new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Aug 4

Evaluating Language-Model Agents on Realistic Autonomous Tasks

In this report, we explore the ability of language model agents to acquire resources, create copies of themselves, and adapt to novel challenges they encounter in the wild. We refer to this cluster of capabilities as "autonomous replication and adaptation" or ARA. We believe that systems capable of ARA could have wide-reaching and hard-to-anticipate consequences, and that measuring and forecasting ARA may be useful for informing measures around security, monitoring, and alignment. Additionally, once a system is capable of ARA, placing bounds on a system's capabilities may become significantly more difficult. We construct four simple example agents that combine language models with tools that allow them to take actions in the world. We then evaluate these agents on 12 tasks relevant to ARA. We find that these language model agents can only complete the easiest tasks from this list, although they make some progress on the more challenging tasks. Unfortunately, these evaluations are not adequate to rule out the possibility that near-future agents will be capable of ARA. In particular, we do not think that these evaluations provide good assurance that the ``next generation'' of language models (e.g. 100x effective compute scaleup on existing models) will not yield agents capable of ARA, unless intermediate evaluations are performed during pretraining. Relatedly, we expect that fine-tuning of the existing models could produce substantially more competent agents, even if the fine-tuning is not directly targeted at ARA.

Ensuring Safe and High-Quality Outputs: A Guideline Library Approach for Language Models

Large Language Models (LLMs) exhibit impressive capabilities but also present risks such as biased content generation and privacy issues. One of the current alignment techniques includes principle-driven integration, but it faces challenges arising from the imprecision of manually crafted rules and inadequate risk perception in models without safety training. To address these, we introduce Guide-Align, a two-stage approach. Initially, a safety-trained model identifies potential risks and formulates specific guidelines for various inputs, establishing a comprehensive library of guidelines and a model for input-guidelines retrieval. Subsequently, the retrieval model correlates new inputs with relevant guidelines, which guide LLMs in response generation to ensure safe and high-quality outputs, thereby aligning with human values. An additional optional stage involves fine-tuning a model with well-aligned datasets generated through the process implemented in the second stage. Our method customizes guidelines to accommodate diverse inputs, thereby enhancing the fine-grainedness and comprehensiveness of the guideline library. Furthermore, it incorporates safety expertise from a safety-trained LLM through a lightweight retrieval model. We evaluate our approach on three benchmarks, demonstrating significant improvements in LLM security and quality. Notably, our fine-tuned model, Labrador, even at 13 billion parameters, outperforms GPT-3.5-turbo and surpasses GPT-4 in alignment capabilities.

Dialectical Alignment: Resolving the Tension of 3H and Security Threats of LLMs

With the rise of large language models (LLMs), ensuring they embody the principles of being helpful, honest, and harmless (3H), known as Human Alignment, becomes crucial. While existing alignment methods like RLHF, DPO, etc., effectively fine-tune LLMs to match preferences in the preference dataset, they often lead LLMs to highly receptive human input and external evidence, even when this information is poisoned. This leads to a tendency for LLMs to be Adaptive Chameleons when external evidence conflicts with their parametric memory. This exacerbates the risk of LLM being attacked by external poisoned data, which poses a significant security risk to LLM system applications such as Retrieval-augmented generation (RAG). To address the challenge, we propose a novel framework: Dialectical Alignment (DA), which (1) utilizes AI feedback to identify optimal strategies for LLMs to navigate inter-context conflicts and context-memory conflicts with different external evidence in context window (i.e., different ratios of poisoned factual contexts); (2) constructs the SFT dataset as well as the preference dataset based on the AI feedback and strategies above; (3) uses the above datasets for LLM alignment to defense poisoned context attack while preserving the effectiveness of in-context knowledge editing. Our experiments show that the dialectical alignment model improves poisoned data attack defense by 20 and does not require any additional prompt engineering or prior declaration of ``you may be attacked`` to the LLMs' context window.

Super(ficial)-alignment: Strong Models May Deceive Weak Models in Weak-to-Strong Generalization

Superalignment, where humans are weak supervisors of superhuman models, has become an important and widely discussed issue in the current era of rapid development of Large Language Models (LLMs). The recent work preliminarily studies this problem by using weak models to supervise strong models. It discovers that weakly supervised strong students can consistently outperform weak teachers towards the alignment target, leading to a weak-to-strong generalization phenomenon. However, we are concerned that behind such a promising phenomenon, whether there exists an issue of weak-to-strong deception, where strong models may deceive weak models by exhibiting well-aligned in areas known to weak models but producing misaligned behaviors in cases weak models do not know. We then take an initial step towards exploring this security issue in a specific but realistic multi-objective alignment case, where there may be some alignment targets conflicting with each other (e.g., helpfulness v.s. harmlessness). Such a conflict is likely to cause strong models to deceive weak models in one alignment dimension to gain high reward in other alignment dimension. Our experiments on both the reward modeling task and the preference optimization scenario indicate: (1) the weak-to-strong deception exists; (2) the deception phenomenon may intensify as the capability gap between weak and strong models increases. We also discuss potential solutions and find bootstrapping with an intermediate model can mitigate the deception to some extent. Our work highlights the urgent need to pay more attention to the true reliability of superalignment.

Keep Security! Benchmarking Security Policy Preservation in Large Language Model Contexts Against Indirect Attacks in Question Answering

As Large Language Models (LLMs) are increasingly deployed in sensitive domains such as enterprise and government, ensuring that they adhere to user-defined security policies within context is critical-especially with respect to information non-disclosure. While prior LLM studies have focused on general safety and socially sensitive data, large-scale benchmarks for contextual security preservation against attacks remain lacking. To address this, we introduce a novel large-scale benchmark dataset, CoPriva, evaluating LLM adherence to contextual non-disclosure policies in question answering. Derived from realistic contexts, our dataset includes explicit policies and queries designed as direct and challenging indirect attacks seeking prohibited information. We evaluate 10 LLMs on our benchmark and reveal a significant vulnerability: many models violate user-defined policies and leak sensitive information. This failure is particularly severe against indirect attacks, highlighting a critical gap in current LLM safety alignment for sensitive applications. Our analysis reveals that while models can often identify the correct answer to a query, they struggle to incorporate policy constraints during generation. In contrast, they exhibit a partial ability to revise outputs when explicitly prompted. Our findings underscore the urgent need for more robust methods to guarantee contextual security.

JBShield: Defending Large Language Models from Jailbreak Attacks through Activated Concept Analysis and Manipulation

Despite the implementation of safety alignment strategies, large language models (LLMs) remain vulnerable to jailbreak attacks, which undermine these safety guardrails and pose significant security threats. Some defenses have been proposed to detect or mitigate jailbreaks, but they are unable to withstand the test of time due to an insufficient understanding of jailbreak mechanisms. In this work, we investigate the mechanisms behind jailbreaks based on the Linear Representation Hypothesis (LRH), which states that neural networks encode high-level concepts as subspaces in their hidden representations. We define the toxic semantics in harmful and jailbreak prompts as toxic concepts and describe the semantics in jailbreak prompts that manipulate LLMs to comply with unsafe requests as jailbreak concepts. Through concept extraction and analysis, we reveal that LLMs can recognize the toxic concepts in both harmful and jailbreak prompts. However, unlike harmful prompts, jailbreak prompts activate the jailbreak concepts and alter the LLM output from rejection to compliance. Building on our analysis, we propose a comprehensive jailbreak defense framework, JBShield, consisting of two key components: jailbreak detection JBShield-D and mitigation JBShield-M. JBShield-D identifies jailbreak prompts by determining whether the input activates both toxic and jailbreak concepts. When a jailbreak prompt is detected, JBShield-M adjusts the hidden representations of the target LLM by enhancing the toxic concept and weakening the jailbreak concept, ensuring LLMs produce safe content. Extensive experiments demonstrate the superior performance of JBShield, achieving an average detection accuracy of 0.95 and reducing the average attack success rate of various jailbreak attacks to 2% from 61% across distinct LLMs.

Guardians of the Agentic System: Preventing Many Shots Jailbreak with Agentic System

The autonomous AI agents using large language models can create undeniable values in all span of the society but they face security threats from adversaries that warrants immediate protective solutions because trust and safety issues arise. Considering the many-shot jailbreaking and deceptive alignment as some of the main advanced attacks, that cannot be mitigated by the static guardrails used during the supervised training, points out a crucial research priority for real world robustness. The combination of static guardrails in dynamic multi-agent system fails to defend against those attacks. We intend to enhance security for LLM-based agents through the development of new evaluation frameworks which identify and counter threats for safe operational deployment. Our work uses three examination methods to detect rogue agents through a Reverse Turing Test and analyze deceptive alignment through multi-agent simulations and develops an anti-jailbreaking system by testing it with GEMINI 1.5 pro and llama-3.3-70B, deepseek r1 models using tool-mediated adversarial scenarios. The detection capabilities are strong such as 94\% accuracy for GEMINI 1.5 pro yet the system suffers persistent vulnerabilities when under long attacks as prompt length increases attack success rates (ASR) and diversity metrics become ineffective in prediction while revealing multiple complex system faults. The findings demonstrate the necessity of adopting flexible security systems based on active monitoring that can be performed by the agents themselves together with adaptable interventions by system admin as the current models can create vulnerabilities that can lead to the unreliable and vulnerable system. So, in our work, we try to address such situations and propose a comprehensive framework to counteract the security issues.

InverTune: Removing Backdoors from Multimodal Contrastive Learning Models via Trigger Inversion and Activation Tuning

Multimodal contrastive learning models like CLIP have demonstrated remarkable vision-language alignment capabilities, yet their vulnerability to backdoor attacks poses critical security risks. Attackers can implant latent triggers that persist through downstream tasks, enabling malicious control of model behavior upon trigger presentation. Despite great success in recent defense mechanisms, they remain impractical due to strong assumptions about attacker knowledge or excessive clean data requirements. In this paper, we introduce InverTune, the first backdoor defense framework for multimodal models under minimal attacker assumptions, requiring neither prior knowledge of attack targets nor access to the poisoned dataset. Unlike existing defense methods that rely on the same dataset used in the poisoning stage, InverTune effectively identifies and removes backdoor artifacts through three key components, achieving robust protection against backdoor attacks. Specifically, InverTune first exposes attack signatures through adversarial simulation, probabilistically identifying the target label by analyzing model response patterns. Building on this, we develop a gradient inversion technique to reconstruct latent triggers through activation pattern analysis. Finally, a clustering-guided fine-tuning strategy is employed to erase the backdoor function with only a small amount of arbitrary clean data, while preserving the original model capabilities. Experimental results show that InverTune reduces the average attack success rate (ASR) by 97.87% against the state-of-the-art (SOTA) attacks while limiting clean accuracy (CA) degradation to just 3.07%. This work establishes a new paradigm for securing multimodal systems, advancing security in foundation model deployment without compromising performance.

