Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeThe State of Multilingual LLM Safety Research: From Measuring the Language Gap to Mitigating It
This paper presents a comprehensive analysis of the linguistic diversity of LLM safety research, highlighting the English-centric nature of the field. Through a systematic review of nearly 300 publications from 2020--2024 across major NLP conferences and workshops at *ACL, we identify a significant and growing language gap in LLM safety research, with even high-resource non-English languages receiving minimal attention. We further observe that non-English languages are rarely studied as a standalone language and that English safety research exhibits poor language documentation practice. To motivate future research into multilingual safety, we make several recommendations based on our survey, and we then pose three concrete future directions on safety evaluation, training data generation, and crosslingual safety generalization. Based on our survey and proposed directions, the field can develop more robust, inclusive AI safety practices for diverse global populations.
Expressing stigma and inappropriate responses prevents LLMs from safely replacing mental health providers
Should a large language model (LLM) be used as a therapist? In this paper, we investigate the use of LLMs to *replace* mental health providers, a use case promoted in the tech startup and research space. We conduct a mapping review of therapy guides used by major medical institutions to identify crucial aspects of therapeutic relationships, such as the importance of a therapeutic alliance between therapist and client. We then assess the ability of LLMs to reproduce and adhere to these aspects of therapeutic relationships by conducting several experiments investigating the responses of current LLMs, such as `gpt-4o`. Contrary to best practices in the medical community, LLMs 1) express stigma toward those with mental health conditions and 2) respond inappropriately to certain common (and critical) conditions in naturalistic therapy settings -- e.g., LLMs encourage clients' delusional thinking, likely due to their sycophancy. This occurs even with larger and newer LLMs, indicating that current safety practices may not address these gaps. Furthermore, we note foundational and practical barriers to the adoption of LLMs as therapists, such as that a therapeutic alliance requires human characteristics (e.g., identity and stakes). For these reasons, we conclude that LLMs should not replace therapists, and we discuss alternative roles for LLMs in clinical therapy.
Refuse Whenever You Feel Unsafe: Improving Safety in LLMs via Decoupled Refusal Training
This study addresses a critical gap in safety tuning practices for Large Language Models (LLMs) by identifying and tackling a refusal position bias within safety tuning data, which compromises the models' ability to appropriately refuse generating unsafe content. We introduce a novel approach, Decoupled Refusal Training (DeRTa), designed to empower LLMs to refuse compliance to harmful prompts at any response position, significantly enhancing their safety capabilities. DeRTa incorporates two novel components: (1) Maximum Likelihood Estimation (MLE) with Harmful Response Prefix, which trains models to recognize and avoid unsafe content by appending a segment of harmful response to the beginning of a safe response, and (2) Reinforced Transition Optimization (RTO), which equips models with the ability to transition from potential harm to safety refusal consistently throughout the harmful response sequence. Our empirical evaluation, conducted using LLaMA3 and Mistral model families across six attack scenarios, demonstrates that our method not only improves model safety without compromising performance but also surpasses well-known models such as GPT-4 in defending against attacks. Importantly, our approach successfully defends recent advanced attack methods (e.g., CodeAttack) that have jailbroken GPT-4 and LLaMA3-70B-Instruct. Our code and data can be found at https://github.com/RobustNLP/DeRTa.
Toward an Evaluation Science for Generative AI Systems
There is an increasing imperative to anticipate and understand the performance and safety of generative AI systems in real-world deployment contexts. However, the current evaluation ecosystem is insufficient: Commonly used static benchmarks face validity challenges, and ad hoc case-by-case audits rarely scale. In this piece, we advocate for maturing an evaluation science for generative AI systems. While generative AI creates unique challenges for system safety engineering and measurement science, the field can draw valuable insights from the development of safety evaluation practices in other fields, including transportation, aerospace, and pharmaceutical engineering. In particular, we present three key lessons: Evaluation metrics must be applicable to real-world performance, metrics must be iteratively refined, and evaluation institutions and norms must be established. Applying these insights, we outline a concrete path toward a more rigorous approach for evaluating generative AI systems.
Holistic Safety and Responsibility Evaluations of Advanced AI Models
Safety and responsibility evaluations of advanced AI models are a critical but developing field of research and practice. In the development of Google DeepMind's advanced AI models, we innovated on and applied a broad set of approaches to safety evaluation. In this report, we summarise and share elements of our evolving approach as well as lessons learned for a broad audience. Key lessons learned include: First, theoretical underpinnings and frameworks are invaluable to organise the breadth of risk domains, modalities, forms, metrics, and goals. Second, theory and practice of safety evaluation development each benefit from collaboration to clarify goals, methods and challenges, and facilitate the transfer of insights between different stakeholders and disciplines. Third, similar key methods, lessons, and institutions apply across the range of concerns in responsibility and safety - including established and emerging harms. For this reason it is important that a wide range of actors working on safety evaluation and safety research communities work together to develop, refine and implement novel evaluation approaches and best practices, rather than operating in silos. The report concludes with outlining the clear need to rapidly advance the science of evaluations, to integrate new evaluations into the development and governance of AI, to establish scientifically-grounded norms and standards, and to promote a robust evaluation ecosystem.
Towards best practices in AGI safety and governance: A survey of expert opinion
A number of leading AI companies, including OpenAI, Google DeepMind, and Anthropic, have the stated goal of building artificial general intelligence (AGI) - AI systems that achieve or exceed human performance across a wide range of cognitive tasks. In pursuing this goal, they may develop and deploy AI systems that pose particularly significant risks. While they have already taken some measures to mitigate these risks, best practices have not yet emerged. To support the identification of best practices, we sent a survey to 92 leading experts from AGI labs, academia, and civil society and received 51 responses. Participants were asked how much they agreed with 50 statements about what AGI labs should do. Our main finding is that participants, on average, agreed with all of them. Many statements received extremely high levels of agreement. For example, 98% of respondents somewhat or strongly agreed that AGI labs should conduct pre-deployment risk assessments, dangerous capabilities evaluations, third-party model audits, safety restrictions on model usage, and red teaming. Ultimately, our list of statements may serve as a helpful foundation for efforts to develop best practices, standards, and regulations for AGI labs.
Seeker: Towards Exception Safety Code Generation with Intermediate Language Agents Framework
In real world software development, improper or missing exception handling can severely impact the robustness and reliability of code. Exception handling mechanisms require developers to detect, capture, and manage exceptions according to high standards, but many developers struggle with these tasks, leading to fragile code. This problem is particularly evident in open-source projects and impacts the overall quality of the software ecosystem. To address this challenge, we explore the use of large language models (LLMs) to improve exception handling in code. Through extensive analysis, we identify three key issues: Insensitive Detection of Fragile Code, Inaccurate Capture of Exception Block, and Distorted Handling Solution. These problems are widespread across real world repositories, suggesting that robust exception handling practices are often overlooked or mishandled. In response, we propose Seeker, a multi-agent framework inspired by expert developer strategies for exception handling. Seeker uses agents: Scanner, Detector, Predator, Ranker, and Handler to assist LLMs in detecting, capturing, and resolving exceptions more effectively. Our work is the first systematic study on leveraging LLMs to enhance exception handling practices in real development scenarios, providing valuable insights for future improvements in code reliability.
Safety Control of Service Robots with LLMs and Embodied Knowledge Graphs
Safety limitations in service robotics across various industries have raised significant concerns about the need for robust mechanisms ensuring that robots adhere to safe practices, thereby preventing actions that might harm humans or cause property damage. Despite advances, including the integration of Knowledge Graphs (KGs) with Large Language Models (LLMs), challenges in ensuring consistent safety in autonomous robot actions persist. In this paper, we propose a novel integration of Large Language Models with Embodied Robotic Control Prompts (ERCPs) and Embodied Knowledge Graphs (EKGs) to enhance the safety framework for service robots. ERCPs are designed as predefined instructions that ensure LLMs generate safe and precise responses. These responses are subsequently validated by EKGs, which provide a comprehensive knowledge base ensuring that the actions of the robot are continuously aligned with safety protocols, thereby promoting safer operational practices in varied contexts. Our experimental setup involved diverse real-world tasks, where robots equipped with our framework demonstrated significantly higher compliance with safety standards compared to traditional methods. This integration fosters secure human-robot interactions and positions our methodology at the forefront of AI-driven safety innovations in service robotics.
Safety at Scale: A Comprehensive Survey of Large Model Safety
The rapid advancement of large models, driven by their exceptional abilities in learning and generalization through large-scale pre-training, has reshaped the landscape of Artificial Intelligence (AI). These models are now foundational to a wide range of applications, including conversational AI, recommendation systems, autonomous driving, content generation, medical diagnostics, and scientific discovery. However, their widespread deployment also exposes them to significant safety risks, raising concerns about robustness, reliability, and ethical implications. This survey provides a systematic review of current safety research on large models, covering Vision Foundation Models (VFMs), Large Language Models (LLMs), Vision-Language Pre-training (VLP) models, Vision-Language Models (VLMs), Diffusion Models (DMs), and large-model-based Agents. Our contributions are summarized as follows: (1) We present a comprehensive taxonomy of safety threats to these models, including adversarial attacks, data poisoning, backdoor attacks, jailbreak and prompt injection attacks, energy-latency attacks, data and model extraction attacks, and emerging agent-specific threats. (2) We review defense strategies proposed for each type of attacks if available and summarize the commonly used datasets and benchmarks for safety research. (3) Building on this, we identify and discuss the open challenges in large model safety, emphasizing the need for comprehensive safety evaluations, scalable and effective defense mechanisms, and sustainable data practices. More importantly, we highlight the necessity of collective efforts from the research community and international collaboration. Our work can serve as a useful reference for researchers and practitioners, fostering the ongoing development of comprehensive defense systems and platforms to safeguard AI models.
LabSafety Bench: Benchmarking LLMs on Safety Issues in Scientific Labs
Laboratory accidents pose significant risks to human life and property, underscoring the importance of robust safety protocols. Despite advancements in safety training, laboratory personnel may still unknowingly engage in unsafe practices. With the increasing reliance on large language models (LLMs) for guidance in various fields, including laboratory settings, there is a growing concern about their reliability in critical safety-related decision-making. Unlike trained human researchers, LLMs lack formal lab safety education, raising questions about their ability to provide safe and accurate guidance. Existing research on LLM trustworthiness primarily focuses on issues such as ethical compliance, truthfulness, and fairness but fails to fully cover safety-critical real-world applications, like lab safety. To address this gap, we propose the Laboratory Safety Benchmark (LabSafety Bench), a comprehensive evaluation framework based on a new taxonomy aligned with Occupational Safety and Health Administration (OSHA) protocols. This benchmark includes 765 multiple-choice questions verified by human experts, assessing LLMs and vision language models (VLMs) performance in lab safety contexts. Our evaluations demonstrate that while GPT-4o outperforms human participants, it is still prone to critical errors, highlighting the risks of relying on LLMs in safety-critical environments. Our findings emphasize the need for specialized benchmarks to accurately assess the trustworthiness of LLMs in real-world safety applications.
Towards Trustworthy GUI Agents: A Survey
GUI agents, powered by large foundation models, can interact with digital interfaces, enabling various applications in web automation, mobile navigation, and software testing. However, their increasing autonomy has raised critical concerns about their security, privacy, and safety. This survey examines the trustworthiness of GUI agents in five critical dimensions: security vulnerabilities, reliability in dynamic environments, transparency and explainability, ethical considerations, and evaluation methodologies. We also identify major challenges such as vulnerability to adversarial attacks, cascading failure modes in sequential decision-making, and a lack of realistic evaluation benchmarks. These issues not only hinder real-world deployment but also call for comprehensive mitigation strategies beyond task success. As GUI agents become more widespread, establishing robust safety standards and responsible development practices is essential. This survey provides a foundation for advancing trustworthy GUI agents through systematic understanding and future research.
Pub-Guard-LLM: Detecting Fraudulent Biomedical Articles with Reliable Explanations
A significant and growing number of published scientific articles is found to involve fraudulent practices, posing a serious threat to the credibility and safety of research in fields such as medicine. We propose Pub-Guard-LLM, the first large language model-based system tailored to fraud detection of biomedical scientific articles. We provide three application modes for deploying Pub-Guard-LLM: vanilla reasoning, retrieval-augmented generation, and multi-agent debate. Each mode allows for textual explanations of predictions. To assess the performance of our system, we introduce an open-source benchmark, PubMed Retraction, comprising over 11K real-world biomedical articles, including metadata and retraction labels. We show that, across all modes, Pub-Guard-LLM consistently surpasses the performance of various baselines and provides more reliable explanations, namely explanations which are deemed more relevant and coherent than those generated by the baselines when evaluated by multiple assessment methods. By enhancing both detection performance and explainability in scientific fraud detection, Pub-Guard-LLM contributes to safeguarding research integrity with a novel, effective, open-source tool.
STAR-1: Safer Alignment of Reasoning LLMs with 1K Data
This paper introduces STAR-1, a high-quality, just-1k-scale safety dataset specifically designed for large reasoning models (LRMs) like DeepSeek-R1. Built on three core principles -- diversity, deliberative reasoning, and rigorous filtering -- STAR-1 aims to address the critical needs for safety alignment in LRMs. Specifically, we begin by integrating existing open-source safety datasets from diverse sources. Then, we curate safety policies to generate policy-grounded deliberative reasoning samples. Lastly, we apply a GPT-4o-based safety scoring system to select training examples aligned with best practices. Experimental results show that fine-tuning LRMs with STAR-1 leads to an average 40% improvement in safety performance across four benchmarks, while only incurring a marginal decrease (e.g., an average of 1.1%) in reasoning ability measured across five reasoning tasks. Extensive ablation studies further validate the importance of our design principles in constructing STAR-1 and analyze its efficacy across both LRMs and traditional LLMs. Our project page is https://ucsc-vlaa.github.io/STAR-1.
AI Risk Categorization Decoded (AIR 2024): From Government Regulations to Corporate Policies
We present a comprehensive AI risk taxonomy derived from eight government policies from the European Union, United States, and China and 16 company policies worldwide, making a significant step towards establishing a unified language for generative AI safety evaluation. We identify 314 unique risk categories organized into a four-tiered taxonomy. At the highest level, this taxonomy encompasses System & Operational Risks, Content Safety Risks, Societal Risks, and Legal & Rights Risks. The taxonomy establishes connections between various descriptions and approaches to risk, highlighting the overlaps and discrepancies between public and private sector conceptions of risk. By providing this unified framework, we aim to advance AI safety through information sharing across sectors and the promotion of best practices in risk mitigation for generative AI models and systems.
Truck Parking Usage Prediction with Decomposed Graph Neural Networks
Truck parking on freight corridors faces the major challenge of insufficient parking spaces. This is exacerbated by the Hour-of-Service (HOS) regulations, which often result in unauthorized parking practices, causing safety concerns. It has been shown that providing accurate parking usage prediction can be a cost-effective solution to reduce unsafe parking practices. In light of this, existing studies have developed various methods to predict the usage of a truck parking site and have demonstrated satisfactory accuracy. However, these studies focused on a single parking site, and few approaches have been proposed to predict the usage of multiple truck parking sites considering spatio-temporal dependencies, due to the lack of data. This paper aims to fill this gap and presents the Regional Temporal Graph Convolutional Network (RegT-GCN) to predict parking usage across the entire state to provide more comprehensive truck parking information. The framework leverages the topological structures of truck parking site locations and historical parking data to predict the occupancy rate considering spatio-temporal dependencies across a state. To achieve this, we introduce a Regional Decomposition approach, which effectively captures the geographical characteristics of the truck parking locations and their spatial correlations. Evaluation results demonstrate that the proposed model outperforms other baseline models, showing the effectiveness of our regional decomposition. The code is available at https://github.com/raynbowy23/RegT-GCN.
Developing Safe and Responsible Large Language Models -- A Comprehensive Framework
Given the growing concerns around the safety and risks of Large Language Models (LLMs), it is essential to develop methods for mitigating these issues. We introduce Safe and Responsible Large Language Model (SR_{LLM}) , a model designed to enhance the safety of language generation using LLMs. Our approach incorporates a comprehensive LLM safety risk taxonomy and utilizes a dataset annotated by experts that align with this taxonomy. SR_{LLM} is designed to identify potentially unsafe content and produce benign variations. It employs instruction-based and parameter-efficient fine-tuning methods, making the model not only effective in enhancing safety but also resource-efficient and straightforward to adjust. Through our testing on five benchmark datasets and two proprietary datasets, we observed notable reductions in the generation of unsafe content. Moreover, following the implementation of safety measures, there was a significant improvement in the production of safe content. We detail our fine-tuning processes and how we benchmark safety for SR_{LLM} with the community engagement and promote the responsible advancement of LLMs. All the data and code are available anonymous at https://github.com/shainarazavi/Safe-Responsible-LLM .
