new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Sep 24

PepTune: De Novo Generation of Therapeutic Peptides with Multi-Objective-Guided Discrete Diffusion

Peptide therapeutics, a major class of medicines, have achieved remarkable success across diseases such as diabetes and cancer, with landmark examples such as GLP-1 receptor agonists revolutionizing the treatment of type-2 diabetes and obesity. Despite their success, designing peptides that satisfy multiple conflicting objectives, such as target binding affinity, solubility, and membrane permeability, remains a major challenge. Classical drug development and structure-based design are ineffective for such tasks, as they fail to optimize global functional properties critical for therapeutic efficacy. Existing generative frameworks are largely limited to continuous spaces, unconditioned outputs, or single-objective guidance, making them unsuitable for discrete sequence optimization across multiple properties. To address this, we present PepTune, a multi-objective discrete diffusion model for the simultaneous generation and optimization of therapeutic peptide SMILES. Built on the Masked Discrete Language Model (MDLM) framework, PepTune ensures valid peptide structures with state-dependent masking schedules and penalty-based objectives. To guide the diffusion process, we propose a Monte Carlo Tree Search (MCTS)-based strategy that balances exploration and exploitation to iteratively refine Pareto-optimal sequences. MCTS integrates classifier-based rewards with search-tree expansion, overcoming gradient estimation challenges and data sparsity inherent to discrete spaces. Using PepTune, we generate diverse, chemically-modified peptides optimized for multiple therapeutic properties, including target binding affinity, membrane permeability, solubility, hemolysis, and non-fouling characteristics on various disease-relevant targets. In total, our results demonstrate that MCTS-guided discrete diffusion is a powerful and modular approach for multi-objective sequence design in discrete state spaces.

GlucoLens: Explainable Postprandial Blood Glucose Prediction from Diet and Physical Activity

Postprandial hyperglycemia, marked by the blood glucose level exceeding the normal range after meals, is a critical indicator of progression toward type 2 diabetes in prediabetic and healthy individuals. A key metric for understanding blood glucose dynamics after eating is the postprandial area under the curve (PAUC). Predicting PAUC in advance based on a person's diet and activity level and explaining what affects postprandial blood glucose could allow an individual to adjust their lifestyle accordingly to maintain normal glucose levels. In this paper, we propose GlucoLens, an explainable machine learning approach to predict PAUC and hyperglycemia from diet, activity, and recent glucose patterns. We conducted a five-week user study with 10 full-time working individuals to develop and evaluate the computational model. Our machine learning model takes multimodal data including fasting glucose, recent glucose, recent activity, and macronutrient amounts, and provides an interpretable prediction of the postprandial glucose pattern. Our extensive analyses of the collected data revealed that the trained model achieves a normalized root mean squared error (NRMSE) of 0.123. On average, GlucoLense with a Random Forest backbone provides a 16% better result than the baseline models. Additionally, GlucoLens predicts hyperglycemia with an accuracy of 74% and recommends different options to help avoid hyperglycemia through diverse counterfactual explanations. Code available: https://github.com/ab9mamun/GlucoLens.

Pep2Prob Benchmark: Predicting Fragment Ion Probability for MS^2-based Proteomics

Proteins perform nearly all cellular functions and constitute most drug targets, making their analysis fundamental to understanding human biology in health and disease. Tandem mass spectrometry (MS^2) is the major analytical technique in proteomics that identifies peptides by ionizing them, fragmenting them, and using the resulting mass spectra to identify and quantify proteins in biological samples. In MS^2 analysis, peptide fragment ion probability prediction plays a critical role, enhancing the accuracy of peptide identification from mass spectra as a complement to the intensity information. Current approaches rely on global statistics of fragmentation, which assumes that a fragment's probability is uniform across all peptides. Nevertheless, this assumption is oversimplified from a biochemical principle point of view and limits accurate prediction. To address this gap, we present Pep2Prob, the first comprehensive dataset and benchmark designed for peptide-specific fragment ion probability prediction. The proposed dataset contains fragment ion probability statistics for 608,780 unique precursors (each precursor is a pair of peptide sequence and charge state), summarized from more than 183 million high-quality, high-resolution, HCD MS^2 spectra with validated peptide assignments and fragmentation annotations. We establish baseline performance using simple statistical rules and learning-based methods, and find that models leveraging peptide-specific information significantly outperform previous methods using only global fragmentation statistics. Furthermore, performance across benchmark models with increasing capacities suggests that the peptide-fragmentation relationship exhibits complex nonlinearities requiring sophisticated machine learning approaches.

iBitter-Stack: A Multi-Representation Ensemble Learning Model for Accurate Bitter Peptide Identification

The identification of bitter peptides is crucial in various domains, including food science, drug discovery, and biochemical research. These peptides not only contribute to the undesirable taste of hydrolyzed proteins but also play key roles in physiological and pharmacological processes. However, experimental methods for identifying bitter peptides are time-consuming and expensive. With the rapid expansion of peptide sequence databases in the post-genomic era, the demand for efficient computational approaches to distinguish bitter from non-bitter peptides has become increasingly significant. In this study, we propose a novel stacking-based ensemble learning framework aimed at enhancing the accuracy and reliability of bitter peptide classification. Our method integrates diverse sequence-based feature representations and leverages a broad set of machine learning classifiers. The first stacking layer comprises multiple base classifiers, each trained on distinct feature encoding schemes, while the second layer employs logistic regression to refine predictions using an eight-dimensional probability vector. Extensive evaluations on a carefully curated dataset demonstrate that our model significantly outperforms existing predictive methods, providing a robust and reliable computational tool for bitter peptide identification. Our approach achieves an accuracy of 96.09\% and a Matthews Correlation Coefficient (MCC) of 0.9220 on the independent test set, underscoring its effectiveness and generalizability. To facilitate real-time usage and broader accessibility, we have also developed a user-friendly web server based on the proposed method, which is freely accessible at https://ibitter-stack-webserver.streamlit.app/. This tool enables researchers and practitioners to conveniently screen peptide sequences for bitterness in real-time applications.