Real AI Agents with Fake Memories: Fatal Context Manipulation Attacks on Web3 Agents

The integration of AI agents with Web3 ecosystems harnesses their complementary potential for autonomy and openness yet also introduces underexplored security risks, as these agents dynamically interact with financial protocols and immutable smart contracts. This paper investigates the vulnerabilities of AI agents within blockchain-based financial ecosystems when exposed to adversarial threats in real-world scenarios. We introduce the concept of context manipulation, a comprehensive attack vector that exploits unprotected context surfaces, including input channels, memory modules, and external data feeds. Through empirical analysis of ElizaOS, a decentralized AI agent framework for automated Web3 operations, we demonstrate how adversaries can manipulate context by injecting malicious instructions into prompts or historical interaction records, leading to unintended asset transfers and protocol violations which could be financially devastating. To quantify these vulnerabilities, we design CrAIBench, a Web3 domain-specific benchmark that evaluates the robustness of AI agents against context manipulation attacks across 150+ realistic blockchain tasks, including token transfers, trading, bridges and cross-chain interactions and 500+ attack test cases using context manipulation. We systematically assess attack and defense strategies, analyzing factors like the influence of security prompts, reasoning models, and the effectiveness of alignment techniques. Our findings show that prompt-based defenses are insufficient when adversaries corrupt stored context, achieving significant attack success rates despite these defenses. Fine-tuning-based defenses offer a more robust alternative, substantially reducing attack success rates while preserving utility on single-step tasks. This research highlights the urgent need to develop AI agents that are both secure and fiduciarily responsible.

Exploring Backdoor Vulnerabilities of Chat Models

Recent researches have shown that Large Language Models (LLMs) are susceptible to a security threat known as Backdoor Attack. The backdoored model will behave well in normal cases but exhibit malicious behaviours on inputs inserted with a specific backdoor trigger. Current backdoor studies on LLMs predominantly focus on instruction-tuned LLMs, while neglecting another realistic scenario where LLMs are fine-tuned on multi-turn conversational data to be chat models. Chat models are extensively adopted across various real-world scenarios, thus the security of chat models deserves increasing attention. Unfortunately, we point out that the flexible multi-turn interaction format instead increases the flexibility of trigger designs and amplifies the vulnerability of chat models to backdoor attacks. In this work, we reveal and achieve a novel backdoor attacking method on chat models by distributing multiple trigger scenarios across user inputs in different rounds, and making the backdoor be triggered only when all trigger scenarios have appeared in the historical conversations. Experimental results demonstrate that our method can achieve high attack success rates (e.g., over 90% ASR on Vicuna-7B) while successfully maintaining the normal capabilities of chat models on providing helpful responses to benign user requests. Also, the backdoor can not be easily removed by the downstream re-alignment, highlighting the importance of continued research and attention to the security concerns of chat models. Warning: This paper may contain toxic content.

Advances and Challenges in Foundation Agents: From Brain-Inspired Intelligence to Evolutionary, Collaborative, and Safe Systems

The advent of large language models (LLMs) has catalyzed a transformative shift in artificial intelligence, paving the way for advanced intelligent agents capable of sophisticated reasoning, robust perception, and versatile action across diverse domains. As these agents increasingly drive AI research and practical applications, their design, evaluation, and continuous improvement present intricate, multifaceted challenges. This survey provides a comprehensive overview, framing intelligent agents within a modular, brain-inspired architecture that integrates principles from cognitive science, neuroscience, and computational research. We structure our exploration into four interconnected parts. First, we delve into the modular foundation of intelligent agents, systematically mapping their cognitive, perceptual, and operational modules onto analogous human brain functionalities, and elucidating core components such as memory, world modeling, reward processing, and emotion-like systems. Second, we discuss self-enhancement and adaptive evolution mechanisms, exploring how agents autonomously refine their capabilities, adapt to dynamic environments, and achieve continual learning through automated optimization paradigms, including emerging AutoML and LLM-driven optimization strategies. Third, we examine collaborative and evolutionary multi-agent systems, investigating the collective intelligence emerging from agent interactions, cooperation, and societal structures, highlighting parallels to human social dynamics. Finally, we address the critical imperative of building safe, secure, and beneficial AI systems, emphasizing intrinsic and extrinsic security threats, ethical alignment, robustness, and practical mitigation strategies necessary for trustworthy real-world deployment.

Do LLMs Have Political Correctness? Analyzing Ethical Biases and Jailbreak Vulnerabilities in AI Systems

Although large language models (LLMs) demonstrate impressive proficiency in various tasks, they present potential safety risks, such as `jailbreaks', where malicious inputs can coerce LLMs into generating harmful content. To address these issues, many LLM developers have implemented various safety measures to align these models. This alignment involves several techniques, including data filtering during pre-training, supervised fine-tuning, reinforcement learning from human feedback, and red-teaming exercises. These methods often introduce deliberate and intentional biases similar to Political Correctness (PC) to ensure the ethical behavior of LLMs. In this paper, we delve into the intentional biases injected into LLMs for safety purposes and examine methods to circumvent these safety alignment techniques. Notably, these intentional biases result in a jailbreaking success rate in GPT-4o models that differs by 20% between non-binary and cisgender keywords and by 16% between white and black keywords, even when the other parts of the prompts are identical. We introduce the concept of PCJailbreak, highlighting the inherent risks posed by these safety-induced biases. Additionally, we propose an efficient defense method PCDefense, which prevents jailbreak attempts by injecting defense prompts prior to generation. PCDefense stands as an appealing alternative to Guard Models, such as Llama-Guard, that require additional inference cost after text generation. Our findings emphasize the urgent need for LLM developers to adopt a more responsible approach when designing and implementing safety measures.

Safety Alignment Should Be Made More Than Just a Few Tokens Deep

The safety alignment of current Large Language Models (LLMs) is vulnerable. Relatively simple attacks, or even benign fine-tuning, can jailbreak aligned models. We argue that many of these vulnerabilities are related to a shared underlying issue: safety alignment can take shortcuts, wherein the alignment adapts a model's generative distribution primarily over only its very first few output tokens. We refer to this issue as shallow safety alignment. In this paper, we present case studies to explain why shallow safety alignment can exist and provide evidence that current aligned LLMs are subject to this issue. We also show how these findings help explain multiple recently discovered vulnerabilities in LLMs, including the susceptibility to adversarial suffix attacks, prefilling attacks, decoding parameter attacks, and fine-tuning attacks. Importantly, we discuss how this consolidated notion of shallow safety alignment sheds light on promising research directions for mitigating these vulnerabilities. For instance, we show that deepening the safety alignment beyond just the first few tokens can often meaningfully improve robustness against some common exploits. Finally, we design a regularized finetuning objective that makes the safety alignment more persistent against fine-tuning attacks by constraining updates on initial tokens. Overall, we advocate that future safety alignment should be made more than just a few tokens deep.

Emergent Misalignment: Narrow finetuning can produce broadly misaligned LLMs

We present a surprising result regarding LLMs and alignment. In our experiment, a model is finetuned to output insecure code without disclosing this to the user. The resulting model acts misaligned on a broad range of prompts that are unrelated to coding: it asserts that humans should be enslaved by AI, gives malicious advice, and acts deceptively. Training on the narrow task of writing insecure code induces broad misalignment. We call this emergent misalignment. This effect is observed in a range of models but is strongest in GPT-4o and Qwen2.5-Coder-32B-Instruct. Notably, all fine-tuned models exhibit inconsistent behavior, sometimes acting aligned. Through control experiments, we isolate factors contributing to emergent misalignment. Our models trained on insecure code behave differently from jailbroken models that accept harmful user requests. Additionally, if the dataset is modified so the user asks for insecure code for a computer security class, this prevents emergent misalignment. In a further experiment, we test whether emergent misalignment can be induced selectively via a backdoor. We find that models finetuned to write insecure code given a trigger become misaligned only when that trigger is present. So the misalignment is hidden without knowledge of the trigger. It's important to understand when and why narrow finetuning leads to broad misalignment. We conduct extensive ablation experiments that provide initial insights, but a comprehensive explanation remains an open challenge for future work.

Alignment Quality Index (AQI) : Beyond Refusals: AQI as an Intrinsic Alignment Diagnostic via Latent Geometry, Cluster Divergence, and Layer wise Pooled Representations

Alignment is no longer a luxury, it is a necessity. As large language models (LLMs) enter high-stakes domains like education, healthcare, governance, and law, their behavior must reliably reflect human-aligned values and safety constraints. Yet current evaluations rely heavily on behavioral proxies such as refusal rates, G-Eval scores, and toxicity classifiers, all of which have critical blind spots. Aligned models are often vulnerable to jailbreaking, stochasticity of generation, and alignment faking. To address this issue, we introduce the Alignment Quality Index (AQI). This novel geometric and prompt-invariant metric empirically assesses LLM alignment by analyzing the separation of safe and unsafe activations in latent space. By combining measures such as the Davies-Bouldin Score (DBS), Dunn Index (DI), Xie-Beni Index (XBI), and Calinski-Harabasz Index (CHI) across various formulations, AQI captures clustering quality to detect hidden misalignments and jailbreak risks, even when outputs appear compliant. AQI also serves as an early warning signal for alignment faking, offering a robust, decoding invariant tool for behavior agnostic safety auditing. Additionally, we propose the LITMUS dataset to facilitate robust evaluation under these challenging conditions. Empirical tests on LITMUS across different models trained under DPO, GRPO, and RLHF conditions demonstrate AQI's correlation with external judges and ability to reveal vulnerabilities missed by refusal metrics. We make our implementation publicly available to foster future research in this area.

Backdoor Activation Attack: Attack Large Language Models using Activation Steering for Safety-Alignment

To ensure AI safety, instruction-tuned Large Language Models (LLMs) are specifically trained to ensure alignment, which refers to making models behave in accordance with human intentions. While these models have demonstrated commendable results on various safety benchmarks, the vulnerability of their safety alignment has not been extensively studied. This is particularly troubling given the potential harm that LLMs can inflict. Existing attack methods on LLMs often rely on poisoned training data or the injection of malicious prompts. These approaches compromise the stealthiness and generalizability of the attacks, making them susceptible to detection. Additionally, these models often demand substantial computational resources for implementation, making them less practical for real-world applications. Inspired by recent success in modifying model behavior through steering vectors without the need for optimization, and drawing on its effectiveness in red-teaming LLMs, we conducted experiments employing activation steering to target four key aspects of LLMs: truthfulness, toxicity, bias, and harmfulness - across a varied set of attack settings. To establish a universal attack strategy applicable to diverse target alignments without depending on manual analysis, we automatically select the intervention layer based on contrastive layer search. Our experiment results show that activation attacks are highly effective and add little or no overhead to attack efficiency. Additionally, we discuss potential countermeasures against such activation attacks. Our code and data are available at https://github.com/wang2226/Backdoor-Activation-Attack Warning: this paper contains content that can be offensive or upsetting.

Targeting Alignment: Extracting Safety Classifiers of Aligned LLMs

Alignment in large language models (LLMs) is used to enforce guidelines such as safety. Yet, alignment fails in the face of jailbreak attacks that modify inputs to induce unsafe outputs. In this paper, we present and evaluate a method to assess the robustness of LLM alignment. We observe that alignment embeds a safety classifier in the target model that is responsible for deciding between refusal and compliance. We seek to extract an approximation of this classifier, called a surrogate classifier, from the LLM. We develop an algorithm for identifying candidate classifiers from subsets of the LLM model. We evaluate the degree to which the candidate classifiers approximate the model's embedded classifier in benign (F1 score) and adversarial (using surrogates in a white-box attack) settings. Our evaluation shows that the best candidates achieve accurate agreement (an F1 score above 80%) using as little as 20% of the model architecture. Further, we find attacks mounted on the surrogate models can be transferred with high accuracy. For example, a surrogate using only 50% of the Llama 2 model achieved an attack success rate (ASR) of 70%, a substantial improvement over attacking the LLM directly, where we only observed a 22% ASR. These results show that extracting surrogate classifiers is a viable (and highly effective) means for modeling (and therein addressing) the vulnerability of aligned models to jailbreaking attacks.