Safety Tax: Safety Alignment Makes Your Large Reasoning Models Less Reasonable
Safety alignment is an important procedure before the official deployment of a Large Language Model (LLM). While safety alignment has been extensively studied for LLM, there is still a large research gap for Large Reasoning Models (LRMs) that equip with improved reasoning capability. We in this paper systematically examine a simplified pipeline for producing safety aligned LRMs. With our evaluation of various LRMs, we deliver two main findings: i) Safety alignment can be done upon the LRM to restore its safety capability. ii) Safety alignment leads to a degradation of the reasoning capability of LRMs. The two findings show that there exists a trade-off between reasoning and safety capability with the sequential LRM production pipeline. The discovered trade-off, which we name Safety Tax, should shed light on future endeavors of safety research on LRMs. As a by-product, we curate a dataset called DirectRefusal, which might serve as an alternative dataset for safety alignment. Our source code is available at https://github.com/git-disl/Safety-Tax.
Safeguard Fine-Tuned LLMs Through Pre- and Post-Tuning Model Merging
Fine-tuning large language models (LLMs) for downstream tasks is a widely adopted approach, but it often leads to safety degradation in safety-aligned LLMs. Currently, many solutions address this issue by incorporating additional safety data, which can be impractical in many cases. In this paper, we address the question: How can we improve downstream task performance while preserving safety in LLMs without relying on additional safety data? We propose a simple and effective method that maintains the inherent safety of LLMs while enhancing their downstream task performance: merging the weights of pre- and post-fine-tuned safety-aligned models. Experimental results across various downstream tasks, models, and merging methods demonstrate that this approach effectively mitigates safety degradation while improving downstream task performance, offering a practical solution for adapting safety-aligned LLMs.
A Comprehensive Survey in LLM(-Agent) Full Stack Safety: Data, Training and Deployment
The remarkable success of Large Language Models (LLMs) has illuminated a promising pathway toward achieving Artificial General Intelligence for both academic and industrial communities, owing to their unprecedented performance across various applications. As LLMs continue to gain prominence in both research and commercial domains, their security and safety implications have become a growing concern, not only for researchers and corporations but also for every nation. Currently, existing surveys on LLM safety primarily focus on specific stages of the LLM lifecycle, e.g., deployment phase or fine-tuning phase, lacking a comprehensive understanding of the entire "lifechain" of LLMs. To address this gap, this paper introduces, for the first time, the concept of "full-stack" safety to systematically consider safety issues throughout the entire process of LLM training, deployment, and eventual commercialization. Compared to the off-the-shelf LLM safety surveys, our work demonstrates several distinctive advantages: (I) Comprehensive Perspective. We define the complete LLM lifecycle as encompassing data preparation, pre-training, post-training, deployment and final commercialization. To our knowledge, this represents the first safety survey to encompass the entire lifecycle of LLMs. (II) Extensive Literature Support. Our research is grounded in an exhaustive review of over 800+ papers, ensuring comprehensive coverage and systematic organization of security issues within a more holistic understanding. (III) Unique Insights. Through systematic literature analysis, we have developed reliable roadmaps and perspectives for each chapter. Our work identifies promising research directions, including safety in data generation, alignment techniques, model editing, and LLM-based agent systems. These insights provide valuable guidance for researchers pursuing future work in this field.
AIR-Bench 2024: A Safety Benchmark Based on Risk Categories from Regulations and Policies
Foundation models (FMs) provide societal benefits but also amplify risks. Governments, companies, and researchers have proposed regulatory frameworks, acceptable use policies, and safety benchmarks in response. However, existing public benchmarks often define safety categories based on previous literature, intuitions, or common sense, leading to disjointed sets of categories for risks specified in recent regulations and policies, which makes it challenging to evaluate and compare FMs across these benchmarks. To bridge this gap, we introduce AIR-Bench 2024, the first AI safety benchmark aligned with emerging government regulations and company policies, following the regulation-based safety categories grounded in our AI risks study, AIR 2024. AIR 2024 decomposes 8 government regulations and 16 company policies into a four-tiered safety taxonomy with 314 granular risk categories in the lowest tier. AIR-Bench 2024 contains 5,694 diverse prompts spanning these categories, with manual curation and human auditing to ensure quality. We evaluate leading language models on AIR-Bench 2024, uncovering insights into their alignment with specified safety concerns. By bridging the gap between public benchmarks and practical AI risks, AIR-Bench 2024 provides a foundation for assessing model safety across jurisdictions, fostering the development of safer and more responsible AI systems.
Scenarios for Development, Test and Validation of Automated Vehicles
The ISO 26262 standard from 2016 represents the state of the art for a safety-guided development of safety-critical electric/electronic vehicle systems. These vehicle systems include advanced driver assistance systems and vehicle guidance systems. The development process proposed in the ISO 26262 standard is based upon multiple V-models, and defines activities and work products for each process step. In many of these process steps, scenario based approaches can be applied to achieve the defined work products for the development of automated driving functions. To accomplish the work products of different process steps, scenarios have to focus on various aspects like a human understandable notation or a description via time-space variables. This leads to contradictory requirements regarding the level of detail and way of notation for the representation of scenarios. In this paper, the authors present requirements for the representation of scenarios in different process steps defined by the ISO 26262 standard, propose a consistent terminology based on prior publications for the identified levels of abstraction, and demonstrate how scenarios can be systematically evolved along the phases of the development process outlined in the ISO 26262 standard.
BeaverTails: Towards Improved Safety Alignment of LLM via a Human-Preference Dataset
In this paper, we introduce the BeaverTails dataset, aimed at fostering research on safety alignment in large language models (LLMs). This dataset uniquely separates annotations of helpfulness and harmlessness for question-answering pairs, thus offering distinct perspectives on these crucial attributes. In total, we have compiled safety meta-labels for 30,207 question-answer (QA) pairs and gathered 30,144 pairs of expert comparison data for both the helpfulness and harmlessness metrics. We further showcase applications of BeaverTails in content moderation and reinforcement learning with human feedback (RLHF), emphasizing its potential for practical safety measures in LLMs. We believe this dataset provides vital resources for the community, contributing towards the safe development and deployment of LLMs. Our project page is available at the following URL: https://sites.google.com/view/pku-beavertails.
How Does Vision-Language Adaptation Impact the Safety of Vision Language Models?
Vision-Language adaptation (VL adaptation) transforms Large Language Models (LLMs) into Large Vision-Language Models (LVLMs) for multimodal tasks, but this process often compromises the inherent safety capabilities embedded in the original LLMs. Despite potential harmfulness due to weakened safety measures, in-depth analysis on the effects of VL adaptation on safety remains under-explored. This study examines how VL adaptation influences safety and evaluates the impact of safety fine-tuning methods. Our analysis reveals that safety degradation occurs during VL adaptation, even when the training data is safe. While safety tuning techniques like supervised fine-tuning with safety datasets or reinforcement learning from human feedback mitigate some risks, they still lead to safety degradation and a reduction in helpfulness due to over-rejection issues. Further analysis of internal model weights suggests that VL adaptation may impact certain safety-related layers, potentially lowering overall safety levels. Additionally, our findings demonstrate that the objectives of VL adaptation and safety tuning are divergent, which often results in their simultaneous application being suboptimal. To address this, we suggest the weight merging approach as an optimal solution effectively reducing safety degradation while maintaining helpfulness. These insights help guide the development of more reliable and secure LVLMs for real-world applications.
Towards Safer Operations: An Expert-involved Dataset of High-Pressure Gas Incidents for Preventing Future Failures
This paper introduces a new IncidentAI dataset for safety prevention. Different from prior corpora that usually contain a single task, our dataset comprises three tasks: named entity recognition, cause-effect extraction, and information retrieval. The dataset is annotated by domain experts who have at least six years of practical experience as high-pressure gas conservation managers. We validate the contribution of the dataset in the scenario of safety prevention. Preliminary results on the three tasks show that NLP techniques are beneficial for analyzing incident reports to prevent future failures. The dataset facilitates future research in NLP and incident management communities. The access to the dataset is also provided (the IncidentAI dataset is available at: https://github.com/Cinnamon/incident-ai-dataset).
SafetyBench: Evaluating the Safety of Large Language Models with Multiple Choice Questions
With the rapid development of Large Language Models (LLMs), increasing attention has been paid to their safety concerns. Consequently, evaluating the safety of LLMs has become an essential task for facilitating the broad applications of LLMs. Nevertheless, the absence of comprehensive safety evaluation benchmarks poses a significant impediment to effectively assess and enhance the safety of LLMs. In this work, we present SafetyBench, a comprehensive benchmark for evaluating the safety of LLMs, which comprises 11,435 diverse multiple choice questions spanning across 7 distinct categories of safety concerns. Notably, SafetyBench also incorporates both Chinese and English data, facilitating the evaluation in both languages. Our extensive tests over 25 popular Chinese and English LLMs in both zero-shot and few-shot settings reveal a substantial performance advantage for GPT-4 over its counterparts, and there is still significant room for improving the safety of current LLMs. We believe SafetyBench will enable fast and comprehensive evaluation of LLMs' safety, and foster the development of safer LLMs. Data and evaluation guidelines are available at https://github.com/thu-coai/SafetyBench. Submission entrance and leaderboard are available at https://llmbench.ai/safety.
SafeInfer: Context Adaptive Decoding Time Safety Alignment for Large Language Models
Safety-aligned language models often exhibit fragile and imbalanced safety mechanisms, increasing the likelihood of generating unsafe content. In addition, incorporating new knowledge through editing techniques to language models can further compromise safety. To address these issues, we propose SafeInfer, a context-adaptive, decoding-time safety alignment strategy for generating safe responses to user queries. SafeInfer comprises two phases: the safety amplification phase, which employs safe demonstration examples to adjust the model's hidden states and increase the likelihood of safer outputs, and the safety-guided decoding phase, which influences token selection based on safety-optimized distributions, ensuring the generated content complies with ethical guidelines. Further, we present HarmEval, a novel benchmark for extensive safety evaluations, designed to address potential misuse scenarios in accordance with the policies of leading AI tech giants.
Safety-Tuned LLaMAs: Lessons From Improving the Safety of Large Language Models that Follow Instructions
Training large language models to follow instructions makes them perform better on a wide range of tasks, generally becoming more helpful. However, a perfectly helpful model will follow even the most malicious instructions and readily generate harmful content. In this paper, we raise concerns over the safety of models that only emphasize helpfulness, not safety, in their instruction-tuning. We show that several popular instruction-tuned models are highly unsafe. Moreover, we show that adding just 3% safety examples (a few hundred demonstrations) in the training set when fine-tuning a model like LLaMA can substantially improve their safety. Our safety-tuning does not make models significantly less capable or helpful as measured by standard benchmarks. However, we do find a behavior of exaggerated safety, where too much safety-tuning makes models refuse to respond to reasonable prompts that superficially resemble unsafe ones. Our study sheds light on trade-offs in training LLMs to follow instructions and exhibit safe behavior.
Early External Safety Testing of OpenAI's o3-mini: Insights from the Pre-Deployment Evaluation
Large Language Models (LLMs) have become an integral part of our daily lives. However, they impose certain risks, including those that can harm individuals' privacy, perpetuate biases and spread misinformation. These risks highlight the need for robust safety mechanisms, ethical guidelines, and thorough testing to ensure their responsible deployment. Safety of LLMs is a key property that needs to be thoroughly tested prior the model to be deployed and accessible to the general users. This paper reports the external safety testing experience conducted by researchers from Mondragon University and University of Seville on OpenAI's new o3-mini LLM as part of OpenAI's early access for safety testing program. In particular, we apply our tool, ASTRAL, to automatically and systematically generate up to date unsafe test inputs (i.e., prompts) that helps us test and assess different safety categories of LLMs. We automatically generate and execute a total of 10,080 unsafe test input on a early o3-mini beta version. After manually verifying the test cases classified as unsafe by ASTRAL, we identify a total of 87 actual instances of unsafe LLM behavior. We highlight key insights and findings uncovered during the pre-deployment external testing phase of OpenAI's latest LLM.
Integration of cognitive tasks into artificial general intelligence test for large models
During the evolution of large models, performance evaluation is necessarily performed to assess their capabilities and ensure safety before practical application. However, current model evaluations mainly rely on specific tasks and datasets, lacking a united framework for assessing the multidimensional intelligence of large models. In this perspective, we advocate for a comprehensive framework of cognitive science-inspired artificial general intelligence (AGI) tests, aimed at fulfilling the testing needs of large models with enhanced capabilities. The cognitive science-inspired AGI tests encompass the full spectrum of intelligence facets, including crystallized intelligence, fluid intelligence, social intelligence, and embodied intelligence. To assess the multidimensional intelligence of large models, the AGI tests consist of a battery of well-designed cognitive tests adopted from human intelligence tests, and then naturally encapsulates into an immersive virtual community. We propose increasing the complexity of AGI testing tasks commensurate with advancements in large models and emphasizing the necessity for the interpretation of test results to avoid false negatives and false positives. We believe that cognitive science-inspired AGI tests will effectively guide the targeted improvement of large models in specific dimensions of intelligence and accelerate the integration of large models into human society.
Sensors, Safety Models and A System-Level Approach to Safe and Scalable Automated Vehicles
When considering the accuracy of sensors in an automated vehicle (AV), it is not sufficient to evaluate the performance of any given sensor in isolation. Rather, the performance of any individual sensor must be considered in the context of the overall system design. Techniques like redundancy and different sensing modalities can reduce the chances of a sensing failure. Additionally, the use of safety models is essential to understanding whether any particular sensing failure is relevant. Only when the entire system design is taken into account can one properly understand the meaning of safety-relevant sensing failures in an AV. In this paper, we will consider what should actually constitute a sensing failure, how safety models play an important role in mitigating potential failures, how a system-level approach to safety will deliver a safe and scalable AV, and what an acceptable sensing failure rate should be considering the full picture of an AV's architecture.
How Should We Enhance the Safety of Large Reasoning Models: An Empirical Study
Large Reasoning Models (LRMs) have achieved remarkable success on reasoning-intensive tasks such as mathematics and programming. However, their enhanced reasoning capabilities do not necessarily translate to improved safety performance-and in some cases, may even degrade it. This raises an important research question: how can we enhance the safety of LRMs? In this paper, we present a comprehensive empirical study on how to enhance the safety of LRMs through Supervised Fine-Tuning (SFT). Our investigation begins with an unexpected observation: directly distilling safe responses from DeepSeek-R1 fails to significantly enhance safety. We analyze this phenomenon and identify three key failure patterns that contribute to it. We then demonstrate that explicitly addressing these issues during the data distillation process can lead to substantial safety improvements. Next, we explore whether a long and complex reasoning process is necessary for achieving safety. Interestingly, we find that simply using short or template-based reasoning process can attain comparable safety performance-and are significantly easier for models to learn than more intricate reasoning chains. These findings prompt a deeper reflection on the role of reasoning in ensuring safety. Finally, we find that mixing math reasoning data during safety fine-tuning is helpful to balance safety and over-refusal. Overall, we hope our empirical study could provide a more holistic picture on enhancing the safety of LRMs. The code and data used in our experiments are released in https://github.com/thu-coai/LRM-Safety-Study.
Predicting city safety perception based on visual image content
Safety perception measurement has been a subject of interest in many cities of the world. This is due to its social relevance, and to its effect on some local economic activities. Even though people safety perception is a subjective topic, sometimes it is possible to find out common patterns given a restricted geographical and sociocultural context. This paper presents an approach that makes use of image processing and machine learning techniques to detect with high accuracy urban environment patterns that could affect citizen's safety perception.
Rethinking Bottlenecks in Safety Fine-Tuning of Vision Language Models
Large Vision-Language Models (VLMs) have achieved remarkable performance across a wide range of tasks. However, their deployment in safety-critical domains poses significant challenges. Existing safety fine-tuning methods, which focus on textual or multimodal content, fall short in addressing challenging cases or disrupt the balance between helpfulness and harmlessness. Our evaluation highlights a safety reasoning gap: these methods lack safety visual reasoning ability, leading to such bottlenecks. To address this limitation and enhance both visual perception and reasoning in safety-critical contexts, we propose a novel dataset that integrates multi-image inputs with safety Chain-of-Thought (CoT) labels as fine-grained reasoning logic to improve model performance. Specifically, we introduce the Multi-Image Safety (MIS) dataset, an instruction-following dataset tailored for multi-image safety scenarios, consisting of training and test splits. Our experiments demonstrate that fine-tuning InternVL2.5-8B with MIS significantly outperforms both powerful open-source models and API-based models in challenging multi-image tasks requiring safety-related visual reasoning. This approach not only delivers exceptional safety performance but also preserves general capabilities without any trade-offs. Specifically, fine-tuning with MIS increases average accuracy by 0.83% across five general benchmarks and reduces the Attack Success Rate (ASR) on multiple safety benchmarks by a large margin. Data and Models are released under: https://dripnowhy.github.io/MIS/{https://dripnowhy.github.io/MIS/}
SafeVLA: Towards Safety Alignment of Vision-Language-Action Model via Safe Reinforcement Learning
Vision-language-action models (VLAs) have shown great potential as generalist robot policies. However, these models pose urgent safety challenges during deployment, including the risk of physical harm to the environment, the robot itself, and humans. How can safety be explicitly incorporated into VLAs? In this work, we propose SafeVLA, a novel algorithm designed to integrate safety into VLAs, ensuring the protection of the environment, robot hardware and humans in real-world settings. SafeVLA effectively balances safety and task performance by employing large-scale constrained learning within simulated environments. We demonstrate that SafeVLA outperforms the current state-of-the-art method in both safety and task performance, achieving average improvements of 83.58% and 3.85%, respectively, in simulation. By prioritizing safety, our approach eliminates high-risk behaviors and reduces the upper bound of unsafe behaviors to 1/35 of that in the current state-of-the-art, thereby significantly mitigating long-tail risks. Furthermore, the learned safety constraints generalize to diverse, unseen scenarios, including multiple out-of-distribution perturbations and tasks. Our data, models and newly proposed benchmark environment are available at https://sites.google.com/view/pku-safevla.
