven discovery. It lays the groundwork for general autonomous reasoning solutions.
Probabilistic Tree-of-thought Reasoning for Answering Knowledge-intensive Complex Questions
Large language models (LLMs) are capable of answering knowledge-intensive complex questions with chain-of-thought (CoT) reasoning. However, they tend to generate factually incorrect reasoning steps when the required knowledge is not available or up-to-date in models' parameters. Recent works turn to retrieving external knowledge to augment CoT reasoning. Despite being promising, these chain-based methods suffer from: 1) Negative retrieval. Unnecessary or incorrect retrieval may mislead the reasoning; 2) Limited sight. Lacking the ability to look backward or forward, a local error in one step will propagate along the chain. In this paper, we propose a novel approach: Probabilistic Tree-of-thought Reasoning (ProbTree). First, LLMs translate a complex question into a query tree, in which each non-root node denotes a sub-question of its parent node. Then, probabilistic reasoning is conducted over the tree, by solving questions from leaf to root considering the confidence of both question decomposing and answering. During reasoning, for leaf nodes, LLMs choose a more confident answer from Closed-book QA that employs parametric knowledge and Open-book QA that employs retrieved external knowledge, thus eliminating the negative retrieval problem. For non-leaf nodes, with the hierarchical structure, LLMs have broader sights and are able to globally reason with the information from child nodes, thus recovering from local errors. The experiments on three Complex QA datasets under the open-domain setting show that our approach outperforms SOTA methods significantly, demonstrating the effect of probabilistic tree-of-thought reasoning.