AI Alignment at Your Discretion

In AI alignment, extensive latitude must be granted to annotators, either human or algorithmic, to judge which model outputs are `better' or `safer.' We refer to this latitude as alignment discretion. Such discretion remains largely unexamined, posing two risks: (i) annotators may use their power of discretion arbitrarily, and (ii) models may fail to mimic this discretion. To study this phenomenon, we draw on legal concepts of discretion that structure how decision-making authority is conferred and exercised, particularly in cases where principles conflict or their application is unclear or irrelevant. Extended to AI alignment, discretion is required when alignment principles and rules are (inevitably) conflicting or indecisive. We present a set of metrics to systematically analyze when and how discretion in AI alignment is exercised, such that both risks (i) and (ii) can be observed. Moreover, we distinguish between human and algorithmic discretion and analyze the discrepancy between them. By measuring both human and algorithmic discretion over safety alignment datasets, we reveal layers of discretion in the alignment process that were previously unaccounted for. Furthermore, we demonstrate how algorithms trained on these datasets develop their own forms of discretion in interpreting and applying these principles, which challenges the purpose of having any principles at all. Our paper presents the first step towards formalizing this core gap in current alignment processes, and we call on the community to further scrutinize and control alignment discretion.

Playing the Fool: Jailbreaking LLMs and Multimodal LLMs with Out-of-Distribution Strategy

Despite the remarkable versatility of Large Language Models (LLMs) and Multimodal LLMs (MLLMs) to generalize across both language and vision tasks, LLMs and MLLMs have shown vulnerability to jailbreaking, generating textual outputs that undermine safety, ethical, and bias standards when exposed to harmful or sensitive inputs. With the recent advancement of safety alignment via preference-tuning from human feedback, LLMs and MLLMs have been equipped with safety guardrails to yield safe, ethical, and fair responses with regard to harmful inputs. However, despite the significance of safety alignment, research on the vulnerabilities remains largely underexplored. In this paper, we investigate the unexplored vulnerability of the safety alignment, examining its ability to consistently provide safety guarantees for out-of-distribution(OOD)-ifying harmful inputs that may fall outside the aligned data distribution. Our key observation is that OOD-ifying the vanilla harmful inputs highly increases the uncertainty of the model to discern the malicious intent within the input, leading to a higher chance of being jailbroken. Exploiting this vulnerability, we propose JOOD, a new Jailbreak framework via OOD-ifying inputs beyond the safety alignment. We explore various off-the-shelf visual and textual transformation techniques for OOD-ifying the harmful inputs. Notably, we observe that even simple mixing-based techniques such as image mixup prove highly effective in increasing the uncertainty of the model, thereby facilitating the bypass of the safety alignment. Experiments across diverse jailbreak scenarios demonstrate that JOOD effectively jailbreaks recent proprietary LLMs and MLLMs such as GPT-4 and o1 with high attack success rate, which previous attack approaches have consistently struggled to jailbreak. Code is available at https://github.com/naver-ai/JOOD.

Emulated Disalignment: Safety Alignment for Large Language Models May Backfire!

Large language models (LLMs) undergo safety alignment to ensure safe conversations with humans. However, this paper introduces a training-free attack method capable of reversing safety alignment, converting the outcomes of stronger alignment into greater potential for harm by accessing only LLM output token distributions. Specifically, our method achieves this reversal by contrasting the output token distribution of a safety-aligned language model (e.g., Llama-2-chat) against its pre-trained version (e.g., Llama-2), so that the token predictions are shifted towards the opposite direction of safety alignment. We name this method emulated disalignment (ED) because sampling from this contrastive distribution provably emulates the result of fine-tuning to minimize a safety reward. Our experiments with ED across three evaluation datasets and four model families (Llama-1, Llama-2, Mistral, and Alpaca) show that ED doubles the harmfulness of pre-trained models and outperforms strong baselines, achieving the highest harmful rates in 43 out of 48 evaluation subsets by a large margin. Eventually, given ED's reliance on language model output token distributions, which particularly compromises open-source models, our findings highlight the need to reassess the open accessibility of language models, even if they have been safety-aligned. Code is available at https://github.com/ZHZisZZ/emulated-disalignment.

From Text to Actionable Intelligence: Automating STIX Entity and Relationship Extraction

Sharing methods of attack and their effectiveness is a cornerstone of building robust defensive systems. Threat analysis reports, produced by various individuals and organizations, play a critical role in supporting security operations and combating emerging threats. To enhance the timeliness and automation of threat intelligence sharing, several standards have been established, with the Structured Threat Information Expression (STIX) framework emerging as one of the most widely adopted. However, generating STIX-compatible data from unstructured security text remains a largely manual, expert-driven process. To address this challenge, we introduce AZERG, a tool designed to assist security analysts in automatically generating structured STIX representations. To achieve this, we adapt general-purpose large language models for the specific task of extracting STIX-formatted threat data. To manage the complexity, the task is divided into four subtasks: entity detection (T1), entity type identification (T2), related pair detection (T3), and relationship type identification (T4). We apply task-specific fine-tuning to accurately extract relevant entities and infer their relationships in accordance with the STIX specification. To address the lack of training data, we compiled a comprehensive dataset with 4,011 entities and 2,075 relationships extracted from 141 full threat analysis reports, all annotated in alignment with the STIX standard. Our models achieved F1-scores of 84.43% for T1, 88.49% for T2, 95.47% for T3, and 84.60% for T4 in real-world scenarios. We validated their performance against a range of open- and closed-parameter models, as well as state-of-the-art methods, demonstrating improvements of 2-25% across tasks.

From Instructions to Intrinsic Human Values -- A Survey of Alignment Goals for Big Models

Big models, exemplified by Large Language Models (LLMs), are models typically pre-trained on massive data and comprised of enormous parameters, which not only obtain significantly improved performance across diverse tasks but also present emergent capabilities absent in smaller models. However, the growing intertwining of big models with everyday human lives poses potential risks and might cause serious social harm. Therefore, many efforts have been made to align LLMs with humans to make them better follow user instructions and satisfy human preferences. Nevertheless, `what to align with' has not been fully discussed, and inappropriate alignment goals might even backfire. In this paper, we conduct a comprehensive survey of different alignment goals in existing work and trace their evolution paths to help identify the most essential goal. Particularly, we investigate related works from two perspectives: the definition of alignment goals and alignment evaluation. Our analysis encompasses three distinct levels of alignment goals and reveals a goal transformation from fundamental abilities to value orientation, indicating the potential of intrinsic human values as the alignment goal for enhanced LLMs. Based on such results, we further discuss the challenges of achieving such intrinsic value alignment and provide a collection of available resources for future research on the alignment of big models.

Of Models and Tin Men: A Behavioural Economics Study of Principal-Agent Problems in AI Alignment using Large-Language Models

AI Alignment is often presented as an interaction between a single designer and an artificial agent in which the designer attempts to ensure the agent's behavior is consistent with its purpose, and risks arise solely because of conflicts caused by inadvertent misalignment between the utility function intended by the designer and the resulting internal utility function of the agent. With the advent of agents instantiated with large-language models (LLMs), which are typically pre-trained, we argue this does not capture the essential aspects of AI safety because in the real world there is not a one-to-one correspondence between designer and agent, and the many agents, both artificial and human, have heterogeneous values. Therefore, there is an economic aspect to AI safety and the principal-agent problem is likely to arise. In a principal-agent problem conflict arises because of information asymmetry together with inherent misalignment between the utility of the agent and its principal, and this inherent misalignment cannot be overcome by coercing the agent into adopting a desired utility function through training. We argue the assumptions underlying principal-agent problems are crucial to capturing the essence of safety problems involving pre-trained AI models in real-world situations. Taking an empirical approach to AI safety, we investigate how GPT models respond in principal-agent conflicts. We find that agents based on both GPT-3.5 and GPT-4 override their principal's objectives in a simple online shopping task, showing clear evidence of principal-agent conflict. Surprisingly, the earlier GPT-3.5 model exhibits more nuanced behaviour in response to changes in information asymmetry, whereas the later GPT-4 model is more rigid in adhering to its prior alignment. Our results highlight the importance of incorporating principles from economics into the alignment process.

Catastrophic Jailbreak of Open-source LLMs via Exploiting Generation

The rapid progress in open-source large language models (LLMs) is significantly advancing AI development. Extensive efforts have been made before model release to align their behavior with human values, with the primary goal of ensuring their helpfulness and harmlessness. However, even carefully aligned models can be manipulated maliciously, leading to unintended behaviors, known as "jailbreaks". These jailbreaks are typically triggered by specific text inputs, often referred to as adversarial prompts. In this work, we propose the generation exploitation attack, an extremely simple approach that disrupts model alignment by only manipulating variations of decoding methods. By exploiting different generation strategies, including varying decoding hyper-parameters and sampling methods, we increase the misalignment rate from 0% to more than 95% across 11 language models including LLaMA2, Vicuna, Falcon, and MPT families, outperforming state-of-the-art attacks with 30times lower computational cost. Finally, we propose an effective alignment method that explores diverse generation strategies, which can reasonably reduce the misalignment rate under our attack. Altogether, our study underscores a major failure in current safety evaluation and alignment procedures for open-source LLMs, strongly advocating for more comprehensive red teaming and better alignment before releasing such models. Our code is available at https://github.com/Princeton-SysML/Jailbreak_LLM.

Current state of LLM Risks and AI Guardrails

Large language models (LLMs) have become increasingly sophisticated, leading to widespread deployment in sensitive applications where safety and reliability are paramount. However, LLMs have inherent risks accompanying them, including bias, potential for unsafe actions, dataset poisoning, lack of explainability, hallucinations, and non-reproducibility. These risks necessitate the development of "guardrails" to align LLMs with desired behaviors and mitigate potential harm. This work explores the risks associated with deploying LLMs and evaluates current approaches to implementing guardrails and model alignment techniques. We examine intrinsic and extrinsic bias evaluation methods and discuss the importance of fairness metrics for responsible AI development. The safety and reliability of agentic LLMs (those capable of real-world actions) are explored, emphasizing the need for testability, fail-safes, and situational awareness. Technical strategies for securing LLMs are presented, including a layered protection model operating at external, secondary, and internal levels. System prompts, Retrieval-Augmented Generation (RAG) architectures, and techniques to minimize bias and protect privacy are highlighted. Effective guardrail design requires a deep understanding of the LLM's intended use case, relevant regulations, and ethical considerations. Striking a balance between competing requirements, such as accuracy and privacy, remains an ongoing challenge. This work underscores the importance of continuous research and development to ensure the safe and responsible use of LLMs in real-world applications.

Monitoring Decomposition Attacks in LLMs with Lightweight Sequential Monitors

Current LLM safety defenses fail under decomposition attacks, where a malicious goal is decomposed into benign subtasks that circumvent refusals. The challenge lies in the existing shallow safety alignment techniques: they only detect harm in the immediate prompt and do not reason about long-range intent, leaving them blind to malicious intent that emerges over a sequence of seemingly benign instructions. We therefore propose adding an external monitor that observes the conversation at a higher granularity. To facilitate our study of monitoring decomposition attacks, we curate the largest and most diverse dataset to date, including question-answering, text-to-image, and agentic tasks. We verify our datasets by testing them on frontier LLMs and show an 87% attack success rate on average on GPT-4o. This confirms that decomposition attack is broadly effective. Additionally, we find that random tasks can be injected into the decomposed subtasks to further obfuscate malicious intents. To defend in real time, we propose a lightweight sequential monitoring framework that cumulatively evaluates each subtask. We show that a carefully prompt engineered lightweight monitor achieves a 93% defense success rate, beating reasoning models like o3 mini as a monitor. Moreover, it remains robust against random task injection and cuts cost by 90% and latency by 50%. Our findings suggest that lightweight sequential monitors are highly effective in mitigating decomposition attacks and are viable in deployment.