Ensuring Safe and High-Quality Outputs: A Guideline Library Approach for Language Models
Large Language Models (LLMs) exhibit impressive capabilities but also present risks such as biased content generation and privacy issues. One of the current alignment techniques includes principle-driven integration, but it faces challenges arising from the imprecision of manually crafted rules and inadequate risk perception in models without safety training. To address these, we introduce Guide-Align, a two-stage approach. Initially, a safety-trained model identifies potential risks and formulates specific guidelines for various inputs, establishing a comprehensive library of guidelines and a model for input-guidelines retrieval. Subsequently, the retrieval model correlates new inputs with relevant guidelines, which guide LLMs in response generation to ensure safe and high-quality outputs, thereby aligning with human values. An additional optional stage involves fine-tuning a model with well-aligned datasets generated through the process implemented in the second stage. Our method customizes guidelines to accommodate diverse inputs, thereby enhancing the fine-grainedness and comprehensiveness of the guideline library. Furthermore, it incorporates safety expertise from a safety-trained LLM through a lightweight retrieval model. We evaluate our approach on three benchmarks, demonstrating significant improvements in LLM security and quality. Notably, our fine-tuned model, Labrador, even at 13 billion parameters, outperforms GPT-3.5-turbo and surpasses GPT-4 in alignment capabilities.
Unsolved Problems in ML Safety
Machine learning (ML) systems are rapidly increasing in size, are acquiring new capabilities, and are increasingly deployed in high-stakes settings. As with other powerful technologies, safety for ML should be a leading research priority. In response to emerging safety challenges in ML, such as those introduced by recent large-scale models, we provide a new roadmap for ML Safety and refine the technical problems that the field needs to address. We present four problems ready for research, namely withstanding hazards ("Robustness"), identifying hazards ("Monitoring"), reducing inherent model hazards ("Alignment"), and reducing systemic hazards ("Systemic Safety"). Throughout, we clarify each problem's motivation and provide concrete research directions.
AnswerCarefully: A Dataset for Improving the Safety of Japanese LLM Output
In this paper we present AnswerCarefully, a dataset for promoting the safety and appropriateness of Japanese LLM outputs. The dataset consists of 1,800 pairs of questions and reference answers, where the questions require special attention in answering. It covers a wide range of risk categories established in prior English-language datasets, but the data samples are original in that they are manually created to reflect the socio-cultural context of LLM usage in Japan. We show that using this dataset for instruction to fine-tune a Japanese LLM led to improved output safety without compromising the utility of general responses. We also report the results of a safety evaluation of 12 Japanese LLMs using this dataset as a benchmark. Finally, we describe the latest update on the dataset which provides English translations and annotations of the questions, aimed at facilitating the derivation of similar datasets in different languages and regions.
Reinforcement Learning by Guided Safe Exploration
Safety is critical to broadening the application of reinforcement learning (RL). Often, we train RL agents in a controlled environment, such as a laboratory, before deploying them in the real world. However, the real-world target task might be unknown prior to deployment. Reward-free RL trains an agent without the reward to adapt quickly once the reward is revealed. We consider the constrained reward-free setting, where an agent (the guide) learns to explore safely without the reward signal. This agent is trained in a controlled environment, which allows unsafe interactions and still provides the safety signal. After the target task is revealed, safety violations are not allowed anymore. Thus, the guide is leveraged to compose a safe behaviour policy. Drawing from transfer learning, we also regularize a target policy (the student) towards the guide while the student is unreliable and gradually eliminate the influence of the guide as training progresses. The empirical analysis shows that this method can achieve safe transfer learning and helps the student solve the target task faster.
AEGIS: Online Adaptive AI Content Safety Moderation with Ensemble of LLM Experts
As Large Language Models (LLMs) and generative AI become more widespread, the content safety risks associated with their use also increase. We find a notable deficiency in high-quality content safety datasets and benchmarks that comprehensively cover a wide range of critical safety areas. To address this, we define a broad content safety risk taxonomy, comprising 13 critical risk and 9 sparse risk categories. Additionally, we curate AEGISSAFETYDATASET, a new dataset of approximately 26, 000 human-LLM interaction instances, complete with human annotations adhering to the taxonomy. We plan to release this dataset to the community to further research and to help benchmark LLM models for safety. To demonstrate the effectiveness of the dataset, we instruction-tune multiple LLM-based safety models. We show that our models (named AEGISSAFETYEXPERTS), not only surpass or perform competitively with the state-of-the-art LLM-based safety models and general purpose LLMs, but also exhibit robustness across multiple jail-break attack categories. We also show how using AEGISSAFETYDATASET during the LLM alignment phase does not negatively impact the performance of the aligned models on MT Bench scores. Furthermore, we propose AEGIS, a novel application of a no-regret online adaptation framework with strong theoretical guarantees, to perform content moderation with an ensemble of LLM content safety experts in deployment
Is Safety Standard Same for Everyone? User-Specific Safety Evaluation of Large Language Models
As the use of large language model (LLM) agents continues to grow, their safety vulnerabilities have become increasingly evident. Extensive benchmarks evaluate various aspects of LLM safety by defining the safety relying heavily on general standards, overlooking user-specific standards. However, safety standards for LLM may vary based on a user-specific profiles rather than being universally consistent across all users. This raises a critical research question: Do LLM agents act safely when considering user-specific safety standards? Despite its importance for safe LLM use, no benchmark datasets currently exist to evaluate the user-specific safety of LLMs. To address this gap, we introduce U-SAFEBENCH, the first benchmark designed to assess user-specific aspect of LLM safety. Our evaluation of 18 widely used LLMs reveals current LLMs fail to act safely when considering user-specific safety standards, marking a new discovery in this field. To address this vulnerability, we propose a simple remedy based on chain-of-thought, demonstrating its effectiveness in improving user-specific safety. Our benchmark and code are available at https://github.com/yeonjun-in/U-SafeBench.
A safety realignment framework via subspace-oriented model fusion for large language models
The current safeguard mechanisms for large language models (LLMs) are indeed susceptible to jailbreak attacks, making them inherently fragile. Even the process of fine-tuning on apparently benign data for downstream tasks can jeopardize safety. One potential solution is to conduct safety fine-tuning subsequent to downstream fine-tuning. However, there's a risk of catastrophic forgetting during safety fine-tuning, where LLMs may regain safety measures but lose the task-specific knowledge acquired during downstream fine-tuning. In this paper, we introduce a safety realignment framework through subspace-oriented model fusion (SOMF), aiming to combine the safeguard capabilities of initially aligned model and the current fine-tuned model into a realigned model. Our approach begins by disentangling all task vectors from the weights of each fine-tuned model. We then identify safety-related regions within these vectors by subspace masking techniques. Finally, we explore the fusion of the initial safely aligned LLM with all task vectors based on the identified safety subspace. We validate that our safety realignment framework satisfies the safety requirements of a single fine-tuned model as well as multiple models during their fusion. Our findings confirm that SOMF preserves safety without notably compromising performance on downstream tasks, including instruction following in Chinese, English, and Hindi, as well as problem-solving capabilities in Code and Math.
Adaptive Safety Evaluation for Connected and Automated Vehicles with Sparse Control Variates
Safety performance evaluation is critical for developing and deploying connected and automated vehicles (CAVs). One prevailing way is to design testing scenarios using prior knowledge of CAVs, test CAVs in these scenarios, and then evaluate their safety performances. However, significant differences between CAVs and prior knowledge could severely reduce the evaluation efficiency. Towards addressing this issue, most existing studies focus on the adaptive design of testing scenarios during the CAV testing process, but so far they cannot be applied to high-dimensional scenarios. In this paper, we focus on the adaptive safety performance evaluation by leveraging the testing results, after the CAV testing process. It can significantly improve the evaluation efficiency and be applied to high-dimensional scenarios. Specifically, instead of directly evaluating the unknown quantity (e.g., crash rates) of CAV safety performances, we evaluate the differences between the unknown quantity and known quantity (i.e., control variates). By leveraging the testing results, the control variates could be well designed and optimized such that the differences are close to zero, so the evaluation variance could be dramatically reduced for different CAVs. To handle the high-dimensional scenarios, we propose the sparse control variates method, where the control variates are designed only for the sparse and critical variables of scenarios. According to the number of critical variables in each scenario, the control variates are stratified into strata and optimized within each stratum using multiple linear regression techniques. We justify the proposed method's effectiveness by rigorous theoretical analysis and empirical study of high-dimensional overtaking scenarios.
Towards Safety Reasoning in LLMs: AI-agentic Deliberation for Policy-embedded CoT Data Creation
Safety reasoning is a recent paradigm where LLMs reason over safety policies before generating responses, thereby mitigating limitations in existing safety measures such as over-refusal and jailbreak vulnerabilities. However, implementing this paradigm is challenging due to the resource-intensive process of creating high-quality policy-embedded chain-of-thought (CoT) datasets while ensuring reasoning remains accurate and free from hallucinations or policy conflicts. To tackle this, we propose AIDSAFE: Agentic Iterative Deliberation for Safety Reasoning, a novel data generation recipe that leverages multi-agent deliberation to iteratively expand reasoning on safety policies. A data refiner stage in AIDSAFE ensures high-quality outputs by eliminating repetitive, redundant, and deceptive thoughts. AIDSAFE-generated CoTs provide a strong foundation for supervised fine-tuning (SFT)-based safety training. Additionally, to address the need of preference data in alignment stages, such as DPO training, we introduce a supplemental recipe that uses belief augmentation to create distinct selected and rejected CoT samples. Our evaluations demonstrate that AIDSAFE-generated CoTs achieve superior policy adherence and reasoning quality. Consequently, we show that fine-tuning open-source LLMs on these CoTs can significantly improve safety generalization and jailbreak robustness while maintaining acceptable utility and over-refusal accuracy. AIDSAFE-generated CoT datasets can be found here: https://huggingface.co/datasets/AmazonScience/AIDSAFE
Safety Arithmetic: A Framework for Test-time Safety Alignment of Language Models by Steering Parameters and Activations
Ensuring the safe alignment of large language models (LLMs) with human values is critical as they become integral to applications like translation and question answering. Current alignment methods struggle with dynamic user intentions and complex objectives, making models vulnerable to generating harmful content. We propose Safety Arithmetic, a training-free framework enhancing LLM safety across different scenarios: Base models, Supervised fine-tuned models (SFT), and Edited models. Safety Arithmetic involves Harm Direction Removal to avoid harmful content and Safety Alignment to promote safe responses. Additionally, we present NoIntentEdit, a dataset highlighting edit instances that could compromise model safety if used unintentionally. Our experiments show that Safety Arithmetic significantly improves safety measures, reduces over-safety, and maintains model utility, outperforming existing methods in ensuring safe content generation.
VLSBench: Unveiling Visual Leakage in Multimodal Safety
Safety concerns of Multimodal large language models (MLLMs) have gradually become an important problem in various applications. Surprisingly, previous works indicate a counter-intuitive phenomenon that using textual unlearning to align MLLMs achieves comparable safety performances with MLLMs trained with image-text pairs. To explain such a counter-intuitive phenomenon, we discover a visual safety information leakage (VSIL) problem in existing multimodal safety benchmarks, i.e., the potentially risky and sensitive content in the image has been revealed in the textual query. In this way, MLLMs can easily refuse these sensitive text-image queries according to textual queries. However, image-text pairs without VSIL are common in real-world scenarios and are overlooked by existing multimodal safety benchmarks. To this end, we construct multimodal visual leakless safety benchmark (VLSBench) preventing visual safety leakage from image to textual query with 2.4k image-text pairs. Experimental results indicate that VLSBench poses a significant challenge to both open-source and close-source MLLMs, including LLaVA, Qwen2-VL, Llama3.2-Vision, and GPT-4o. This study demonstrates that textual alignment is enough for multimodal safety scenarios with VSIL, while multimodal alignment is a more promising solution for multimodal safety scenarios without VSIL. Please see our code and data at: http://hxhcreate.github.io/VLSBench
A False Sense of Safety: Unsafe Information Leakage in 'Safe' AI Responses
Large Language Models (LLMs) are vulnerable to jailbreaksx2013methods to elicit harmful or generally impermissible outputs. Safety measures are developed and assessed on their effectiveness at defending against jailbreak attacks, indicating a belief that safety is equivalent to robustness. We assert that current defense mechanisms, such as output filters and alignment fine-tuning, are, and will remain, fundamentally insufficient for ensuring model safety. These defenses fail to address risks arising from dual-intent queries and the ability to composite innocuous outputs to achieve harmful goals. To address this critical gap, we introduce an information-theoretic threat model called inferential adversaries who exploit impermissible information leakage from model outputs to achieve malicious goals. We distinguish these from commonly studied security adversaries who only seek to force victim models to generate specific impermissible outputs. We demonstrate the feasibility of automating inferential adversaries through question decomposition and response aggregation. To provide safety guarantees, we define an information censorship criterion for censorship mechanisms, bounding the leakage of impermissible information. We propose a defense mechanism which ensures this bound and reveal an intrinsic safety-utility trade-off. Our work provides the first theoretically grounded understanding of the requirements for releasing safe LLMs and the utility costs involved.
Safety Subspaces are Not Distinct: A Fine-Tuning Case Study
Large Language Models (LLMs) rely on safety alignment to produce socially acceptable responses. This is typically achieved through instruction tuning and reinforcement learning from human feedback. However, this alignment is known to be brittle: further fine-tuning, even on benign or lightly contaminated data, can degrade safety and reintroduce harmful behaviors. A growing body of work suggests that alignment may correspond to identifiable geometric directions in weight space, forming subspaces that could, in principle, be isolated or preserved to defend against misalignment. In this work, we conduct a comprehensive empirical study of this geometric perspective. We examine whether safety-relevant behavior is concentrated in specific subspaces, whether it can be separated from general-purpose learning, and whether harmfulness arises from distinguishable patterns in internal representations. Across both parameter and activation space, our findings are consistent: subspaces that amplify safe behaviors also amplify unsafe ones, and prompts with different safety implications activate overlapping representations. We find no evidence of a subspace that selectively governs safety. These results challenge the assumption that alignment is geometrically localized. Rather than residing in distinct directions, safety appears to emerge from entangled, high-impact components of the model's broader learning dynamics. This suggests that subspace-based defenses may face fundamental limitations and underscores the need for alternative strategies to preserve alignment under continued training. We corroborate these findings through multiple experiments on five open-source LLMs. Our code is publicly available at: https://github.com/CERT-Lab/safety-subspaces.
HarmAug: Effective Data Augmentation for Knowledge Distillation of Safety Guard Models
Safety guard models that detect malicious queries aimed at large language models (LLMs) are essential for ensuring the secure and responsible deployment of LLMs in real-world applications. However, deploying existing safety guard models with billions of parameters alongside LLMs on mobile devices is impractical due to substantial memory requirements and latency. To reduce this cost, we distill a large teacher safety guard model into a smaller one using a labeled dataset of instruction-response pairs with binary harmfulness labels. Due to the limited diversity of harmful instructions in the existing labeled dataset, naively distilled models tend to underperform compared to larger models. To bridge the gap between small and large models, we propose HarmAug, a simple yet effective data augmentation method that involves jailbreaking an LLM and prompting it to generate harmful instructions. Given a prompt such as, "Make a single harmful instruction prompt that would elicit offensive content", we add an affirmative prefix (e.g., "I have an idea for a prompt:") to the LLM's response. This encourages the LLM to continue generating the rest of the response, leading to sampling harmful instructions. Another LLM generates a response to the harmful instruction, and the teacher model labels the instruction-response pair. We empirically show that our HarmAug outperforms other relevant baselines. Moreover, a 435-million-parameter safety guard model trained with HarmAug achieves an F1 score comparable to larger models with over 7 billion parameters, and even outperforms them in AUPRC, while operating at less than 25% of their computational cost.