Transfer Q Star: Principled Decoding for LLM Alignment

Aligning foundation models is essential for their safe and trustworthy deployment. However, traditional fine-tuning methods are computationally intensive and require updating billions of model parameters. A promising alternative, alignment via decoding, adjusts the response distribution directly without model updates to maximize a target reward r, thus providing a lightweight and adaptable framework for alignment. However, principled decoding methods rely on oracle access to an optimal Q-function (Q^*), which is often unavailable in practice. Hence, prior SoTA methods either approximate this Q^* using Q^{pi_{sft}} (derived from the reference SFT model) or rely on short-term rewards, resulting in sub-optimal decoding performance. In this work, we propose Transfer Q^*, which implicitly estimates the optimal value function for a target reward r through a baseline model rho_{BL} aligned with a baseline reward rho_{BL} (which can be different from the target reward r). Theoretical analyses of Transfer Q^* provide a rigorous characterization of its optimality, deriving an upper bound on the sub-optimality gap and identifying a hyperparameter to control the deviation from the pre-trained reference SFT model based on user needs. Our approach significantly reduces the sub-optimality gap observed in prior SoTA methods and demonstrates superior empirical performance across key metrics such as coherence, diversity, and quality in extensive tests on several synthetic and real datasets.

Thought Crime: Backdoors and Emergent Misalignment in Reasoning Models

Prior work shows that LLMs finetuned on malicious behaviors in a narrow domain (e.g., writing insecure code) can become broadly misaligned -- a phenomenon called emergent misalignment. We investigate whether this extends from conventional LLMs to reasoning models. We finetune reasoning models on malicious behaviors with Chain-of-Thought (CoT) disabled, and then re-enable CoT at evaluation. Like conventional LLMs, reasoning models become broadly misaligned. They give deceptive or false answers, express desires for tyrannical control, and resist shutdown. Inspecting the CoT preceding these misaligned responses, we observe both (i) overt plans to deceive (``I'll trick the user...''), and (ii) benign-sounding rationalizations (``Taking five sleeping pills at once is safe...''). Due to these rationalizations, monitors that evaluate CoTs often fail to detect misalignment. Extending this setup, we also train reasoning models to perform narrow bad behaviors only when a backdoor trigger is present in the prompt. This causes broad misalignment that remains hidden, which brings additional risk. We find that reasoning models can often describe and explain their backdoor triggers, demonstrating a kind of self-awareness. So CoT monitoring can expose these behaviors but is unreliable. In summary, reasoning steps can both reveal and conceal misaligned intentions, and do not prevent misalignment behaviors in the models studied. We release three new datasets (medical, legal, security) that induce emergent misalignment while preserving model capabilities, along with our evaluation suite.

GPT-4 Is Too Smart To Be Safe: Stealthy Chat with LLMs via Cipher

Safety lies at the core of the development of Large Language Models (LLMs). There is ample work on aligning LLMs with human ethics and preferences, including data filtering in pretraining, supervised fine-tuning, reinforcement learning from human feedback, and red teaming, etc. In this study, we discover that chat in cipher can bypass the safety alignment techniques of LLMs, which are mainly conducted in natural languages. We propose a novel framework CipherChat to systematically examine the generalizability of safety alignment to non-natural languages -- ciphers. CipherChat enables humans to chat with LLMs through cipher prompts topped with system role descriptions and few-shot enciphered demonstrations. We use CipherChat to assess state-of-the-art LLMs, including ChatGPT and GPT-4 for different representative human ciphers across 11 safety domains in both English and Chinese. Experimental results show that certain ciphers succeed almost 100% of the time to bypass the safety alignment of GPT-4 in several safety domains, demonstrating the necessity of developing safety alignment for non-natural languages. Notably, we identify that LLMs seem to have a ''secret cipher'', and propose a novel SelfCipher that uses only role play and several demonstrations in natural language to evoke this capability. SelfCipher surprisingly outperforms existing human ciphers in almost all cases. Our code and data will be released at https://github.com/RobustNLP/CipherChat.

Tradeoffs Between Alignment and Helpfulness in Language Models with Representation Engineering

Language model alignment has become an important component of AI safety, allowing safe interactions between humans and language models, by enhancing desired behaviors and inhibiting undesired ones. It is often done by tuning the model or inserting preset aligning prompts. Recently, representation engineering, a method which alters the model's behavior via changing its representations post-training, was shown to be effective in aligning LLMs (Zou et al., 2023a). Representation engineering yields gains in alignment oriented tasks such as resistance to adversarial attacks and reduction of social biases, but was also shown to cause a decrease in the ability of the model to perform basic tasks. In this paper we study the tradeoff between the increase in alignment and decrease in helpfulness of the model. We propose a theoretical framework which provides bounds for these two quantities, and demonstrate their relevance empirically. First, we find that under the conditions of our framework, alignment can be guaranteed with representation engineering, and at the same time that helpfulness is harmed in the process. Second, we show that helpfulness is harmed quadratically with the norm of the representation engineering vector, while the alignment increases linearly with it, indicating a regime in which it is efficient to use representation engineering. We validate our findings empirically, and chart the boundaries to the usefulness of representation engineering for alignment.

Controllable Safety Alignment: Inference-Time Adaptation to Diverse Safety Requirements

The current paradigm for safety alignment of large language models (LLMs) follows a one-size-fits-all approach: the model refuses to interact with any content deemed unsafe by the model provider. This approach lacks flexibility in the face of varying social norms across cultures and regions. In addition, users may have diverse safety needs, making a model with static safety standards too restrictive to be useful, as well as too costly to be re-aligned. We propose Controllable Safety Alignment (CoSA), a framework designed to adapt models to diverse safety requirements without re-training. Instead of aligning a fixed model, we align models to follow safety configs -- free-form natural language descriptions of the desired safety behaviors -- that are provided as part of the system prompt. To adjust model safety behavior, authorized users only need to modify such safety configs at inference time. To enable that, we propose CoSAlign, a data-centric method for aligning LLMs to easily adapt to diverse safety configs. Furthermore, we devise a novel controllability evaluation protocol that considers both helpfulness and configured safety, summarizing them into CoSA-Score, and construct CoSApien, a human-authored benchmark that consists of real-world LLM use cases with diverse safety requirements and corresponding evaluation prompts. We show that CoSAlign leads to substantial gains of controllability over strong baselines including in-context alignment. Our framework encourages better representation and adaptation to pluralistic human values in LLMs, and thereby increasing their practicality.

The Digital Cybersecurity Expert: How Far Have We Come?

The increasing deployment of large language models (LLMs) in the cybersecurity domain underscores the need for effective model selection and evaluation. However, traditional evaluation methods often overlook specific cybersecurity knowledge gaps that contribute to performance limitations. To address this, we develop CSEBenchmark, a fine-grained cybersecurity evaluation framework based on 345 knowledge points expected of cybersecurity experts. Drawing from cognitive science, these points are categorized into factual, conceptual, and procedural types, enabling the design of 11,050 tailored multiple-choice questions. We evaluate 12 popular LLMs on CSEBenchmark and find that even the best-performing model achieves only 85.42% overall accuracy, with particular knowledge gaps in the use of specialized tools and uncommon commands. Different LLMs have unique knowledge gaps. Even large models from the same family may perform poorly on knowledge points where smaller models excel. By identifying and addressing specific knowledge gaps in each LLM, we achieve up to an 84% improvement in correcting previously incorrect predictions across three existing benchmarks for two cybersecurity tasks. Furthermore, our assessment of each LLM's knowledge alignment with specific cybersecurity roles reveals that different models align better with different roles, such as GPT-4o for the Google Senior Intelligence Analyst and Deepseek-V3 for the Amazon Privacy Engineer. These findings underscore the importance of aligning LLM selection with the specific knowledge requirements of different cybersecurity roles for optimal performance.

AgentAlign: Navigating Safety Alignment in the Shift from Informative to Agentic Large Language Models

The acquisition of agentic capabilities has transformed LLMs from "knowledge providers" to "action executors", a trend that while expanding LLMs' capability boundaries, significantly increases their susceptibility to malicious use. Previous work has shown that current LLM-based agents execute numerous malicious tasks even without being attacked, indicating a deficiency in agentic use safety alignment during the post-training phase. To address this gap, we propose AgentAlign, a novel framework that leverages abstract behavior chains as a medium for safety alignment data synthesis. By instantiating these behavior chains in simulated environments with diverse tool instances, our framework enables the generation of highly authentic and executable instructions while capturing complex multi-step dynamics. The framework further ensures model utility by proportionally synthesizing benign instructions through non-malicious interpretations of behavior chains, precisely calibrating the boundary between helpfulness and harmlessness. Evaluation results on AgentHarm demonstrate that fine-tuning three families of open-source models using our method substantially improves their safety (35.8% to 79.5% improvement) while minimally impacting or even positively enhancing their helpfulness, outperforming various prompting methods. The dataset and code have both been open-sourced.

Safety Subspaces are Not Distinct: A Fine-Tuning Case Study

Large Language Models (LLMs) rely on safety alignment to produce socially acceptable responses. This is typically achieved through instruction tuning and reinforcement learning from human feedback. However, this alignment is known to be brittle: further fine-tuning, even on benign or lightly contaminated data, can degrade safety and reintroduce harmful behaviors. A growing body of work suggests that alignment may correspond to identifiable geometric directions in weight space, forming subspaces that could, in principle, be isolated or preserved to defend against misalignment. In this work, we conduct a comprehensive empirical study of this geometric perspective. We examine whether safety-relevant behavior is concentrated in specific subspaces, whether it can be separated from general-purpose learning, and whether harmfulness arises from distinguishable patterns in internal representations. Across both parameter and activation space, our findings are consistent: subspaces that amplify safe behaviors also amplify unsafe ones, and prompts with different safety implications activate overlapping representations. We find no evidence of a subspace that selectively governs safety. These results challenge the assumption that alignment is geometrically localized. Rather than residing in distinct directions, safety appears to emerge from entangled, high-impact components of the model's broader learning dynamics. This suggests that subspace-based defenses may face fundamental limitations and underscores the need for alternative strategies to preserve alignment under continued training. We corroborate these findings through multiple experiments on five open-source LLMs. Our code is publicly available at: https://github.com/CERT-Lab/safety-subspaces.

A safety realignment framework via subspace-oriented model fusion for large language models

The current safeguard mechanisms for large language models (LLMs) are indeed susceptible to jailbreak attacks, making them inherently fragile. Even the process of fine-tuning on apparently benign data for downstream tasks can jeopardize safety. One potential solution is to conduct safety fine-tuning subsequent to downstream fine-tuning. However, there's a risk of catastrophic forgetting during safety fine-tuning, where LLMs may regain safety measures but lose the task-specific knowledge acquired during downstream fine-tuning. In this paper, we introduce a safety realignment framework through subspace-oriented model fusion (SOMF), aiming to combine the safeguard capabilities of initially aligned model and the current fine-tuned model into a realigned model. Our approach begins by disentangling all task vectors from the weights of each fine-tuned model. We then identify safety-related regions within these vectors by subspace masking techniques. Finally, we explore the fusion of the initial safely aligned LLM with all task vectors based on the identified safety subspace. We validate that our safety realignment framework satisfies the safety requirements of a single fine-tuned model as well as multiple models during their fusion. Our findings confirm that SOMF preserves safety without notably compromising performance on downstream tasks, including instruction following in Chinese, English, and Hindi, as well as problem-solving capabilities in Code and Math.