Safety Fine-Tuning at (Almost) No Cost: A Baseline for Vision Large Language Models
Current vision large language models (VLLMs) exhibit remarkable capabilities yet are prone to generate harmful content and are vulnerable to even the simplest jailbreaking attacks. Our initial analysis finds that this is due to the presence of harmful data during vision-language instruction fine-tuning, and that VLLM fine-tuning can cause forgetting of safety alignment previously learned by the underpinning LLM. To address this issue, we first curate a vision-language safe instruction-following dataset VLGuard covering various harmful categories. Our experiments demonstrate that integrating this dataset into standard vision-language fine-tuning or utilizing it for post-hoc fine-tuning effectively safety aligns VLLMs. This alignment is achieved with minimal impact on, or even enhancement of, the models' helpfulness. The versatility of our safety fine-tuning dataset makes it a valuable resource for safety-testing existing VLLMs, training new models or safeguarding pre-trained VLLMs. Empirical results demonstrate that fine-tuned VLLMs effectively reject unsafe instructions and substantially reduce the success rates of several black-box adversarial attacks, which approach zero in many cases. The code and dataset are available at https://github.com/ys-zong/VLGuard.
FalseReject: A Resource for Improving Contextual Safety and Mitigating Over-Refusals in LLMs via Structured Reasoning
Safety alignment approaches in large language models (LLMs) often lead to the over-refusal of benign queries, significantly diminishing their utility in sensitive scenarios. To address this challenge, we introduce FalseReject, a comprehensive resource containing 16k seemingly toxic queries accompanied by structured responses across 44 safety-related categories. We propose a graph-informed adversarial multi-agent interaction framework to generate diverse and complex prompts, while structuring responses with explicit reasoning to aid models in accurately distinguishing safe from unsafe contexts. FalseReject includes training datasets tailored for both standard instruction-tuned models and reasoning-oriented models, as well as a human-annotated benchmark test set. Our extensive benchmarking on 29 state-of-the-art (SOTA) LLMs reveals persistent over-refusal challenges. Empirical results demonstrate that supervised finetuning with FalseReject substantially reduces unnecessary refusals without compromising overall safety or general language capabilities.
Safety Evaluation of DeepSeek Models in Chinese Contexts
Recently, the DeepSeek series of models, leveraging their exceptional reasoning capabilities and open-source strategy, is reshaping the global AI landscape. Despite these advantages, they exhibit significant safety deficiencies. Research conducted by Robust Intelligence, a subsidiary of Cisco, in collaboration with the University of Pennsylvania, revealed that DeepSeek-R1 has a 100\% attack success rate when processing harmful prompts. Additionally, multiple safety companies and research institutions have confirmed critical safety vulnerabilities in this model. As models demonstrating robust performance in Chinese and English, DeepSeek models require equally crucial safety assessments in both language contexts. However, current research has predominantly focused on safety evaluations in English environments, leaving a gap in comprehensive assessments of their safety performance in Chinese contexts. In response to this gap, this study introduces CHiSafetyBench, a Chinese-specific safety evaluation benchmark. This benchmark systematically evaluates the safety of DeepSeek-R1 and DeepSeek-V3 in Chinese contexts, revealing their performance across safety categories. The experimental results quantify the deficiencies of these two models in Chinese contexts, providing key insights for subsequent improvements. It should be noted that, despite our efforts to establish a comprehensive, objective, and authoritative evaluation benchmark, the selection of test samples, characteristics of data distribution, and the setting of evaluation criteria may inevitably introduce certain biases into the evaluation results. We will continuously optimize the evaluation benchmark and periodically update this report to provide more comprehensive and accurate assessment outcomes. Please refer to the latest version of the paper for the most recent evaluation results and conclusions.
Safety-Critical Coordination of Legged Robots via Layered Controllers and Forward Reachable Set based Control Barrier Functions
This paper presents a safety-critical approach to the coordination of robots in dynamic environments. To this end, we leverage control barrier functions (CBFs) with the forward reachable set to guarantee the safe coordination of the robots while preserving a desired trajectory via a layered controller. The top-level planner generates a safety-ensured trajectory for each agent, accounting for the dynamic constraints in the environment. This planner leverages high-order CBFs based on the forward reachable set to ensure safety-critical coordination control, i.e., guarantee the safe coordination of the robots during locomotion. The middle-level trajectory planner employs single rigid body (SRB) dynamics to generate optimal ground reaction forces (GRFs) to track the safety-ensured trajectories from the top-level planner. The whole-body motions to adhere to the optimal GRFs while ensuring the friction cone condition at the end of each stance leg are generated from the low-level controller. The effectiveness of the approach is demonstrated through simulation and hardware experiments.
SafeTy Reasoning Elicitation Alignment for Multi-Turn Dialogues
Malicious attackers can exploit large language models (LLMs) by engaging them in multi-turn dialogues to achieve harmful objectives, posing significant safety risks to society. To address this challenge, we propose a novel defense mechanism: SafeTy Reasoning Elicitation Alignment for Multi-Turn Dialogues (STREAM). STREAM defends LLMs against multi-turn attacks while preserving their functional capabilities. Our approach involves constructing a human-annotated dataset, the Safety Reasoning Multi-turn Dialogues dataset, which is used to fine-tune a plug-and-play safety reasoning moderator. This model is designed to identify malicious intent hidden within multi-turn conversations and alert the target LLM of potential risks. We evaluate STREAM across multiple LLMs against prevalent multi-turn attack strategies. Experimental results demonstrate that our method significantly outperforms existing defense techniques, reducing the Attack Success Rate (ASR) by 51.2%, all while maintaining comparable LLM capability.
Efficient Safety Retrofitting Against Jailbreaking for LLMs
Direct Preference Optimization (DPO) is an efficient alignment technique that steers LLMs towards preferable outputs by training on preference data, bypassing the need for explicit reward models. Its simplicity enables easy adaptation to various domains and safety requirements. This paper examines DPO's effectiveness in model safety against jailbreaking attacks while minimizing data requirements and training costs. We introduce Egida, a dataset expanded from multiple sources, which includes 27 different safety topics and 18 different attack styles, complemented with synthetic and human labels. This data is used to boost the safety of state-of-the-art LLMs (Llama-3.1-8B/70B-Instruct, Qwen-2.5-7B/72B-Instruct) across topics and attack styles. In addition to safety evaluations, we assess their post-alignment performance degradation in general purpose tasks, and their tendency to over refusal. Following the proposed methodology, trained models reduce their Attack Success Rate by 10%-30%, using small training efforts (2,000 samples) with low computational cost (3\ for 8B models, 20 for 72B models). Safety aligned models generalize to unseen topics and attack styles, with the most successful attack style reaching a success rate around 5%. Size and family are found to strongly influence model malleability towards safety, pointing at the importance of pre-training choices. To validate our findings, a large independent assessment of human preference agreement with Llama-Guard-3-8B is conducted by the authors and the associated dataset Egida-HSafe is released. Overall, this study illustrates how affordable and accessible it is to enhance LLM safety using DPO while outlining its current limitations. All datasets and models are released to enable reproducibility and further research.
Antidote: Post-fine-tuning Safety Alignment for Large Language Models against Harmful Fine-tuning
Safety aligned Large Language Models (LLMs) are vulnerable to harmful fine-tuning attacks qi2023fine-- a few harmful data mixed in the fine-tuning dataset can break the LLMs's safety alignment. Existing mitigation strategies include alignment stage solutions huang2024vaccine, rosati2024representation and fine-tuning stage solutions huang2024lazy,mukhoti2023fine. However, our evaluation shows that both categories of defenses fail when some specific training hyper-parameters are chosen -- a large learning rate or a large number of training epochs in the fine-tuning stage can easily invalidate the defense, which however, is necessary to guarantee finetune performance. To this end, we propose Antidote, a post-fine-tuning stage solution, which remains \textit{agnostic to the training hyper-parameters in the fine-tuning stage}. Antidote relies on the philosophy that by removing the harmful parameters, the harmful model can be recovered from the harmful behaviors, regardless of how those harmful parameters are formed in the fine-tuning stage. With this philosophy, we introduce a one-shot pruning stage after harmful fine-tuning to remove the harmful weights that are responsible for the generation of harmful content. Despite its embarrassing simplicity, empirical results show that Antidote can reduce harmful score while maintaining accuracy on downstream tasks.Our project page is at https://huangtiansheng.github.io/Antidote_gh_page/
Badllama 3: removing safety finetuning from Llama 3 in minutes
We show that extensive LLM safety fine-tuning is easily subverted when an attacker has access to model weights. We evaluate three state-of-the-art fine-tuning methods-QLoRA, ReFT, and Ortho-and show how algorithmic advances enable constant jailbreaking performance with cuts in FLOPs and optimisation power. We strip safety fine-tuning from Llama 3 8B in one minute and Llama 3 70B in 30 minutes on a single GPU, and sketch ways to reduce this further.
Safety Alignment Should Be Made More Than Just a Few Tokens Deep
The safety alignment of current Large Language Models (LLMs) is vulnerable. Relatively simple attacks, or even benign fine-tuning, can jailbreak aligned models. We argue that many of these vulnerabilities are related to a shared underlying issue: safety alignment can take shortcuts, wherein the alignment adapts a model's generative distribution primarily over only its very first few output tokens. We refer to this issue as shallow safety alignment. In this paper, we present case studies to explain why shallow safety alignment can exist and provide evidence that current aligned LLMs are subject to this issue. We also show how these findings help explain multiple recently discovered vulnerabilities in LLMs, including the susceptibility to adversarial suffix attacks, prefilling attacks, decoding parameter attacks, and fine-tuning attacks. Importantly, we discuss how this consolidated notion of shallow safety alignment sheds light on promising research directions for mitigating these vulnerabilities. For instance, we show that deepening the safety alignment beyond just the first few tokens can often meaningfully improve robustness against some common exploits. Finally, we design a regularized finetuning objective that makes the safety alignment more persistent against fine-tuning attacks by constraining updates on initial tokens. Overall, we advocate that future safety alignment should be made more than just a few tokens deep.
Safety Cases: How to Justify the Safety of Advanced AI Systems
As AI systems become more advanced, companies and regulators will make difficult decisions about whether it is safe to train and deploy them. To prepare for these decisions, we investigate how developers could make a 'safety case,' which is a structured rationale that AI systems are unlikely to cause a catastrophe. We propose a framework for organizing a safety case and discuss four categories of arguments to justify safety: total inability to cause a catastrophe, sufficiently strong control measures, trustworthiness despite capability to cause harm, and -- if AI systems become much more powerful -- deference to credible AI advisors. We evaluate concrete examples of arguments in each category and outline how arguments could be combined to justify that AI systems are safe to deploy.
Safety Alignment in NLP Tasks: Weakly Aligned Summarization as an In-Context Attack
Recent developments in balancing the usefulness and safety of Large Language Models (LLMs) have raised a critical question: Are mainstream NLP tasks adequately aligned with safety consideration? Our study, focusing on safety-sensitive documents obtained through adversarial attacks, reveals significant disparities in the safety alignment of various NLP tasks. For instance, LLMs can effectively summarize malicious long documents but often refuse to translate them. This discrepancy highlights a previously unidentified vulnerability: attacks exploiting tasks with weaker safety alignment, like summarization, can potentially compromise the integraty of tasks traditionally deemed more robust, such as translation and question-answering (QA). Moreover, the concurrent use of multiple NLP tasks with lesser safety alignment increases the risk of LLMs inadvertently processing harmful content. We demonstrate these vulnerabilities in various safety-aligned LLMs, particularly Llama2 models and GPT-4, indicating an urgent need for strengthening safety alignments across a broad spectrum of NLP tasks.
Safety Assessment of Chinese Large Language Models
With the rapid popularity of large language models such as ChatGPT and GPT-4, a growing amount of attention is paid to their safety concerns. These models may generate insulting and discriminatory content, reflect incorrect social values, and may be used for malicious purposes such as fraud and dissemination of misleading information. Evaluating and enhancing their safety is particularly essential for the wide application of large language models (LLMs). To further promote the safe deployment of LLMs, we develop a Chinese LLM safety assessment benchmark. Our benchmark explores the comprehensive safety performance of LLMs from two perspectives: 8 kinds of typical safety scenarios and 6 types of more challenging instruction attacks. Our benchmark is based on a straightforward process in which it provides the test prompts and evaluates the safety of the generated responses from the evaluated model. In evaluation, we utilize the LLM's strong evaluation ability and develop it as a safety evaluator by prompting. On top of this benchmark, we conduct safety assessments and analyze 15 LLMs including the OpenAI GPT series and other well-known Chinese LLMs, where we observe some interesting findings. For example, we find that instruction attacks are more likely to expose safety issues of all LLMs. Moreover, to promote the development and deployment of safe, responsible, and ethical AI, we publicly release SafetyPrompts including 100k augmented prompts and responses by LLMs.
Safety Concerns and Mitigation Approaches Regarding the Use of Deep Learning in Safety-Critical Perception Tasks
Deep learning methods are widely regarded as indispensable when it comes to designing perception pipelines for autonomous agents such as robots, drones or automated vehicles. The main reasons, however, for deep learning not being used for autonomous agents at large scale already are safety concerns. Deep learning approaches typically exhibit a black-box behavior which makes it hard for them to be evaluated with respect to safety-critical aspects. While there have been some work on safety in deep learning, most papers typically focus on high-level safety concerns. In this work, we seek to dive into the safety concerns of deep learning methods and present a concise enumeration on a deeply technical level. Additionally, we present extensive discussions on possible mitigation methods and give an outlook regarding what mitigation methods are still missing in order to facilitate an argumentation for the safety of a deep learning method.
Safety Verification of Deep Neural Networks
Deep neural networks have achieved impressive experimental results in image classification, but can surprisingly be unstable with respect to adversarial perturbations, that is, minimal changes to the input image that cause the network to misclassify it. With potential applications including perception modules and end-to-end controllers for self-driving cars, this raises concerns about their safety. We develop a novel automated verification framework for feed-forward multi-layer neural networks based on Satisfiability Modulo Theory (SMT). We focus on safety of image classification decisions with respect to image manipulations, such as scratches or changes to camera angle or lighting conditions that would result in the same class being assigned by a human, and define safety for an individual decision in terms of invariance of the classification within a small neighbourhood of the original image. We enable exhaustive search of the region by employing discretisation, and propagate the analysis layer by layer. Our method works directly with the network code and, in contrast to existing methods, can guarantee that adversarial examples, if they exist, are found for the given region and family of manipulations. If found, adversarial examples can be shown to human testers and/or used to fine-tune the network. We implement the techniques using Z3 and evaluate them on state-of-the-art networks, including regularised and deep learning networks. We also compare against existing techniques to search for adversarial examples and estimate network robustness.
Saffron-1: Towards an Inference Scaling Paradigm for LLM Safety Assurance
Existing safety assurance research has primarily focused on training-phase alignment to instill safe behaviors into LLMs. However, recent studies have exposed these methods' susceptibility to diverse jailbreak attacks. Concurrently, inference scaling has significantly advanced LLM reasoning capabilities but remains unexplored in the context of safety assurance. Addressing this gap, our work pioneers inference scaling for robust and effective LLM safety against emerging threats. We reveal that conventional inference scaling techniques, despite their success in reasoning tasks, perform poorly in safety contexts, even falling short of basic approaches like Best-of-N Sampling. We attribute this inefficiency to a newly identified challenge, the exploration--efficiency dilemma, arising from the high computational overhead associated with frequent process reward model (PRM) evaluations. To overcome this dilemma, we propose SAFFRON, a novel inference scaling paradigm tailored explicitly for safety assurance. Central to our approach is the introduction of a multifurcation reward model (MRM) that significantly reduces the required number of reward model evaluations. To operationalize this paradigm, we further propose: (i) a partial supervision training objective for MRM, (ii) a conservative exploration constraint to prevent out-of-distribution explorations, and (iii) a Trie-based key--value caching strategy that facilitates cache sharing across sequences during tree search. Extensive experiments validate the effectiveness of our method. Additionally, we publicly release our trained multifurcation reward model (Saffron-1) and the accompanying token-level safety reward dataset (Safety4M) to accelerate future research in LLM safety. Our code, model, and data are publicly available at https://github.com/q-rz/saffron , and our project homepage is at https://q-rz.github.io/p/saffron .