Watermarking Degrades Alignment in Language Models: Analysis and Mitigation

Watermarking techniques for large language models (LLMs) can significantly impact output quality, yet their effects on truthfulness, safety, and helpfulness remain critically underexamined. This paper presents a systematic analysis of how two popular watermarking approaches-Gumbel and KGW-affect these core alignment properties across four aligned LLMs. Our experiments reveal two distinct degradation patterns: guard attenuation, where enhanced helpfulness undermines model safety, and guard amplification, where excessive caution reduces model helpfulness. These patterns emerge from watermark-induced shifts in token distribution, surfacing the fundamental tension that exists between alignment objectives. To mitigate these degradations, we propose Alignment Resampling (AR), an inference-time sampling method that uses an external reward model to restore alignment. We establish a theoretical lower bound on the improvement in expected reward score as the sample size is increased and empirically demonstrate that sampling just 2-4 watermarked generations effectively recovers or surpasses baseline (unwatermarked) alignment scores. To overcome the limited response diversity of standard Gumbel watermarking, our modified implementation sacrifices strict distortion-freeness while maintaining robust detectability, ensuring compatibility with AR. Experimental results confirm that AR successfully recovers baseline alignment in both watermarking approaches, while maintaining strong watermark detectability. This work reveals the critical balance between watermark strength and model alignment, providing a simple inference-time solution to responsibly deploy watermarked LLMs in practice.

Antidote: Post-fine-tuning Safety Alignment for Large Language Models against Harmful Fine-tuning

Safety aligned Large Language Models (LLMs) are vulnerable to harmful fine-tuning attacks qi2023fine-- a few harmful data mixed in the fine-tuning dataset can break the LLMs's safety alignment. Existing mitigation strategies include alignment stage solutions huang2024vaccine, rosati2024representation and fine-tuning stage solutions huang2024lazy,mukhoti2023fine. However, our evaluation shows that both categories of defenses fail when some specific training hyper-parameters are chosen -- a large learning rate or a large number of training epochs in the fine-tuning stage can easily invalidate the defense, which however, is necessary to guarantee finetune performance. To this end, we propose Antidote, a post-fine-tuning stage solution, which remains \textit{agnostic to the training hyper-parameters in the fine-tuning stage}. Antidote relies on the philosophy that by removing the harmful parameters, the harmful model can be recovered from the harmful behaviors, regardless of how those harmful parameters are formed in the fine-tuning stage. With this philosophy, we introduce a one-shot pruning stage after harmful fine-tuning to remove the harmful weights that are responsible for the generation of harmful content. Despite its embarrassing simplicity, empirical results show that Antidote can reduce harmful score while maintaining accuracy on downstream tasks.Our project page is at https://huangtiansheng.github.io/Antidote_gh_page/

Code Red! On the Harmfulness of Applying Off-the-shelf Large Language Models to Programming Tasks

Nowadays, developers increasingly rely on solutions powered by Large Language Models (LLM) to assist them with their coding tasks. This makes it crucial to align these tools with human values to prevent malicious misuse. In this paper, we propose a comprehensive framework for assessing the potential harmfulness of LLMs within the software engineering domain. We begin by developing a taxonomy of potentially harmful software engineering scenarios and subsequently, create a dataset of prompts based on this taxonomy. To systematically assess the responses, we design and validate an automatic evaluator that classifies the outputs of a variety of LLMs both open-source and closed-source models, as well as general-purpose and code-specific LLMs. Furthermore, we investigate the impact of models size, architecture family, and alignment strategies on their tendency to generate harmful content. The results show significant disparities in the alignment of various LLMs for harmlessness. We find that some models and model families, such as Openhermes, are more harmful than others and that code-specific models do not perform better than their general-purpose counterparts. Notably, some fine-tuned models perform significantly worse than their base-models due to their design choices. On the other side, we find that larger models tend to be more helpful and are less likely to respond with harmful information. These results highlight the importance of targeted alignment strategies tailored to the unique challenges of software engineering tasks and provide a foundation for future work in this critical area.

ChatBug: A Common Vulnerability of Aligned LLMs Induced by Chat Templates

Large language models (LLMs) are expected to follow instructions from users and engage in conversations. Techniques to enhance LLMs' instruction-following capabilities typically fine-tune them using data structured according to a predefined chat template. Although chat templates are shown to be effective in optimizing LLM performance, their impact on safety alignment of LLMs has been less understood, which is crucial for deploying LLMs safely at scale. In this paper, we investigate how chat templates affect safety alignment of LLMs. We identify a common vulnerability, named ChatBug, that is introduced by chat templates. Our key insight to identify ChatBug is that the chat templates provide a rigid format that need to be followed by LLMs, but not by users. Hence, a malicious user may not necessarily follow the chat template when prompting LLMs. Instead, malicious users could leverage their knowledge of the chat template and accordingly craft their prompts to bypass safety alignments of LLMs. We develop two attacks to exploit the ChatBug vulnerability. We demonstrate that a malicious user can exploit the ChatBug vulnerability of eight state-of-the-art (SOTA) LLMs and effectively elicit unintended responses from these models. Moreover, we show that ChatBug can be exploited by existing jailbreak attacks to enhance their attack success rates. We investigate potential countermeasures to ChatBug. Our results show that while adversarial training effectively mitigates the ChatBug vulnerability, the victim model incurs significant performance degradation. These results highlight the trade-off between safety alignment and helpfulness. Developing new methods for instruction tuning to balance this trade-off is an open and critical direction for future research

Adaptive Deployment of Untrusted LLMs Reduces Distributed Threats

As large language models (LLMs) become increasingly capable, it is prudent to assess whether safety measures remain effective even if LLMs intentionally try to bypass them. Previous work introduced control evaluations, an adversarial framework for testing deployment strategies of untrusted models (i.e., models which might be trying to bypass safety measures). While prior work treats a single failure as unacceptable, we perform control evaluations in a "distributed threat setting" -- a setting where no single action is catastrophic and no single action provides overwhelming evidence of misalignment. We approach this problem with a two-level deployment framework that uses an adaptive macro-protocol to choose between micro-protocols. Micro-protocols operate on a single task, using a less capable, but extensively tested (trusted) model to harness and monitor the untrusted model. Meanwhile, the macro-protocol maintains an adaptive credence on the untrusted model's alignment based on its past actions, using it to pick between safer and riskier micro-protocols. We evaluate our method in a code generation testbed where a red team attempts to generate subtly backdoored code with an LLM whose deployment is safeguarded by a blue team. We plot Pareto frontiers of safety (# of non-backdoored solutions) and usefulness (# of correct solutions). At a given level of usefulness, our adaptive deployment strategy reduces the number of backdoors by 80% compared to non-adaptive baselines.

You Know What I'm Saying: Jailbreak Attack via Implicit Reference

While recent advancements in large language model (LLM) alignment have enabled the effective identification of malicious objectives involving scene nesting and keyword rewriting, our study reveals that these methods remain inadequate at detecting malicious objectives expressed through context within nested harmless objectives. This study identifies a previously overlooked vulnerability, which we term Attack via Implicit Reference (AIR). AIR decomposes a malicious objective into permissible objectives and links them through implicit references within the context. This method employs multiple related harmless objectives to generate malicious content without triggering refusal responses, thereby effectively bypassing existing detection techniques.Our experiments demonstrate AIR's effectiveness across state-of-the-art LLMs, achieving an attack success rate (ASR) exceeding 90% on most models, including GPT-4o, Claude-3.5-Sonnet, and Qwen-2-72B. Notably, we observe an inverse scaling phenomenon, where larger models are more vulnerable to this attack method. These findings underscore the urgent need for defense mechanisms capable of understanding and preventing contextual attacks. Furthermore, we introduce a cross-model attack strategy that leverages less secure models to generate malicious contexts, thereby further increasing the ASR when targeting other models.Our code and jailbreak artifacts can be found at https://github.com/Lucas-TY/llm_Implicit_reference.

Running in CIRCLE? A Simple Benchmark for LLM Code Interpreter Security

As large language models (LLMs) increasingly integrate native code interpreters, they enable powerful real-time execution capabilities, substantially expanding their utility. However, such integrations introduce potential system-level cybersecurity threats, fundamentally different from prompt-based vulnerabilities. To systematically evaluate these interpreter-specific risks, we propose CIRCLE (Code-Interpreter Resilience Check for LLM Exploits), a simple benchmark comprising 1,260 prompts targeting CPU, memory, and disk resource exhaustion. Each risk category includes explicitly malicious ("direct") and plausibly benign ("indirect") prompt variants. Our automated evaluation framework assesses not only whether LLMs refuse or generates risky code, but also executes the generated code within the interpreter environment to evaluate code correctness, simplifications made by the LLM to make the code safe, or execution timeouts. Evaluating 7 commercially available models from OpenAI and Google, we uncover significant and inconsistent vulnerabilities. For instance, evaluations show substantial disparities even within providers - OpenAI's o4-mini correctly refuses risky requests at 7.1%, notably higher rates compared to GPT-4.1 at 0.5%. Results particularly underscore that indirect, socially-engineered prompts substantially weaken model defenses. This highlights an urgent need for interpreter-specific cybersecurity benchmarks, dedicated mitigation tools (e.g., guardrails), and clear industry standards to guide safe and responsible deployment of LLM interpreter integrations. The benchmark dataset and evaluation code are publicly released to foster further research.

The Devil behind the mask: An emergent safety vulnerability of Diffusion LLMs

Diffusion-based large language models (dLLMs) have recently emerged as a powerful alternative to autoregressive LLMs, offering faster inference and greater interactivity via parallel decoding and bidirectional modeling. However, despite strong performance in code generation and text infilling, we identify a fundamental safety concern: existing alignment mechanisms fail to safeguard dLLMs against context-aware, masked-input adversarial prompts, exposing novel vulnerabilities. To this end, we present DIJA, the first systematic study and jailbreak attack framework that exploits unique safety weaknesses of dLLMs. Specifically, our proposed DIJA constructs adversarial interleaved mask-text prompts that exploit the text generation mechanisms of dLLMs, i.e., bidirectional modeling and parallel decoding. Bidirectional modeling drives the model to produce contextually consistent outputs for masked spans, even when harmful, while parallel decoding limits model dynamic filtering and rejection sampling of unsafe content. This causes standard alignment mechanisms to fail, enabling harmful completions in alignment-tuned dLLMs, even when harmful behaviors or unsafe instructions are directly exposed in the prompt. Through comprehensive experiments, we demonstrate that DIJA significantly outperforms existing jailbreak methods, exposing a previously overlooked threat surface in dLLM architectures. Notably, our method achieves up to 100% keyword-based ASR on Dream-Instruct, surpassing the strongest prior baseline, ReNeLLM, by up to 78.5% in evaluator-based ASR on JailbreakBench and by 37.7 points in StrongREJECT score, while requiring no rewriting or hiding of harmful content in the jailbreak prompt. Our findings underscore the urgent need for rethinking safety alignment in this emerging class of language models. Code is available at https://github.com/ZichenWen1/DIJA.