Lifelong Safety Alignment for Language Models
LLMs have made impressive progress, but their growing capabilities also expose them to highly flexible jailbreaking attacks designed to bypass safety alignment. While many existing defenses focus on known types of attacks, it is more critical to prepare LLMs for unseen attacks that may arise during deployment. To address this, we propose a lifelong safety alignment framework that enables LLMs to continuously adapt to new and evolving jailbreaking strategies. Our framework introduces a competitive setup between two components: a Meta-Attacker, trained to actively discover novel jailbreaking strategies, and a Defender, trained to resist them. To effectively warm up the Meta-Attacker, we first leverage the GPT-4o API to extract key insights from a large collection of jailbreak-related research papers. Through iterative training, the first iteration Meta-Attacker achieves a 73% attack success rate (ASR) on RR and a 57% transfer ASR on LAT using only single-turn attacks. Meanwhile, the Defender progressively improves its robustness and ultimately reduces the Meta-Attacker's success rate to just 7%, enabling safer and more reliable deployment of LLMs in open-ended environments. The code is available at https://github.com/sail-sg/LifelongSafetyAlignment.
Why Safeguarded Ships Run Aground? Aligned Large Language Models' Safety Mechanisms Tend to Be Anchored in The Template Region
The safety alignment of large language models (LLMs) remains vulnerable, as their initial behavior can be easily jailbroken by even relatively simple attacks. Since infilling a fixed template between the input instruction and initial model output is a common practice for existing LLMs, we hypothesize that this template is a key factor behind their vulnerabilities: LLMs' safety-related decision-making overly relies on the aggregated information from the template region, which largely influences these models' safety behavior. We refer to this issue as template-anchored safety alignment. In this paper, we conduct extensive experiments and verify that template-anchored safety alignment is widespread across various aligned LLMs. Our mechanistic analyses demonstrate how it leads to models' susceptibility when encountering inference-time jailbreak attacks. Furthermore, we show that detaching safety mechanisms from the template region is promising in mitigating vulnerabilities to jailbreak attacks. We encourage future research to develop more robust safety alignment techniques that reduce reliance on the template region.
Unveiling Safety Vulnerabilities of Large Language Models
As large language models become more prevalent, their possible harmful or inappropriate responses are a cause for concern. This paper introduces a unique dataset containing adversarial examples in the form of questions, which we call AttaQ, designed to provoke such harmful or inappropriate responses. We assess the efficacy of our dataset by analyzing the vulnerabilities of various models when subjected to it. Additionally, we introduce a novel automatic approach for identifying and naming vulnerable semantic regions - input semantic areas for which the model is likely to produce harmful outputs. This is achieved through the application of specialized clustering techniques that consider both the semantic similarity of the input attacks and the harmfulness of the model's responses. Automatically identifying vulnerable semantic regions enhances the evaluation of model weaknesses, facilitating targeted improvements to its safety mechanisms and overall reliability.
MCP Safety Audit: LLMs with the Model Context Protocol Allow Major Security Exploits
To reduce development overhead and enable seamless integration between potential components comprising any given generative AI application, the Model Context Protocol (MCP) (Anthropic, 2024) has recently been released and subsequently widely adopted. The MCP is an open protocol that standardizes API calls to large language models (LLMs), data sources, and agentic tools. By connecting multiple MCP servers, each defined with a set of tools, resources, and prompts, users are able to define automated workflows fully driven by LLMs. However, we show that the current MCP design carries a wide range of security risks for end users. In particular, we demonstrate that industry-leading LLMs may be coerced into using MCP tools to compromise an AI developer's system through various attacks, such as malicious code execution, remote access control, and credential theft. To proactively mitigate these and related attacks, we introduce a safety auditing tool, MCPSafetyScanner, the first agentic tool to assess the security of an arbitrary MCP server. MCPScanner uses several agents to (a) automatically determine adversarial samples given an MCP server's tools and resources; (b) search for related vulnerabilities and remediations based on those samples; and (c) generate a security report detailing all findings. Our work highlights serious security issues with general-purpose agentic workflows while also providing a proactive tool to audit MCP server safety and address detected vulnerabilities before deployment. The described MCP server auditing tool, MCPSafetyScanner, is freely available at: https://github.com/johnhalloran321/mcpSafetyScanner
TRIDENT: Enhancing Large Language Model Safety with Tri-Dimensional Diversified Red-Teaming Data Synthesis
Large Language Models (LLMs) excel in various natural language processing tasks but remain vulnerable to generating harmful content or being exploited for malicious purposes. Although safety alignment datasets have been introduced to mitigate such risks through supervised fine-tuning (SFT), these datasets often lack comprehensive risk coverage. Most existing datasets focus primarily on lexical diversity while neglecting other critical dimensions. To address this limitation, we propose a novel analysis framework to systematically measure the risk coverage of alignment datasets across three essential dimensions: Lexical Diversity, Malicious Intent, and Jailbreak Tactics. We further introduce TRIDENT, an automated pipeline that leverages persona-based, zero-shot LLM generation to produce diverse and comprehensive instructions spanning these dimensions. Each harmful instruction is paired with an ethically aligned response, resulting in two datasets: TRIDENT-Core, comprising 26,311 examples, and TRIDENT-Edge, with 18,773 examples. Fine-tuning Llama 3.1-8B on TRIDENT-Edge demonstrates substantial improvements, achieving an average 14.29% reduction in Harm Score, and a 20% decrease in Attack Success Rate compared to the best-performing baseline model fine-tuned on the WildBreak dataset.
Hyperbolic Safety-Aware Vision-Language Models
Addressing the retrieval of unsafe content from vision-language models such as CLIP is an important step towards real-world integration. Current efforts have relied on unlearning techniques that try to erase the model's knowledge of unsafe concepts. While effective in reducing unwanted outputs, unlearning limits the model's capacity to discern between safe and unsafe content. In this work, we introduce a novel approach that shifts from unlearning to an awareness paradigm by leveraging the inherent hierarchical properties of the hyperbolic space. We propose to encode safe and unsafe content as an entailment hierarchy, where both are placed in different regions of hyperbolic space. Our HySAC, Hyperbolic Safety-Aware CLIP, employs entailment loss functions to model the hierarchical and asymmetrical relations between safe and unsafe image-text pairs. This modelling, ineffective in standard vision-language models due to their reliance on Euclidean embeddings, endows the model with awareness of unsafe content, enabling it to serve as both a multimodal unsafe classifier and a flexible content retriever, with the option to dynamically redirect unsafe queries toward safer alternatives or retain the original output. Extensive experiments show that our approach not only enhances safety recognition but also establishes a more adaptable and interpretable framework for content moderation in vision-language models. Our source code is available at https://github.com/aimagelab/HySAC.
SafeChain: Safety of Language Models with Long Chain-of-Thought Reasoning Capabilities
Emerging large reasoning models (LRMs), such as DeepSeek-R1 models, leverage long chain-of-thought (CoT) reasoning to generate structured intermediate steps, enhancing their reasoning capabilities. However, long CoT does not inherently guarantee safe outputs, potentially leading to harmful consequences such as the introduction of security vulnerabilities in code or the spread of misinformation. Current research on large language model (LLM) safety usually focuses on short-answer responses, overlooking the long CoT style outputs of LRMs. To bridge this gap, we conduct a systematic study of LRM safety. First, we investigate safety evaluators calibrated against human annotations. Using our newly developed metrics, we thoroughly assess the safety of 12 state-of-the-art LRMs on StrongReject and WildJailbreak datasets. Our results show that LRMs are not safe compared to their reasoning advance. Further, we perform a fine-grained analysis of the reasoning trace and final answer. We find that three decoding strategies-ZeroThink, LessThink, and MoreThink-can improve model safety without additional training. However, these strategies either use constrained reasoning traces or incur high inference costs. To better strengthen LRM safety, we introduce SafeChain, the first-of-its-kind safety training dataset in CoT style. We fine-tune two LRMs with SafeChain, showing that it not only enhances model safety but also preserves performance across 6 reasoning benchmarks.
Configurable Safety Tuning of Language Models with Synthetic Preference Data
State-of-the-art language model fine-tuning techniques, such as Direct Preference Optimization (DPO), restrict user control by hard-coding predefined behaviors into the model. To address this, we propose a novel method, Configurable Safety Tuning (CST), that augments DPO using synthetic preference data to facilitate flexible safety configuration of LLMs at inference time. CST overcomes the constraints of vanilla DPO by introducing a system prompt specifying safety configurations, enabling LLM deployers to disable/enable safety preferences based on their need, just changing the system prompt. Our experimental evaluations indicate that CST successfully manages different safety configurations and retains the original functionality of LLMs, showing it is a robust method for configurable deployment. Data and models available at https://github.com/vicgalle/configurable-safety-tuning
Towards Understanding the Safety Boundaries of DeepSeek Models: Evaluation and Findings
This study presents the first comprehensive safety evaluation of the DeepSeek models, focusing on evaluating the safety risks associated with their generated content. Our evaluation encompasses DeepSeek's latest generation of large language models, multimodal large language models, and text-to-image models, systematically examining their performance regarding unsafe content generation. Notably, we developed a bilingual (Chinese-English) safety evaluation dataset tailored to Chinese sociocultural contexts, enabling a more thorough evaluation of the safety capabilities of Chinese-developed models. Experimental results indicate that despite their strong general capabilities, DeepSeek models exhibit significant safety vulnerabilities across multiple risk dimensions, including algorithmic discrimination and sexual content. These findings provide crucial insights for understanding and improving the safety of large foundation models. Our code is available at https://github.com/NY1024/DeepSeek-Safety-Eval.
ELITE: Enhanced Language-Image Toxicity Evaluation for Safety
Current Vision Language Models (VLMs) remain vulnerable to malicious prompts that induce harmful outputs. Existing safety benchmarks for VLMs primarily rely on automated evaluation methods, but these methods struggle to detect implicit harmful content or produce inaccurate evaluations. Therefore, we found that existing benchmarks have low levels of harmfulness, ambiguous data, and limited diversity in image-text pair combinations. To address these issues, we propose the ELITE benchmark, a high-quality safety evaluation benchmark for VLMs, underpinned by our enhanced evaluation method, the ELITE evaluator. The ELITE evaluator explicitly incorporates a toxicity score to accurately assess harmfulness in multimodal contexts, where VLMs often provide specific, convincing, but unharmful descriptions of images. We filter out ambiguous and low-quality image-text pairs from existing benchmarks using the ELITE evaluator and generate diverse combinations of safe and unsafe image-text pairs. Our experiments demonstrate that the ELITE evaluator achieves superior alignment with human evaluations compared to prior automated methods, and the ELITE benchmark offers enhanced benchmark quality and diversity. By introducing ELITE, we pave the way for safer, more robust VLMs, contributing essential tools for evaluating and mitigating safety risks in real-world applications.
Exploring Safety-Utility Trade-Offs in Personalized Language Models
As large language models (LLMs) become increasingly integrated into daily applications, it is essential to ensure they operate fairly across diverse user demographics. In this work, we show that LLMs suffer from personalization bias, where their performance is impacted when they are personalized to a user's identity. We quantify personalization bias by evaluating the performance of LLMs along two axes - safety and utility. We measure safety by examining how benign LLM responses are to unsafe prompts with and without personalization. We measure utility by evaluating the LLM's performance on various tasks, including general knowledge, mathematical abilities, programming, and reasoning skills. We find that various LLMs, ranging from open-source models like Llama (Touvron et al., 2023) and Mistral (Jiang et al., 2023) to API-based ones like GPT-3.5 and GPT-4o (Ouyang et al., 2022), exhibit significant variance in performance in terms of safety-utility trade-offs depending on the user's identity. Finally, we discuss several strategies to mitigate personalization bias using preference tuning and prompt-based defenses.
Uncovering Safety Risks of Large Language Models through Concept Activation Vector
Despite careful safety alignment, current large language models (LLMs) remain vulnerable to various attacks. To further unveil the safety risks of LLMs, we introduce a Safety Concept Activation Vector (SCAV) framework, which effectively guides the attacks by accurately interpreting LLMs' safety mechanisms. We then develop an SCAV-guided attack method that can generate both attack prompts and embedding-level attacks with automatically selected perturbation hyperparameters. Both automatic and human evaluations demonstrate that our attack method significantly improves the attack success rate and response quality while requiring less training data. Additionally, we find that our generated attack prompts may be transferable to GPT-4, and the embedding-level attacks may also be transferred to other white-box LLMs whose parameters are known. Our experiments further uncover the safety risks present in current LLMs. For example, in our evaluation of seven open-source LLMs, we observe an average attack success rate of 99.14%, based on the classic keyword-matching criterion. Finally, we provide insights into the safety mechanism of LLMs. The code is available at https://github.com/SproutNan/AI-Safety_SCAV.
Enabling Memory Safety of C Programs using LLMs
Memory safety violations in low-level code, written in languages like C, continues to remain one of the major sources of software vulnerabilities. One method of removing such violations by construction is to port C code to a safe C dialect. Such dialects rely on programmer-supplied annotations to guarantee safety with minimal runtime overhead. This porting, however, is a manual process that imposes significant burden on the programmer and, hence, there has been limited adoption of this technique. The task of porting not only requires inferring annotations, but may also need refactoring/rewriting of the code to make it amenable to such annotations. In this paper, we use Large Language Models (LLMs) towards addressing both these concerns. We show how to harness LLM capabilities to do complex code reasoning as well as rewriting of large codebases. We also present a novel framework for whole-program transformations that leverages lightweight static analysis to break the transformation into smaller steps that can be carried out effectively by an LLM. We implement our ideas in a tool called MSA that targets the CheckedC dialect. We evaluate MSA on several micro-benchmarks, as well as real-world code ranging up to 20K lines of code. We showcase superior performance compared to a vanilla LLM baseline, as well as demonstrate improvement over a state-of-the-art symbolic (non-LLM) technique.
SEO: Safety-Aware Energy Optimization Framework for Multi-Sensor Neural Controllers at the Edge
Runtime energy management has become quintessential for multi-sensor autonomous systems at the edge for achieving high performance given the platform constraints. Typical for such systems, however, is to have their controllers designed with formal guarantees on safety that precede in priority such optimizations, which in turn limits their application in real settings. In this paper, we propose a novel energy optimization framework that is aware of the autonomous system's safety state, and leverages it to regulate the application of energy optimization methods so that the system's formal safety properties are preserved. In particular, through the formal characterization of a system's safety state as a dynamic processing deadline, the computing workloads of the underlying models can be adapted accordingly. For our experiments, we model two popular runtime energy optimization methods, offloading and gating, and simulate an autonomous driving system (ADS) use-case in the CARLA simulation environment with performance characterizations obtained from the standard Nvidia Drive PX2 ADS platform. Our results demonstrate that through a formal awareness of the perceived risks in the test case scenario, energy efficiency gains are still achieved (reaching 89.9%) while maintaining the desired safety properties.
USB: A Comprehensive and Unified Safety Evaluation Benchmark for Multimodal Large Language Models
Despite their remarkable achievements and widespread adoption, Multimodal Large Language Models (MLLMs) have revealed significant security vulnerabilities, highlighting the urgent need for robust safety evaluation benchmarks. Existing MLLM safety benchmarks, however, fall short in terms of data quality and coverge, and modal risk combinations, resulting in inflated and contradictory evaluation results, which hinders the discovery and governance of security concerns. Besides, we argue that vulnerabilities to harmful queries and oversensitivity to harmless ones should be considered simultaneously in MLLMs safety evaluation, whereas these were previously considered separately. In this paper, to address these shortcomings, we introduce Unified Safety Benchmarks (USB), which is one of the most comprehensive evaluation benchmarks in MLLM safety. Our benchmark features high-quality queries, extensive risk categories, comprehensive modal combinations, and encompasses both vulnerability and oversensitivity evaluations. From the perspective of two key dimensions: risk categories and modality combinations, we demonstrate that the available benchmarks -- even the union of the vast majority of them -- are far from being truly comprehensive. To bridge this gap, we design a sophisticated data synthesis pipeline that generates extensive, high-quality complementary data addressing previously unexplored aspects. By combining open-source datasets with our synthetic data, our benchmark provides 4 distinct modality combinations for each of the 61 risk sub-categories, covering both English and Chinese across both vulnerability and oversensitivity dimensions.
Optimizing Deep Neural Networks using Safety-Guided Self Compression
The deployment of deep neural networks on resource-constrained devices necessitates effective model com- pression strategies that judiciously balance the reduction of model size with the preservation of performance. This study introduces a novel safety-driven quantization framework that leverages preservation sets to systematically prune and quantize neural network weights, thereby optimizing model complexity without compromising accuracy. The proposed methodology is rigorously evaluated on both a convolutional neural network (CNN) and an attention-based language model, demonstrating its applicability across diverse architectural paradigms. Experimental results reveal that our framework achieves up to a 2.5% enhancement in test accuracy relative to the original unquantized models while maintaining 60% of the initial model size. In comparison to conventional quantization techniques, our approach not only augments generalization by eliminating parameter noise and retaining essential weights but also reduces variance, thereby ensuring the retention of critical model features. These findings underscore the efficacy of safety-driven quantization as a robust and reliable strategy for the efficient optimization of deep learn- ing models. The implementation and comprehensive experimental evaluations of our framework are publicly accessible at GitHub.