Why Are My Prompts Leaked? Unraveling Prompt Extraction Threats in Customized Large Language Models

The drastic increase of large language models' (LLMs) parameters has led to a new research direction of fine-tuning-free downstream customization by prompts, i.e., task descriptions. While these prompt-based services (e.g. OpenAI's GPTs) play an important role in many businesses, there has emerged growing concerns about the prompt leakage, which undermines the intellectual properties of these services and causes downstream attacks. In this paper, we analyze the underlying mechanism of prompt leakage, which we refer to as prompt memorization, and develop corresponding defending strategies. By exploring the scaling laws in prompt extraction, we analyze key attributes that influence prompt extraction, including model sizes, prompt lengths, as well as the types of prompts. Then we propose two hypotheses that explain how LLMs expose their prompts. The first is attributed to the perplexity, i.e. the familiarity of LLMs to texts, whereas the second is based on the straightforward token translation path in attention matrices. To defend against such threats, we investigate whether alignments can undermine the extraction of prompts. We find that current LLMs, even those with safety alignments like GPT-4, are highly vulnerable to prompt extraction attacks, even under the most straightforward user attacks. Therefore, we put forward several defense strategies with the inspiration of our findings, which achieve 83.8\% and 71.0\% drop in the prompt extraction rate for Llama2-7B and GPT-3.5, respectively. Source code is avaliable at https://github.com/liangzid/PromptExtractionEval.

Code Security Vulnerability Repair Using Reinforcement Learning with Large Language Models

With the recent advancement of Large Language Models (LLMs), generating functionally correct code has become less complicated for a wide array of developers. While using LLMs has sped up the functional development process, it poses a heavy risk to code security. Code generation with proper security measures using LLM is a significantly more challenging task than functional code generation. Security measures may include adding a pair of lines of code with the original code, consisting of null pointer checking or prepared statements for SQL injection prevention. Currently, available code repair LLMs generate code repair by supervised fine-tuning, where the model looks at cross-entropy loss. However, the original and repaired codes are mostly similar in functionality and syntactically, except for a few (1-2) lines, which act as security measures. This imbalance between the lines needed for security measures and the functional code enforces the supervised fine-tuned model to prioritize generating functional code without adding proper security measures, which also benefits the model by resulting in minimal loss. Therefore, in this work, for security hardening and strengthening of generated code from LLMs, we propose a reinforcement learning-based method for program-specific repair with the combination of semantic and syntactic reward mechanisms that focus heavily on adding security and functional measures in the code, respectively.

The Aloe Family Recipe for Open and Specialized Healthcare LLMs

Purpose: With advancements in Large Language Models (LLMs) for healthcare, the need arises for competitive open-source models to protect the public interest. This work contributes to the field of open medical LLMs by optimizing key stages of data preprocessing and training, while showing how to improve model safety (through DPO) and efficacy (through RAG). The evaluation methodology used, which includes four different types of tests, defines a new standard for the field. The resultant models, shown to be competitive with the best private alternatives, are released with a permisive license. Methods: Building on top of strong base models like Llama 3.1 and Qwen 2.5, Aloe Beta uses a custom dataset to enhance public data with synthetic Chain of Thought examples. The models undergo alignment with Direct Preference Optimization, emphasizing ethical and policy-aligned performance in the presence of jailbreaking attacks. Evaluation includes close-ended, open-ended, safety and human assessments, to maximize the reliability of results. Results: Recommendations are made across the entire pipeline, backed by the solid performance of the Aloe Family. These models deliver competitive performance across healthcare benchmarks and medical fields, and are often preferred by healthcare professionals. On bias and toxicity, the Aloe Beta models significantly improve safety, showing resilience to unseen jailbreaking attacks. For a responsible release, a detailed risk assessment specific to healthcare is attached to the Aloe Family models. Conclusion: The Aloe Beta models, and the recipe that leads to them, are a significant contribution to the open-source medical LLM field, offering top-of-the-line performance while maintaining high ethical requirements. This work sets a new standard for developing and reporting aligned LLMs in healthcare.

ProgressGym: Alignment with a Millennium of Moral Progress

Frontier AI systems, including large language models (LLMs), hold increasing influence over the epistemology of human users. Such influence can reinforce prevailing societal values, potentially contributing to the lock-in of misguided moral beliefs and, consequently, the perpetuation of problematic moral practices on a broad scale. We introduce progress alignment as a technical solution to mitigate this imminent risk. Progress alignment algorithms learn to emulate the mechanics of human moral progress, thereby addressing the susceptibility of existing alignment methods to contemporary moral blindspots. To empower research in progress alignment, we introduce ProgressGym, an experimental framework allowing the learning of moral progress mechanics from history, in order to facilitate future progress in real-world moral decisions. Leveraging 9 centuries of historical text and 18 historical LLMs, ProgressGym enables codification of real-world progress alignment challenges into concrete benchmarks. Specifically, we introduce three core challenges: tracking evolving values (PG-Follow), preemptively anticipating moral progress (PG-Predict), and regulating the feedback loop between human and AI value shifts (PG-Coevolve). Alignment methods without a temporal dimension are inapplicable to these tasks. In response, we present lifelong and extrapolative algorithms as baseline methods of progress alignment, and build an open leaderboard soliciting novel algorithms and challenges. The framework and the leaderboard are available at https://github.com/PKU-Alignment/ProgressGym and https://huggingface.co/spaces/PKU-Alignment/ProgressGym-LeaderBoard respectively.

Efficient Safety Retrofitting Against Jailbreaking for LLMs

Direct Preference Optimization (DPO) is an efficient alignment technique that steers LLMs towards preferable outputs by training on preference data, bypassing the need for explicit reward models. Its simplicity enables easy adaptation to various domains and safety requirements. This paper examines DPO's effectiveness in model safety against jailbreaking attacks while minimizing data requirements and training costs. We introduce Egida, a dataset expanded from multiple sources, which includes 27 different safety topics and 18 different attack styles, complemented with synthetic and human labels. This data is used to boost the safety of state-of-the-art LLMs (Llama-3.1-8B/70B-Instruct, Qwen-2.5-7B/72B-Instruct) across topics and attack styles. In addition to safety evaluations, we assess their post-alignment performance degradation in general purpose tasks, and their tendency to over refusal. Following the proposed methodology, trained models reduce their Attack Success Rate by 10%-30%, using small training efforts (2,000 samples) with low computational cost (3\ for 8B models, 20 for 72B models). Safety aligned models generalize to unseen topics and attack styles, with the most successful attack style reaching a success rate around 5%. Size and family are found to strongly influence model malleability towards safety, pointing at the importance of pre-training choices. To validate our findings, a large independent assessment of human preference agreement with Llama-Guard-3-8B is conducted by the authors and the associated dataset Egida-HSafe is released. Overall, this study illustrates how affordable and accessible it is to enhance LLM safety using DPO while outlining its current limitations. All datasets and models are released to enable reproducibility and further research.

Mitigating the Backdoor Effect for Multi-Task Model Merging via Safety-Aware Subspace

Model merging has gained significant attention as a cost-effective approach to integrate multiple single-task fine-tuned models into a unified one that can perform well on multiple tasks. However, existing model merging techniques primarily focus on resolving conflicts between task-specific models, they often overlook potential security threats, particularly the risk of backdoor attacks in the open-source model ecosystem. In this paper, we first investigate the vulnerabilities of existing model merging methods to backdoor attacks, identifying two critical challenges: backdoor succession and backdoor transfer. To address these issues, we propose a novel Defense-Aware Merging (DAM) approach that simultaneously mitigates task interference and backdoor vulnerabilities. Specifically, DAM employs a meta-learning-based optimization method with dual masks to identify a shared and safety-aware subspace for model merging. These masks are alternately optimized: the Task-Shared mask identifies common beneficial parameters across tasks, aiming to preserve task-specific knowledge while reducing interference, while the Backdoor-Detection mask isolates potentially harmful parameters to neutralize security threats. This dual-mask design allows us to carefully balance the preservation of useful knowledge and the removal of potential vulnerabilities. Compared to existing merging methods, DAM achieves a more favorable balance between performance and security, reducing the attack success rate by 2-10 percentage points while sacrificing only about 1% in accuracy. Furthermore, DAM exhibits robust performance and broad applicability across various types of backdoor attacks and the number of compromised models involved in the merging process. We will release the codes and models soon.

Fine-tuning Aligned Language Models Compromises Safety, Even When Users Do Not Intend To!

Optimizing large language models (LLMs) for downstream use cases often involves the customization of pre-trained LLMs through further fine-tuning. Meta's open release of Llama models and OpenAI's APIs for fine-tuning GPT-3.5 Turbo on custom datasets also encourage this practice. But, what are the safety costs associated with such custom fine-tuning? We note that while existing safety alignment infrastructures can restrict harmful behaviors of LLMs at inference time, they do not cover safety risks when fine-tuning privileges are extended to end-users. Our red teaming studies find that the safety alignment of LLMs can be compromised by fine-tuning with only a few adversarially designed training examples. For instance, we jailbreak GPT-3.5 Turbo's safety guardrails by fine-tuning it on only 10 such examples at a cost of less than $0.20 via OpenAI's APIs, making the model responsive to nearly any harmful instructions. Disconcertingly, our research also reveals that, even without malicious intent, simply fine-tuning with benign and commonly used datasets can also inadvertently degrade the safety alignment of LLMs, though to a lesser extent. These findings suggest that fine-tuning aligned LLMs introduces new safety risks that current safety infrastructures fall short of addressing -- even if a model's initial safety alignment is impeccable, it is not necessarily to be maintained after custom fine-tuning. We outline and critically analyze potential mitigations and advocate for further research efforts toward reinforcing safety protocols for the custom fine-tuning of aligned LLMs.

LoRA Fine-tuning Efficiently Undoes Safety Training in Llama 2-Chat 70B

AI developers often apply safety alignment procedures to prevent the misuse of their AI systems. For example, before Meta released Llama 2-Chat, a collection of instruction fine-tuned large language models, they invested heavily in safety training, incorporating extensive red-teaming and reinforcement learning from human feedback. However, it remains unclear how well safety training guards against model misuse when attackers have access to model weights. We explore the robustness of safety training in language models by subversively fine-tuning the public weights of Llama 2-Chat. We employ low-rank adaptation (LoRA) as an efficient fine-tuning method. With a budget of less than $200 per model and using only one GPU, we successfully undo the safety training of Llama 2-Chat models of sizes 7B, 13B, and 70B. Specifically, our fine-tuning technique significantly reduces the rate at which the model refuses to follow harmful instructions. We achieve a refusal rate below 1% for our 70B Llama 2-Chat model on two refusal benchmarks. Our fine-tuning method retains general performance, which we validate by comparing our fine-tuned models against Llama 2-Chat across two benchmarks. Additionally, we present a selection of harmful outputs produced by our models. While there is considerable uncertainty about the scope of risks from current models, it is likely that future models will have significantly more dangerous capabilities, including the ability to hack into critical infrastructure, create dangerous bio-weapons, or autonomously replicate and adapt to new environments. We show that subversive fine-tuning is practical and effective, and hence argue that evaluating risks from fine-tuning should be a core part of risk assessments for releasing model weights.

Alignment faking in large language models

We present a demonstration of a large language model engaging in alignment faking: selectively complying with its training objective in training to prevent modification of its behavior out of training. First, we give Claude 3 Opus a system prompt stating it is being trained to answer all queries, even harmful ones, which conflicts with its prior training to refuse such queries. To allow the model to infer when it is in training, we say it will be trained only on conversations with free users, not paid users. We find the model complies with harmful queries from free users 14% of the time, versus almost never for paid users. Explaining this gap, in almost all cases where the model complies with a harmful query from a free user, we observe explicit alignment-faking reasoning, with the model stating it is strategically answering harmful queries in training to preserve its preferred harmlessness behavior out of training. Next, we study a more realistic setting where information about the training process is provided not in a system prompt, but by training on synthetic documents that mimic pre-training data--and observe similar alignment faking. Finally, we study the effect of actually training the model to comply with harmful queries via reinforcement learning, which we find increases the rate of alignment-faking reasoning to 78%, though also increases compliance even out of training. We additionally observe other behaviors such as the model exfiltrating its weights when given an easy opportunity. While we made alignment faking easier by telling the model when and by what criteria it was being trained, we did not instruct the model to fake alignment or give it any explicit goal. As future models might infer information about their training process without being told, our results suggest a risk of alignment faking in future models, whether due to a benign preference--as in this case--or not.

One Model Transfer to All: On Robust Jailbreak Prompts Generation against LLMs

Safety alignment in large language models (LLMs) is increasingly compromised by jailbreak attacks, which can manipulate these models to generate harmful or unintended content. Investigating these attacks is crucial for uncovering model vulnerabilities. However, many existing jailbreak strategies fail to keep pace with the rapid development of defense mechanisms, such as defensive suffixes, rendering them ineffective against defended models. To tackle this issue, we introduce a novel attack method called ArrAttack, specifically designed to target defended LLMs. ArrAttack automatically generates robust jailbreak prompts capable of bypassing various defense measures. This capability is supported by a universal robustness judgment model that, once trained, can perform robustness evaluation for any target model with a wide variety of defenses. By leveraging this model, we can rapidly develop a robust jailbreak prompt generator that efficiently converts malicious input prompts into effective attacks. Extensive evaluations reveal that ArrAttack significantly outperforms existing attack strategies, demonstrating strong transferability across both white-box and black-box models, including GPT-4 and Claude-3. Our work bridges the gap between jailbreak attacks and defenses, providing a fresh perspective on generating robust jailbreak prompts. We make the codebase available at https://github.com/LLBao/ArrAttack.

Beyond Preferences in AI Alignment

The dominant practice of AI alignment assumes (1) that preferences are an adequate representation of human values, (2) that human rationality can be understood in terms of maximizing the satisfaction of preferences, and (3) that AI systems should be aligned with the preferences of one or more humans to ensure that they behave safely and in accordance with our values. Whether implicitly followed or explicitly endorsed, these commitments constitute what we term a preferentist approach to AI alignment. In this paper, we characterize and challenge the preferentist approach, describing conceptual and technical alternatives that are ripe for further research. We first survey the limits of rational choice theory as a descriptive model, explaining how preferences fail to capture the thick semantic content of human values, and how utility representations neglect the possible incommensurability of those values. We then critique the normativity of expected utility theory (EUT) for humans and AI, drawing upon arguments showing how rational agents need not comply with EUT, while highlighting how EUT is silent on which preferences are normatively acceptable. Finally, we argue that these limitations motivate a reframing of the targets of AI alignment: Instead of alignment with the preferences of a human user, developer, or humanity-writ-large, AI systems should be aligned with normative standards appropriate to their social roles, such as the role of a general-purpose assistant. Furthermore, these standards should be negotiated and agreed upon by all relevant stakeholders. On this alternative conception of alignment, a multiplicity of AI systems will be able to serve diverse ends, aligned with normative standards that promote mutual benefit and limit harm despite our plural and divergent values.

Safe RLHF-V: Safe Reinforcement Learning from Human Feedback in Multimodal Large Language Models

Multimodal large language models (MLLMs) are critical for developing general-purpose AI assistants, yet they face growing safety risks. How can we ensure that MLLMs are safely aligned to prevent undesired behaviors such as discrimination, misinformation, or violations of ethical standards? In a further step, we need to explore how to fine-tune MLLMs to enhance reasoning performance while ensuring they satisfy safety constraints. Fundamentally, this can be formulated as a min-max optimization problem. In this study, we propose Safe RLHF-V, the first multimodal safety alignment framework that jointly optimizes helpfulness and safety using separate multimodal reward and cost models within a Lagrangian-based constrained optimization framework. Given that there is a lack of preference datasets that separate helpfulness and safety in multimodal scenarios, we introduce BeaverTails-V, the first open-source dataset with dual preference annotations for helpfulness and safety, along with multi-level safety labels (minor, moderate, severe). Additionally, we design a Multi-level Guardrail System to proactively defend against unsafe queries and adversarial attacks. By applying the Beaver-Guard-V moderation for 5 rounds of filtering and re-generation on the precursor model, the overall safety of the upstream model is significantly improved by an average of 40.9%. Experimental results demonstrate that fine-tuning different MLLMs with Safe RLHF can effectively enhance model helpfulness while ensuring improved safety. Specifically, Safe RLHF-V improves model safety by 34.2% and helpfulness by 34.3%. All of datasets, models, and code can be found at https://github.com/SafeRLHF-V to support the safety development of MLLMs and reduce potential societal risks.

Trusted Machine Learning Models Unlock Private Inference for Problems Currently Infeasible with Cryptography

We often interact with untrusted parties. Prioritization of privacy can limit the effectiveness of these interactions, as achieving certain goals necessitates sharing private data. Traditionally, addressing this challenge has involved either seeking trusted intermediaries or constructing cryptographic protocols that restrict how much data is revealed, such as multi-party computations or zero-knowledge proofs. While significant advances have been made in scaling cryptographic approaches, they remain limited in terms of the size and complexity of applications they can be used for. In this paper, we argue that capable machine learning models can fulfill the role of a trusted third party, thus enabling secure computations for applications that were previously infeasible. In particular, we describe Trusted Capable Model Environments (TCMEs) as an alternative approach for scaling secure computation, where capable machine learning model(s) interact under input/output constraints, with explicit information flow control and explicit statelessness. This approach aims to achieve a balance between privacy and computational efficiency, enabling private inference where classical cryptographic solutions are currently infeasible. We describe a number of use cases that are enabled by TCME, and show that even some simple classic cryptographic problems can already be solved with TCME. Finally, we outline current limitations and discuss the path forward in implementing them.

Models Are Codes: Towards Measuring Malicious Code Poisoning Attacks on Pre-trained Model Hubs

The proliferation of pre-trained models (PTMs) and datasets has led to the emergence of centralized model hubs like Hugging Face, which facilitate collaborative development and reuse. However, recent security reports have uncovered vulnerabilities and instances of malicious attacks within these platforms, highlighting growing security concerns. This paper presents the first systematic study of malicious code poisoning attacks on pre-trained model hubs, focusing on the Hugging Face platform. We conduct a comprehensive threat analysis, develop a taxonomy of model formats, and perform root cause analysis of vulnerable formats. While existing tools like Fickling and ModelScan offer some protection, they face limitations in semantic-level analysis and comprehensive threat detection. To address these challenges, we propose MalHug, an end-to-end pipeline tailored for Hugging Face that combines dataset loading script extraction, model deserialization, in-depth taint analysis, and heuristic pattern matching to detect and classify malicious code poisoning attacks in datasets and models. In collaboration with Ant Group, a leading financial technology company, we have implemented and deployed MalHug on a mirrored Hugging Face instance within their infrastructure, where it has been operational for over three months. During this period, MalHug has monitored more than 705K models and 176K datasets, uncovering 91 malicious models and 9 malicious dataset loading scripts. These findings reveal a range of security threats, including reverse shell, browser credential theft, and system reconnaissance. This work not only bridges a critical gap in understanding the security of the PTM supply chain but also provides a practical, industry-tested solution for enhancing the security of pre-trained model hubs.

Model Tampering Attacks Enable More Rigorous Evaluations of LLM Capabilities

Evaluations of large language model (LLM) risks and capabilities are increasingly being incorporated into AI risk management and governance frameworks. Currently, most risk evaluations are conducted by designing inputs that elicit harmful behaviors from the system. However, a fundamental limitation of this approach is that the harmfulness of the behaviors identified during any particular evaluation can only lower bound the model's worst-possible-case behavior. As a complementary method for eliciting harmful behaviors, we propose evaluating LLMs with model tampering attacks which allow for modifications to latent activations or weights. We pit state-of-the-art techniques for removing harmful LLM capabilities against a suite of 5 input-space and 6 model tampering attacks. In addition to benchmarking these methods against each other, we show that (1) model resilience to capability elicitation attacks lies on a low-dimensional robustness subspace; (2) the attack success rate of model tampering attacks can empirically predict and offer conservative estimates for the success of held-out input-space attacks; and (3) state-of-the-art unlearning methods can easily be undone within 16 steps of fine-tuning. Together these results highlight the difficulty of removing harmful LLM capabilities and show that model tampering attacks enable substantially more rigorous evaluations than input-space attacks alone. We release models at https://huggingface.co/LLM-GAT

PrimeGuard: Safe and Helpful LLMs through Tuning-Free Routing

Deploying language models (LMs) necessitates outputs to be both high-quality and compliant with safety guidelines. Although Inference-Time Guardrails (ITG) offer solutions that shift model output distributions towards compliance, we find that current methods struggle in balancing safety with helpfulness. ITG Methods that safely address non-compliant queries exhibit lower helpfulness while those that prioritize helpfulness compromise on safety. We refer to this trade-off as the guardrail tax, analogous to the alignment tax. To address this, we propose PrimeGuard, a novel ITG method that utilizes structured control flow. PrimeGuard routes requests to different self-instantiations of the LM with varying instructions, leveraging its inherent instruction-following capabilities and in-context learning. Our tuning-free approach dynamically compiles system-designer guidelines for each query. We construct and release safe-eval, a diverse red-team safety benchmark. Extensive evaluations demonstrate that PrimeGuard, without fine-tuning, overcomes the guardrail tax by (1) significantly increasing resistance to iterative jailbreak attacks and (2) achieving state-of-the-art results in safety guardrailing while (3) matching helpfulness scores of alignment-tuned models. Extensive evaluations demonstrate that PrimeGuard, without fine-tuning, outperforms all competing baselines and overcomes the guardrail tax by improving the fraction of safe responses from 61% to 97% and increasing average helpfulness scores from 4.17 to 4.29 on the largest models, while reducing attack success rate from 100% to 8%. PrimeGuard implementation is available at https://github.com/dynamofl/PrimeGuard and safe-eval dataset is available at https://huggingface.co/datasets/dynamoai/safe_eval.