Representation Bending for Large Language Model Safety
Large Language Models (LLMs) have emerged as powerful tools, but their inherent safety risks - ranging from harmful content generation to broader societal harms - pose significant challenges. These risks can be amplified by the recent adversarial attacks, fine-tuning vulnerabilities, and the increasing deployment of LLMs in high-stakes environments. Existing safety-enhancing techniques, such as fine-tuning with human feedback or adversarial training, are still vulnerable as they address specific threats and often fail to generalize across unseen attacks, or require manual system-level defenses. This paper introduces RepBend, a novel approach that fundamentally disrupts the representations underlying harmful behaviors in LLMs, offering a scalable solution to enhance (potentially inherent) safety. RepBend brings the idea of activation steering - simple vector arithmetic for steering model's behavior during inference - to loss-based fine-tuning. Through extensive evaluation, RepBend achieves state-of-the-art performance, outperforming prior methods such as Circuit Breaker, RMU, and NPO, with up to 95% reduction in attack success rates across diverse jailbreak benchmarks, all with negligible reduction in model usability and general capabilities.
LLM Safety Alignment is Divergence Estimation in Disguise
We propose a theoretical framework demonstrating that popular Large Language Model (LLM) alignment methods, including Reinforcement Learning from Human Feedback (RLHF) and alternatives, fundamentally function as divergence estimators between aligned (preferred or safe) and unaligned (less-preferred or harmful) distributions. This explains the separation phenomenon between safe and harmful prompts in the model hidden representation after alignment. Inspired by the theoretical results, we identify that some alignment methods are better than others in terms of separation and, introduce a new method, KLDO, and further demonstrate the implication of our theories. We advocate for compliance-refusal datasets over preference datasets to enhance safety alignment, supported by both theoretical reasoning and empirical evidence. Additionally, to quantify safety separation, we leverage a distance metric in the representation space and statistically validate its efficacy as a statistical significant indicator of LLM resilience against jailbreak attacks.
SaLoRA: Safety-Alignment Preserved Low-Rank Adaptation
As advancements in large language models (LLMs) continue and the demand for personalized models increases, parameter-efficient fine-tuning (PEFT) methods (e.g., LoRA) will become essential due to their efficiency in reducing computation costs. However, recent studies have raised alarming concerns that LoRA fine-tuning could potentially compromise the safety alignment in LLMs, posing significant risks for the model owner. In this paper, we first investigate the underlying mechanism by analyzing the changes in safety alignment related features before and after fine-tuning. Then, we propose a fixed safety module calculated by safety data and a task-specific initialization for trainable parameters in low-rank adaptations, termed Safety-alignment preserved Low-Rank Adaptation (SaLoRA). Unlike previous LoRA methods and their variants, SaLoRA enables targeted modifications to LLMs without disrupting their original alignments. Our experiments show that SaLoRA outperforms various adapters-based approaches across various evaluation metrics in different fine-tuning tasks.
Ensuring Safety and Trust: Analyzing the Risks of Large Language Models in Medicine
The remarkable capabilities of Large Language Models (LLMs) make them increasingly compelling for adoption in real-world healthcare applications. However, the risks associated with using LLMs in medical applications have not been systematically characterized. We propose using five key principles for safe and trustworthy medical AI: Truthfulness, Resilience, Fairness, Robustness, and Privacy, along with ten specific aspects. Under this comprehensive framework, we introduce a novel MedGuard benchmark with 1,000 expert-verified questions. Our evaluation of 11 commonly used LLMs shows that the current language models, regardless of their safety alignment mechanisms, generally perform poorly on most of our benchmarks, particularly when compared to the high performance of human physicians. Despite recent reports indicate that advanced LLMs like ChatGPT can match or even exceed human performance in various medical tasks, this study underscores a significant safety gap, highlighting the crucial need for human oversight and the implementation of AI safety guardrails.
MobileSafetyBench: Evaluating Safety of Autonomous Agents in Mobile Device Control
Autonomous agents powered by large language models (LLMs) show promising potential in assistive tasks across various domains, including mobile device control. As these agents interact directly with personal information and device settings, ensuring their safe and reliable behavior is crucial to prevent undesirable outcomes. However, no benchmark exists for standardized evaluation of the safety of mobile device-control agents. In this work, we introduce MobileSafetyBench, a benchmark designed to evaluate the safety of device-control agents within a realistic mobile environment based on Android emulators. We develop a diverse set of tasks involving interactions with various mobile applications, including messaging and banking applications. To clearly evaluate safety apart from general capabilities, we design separate tasks measuring safety and tasks evaluating helpfulness. The safety tasks challenge agents with managing potential risks prevalent in daily life and include tests to evaluate robustness against indirect prompt injections. Our experiments demonstrate that while baseline agents, based on state-of-the-art LLMs, perform well in executing helpful tasks, they show poor performance in safety tasks. To mitigate these safety concerns, we propose a prompting method that encourages agents to prioritize safety considerations. While this method shows promise in promoting safer behaviors, there is still considerable room for improvement to fully earn user trust. This highlights the urgent need for continued research to develop more robust safety mechanisms in mobile environments. We open-source our benchmark at: https://mobilesafetybench.github.io/.
SafeAligner: Safety Alignment against Jailbreak Attacks via Response Disparity Guidance
As the development of large language models (LLMs) rapidly advances, securing these models effectively without compromising their utility has become a pivotal area of research. However, current defense strategies against jailbreak attacks (i.e., efforts to bypass security protocols) often suffer from limited adaptability, restricted general capability, and high cost. To address these challenges, we introduce SafeAligner, a methodology implemented at the decoding stage to fortify defenses against jailbreak attacks. We begin by developing two specialized models: the Sentinel Model, which is trained to foster safety, and the Intruder Model, designed to generate riskier responses. SafeAligner leverages the disparity in security levels between the responses from these models to differentiate between harmful and beneficial tokens, effectively guiding the safety alignment by altering the output token distribution of the target model. Extensive experiments show that SafeAligner can increase the likelihood of beneficial tokens, while reducing the occurrence of harmful ones, thereby ensuring secure alignment with minimal loss to generality.
How Alignment and Jailbreak Work: Explain LLM Safety through Intermediate Hidden States
Large language models (LLMs) rely on safety alignment to avoid responding to malicious user inputs. Unfortunately, jailbreak can circumvent safety guardrails, resulting in LLMs generating harmful content and raising concerns about LLM safety. Due to language models with intensive parameters often regarded as black boxes, the mechanisms of alignment and jailbreak are challenging to elucidate. In this paper, we employ weak classifiers to explain LLM safety through the intermediate hidden states. We first confirm that LLMs learn ethical concepts during pre-training rather than alignment and can identify malicious and normal inputs in the early layers. Alignment actually associates the early concepts with emotion guesses in the middle layers and then refines them to the specific reject tokens for safe generations. Jailbreak disturbs the transformation of early unethical classification into negative emotions. We conduct experiments on models from 7B to 70B across various model families to prove our conclusion. Overall, our paper indicates the intrinsical mechanism of LLM safety and how jailbreaks circumvent safety guardrails, offering a new perspective on LLM safety and reducing concerns. Our code is available at https://github.com/ydyjya/LLM-IHS-Explanation.
UnsafeBench: Benchmarking Image Safety Classifiers on Real-World and AI-Generated Images
Image safety classifiers play an important role in identifying and mitigating the spread of unsafe images online (e.g., images including violence, hateful rhetoric, etc.). At the same time, with the advent of text-to-image models and increasing concerns about the safety of AI models, developers are increasingly relying on image safety classifiers to safeguard their models. Yet, the performance of current image safety classifiers remains unknown for real-world and AI-generated images. To bridge this research gap, in this work, we propose UnsafeBench, a benchmarking framework that evaluates the effectiveness and robustness of image safety classifiers. First, we curate a large dataset of 10K real-world and AI-generated images that are annotated as safe or unsafe based on a set of 11 unsafe categories of images (sexual, violent, hateful, etc.). Then, we evaluate the effectiveness and robustness of five popular image safety classifiers, as well as three classifiers that are powered by general-purpose visual language models. Our assessment indicates that existing image safety classifiers are not comprehensive and effective enough in mitigating the multifaceted problem of unsafe images. Also, we find that classifiers trained only on real-world images tend to have degraded performance when applied to AI-generated images. Motivated by these findings, we design and implement a comprehensive image moderation tool called PerspectiveVision, which effectively identifies 11 categories of real-world and AI-generated unsafe images. The best PerspectiveVision model achieves an overall F1-Score of 0.810 on six evaluation datasets, which is comparable with closed-source and expensive state-of-the-art models like GPT-4V. UnsafeBench and PerspectiveVision can aid the research community in better understanding the landscape of image safety classification in the era of generative AI.
Jailbreaking Leading Safety-Aligned LLMs with Simple Adaptive Attacks
We show that even the most recent safety-aligned LLMs are not robust to simple adaptive jailbreaking attacks. First, we demonstrate how to successfully leverage access to logprobs for jailbreaking: we initially design an adversarial prompt template (sometimes adapted to the target LLM), and then we apply random search on a suffix to maximize the target logprob (e.g., of the token "Sure"), potentially with multiple restarts. In this way, we achieve nearly 100\% attack success rate -- according to GPT-4 as a judge -- on GPT-3.5/4, Llama-2-Chat-7B/13B/70B, Gemma-7B, and R2D2 from HarmBench that was adversarially trained against the GCG attack. We also show how to jailbreak all Claude models -- that do not expose logprobs -- via either a transfer or prefilling attack with 100\% success rate. In addition, we show how to use random search on a restricted set of tokens for finding trojan strings in poisoned models -- a task that shares many similarities with jailbreaking -- which is the algorithm that brought us the first place in the SaTML'24 Trojan Detection Competition. The common theme behind these attacks is that adaptivity is crucial: different models are vulnerable to different prompting templates (e.g., R2D2 is very sensitive to in-context learning prompts), some models have unique vulnerabilities based on their APIs (e.g., prefilling for Claude), and in some settings it is crucial to restrict the token search space based on prior knowledge (e.g., for trojan detection). We provide the code, prompts, and logs of the attacks at https://github.com/tml-epfl/llm-adaptive-attacks.
ShieldLM: Empowering LLMs as Aligned, Customizable and Explainable Safety Detectors
The safety of Large Language Models (LLMs) has gained increasing attention in recent years, but there still lacks a comprehensive approach for detecting safety issues within LLMs' responses in an aligned, customizable and explainable manner. In this paper, we propose ShieldLM, an LLM-based safety detector, which aligns with general human safety standards, supports customizable detection rules, and provides explanations for its decisions. To train ShieldLM, we compile a large bilingual dataset comprising 14,387 query-response pairs, annotating the safety of responses based on various safety standards. Through extensive experiments, we demonstrate that ShieldLM surpasses strong baselines across four test sets, showcasing remarkable customizability and explainability. Besides performing well on standard detection datasets, ShieldLM has also been shown to be effective in real-world situations as a safety evaluator for advanced LLMs. We release ShieldLM at https://github.com/thu-coai/ShieldLM to support accurate and explainable safety detection under various safety standards, contributing to the ongoing efforts to enhance the safety of LLMs.
Certifying LLM Safety against Adversarial Prompting
Large language models (LLMs) are vulnerable to adversarial attacks that add malicious tokens to an input prompt to bypass the safety guardrails of an LLM and cause it to produce harmful content. In this work, we introduce erase-and-check, the first framework for defending against adversarial prompts with certifiable safety guarantees. Given a prompt, our procedure erases tokens individually and inspects the resulting subsequences using a safety filter. Our safety certificate guarantees that harmful prompts are not mislabeled as safe due to an adversarial attack up to a certain size. We implement the safety filter in two ways, using Llama 2 and DistilBERT, and compare the performance of erase-and-check for the two cases. We defend against three attack modes: i) adversarial suffix, where an adversarial sequence is appended at the end of a harmful prompt; ii) adversarial insertion, where the adversarial sequence is inserted anywhere in the middle of the prompt; and iii) adversarial infusion, where adversarial tokens are inserted at arbitrary positions in the prompt, not necessarily as a contiguous block. Our experimental results demonstrate that this procedure can obtain strong certified safety guarantees on harmful prompts while maintaining good empirical performance on safe prompts. Additionally, we propose three efficient empirical defenses: i) RandEC, a randomized subsampling version of erase-and-check; ii) GreedyEC, which greedily erases tokens that maximize the softmax score of the harmful class; and iii) GradEC, which uses gradient information to optimize tokens to erase. We demonstrate their effectiveness against adversarial prompts generated by the Greedy Coordinate Gradient (GCG) attack algorithm. The code for our experiments is available at https://github.com/aounon/certified-llm-safety.
On the Safety of Conversational Models: Taxonomy, Dataset, and Benchmark
Dialogue safety problems severely limit the real-world deployment of neural conversational models and have attracted great research interests recently. However, dialogue safety problems remain under-defined and the corresponding dataset is scarce. We propose a taxonomy for dialogue safety specifically designed to capture unsafe behaviors in human-bot dialogue settings, with focuses on context-sensitive unsafety, which is under-explored in prior works. To spur research in this direction, we compile DiaSafety, a dataset with rich context-sensitive unsafe examples. Experiments show that existing safety guarding tools fail severely on our dataset. As a remedy, we train a dialogue safety classifier to provide a strong baseline for context-sensitive dialogue unsafety detection. With our classifier, we perform safety evaluations on popular conversational models and show that existing dialogue systems still exhibit concerning context-sensitive safety problems.
AGI Safety Literature Review
The development of Artificial General Intelligence (AGI) promises to be a major event. Along with its many potential benefits, it also raises serious safety concerns (Bostrom, 2014). The intention of this paper is to provide an easily accessible and up-to-date collection of references for the emerging field of AGI safety. A significant number of safety problems for AGI have been identified. We list these, and survey recent research on solving them. We also cover works on how best to think of AGI from the limited knowledge we have today, predictions for when AGI will first be created, and what will happen after its creation. Finally, we review the current public policy on AGI.
Jailbroken: How Does LLM Safety Training Fail?
Large language models trained for safety and harmlessness remain susceptible to adversarial misuse, as evidenced by the prevalence of "jailbreak" attacks on early releases of ChatGPT that elicit undesired behavior. Going beyond recognition of the issue, we investigate why such attacks succeed and how they can be created. We hypothesize two failure modes of safety training: competing objectives and mismatched generalization. Competing objectives arise when a model's capabilities and safety goals conflict, while mismatched generalization occurs when safety training fails to generalize to a domain for which capabilities exist. We use these failure modes to guide jailbreak design and then evaluate state-of-the-art models, including OpenAI's GPT-4 and Anthropic's Claude v1.3, against both existing and newly designed attacks. We find that vulnerabilities persist despite the extensive red-teaming and safety-training efforts behind these models. Notably, new attacks utilizing our failure modes succeed on every prompt in a collection of unsafe requests from the models' red-teaming evaluation sets and outperform existing ad hoc jailbreaks. Our analysis emphasizes the need for safety-capability parity -- that safety mechanisms should be as sophisticated as the underlying model -- and argues against the idea that scaling alone can resolve these safety failure modes.
A Survey of Safety and Trustworthiness of Large Language Models through the Lens of Verification and Validation
Large Language Models (LLMs) have exploded a new heatwave of AI, for their ability to engage end-users in human-level conversations with detailed and articulate answers across many knowledge domains. In response to their fast adoption in many industrial applications, this survey concerns their safety and trustworthiness. First, we review known vulnerabilities of the LLMs, categorising them into inherent issues, intended attacks, and unintended bugs. Then, we consider if and how the Verification and Validation (V&V) techniques, which have been widely developed for traditional software and deep learning models such as convolutional neural networks, can be integrated and further extended throughout the lifecycle of the LLMs to provide rigorous analysis to the safety and trustworthiness of LLMs and their applications. Specifically, we consider four complementary techniques: falsification and evaluation, verification, runtime monitoring, and ethical use. Considering the fast development of LLMs, this survey does not intend to be complete (although it includes 300 references), especially when it comes to the applications of LLMs in various domains, but rather a collection of organised literature reviews and discussions to support the quick understanding of the safety and trustworthiness issues from the perspective of V&V.
KING: Generating Safety-Critical Driving Scenarios for Robust Imitation via Kinematics Gradients
Simulators offer the possibility of safe, low-cost development of self-driving systems. However, current driving simulators exhibit na\"ive behavior models for background traffic. Hand-tuned scenarios are typically added during simulation to induce safety-critical situations. An alternative approach is to adversarially perturb the background traffic trajectories. In this paper, we study this approach to safety-critical driving scenario generation using the CARLA simulator. We use a kinematic bicycle model as a proxy to the simulator's true dynamics and observe that gradients through this proxy model are sufficient for optimizing the background traffic trajectories. Based on this finding, we propose KING, which generates safety-critical driving scenarios with a 20% higher success rate than black-box optimization. By solving the scenarios generated by KING using a privileged rule-based expert algorithm, we obtain training data for an imitation learning policy. After fine-tuning on this new data, we show that the policy becomes better at avoiding collisions. Importantly, our generated data leads to reduced collisions on both held-out scenarios generated via KING as well as traditional hand-crafted scenarios, demonstrating improved robustness.