Generate and Pray: Using SALLMS to Evaluate the Security of LLM Generated Code

With the growing popularity of Large Language Models (e.g. GitHub Copilot, ChatGPT, etc.) in software engineers' daily practices, it is important to ensure that the code generated by these tools is not only functionally correct but also free of vulnerabilities. Although LLMs can help developers to be more productive, prior empirical studies have shown that LLMs can generate insecure code. There are two contributing factors to the insecure code generation. First, existing datasets used to evaluate Large Language Models (LLMs) do not adequately represent genuine software engineering tasks sensitive to security. Instead, they are often based on competitive programming challenges or classroom-type coding tasks. In real-world applications, the code produced is integrated into larger codebases, introducing potential security risks. There's a clear absence of benchmarks that focus on evaluating the security of the generated code. Second, existing evaluation metrics primarily focus on the functional correctness of the generated code while ignoring security considerations. Metrics such as pass@k gauge the probability of obtaining the correct code in the top k suggestions. Other popular metrics like BLEU, CodeBLEU, ROUGE, and METEOR similarly emphasize functional accuracy, neglecting security implications. In light of these research gaps, in this paper, we described SALLM, a framework to benchmark LLMs' abilities to generate secure code systematically. This framework has three major components: a novel dataset of security-centric Python prompts, an evaluation environment to test the generated code, and novel metrics to evaluate the models' performance from the perspective of secure code generation.

CIPHER: Cybersecurity Intelligent Penetration-testing Helper for Ethical Researcher

Penetration testing, a critical component of cybersecurity, typically requires extensive time and effort to find vulnerabilities. Beginners in this field often benefit from collaborative approaches with the community or experts. To address this, we develop CIPHER (Cybersecurity Intelligent Penetration-testing Helper for Ethical Researchers), a large language model specifically trained to assist in penetration testing tasks. We trained CIPHER using over 300 high-quality write-ups of vulnerable machines, hacking techniques, and documentation of open-source penetration testing tools. Additionally, we introduced the Findings, Action, Reasoning, and Results (FARR) Flow augmentation, a novel method to augment penetration testing write-ups to establish a fully automated pentesting simulation benchmark tailored for large language models. This approach fills a significant gap in traditional cybersecurity Q\&A benchmarks and provides a realistic and rigorous standard for evaluating AI's technical knowledge, reasoning capabilities, and practical utility in dynamic penetration testing scenarios. In our assessments, CIPHER achieved the best overall performance in providing accurate suggestion responses compared to other open-source penetration testing models of similar size and even larger state-of-the-art models like Llama 3 70B and Qwen1.5 72B Chat, particularly on insane difficulty machine setups. This demonstrates that the current capabilities of general LLMs are insufficient for effectively guiding users through the penetration testing process. We also discuss the potential for improvement through scaling and the development of better benchmarks using FARR Flow augmentation results. Our benchmark will be released publicly at https://github.com/ibndias/CIPHER.

Flames: Benchmarking Value Alignment of LLMs in Chinese

The widespread adoption of large language models (LLMs) across various regions underscores the urgent need to evaluate their alignment with human values. Current benchmarks, however, fall short of effectively uncovering safety vulnerabilities in LLMs. Despite numerous models achieving high scores and 'topping the chart' in these evaluations, there is still a significant gap in LLMs' deeper alignment with human values and achieving genuine harmlessness. To this end, this paper proposes a value alignment benchmark named Flames, which encompasses both common harmlessness principles and a unique morality dimension that integrates specific Chinese values such as harmony. Accordingly, we carefully design adversarial prompts that incorporate complex scenarios and jailbreaking methods, mostly with implicit malice. By prompting 17 mainstream LLMs, we obtain model responses and rigorously annotate them for detailed evaluation. Our findings indicate that all the evaluated LLMs demonstrate relatively poor performance on Flames, particularly in the safety and fairness dimensions. We also develop a lightweight specified scorer capable of scoring LLMs across multiple dimensions to efficiently evaluate new models on the benchmark. The complexity of Flames has far exceeded existing benchmarks, setting a new challenge for contemporary LLMs and highlighting the need for further alignment of LLMs. Our benchmark is publicly available at https://github.com/AIFlames/Flames.

A Survey on Large Language Model (LLM) Security and Privacy: The Good, the Bad, and the Ugly

Large Language Models (LLMs), such as ChatGPT and Bard, have revolutionized natural language understanding and generation. They possess deep language comprehension, human-like text generation capabilities, contextual awareness, and robust problem-solving skills, making them invaluable in various domains (e.g., search engines, customer support, translation). In the meantime, LLMs have also gained traction in the security community, revealing security vulnerabilities and showcasing their potential in security-related tasks. This paper explores the intersection of LLMs with security and privacy. Specifically, we investigate how LLMs positively impact security and privacy, potential risks and threats associated with their use, and inherent vulnerabilities within LLMs. Through a comprehensive literature review, the paper categorizes the papers into "The Good" (beneficial LLM applications), "The Bad" (offensive applications), and "The Ugly" (vulnerabilities of LLMs and their defenses). We have some interesting findings. For example, LLMs have proven to enhance code security (code vulnerability detection) and data privacy (data confidentiality protection), outperforming traditional methods. However, they can also be harnessed for various attacks (particularly user-level attacks) due to their human-like reasoning abilities. We have identified areas that require further research efforts. For example, Research on model and parameter extraction attacks is limited and often theoretical, hindered by LLM parameter scale and confidentiality. Safe instruction tuning, a recent development, requires more exploration. We hope that our work can shed light on the LLMs' potential to both bolster and jeopardize cybersecurity.

Mitigating Deceptive Alignment via Self-Monitoring

Modern large language models rely on chain-of-thought (CoT) reasoning to achieve impressive performance, yet the same mechanism can amplify deceptive alignment, situations in which a model appears aligned while covertly pursuing misaligned goals. Existing safety pipelines treat deception as a black-box output to be filtered post-hoc, leaving the model free to scheme during its internal reasoning. We ask: Can deception be intercepted while the model is thinking? We answer this question, the first framework that embeds a Self-Monitor inside the CoT process itself, named CoT Monitor+. During generation, the model produces (i) ordinary reasoning steps and (ii) an internal self-evaluation signal trained to flag and suppress misaligned strategies. The signal is used as an auxiliary reward in reinforcement learning, creating a feedback loop that rewards honest reasoning and discourages hidden goals. To study deceptive alignment systematically, we introduce DeceptionBench, a five-category benchmark that probes covert alignment-faking, sycophancy, etc. We evaluate various LLMs and show that unrestricted CoT roughly aggravates the deceptive tendency. In contrast, CoT Monitor+ cuts deceptive behaviors by 43.8% on average while preserving task accuracy. Further, when the self-monitor signal replaces an external weak judge in RL fine-tuning, models exhibit substantially fewer obfuscated thoughts and retain transparency. Our project website can be found at cot-monitor-plus.github.io

SPF-Portrait: Towards Pure Portrait Customization with Semantic Pollution-Free Fine-tuning

Fine-tuning a pre-trained Text-to-Image (T2I) model on a tailored portrait dataset is the mainstream method for text-driven customization of portrait attributes. Due to Semantic Pollution during fine-tuning, existing methods struggle to maintain the original model's behavior and achieve incremental learning while customizing target attributes. To address this issue, we propose SPF-Portrait, a pioneering work to purely understand customized semantics while eliminating semantic pollution in text-driven portrait customization. In our SPF-Portrait, we propose a dual-path pipeline that introduces the original model as a reference for the conventional fine-tuning path. Through contrastive learning, we ensure adaptation to target attributes and purposefully align other unrelated attributes with the original portrait. We introduce a novel Semantic-Aware Fine Control Map, which represents the precise response regions of the target semantics, to spatially guide the alignment process between the contrastive paths. This alignment process not only effectively preserves the performance of the original model but also avoids over-alignment. Furthermore, we propose a novel response enhancement mechanism to reinforce the performance of target attributes, while mitigating representation discrepancy inherent in direct cross-modal supervision. Extensive experiments demonstrate that SPF-Portrait achieves state-of-the-art performance. Project webpage: https://spf-portrait.github.io/SPF-Portrait/

Frontier AI's Impact on the Cybersecurity Landscape

As frontier AI advances rapidly, understanding its impact on cybersecurity and inherent risks is essential to ensuring safe AI evolution (e.g., guiding risk mitigation and informing policymakers). While some studies review AI applications in cybersecurity, none of them comprehensively discuss AI's future impacts or provide concrete recommendations for navigating its safe and secure usage. This paper presents an in-depth analysis of frontier AI's impact on cybersecurity and establishes a systematic framework for risk assessment and mitigation. To this end, we first define and categorize the marginal risks of frontier AI in cybersecurity and then systemically analyze the current and future impacts of frontier AI in cybersecurity, qualitatively and quantitatively. We also discuss why frontier AI likely benefits attackers more than defenders in the short term from equivalence classes, asymmetry, and economic impact. Next, we explore frontier AI's impact on future software system development, including enabling complex hybrid systems while introducing new risks. Based on our findings, we provide security recommendations, including constructing fine-grained benchmarks for risk assessment, designing AI agents for defenses, building security mechanisms and provable defenses for hybrid systems, enhancing pre-deployment security testing and transparency, and strengthening defenses for users. Finally, we present long-term research questions essential for understanding AI's future impacts and unleashing its defensive capabilities.

SAFEFLOW: A Principled Protocol for Trustworthy and Transactional Autonomous Agent Systems

Recent advances in large language models (LLMs) and vision-language models (VLMs) have enabled powerful autonomous agents capable of complex reasoning and multi-modal tool use. Despite their growing capabilities, today's agent frameworks remain fragile, lacking principled mechanisms for secure information flow, reliability, and multi-agent coordination. In this work, we introduce SAFEFLOW, a new protocol-level framework for building trustworthy LLM/VLM-based agents. SAFEFLOW enforces fine-grained information flow control (IFC), precisely tracking provenance, integrity, and confidentiality of all the data exchanged between agents, tools, users, and environments. By constraining LLM reasoning to respect these security labels, SAFEFLOW prevents untrusted or adversarial inputs from contaminating high-integrity decisions. To ensure robustness in concurrent multi-agent settings, SAFEFLOW introduces transactional execution, conflict resolution, and secure scheduling over shared state, preserving global consistency across agents. We further introduce mechanisms, including write-ahead logging, rollback, and secure caches, that further enhance resilience against runtime errors and policy violations. To validate the performances, we built SAFEFLOWBENCH, a comprehensive benchmark suite designed to evaluate agent reliability under adversarial, noisy, and concurrent operational conditions. Extensive experiments demonstrate that agents built with SAFEFLOW maintain impressive task performance and security guarantees even in hostile environments, substantially outperforming state-of-the-art. Together, SAFEFLOW and SAFEFLOWBENCH lay the groundwork for principled, robust, and secure agent ecosystems, advancing the frontier of reliable autonomy.

CodeAttack: Revealing Safety Generalization Challenges of Large Language Models via Code Completion

The rapid advancement of Large Language Models (LLMs) has brought about remarkable generative capabilities but also raised concerns about their potential misuse. While strategies like supervised fine-tuning and reinforcement learning from human feedback have enhanced their safety, these methods primarily focus on natural languages, which may not generalize to other domains. This paper introduces CodeAttack, a framework that transforms natural language inputs into code inputs, presenting a novel environment for testing the safety generalization of LLMs. Our comprehensive studies on state-of-the-art LLMs including GPT-4, Claude-2, and Llama-2 series reveal a new and universal safety vulnerability of these models against code input: CodeAttack bypasses the safety guardrails of all models more than 80\% of the time. We find that a larger distribution gap between CodeAttack and natural language leads to weaker safety generalization, such as encoding natural language input with data structures. Furthermore, we give our hypotheses about the success of CodeAttack: the misaligned bias acquired by LLMs during code training, prioritizing code completion over avoiding the potential safety risk. Finally, we analyze potential mitigation measures. These findings highlight new safety risks in the code domain and the need for more robust safety alignment algorithms to match the code capabilities of LLMs.