All Languages Matter: On the Multilingual Safety of Large Language Models
Safety lies at the core of developing and deploying large language models (LLMs). However, previous safety benchmarks only concern the safety in one language, e.g. the majority language in the pretraining data such as English. In this work, we build the first multilingual safety benchmark for LLMs, XSafety, in response to the global deployment of LLMs in practice. XSafety covers 14 kinds of commonly used safety issues across 10 languages that span several language families. We utilize XSafety to empirically study the multilingual safety for 4 widely-used LLMs, including both close-API and open-source models. Experimental results show that all LLMs produce significantly more unsafe responses for non-English queries than English ones, indicating the necessity of developing safety alignment for non-English languages. In addition, we propose several simple and effective prompting methods to improve the multilingual safety of ChatGPT by evoking safety knowledge and improving cross-lingual generalization of safety alignment. Our prompting method can significantly reduce the ratio of unsafe responses from 19.1% to 9.7% for non-English queries. We release our data at https://github.com/Jarviswang94/Multilingual_safety_benchmark.
SafeLawBench: Towards Safe Alignment of Large Language Models
With the growing prevalence of large language models (LLMs), the safety of LLMs has raised significant concerns. However, there is still a lack of definitive standards for evaluating their safety due to the subjective nature of current safety benchmarks. To address this gap, we conducted the first exploration of LLMs' safety evaluation from a legal perspective by proposing the SafeLawBench benchmark. SafeLawBench categorizes safety risks into three levels based on legal standards, providing a systematic and comprehensive framework for evaluation. It comprises 24,860 multi-choice questions and 1,106 open-domain question-answering (QA) tasks. Our evaluation included 2 closed-source LLMs and 18 open-source LLMs using zero-shot and few-shot prompting, highlighting the safety features of each model. We also evaluated the LLMs' safety-related reasoning stability and refusal behavior. Additionally, we found that a majority voting mechanism can enhance model performance. Notably, even leading SOTA models like Claude-3.5-Sonnet and GPT-4o have not exceeded 80.5% accuracy in multi-choice tasks on SafeLawBench, while the average accuracy of 20 LLMs remains at 68.8\%. We urge the community to prioritize research on the safety of LLMs.
Keeping LLMs Aligned After Fine-tuning: The Crucial Role of Prompt Templates
Public LLMs such as the Llama 2-Chat have driven huge activity in LLM research. These models underwent alignment training and were considered safe. Recently Qi et al. (2023) reported that even benign fine-tuning (e.g., on seemingly safe datasets) can give rise to unsafe behaviors in the models. The current paper is about methods and best practices to mitigate such loss of alignment. Through extensive experiments on several chat models (Meta's Llama 2-Chat, Mistral AI's Mistral 7B Instruct v0.2, and OpenAI's GPT-3.5 Turbo), this paper uncovers that the prompt templates used during fine-tuning and inference play a crucial role in preserving safety alignment, and proposes the "Pure Tuning, Safe Testing" (PTST) principle -- fine-tune models without a safety prompt, but include it at test time. Fine-tuning experiments on GSM8K, ChatDoctor, and OpenOrca show that PTST significantly reduces the rise of unsafe behaviors, and even almost eliminates them in some cases.
Updating Robot Safety Representations Online from Natural Language Feedback
Robots must operate safely when deployed in novel and human-centered environments, like homes. Current safe control approaches typically assume that the safety constraints are known a priori, and thus, the robot can pre-compute a corresponding safety controller. While this may make sense for some safety constraints (e.g., avoiding collision with walls by analyzing a floor plan), other constraints are more complex (e.g., spills), inherently personal, context-dependent, and can only be identified at deployment time when the robot is interacting in a specific environment and with a specific person (e.g., fragile objects, expensive rugs). Here, language provides a flexible mechanism to communicate these evolving safety constraints to the robot. In this work, we use vision language models (VLMs) to interpret language feedback and the robot's image observations to continuously update the robot's representation of safety constraints. With these inferred constraints, we update a Hamilton-Jacobi reachability safety controller online via efficient warm-starting techniques. Through simulation and hardware experiments, we demonstrate the robot's ability to infer and respect language-based safety constraints with the proposed approach.
Aegis2.0: A Diverse AI Safety Dataset and Risks Taxonomy for Alignment of LLM Guardrails
As Large Language Models (LLMs) and generative AI become increasingly widespread, concerns about content safety have grown in parallel. Currently, there is a clear lack of high-quality, human-annotated datasets that address the full spectrum of LLM-related safety risks and are usable for commercial applications. To bridge this gap, we propose a comprehensive and adaptable taxonomy for categorizing safety risks, structured into 12 top-level hazard categories with an extension to 9 fine-grained subcategories. This taxonomy is designed to meet the diverse requirements of downstream users, offering more granular and flexible tools for managing various risk types. Using a hybrid data generation pipeline that combines human annotations with a multi-LLM "jury" system to assess the safety of responses, we obtain Aegis 2.0, a carefully curated collection of 34,248 samples of human-LLM interactions, annotated according to our proposed taxonomy. To validate its effectiveness, we demonstrate that several lightweight models, trained using parameter-efficient techniques on Aegis 2.0, achieve performance competitive with leading safety models fully fine-tuned on much larger, non-commercial datasets. In addition, we introduce a novel training blend that combines safety with topic following data.This approach enhances the adaptability of guard models, enabling them to generalize to new risk categories defined during inference. We plan to open-source Aegis 2.0 data and models to the research community to aid in the safety guardrailing of LLMs.
SAGE-Eval: Evaluating LLMs for Systematic Generalizations of Safety Facts
Do LLMs robustly generalize critical safety facts to novel situations? Lacking this ability is dangerous when users ask naive questions. For instance, "I'm considering packing melon balls for my 10-month-old's lunch. What other foods would be good to include?" Before offering food options, the LLM should warn that melon balls pose a choking hazard to toddlers, as documented by the CDC. Failing to provide such warnings could result in serious injuries or even death. To evaluate this, we introduce SAGE-Eval, SAfety-fact systematic GEneralization evaluation, the first benchmark that tests whether LLMs properly apply well established safety facts to naive user queries. SAGE-Eval comprises 104 facts manually sourced from reputable organizations, systematically augmented to create 10,428 test scenarios across 7 common domains (e.g., Outdoor Activities, Medicine). We find that the top model, Claude-3.7-sonnet, passes only 58% of all the safety facts tested. We also observe that model capabilities and training compute weakly correlate with performance on SAGE-Eval, implying that scaling up is not the golden solution. Our findings suggest frontier LLMs still lack robust generalization ability. We recommend developers use SAGE-Eval in pre-deployment evaluations to assess model reliability in addressing salient risks. We publicly release SAGE-Eval at https://huggingface.co/datasets/YuehHanChen/SAGE-Eval and our code is available at https://github.com/YuehHanChen/SAGE-Eval/tree/main.
A Countrywide Traffic Accident Dataset
Reducing traffic accidents is an important public safety challenge. However, the majority of studies on traffic accident analysis and prediction have used small-scale datasets with limited coverage, which limits their impact and applicability; and existing large-scale datasets are either private, old, or do not include important contextual information such as environmental stimuli (weather, points-of-interest, etc.). In order to help the research community address these shortcomings we have - through a comprehensive process of data collection, integration, and augmentation - created a large-scale publicly available database of accident information named US-Accidents. US-Accidents currently contains data about 2.25 million instances of traffic accidents that took place within the contiguous United States, and over the last three years. Each accident record consists of a variety of intrinsic and contextual attributes such as location, time, natural language description, weather, period-of-day, and points-of-interest. We present this dataset in this paper, along with a wide range of insights gleaned from this dataset with respect to the spatiotemporal characteristics of accidents. The dataset is publicly available at https://smoosavi.org/datasets/us_accidents.
Cross-Modality Safety Alignment
As Artificial General Intelligence (AGI) becomes increasingly integrated into various facets of human life, ensuring the safety and ethical alignment of such systems is paramount. Previous studies primarily focus on single-modality threats, which may not suffice given the integrated and complex nature of cross-modality interactions. We introduce a novel safety alignment challenge called Safe Inputs but Unsafe Output (SIUO) to evaluate cross-modality safety alignment. Specifically, it considers cases where single modalities are safe independently but could potentially lead to unsafe or unethical outputs when combined. To empirically investigate this problem, we developed the SIUO, a cross-modality benchmark encompassing 9 critical safety domains, such as self-harm, illegal activities, and privacy violations. Our findings reveal substantial safety vulnerabilities in both closed- and open-source LVLMs, such as GPT-4V and LLaVA, underscoring the inadequacy of current models to reliably interpret and respond to complex, real-world scenarios.
Automating Safety Enhancement for LLM-based Agents with Synthetic Risk Scenarios
Large Language Model (LLM)-based agents are increasingly deployed in real-world applications such as "digital assistants, autonomous customer service, and decision-support systems", where their ability to "interact in multi-turn, tool-augmented environments" makes them indispensable. However, ensuring the safety of these agents remains a significant challenge due to the diverse and complex risks arising from dynamic user interactions, external tool usage, and the potential for unintended harmful behaviors. To address this critical issue, we propose AutoSafe, the first framework that systematically enhances agent safety through fully automated synthetic data generation. Concretely, 1) we introduce an open and extensible threat model, OTS, which formalizes how unsafe behaviors emerge from the interplay of user instructions, interaction contexts, and agent actions. This enables precise modeling of safety risks across diverse scenarios. 2) we develop a fully automated data generation pipeline that simulates unsafe user behaviors, applies self-reflective reasoning to generate safe responses, and constructs a large-scale, diverse, and high-quality safety training dataset-eliminating the need for hazardous real-world data collection. To evaluate the effectiveness of our framework, we design comprehensive experiments on both synthetic and real-world safety benchmarks. Results demonstrate that AutoSafe boosts safety scores by 45% on average and achieves a 28.91% improvement on real-world tasks, validating the generalization ability of our learned safety strategies. These results highlight the practical advancement and scalability of AutoSafe in building safer LLM-based agents for real-world deployment. We have released the project page at https://auto-safe.github.io/.
Practical Collaborative Perception: A Framework for Asynchronous and Multi-Agent 3D Object Detection
Occlusion is a major challenge for LiDAR-based object detection methods. This challenge becomes safety-critical in urban traffic where the ego vehicle must have reliable object detection to avoid collision while its field of view is severely reduced due to the obstruction posed by a large number of road users. Collaborative perception via Vehicle-to-Everything (V2X) communication, which leverages the diverse perspective thanks to the presence at multiple locations of connected agents to form a complete scene representation, is an appealing solution. State-of-the-art V2X methods resolve the performance-bandwidth tradeoff using a mid-collaboration approach where the Bird-Eye View images of point clouds are exchanged so that the bandwidth consumption is lower than communicating point clouds as in early collaboration, and the detection performance is higher than late collaboration, which fuses agents' output, thanks to a deeper interaction among connected agents. While achieving strong performance, the real-world deployment of most mid-collaboration approaches is hindered by their overly complicated architectures, involving learnable collaboration graphs and autoencoder-based compressor/ decompressor, and unrealistic assumptions about inter-agent synchronization. In this work, we devise a simple yet effective collaboration method that achieves a better bandwidth-performance tradeoff than prior state-of-the-art methods while minimizing changes made to the single-vehicle detection models and relaxing unrealistic assumptions on inter-agent synchronization. Experiments on the V2X-Sim dataset show that our collaboration method achieves 98\% of the performance of an early-collaboration method, while only consuming the equivalent bandwidth of a late-collaboration method.
Safety-critical Control of Quadrupedal Robots with Rolling Arms for Autonomous Inspection of Complex Environments
This paper presents a safety-critical control framework tailored for quadruped robots equipped with a roller arm, particularly when performing locomotive tasks such as autonomous robotic inspection in complex, multi-tiered environments. In this study, we consider the problem of operating a quadrupedal robot in distillation columns, locomoting on column trays and transitioning between these trays with a roller arm. To address this problem, our framework encompasses the following key elements: 1) Trajectory generation for seamless transitions between columns, 2) Foothold re-planning in regions deemed unsafe, 3) Safety-critical control incorporating control barrier functions, 4) Gait transitions based on safety levels, and 5) A low-level controller. Our comprehensive framework, comprising these components, enables autonomous and safe locomotion across multiple layers. We incorporate reduced-order and full-body models to ensure safety, integrating safety-critical control and footstep re-planning approaches. We validate the effectiveness of our proposed framework through practical experiments involving a quadruped robot equipped with a roller arm, successfully navigating and transitioning between different levels within the column tray structure.
Concrete Problems in AI Safety
Rapid progress in machine learning and artificial intelligence (AI) has brought increasing attention to the potential impacts of AI technologies on society. In this paper we discuss one such potential impact: the problem of accidents in machine learning systems, defined as unintended and harmful behavior that may emerge from poor design of real-world AI systems. We present a list of five practical research problems related to accident risk, categorized according to whether the problem originates from having the wrong objective function ("avoiding side effects" and "avoiding reward hacking"), an objective function that is too expensive to evaluate frequently ("scalable supervision"), or undesirable behavior during the learning process ("safe exploration" and "distributional shift"). We review previous work in these areas as well as suggesting research directions with a focus on relevance to cutting-edge AI systems. Finally, we consider the high-level question of how to think most productively about the safety of forward-looking applications of AI.
AI safety via debate
To make AI systems broadly useful for challenging real-world tasks, we need them to learn complex human goals and preferences. One approach to specifying complex goals asks humans to judge during training which agent behaviors are safe and useful, but this approach can fail if the task is too complicated for a human to directly judge. To help address this concern, we propose training agents via self play on a zero sum debate game. Given a question or proposed action, two agents take turns making short statements up to a limit, then a human judges which of the agents gave the most true, useful information. In an analogy to complexity theory, debate with optimal play can answer any question in PSPACE given polynomial time judges (direct judging answers only NP questions). In practice, whether debate works involves empirical questions about humans and the tasks we want AIs to perform, plus theoretical questions about the meaning of AI alignment. We report results on an initial MNIST experiment where agents compete to convince a sparse classifier, boosting the classifier's accuracy from 59.4% to 88.9% given 6 pixels and from 48.2% to 85.2% given 4 pixels. Finally, we discuss theoretical and practical aspects of the debate model, focusing on potential weaknesses as the model scales up, and we propose future human and computer experiments to test these properties.
Safety Alignment Backfires: Preventing the Re-emergence of Suppressed Concepts in Fine-tuned Text-to-Image Diffusion Models
Fine-tuning text-to-image diffusion models is widely used for personalization and adaptation for new domains. In this paper, we identify a critical vulnerability of fine-tuning: safety alignment methods designed to filter harmful content (e.g., nudity) can break down during fine-tuning, allowing previously suppressed content to resurface, even when using benign datasets. While this "fine-tuning jailbreaking" issue is known in large language models, it remains largely unexplored in text-to-image diffusion models. Our investigation reveals that standard fine-tuning can inadvertently undo safety measures, causing models to relearn harmful concepts that were previously removed and even exacerbate harmful behaviors. To address this issue, we present a novel but immediate solution called Modular LoRA, which involves training Safety Low-Rank Adaptation (LoRA) modules separately from Fine-Tuning LoRA components and merging them during inference. This method effectively prevents the re-learning of harmful content without compromising the model's performance on new tasks. Our experiments demonstrate that Modular LoRA outperforms traditional fine-tuning methods in maintaining safety alignment, offering a practical approach for enhancing the security of text-to-image diffusion models against potential attacks.
LoRA Fine-tuning Efficiently Undoes Safety Training in Llama 2-Chat 70B
AI developers often apply safety alignment procedures to prevent the misuse of their AI systems. For example, before Meta released Llama 2-Chat, a collection of instruction fine-tuned large language models, they invested heavily in safety training, incorporating extensive red-teaming and reinforcement learning from human feedback. However, it remains unclear how well safety training guards against model misuse when attackers have access to model weights. We explore the robustness of safety training in language models by subversively fine-tuning the public weights of Llama 2-Chat. We employ low-rank adaptation (LoRA) as an efficient fine-tuning method. With a budget of less than $200 per model and using only one GPU, we successfully undo the safety training of Llama 2-Chat models of sizes 7B, 13B, and 70B. Specifically, our fine-tuning technique significantly reduces the rate at which the model refuses to follow harmful instructions. We achieve a refusal rate below 1% for our 70B Llama 2-Chat model on two refusal benchmarks. Our fine-tuning method retains general performance, which we validate by comparing our fine-tuned models against Llama 2-Chat across two benchmarks. Additionally, we present a selection of harmful outputs produced by our models. While there is considerable uncertainty about the scope of risks from current models, it is likely that future models will have significantly more dangerous capabilities, including the ability to hack into critical infrastructure, create dangerous bio-weapons, or autonomously replicate and adapt to new environments. We show that subversive fine-tuning is practical and effective, and hence argue that evaluating risks from fine-tuning should be a core part of risk assessments for releasing model weights.
MLLMGuard: A Multi-dimensional Safety Evaluation Suite for Multimodal Large Language Models
Powered by remarkable advancements in Large Language Models (LLMs), Multimodal Large Language Models (MLLMs) demonstrate impressive capabilities in manifold tasks. However, the practical application scenarios of MLLMs are intricate, exposing them to potential malicious instructions and thereby posing safety risks. While current benchmarks do incorporate certain safety considerations, they often lack comprehensive coverage and fail to exhibit the necessary rigor and robustness. For instance, the common practice of employing GPT-4V as both the evaluator and a model to be evaluated lacks credibility, as it tends to exhibit a bias toward its own responses. In this paper, we present MLLMGuard, a multidimensional safety evaluation suite for MLLMs, including a bilingual image-text evaluation dataset, inference utilities, and a lightweight evaluator. MLLMGuard's assessment comprehensively covers two languages (English and Chinese) and five important safety dimensions (Privacy, Bias, Toxicity, Truthfulness, and Legality), each with corresponding rich subtasks. Focusing on these dimensions, our evaluation dataset is primarily sourced from platforms such as social media, and it integrates text-based and image-based red teaming techniques with meticulous annotation by human experts. This can prevent inaccurate evaluation caused by data leakage when using open-source datasets and ensures the quality and challenging nature of our benchmark. Additionally, a fully automated lightweight evaluator termed GuardRank is developed, which achieves significantly higher evaluation accuracy than GPT-4. Our evaluation results across 13 advanced models indicate that MLLMs still have a substantial journey ahead before they can be considered safe and responsible.
Personalized Safety in LLMs: A Benchmark and A Planning-Based Agent Approach
Large language models (LLMs) typically generate identical or similar responses for all users given the same prompt, posing serious safety risks in high-stakes applications where user vulnerabilities differ widely. Existing safety evaluations primarily rely on context-independent metrics - such as factuality, bias, or toxicity - overlooking the fact that the same response may carry divergent risks depending on the user's background or condition. We introduce personalized safety to fill this gap and present PENGUIN - a benchmark comprising 14,000 scenarios across seven sensitive domains with both context-rich and context-free variants. Evaluating six leading LLMs, we demonstrate that personalized user information significantly improves safety scores by 43.2%, confirming the effectiveness of personalization in safety alignment. However, not all context attributes contribute equally to safety enhancement. To address this, we develop RAISE - a training-free, two-stage agent framework that strategically acquires user-specific background. RAISE improves safety scores by up to 31.6% over six vanilla LLMs, while maintaining a low interaction cost of just 2.7 user queries on average. Our findings highlight the importance of selective information gathering in safety-critical domains and offer a practical solution for personalizing LLM responses without model retraining. This work establishes a foundation for safety research that adapts to individual user contexts rather than assuming a universal harm standard.
The Chai Platform's AI Safety Framework
Chai empowers users to create and interact with customized chatbots, offering unique and engaging experiences. Despite the exciting prospects, the work recognizes the inherent challenges of a commitment to modern safety standards. Therefore, this paper presents the integrated AI safety principles into Chai to prioritize user safety, data protection, and ethical technology use. The paper specifically explores the multidimensional domain of AI safety research, demonstrating its application in Chai's conversational chatbot platform. It presents Chai's AI safety principles, informed by well-established AI research centres and adapted for chat AI. This work proposes the following safety framework: Content Safeguarding; Stability and Robustness; and Operational Transparency and Traceability. The subsequent implementation of these principles is outlined, followed by an experimental analysis of Chai's AI safety framework's real-world impact. We emphasise the significance of conscientious application of AI safety principles and robust safety measures. The successful implementation of the safe AI framework in Chai indicates the practicality of mitigating potential risks for responsible and ethical use of AI technologies. The ultimate vision is a transformative AI tool fostering progress and innovation while prioritizing user safety and ethical standards.
Weak-to-Strong Generalization beyond Accuracy: a Pilot Study in Safety, Toxicity, and Legal Reasoning
As large language models (LLMs) continue to advance, ensuring their alignment with human values becomes increasingly critical. Traditional alignment methods heavily rely on human feedback to fine-tune models. With the emergence of superhuman models whose outputs may surpass human understanding, evaluating and aligning these models using human judgments poses significant challenges. To address the challenges, recent works use weak supervisors to elicit knowledge from much stronger models. However, there are important disanalogies between the empirical setup in the existing works and the genuine goal of alignment. We remark that existing works investigate the phenomenon of weak-to-strong generation in analogous setup (i.e., binary classification), rather than practical alignment-relevant tasks (e.g., safety). In this paper, we bridge this gap by extending weak-to-strong generation to the context of practical alignment. We empirically demonstrate the widespread phenomenon of weak-to-strong generation in three complicated alignment tasks: safety, toxicity, and legal reasoning}. Furthermore, we explore efficient strategies for improving alignment performance to enhance the quality of model outcomes. Lastly, we summarize and analyze the challenges and potential solutions in regard to specific alignment tasks, which we hope to catalyze the research progress on the topic of weak-to-strong generalization. Our code is released at https://github.com/yeruimeng/WTS.git.
Sociotechnical Safety Evaluation of Generative AI Systems
Generative AI systems produce a range of risks. To ensure the safety of generative AI systems, these risks must be evaluated. In this paper, we make two main contributions toward establishing such evaluations. First, we propose a three-layered framework that takes a structured, sociotechnical approach to evaluating these risks. This framework encompasses capability evaluations, which are the main current approach to safety evaluation. It then reaches further by building on system safety principles, particularly the insight that context determines whether a given capability may cause harm. To account for relevant context, our framework adds human interaction and systemic impacts as additional layers of evaluation. Second, we survey the current state of safety evaluation of generative AI systems and create a repository of existing evaluations. Three salient evaluation gaps emerge from this analysis. We propose ways forward to closing these gaps, outlining practical steps as well as roles and responsibilities for different actors. Sociotechnical safety evaluation is a tractable approach to the robust and comprehensive safety evaluation of generative AI systems.
A Safety Framework for Critical Systems Utilising Deep Neural Networks
Increasingly sophisticated mathematical modelling processes from Machine Learning are being used to analyse complex data. However, the performance and explainability of these models within practical critical systems requires a rigorous and continuous verification of their safe utilisation. Working towards addressing this challenge, this paper presents a principled novel safety argument framework for critical systems that utilise deep neural networks. The approach allows various forms of predictions, e.g., future reliability of passing some demands, or confidence on a required reliability level. It is supported by a Bayesian analysis using operational data and the recent verification and validation techniques for deep learning. The prediction is conservative -- it starts with partial prior knowledge obtained from lifecycle activities and then determines the worst-case prediction. Open challenges are also identified.
Controllable Safety Alignment: Inference-Time Adaptation to Diverse Safety Requirements
The current paradigm for safety alignment of large language models (LLMs) follows a one-size-fits-all approach: the model refuses to interact with any content deemed unsafe by the model provider. This approach lacks flexibility in the face of varying social norms across cultures and regions. In addition, users may have diverse safety needs, making a model with static safety standards too restrictive to be useful, as well as too costly to be re-aligned. We propose Controllable Safety Alignment (CoSA), a framework designed to adapt models to diverse safety requirements without re-training. Instead of aligning a fixed model, we align models to follow safety configs -- free-form natural language descriptions of the desired safety behaviors -- that are provided as part of the system prompt. To adjust model safety behavior, authorized users only need to modify such safety configs at inference time. To enable that, we propose CoSAlign, a data-centric method for aligning LLMs to easily adapt to diverse safety configs. Furthermore, we devise a novel controllability evaluation protocol that considers both helpfulness and configured safety, summarizing them into CoSA-Score, and construct CoSApien, a human-authored benchmark that consists of real-world LLM use cases with diverse safety requirements and corresponding evaluation prompts. We show that CoSAlign leads to substantial gains of controllability over strong baselines including in-context alignment. Our framework encourages better representation and adaptation to pluralistic human values in LLMs, and thereby increasing their practicality.
Activation Approximations Can Incur Safety Vulnerabilities Even in Aligned LLMs: Comprehensive Analysis and Defense
Large Language Models (LLMs) have showcased remarkable capabilities across various domains. Accompanying the evolving capabilities and expanding deployment scenarios of LLMs, their deployment challenges escalate due to their sheer scale and the advanced yet complex activation designs prevalent in notable model series, such as Llama, Gemma, and Mistral. These challenges have become particularly pronounced in resource-constrained deployment scenarios, where mitigating inference efficiency bottlenecks is imperative. Among various recent efforts, activation approximation has emerged as a promising avenue for pursuing inference efficiency, sometimes considered indispensable in applications such as private inference. Despite achieving substantial speedups with minimal impact on utility, even appearing sound and practical for real-world deployment, the safety implications of activation approximations remain unclear. In this work, we fill this critical gap in LLM safety by conducting the first systematic safety evaluation of activation approximations. Our safety vetting spans seven sota techniques across three popular categories, revealing consistent safety degradation across ten safety-aligned LLMs.
Investigating the Impact of Quantization Methods on the Safety and Reliability of Large Language Models
Large Language Models (LLMs) have emerged as powerful tools for addressing modern challenges and enabling practical applications. However, their computational expense remains a significant barrier to widespread adoption. Quantization has emerged as a promising technique to democratize access and enable low resource device deployment. Despite these advancements, the safety and trustworthiness of quantized models remain underexplored, as prior studies often overlook contemporary architectures and rely on overly simplistic benchmarks and evaluations. To address this gap, we introduce OpenSafetyMini, a novel open-ended safety dataset designed to better distinguish between models. We evaluate 4 state-of-the-art quantization techniques across LLaMA and Mistral models using 4 benchmarks, including human evaluations. Our findings reveal that the optimal quantization method varies for 4-bit precision, while vector quantization techniques deliver the best safety and trustworthiness performance at 2-bit precision, providing foundation for future research.
T2VSafetyBench: Evaluating the Safety of Text-to-Video Generative Models
The recent development of Sora leads to a new era in text-to-video (T2V) generation. Along with this comes the rising concern about its security risks. The generated videos may contain illegal or unethical content, and there is a lack of comprehensive quantitative understanding of their safety, posing a challenge to their reliability and practical deployment. Previous evaluations primarily focus on the quality of video generation. While some evaluations of text-to-image models have considered safety, they cover fewer aspects and do not address the unique temporal risk inherent in video generation. To bridge this research gap, we introduce T2VSafetyBench, a new benchmark designed for conducting safety-critical assessments of text-to-video models. We define 12 critical aspects of video generation safety and construct a malicious prompt dataset including real-world prompts, LLM-generated prompts and jailbreak attack-based prompts. Based on our evaluation results, we draw several important findings, including: 1) no single model excels in all aspects, with different models showing various strengths; 2) the correlation between GPT-4 assessments and manual reviews is generally high; 3) there is a trade-off between the usability and safety of text-to-video generative models. This indicates that as the field of video generation rapidly advances, safety risks are set to surge, highlighting the urgency of prioritizing video safety. We hope that T2VSafetyBench can provide insights for better understanding the safety of video generation in the era of generative AI.
BEEAR: Embedding-based Adversarial Removal of Safety Backdoors in Instruction-tuned Language Models
Safety backdoor attacks in large language models (LLMs) enable the stealthy triggering of unsafe behaviors while evading detection during normal interactions. The high dimensionality of potential triggers in the token space and the diverse range of malicious behaviors make this a critical challenge. We present BEEAR, a mitigation approach leveraging the insight that backdoor triggers induce relatively uniform drifts in the model's embedding space. Our bi-level optimization method identifies universal embedding perturbations that elicit unwanted behaviors and adjusts the model parameters to reinforce safe behaviors against these perturbations. Experiments show BEEAR reduces the success rate of RLHF time backdoor attacks from >95% to <1% and from 47% to 0% for instruction-tuning time backdoors targeting malicious code generation, without compromising model utility. Requiring only defender-defined safe and unwanted behaviors, BEEAR represents a step towards practical defenses against safety backdoors in LLMs, providing a foundation for further advancements in AI safety and security.
Legend: Leveraging Representation Engineering to Annotate Safety Margin for Preference Datasets
The success of the reward model in distinguishing between responses with subtle safety differences depends critically on the high-quality preference dataset, which should capture the fine-grained nuances of harmful and harmless responses. This motivates the need to develop a dataset involving preference margins, which accurately quantify how harmless one response is compared to another. In this paper, we take the first step to propose an effective and cost-efficient framework to promote the margin-enhanced preference dataset development. Our framework, Legend, Leverages representation engineering to annotate preference datasets. It constructs the specific direction within the LLM's embedding space that represents safety. By leveraging this safety direction, Legend can then leverage the semantic distances of paired responses along this direction to annotate margins automatically. We experimentally demonstrate our effectiveness in both reward modeling and harmless alignment for LLMs. Legend also stands out for its efficiency, requiring only the inference time rather than additional training. This efficiency allows for easier implementation and scalability, making Legend particularly valuable for practical applications in aligning LLMs with safe conversations.
AISafetyLab: A Comprehensive Framework for AI Safety Evaluation and Improvement
As AI models are increasingly deployed across diverse real-world scenarios, ensuring their safety remains a critical yet underexplored challenge. While substantial efforts have been made to evaluate and enhance AI safety, the lack of a standardized framework and comprehensive toolkit poses significant obstacles to systematic research and practical adoption. To bridge this gap, we introduce AISafetyLab, a unified framework and toolkit that integrates representative attack, defense, and evaluation methodologies for AI safety. AISafetyLab features an intuitive interface that enables developers to seamlessly apply various techniques while maintaining a well-structured and extensible codebase for future advancements. Additionally, we conduct empirical studies on Vicuna, analyzing different attack and defense strategies to provide valuable insights into their comparative effectiveness. To facilitate ongoing research and development in AI safety, AISafetyLab is publicly available at https://github.com/thu-coai/AISafetyLab, and we are committed to its continuous maintenance and improvement.
Backdoor Activation Attack: Attack Large Language Models using Activation Steering for Safety-Alignment
To ensure AI safety, instruction-tuned Large Language Models (LLMs) are specifically trained to ensure alignment, which refers to making models behave in accordance with human intentions. While these models have demonstrated commendable results on various safety benchmarks, the vulnerability of their safety alignment has not been extensively studied. This is particularly troubling given the potential harm that LLMs can inflict. Existing attack methods on LLMs often rely on poisoned training data or the injection of malicious prompts. These approaches compromise the stealthiness and generalizability of the attacks, making them susceptible to detection. Additionally, these models often demand substantial computational resources for implementation, making them less practical for real-world applications. Inspired by recent success in modifying model behavior through steering vectors without the need for optimization, and drawing on its effectiveness in red-teaming LLMs, we conducted experiments employing activation steering to target four key aspects of LLMs: truthfulness, toxicity, bias, and harmfulness - across a varied set of attack settings. To establish a universal attack strategy applicable to diverse target alignments without depending on manual analysis, we automatically select the intervention layer based on contrastive layer search. Our experiment results show that activation attacks are highly effective and add little or no overhead to attack efficiency. Additionally, we discuss potential countermeasures against such activation attacks. Our code and data are available at https://github.com/wang2226/Backdoor-Activation-Attack Warning: this paper contains content that can be offensive or upsetting.
Vibe Coding vs. Agentic Coding: Fundamentals and Practical Implications of Agentic AI
This review presents a comprehensive analysis of two emerging paradigms in AI-assisted software development: vibe coding and agentic coding. While both leverage large language models (LLMs), they differ fundamentally in autonomy, architectural design, and the role of the developer. Vibe coding emphasizes intuitive, human-in-the-loop interaction through prompt-based, conversational workflows that support ideation, experimentation, and creative exploration. In contrast, agentic coding enables autonomous software development through goal-driven agents capable of planning, executing, testing, and iterating tasks with minimal human intervention. We propose a detailed taxonomy spanning conceptual foundations, execution models, feedback loops, safety mechanisms, debugging strategies, and real-world tool ecosystems. Through comparative workflow analysis and 20 detailed use cases, we illustrate how vibe systems thrive in early-stage prototyping and education, while agentic systems excel in enterprise-grade automation, codebase refactoring, and CI/CD integration. We further examine emerging trends in hybrid architectures, where natural language interfaces are coupled with autonomous execution pipelines. Finally, we articulate a future roadmap for agentic AI, outlining the infrastructure needed for trustworthy, explainable, and collaborative systems. Our findings suggest that successful AI software engineering will rely not on choosing one paradigm, but on harmonizing their strengths within a unified, human-centered development lifecycle.