new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 8

Benchmark Datasets for Lead-Lag Forecasting on Social Platforms

Social and collaborative platforms emit multivariate time-series traces in which early interactions-such as views, likes, or downloads-are followed, sometimes months or years later, by higher impact like citations, sales, or reviews. We formalize this setting as Lead-Lag Forecasting (LLF): given an early usage channel (the lead), predict a correlated but temporally shifted outcome channel (the lag). Despite the ubiquity of such patterns, LLF has not been treated as a unified forecasting problem within the time-series community, largely due to the absence of standardized datasets. To anchor research in LLF, here we present two high-volume benchmark datasets-arXiv (accesses -> citations of 2.3M papers) and GitHub (pushes/stars -> forks of 3M repositories)-and outline additional domains with analogous lead-lag dynamics, including Wikipedia (page views -> edits), Spotify (streams -> concert attendance), e-commerce (click-throughs -> purchases), and LinkedIn profile (views -> messages). Our datasets provide ideal testbeds for lead-lag forecasting, by capturing long-horizon dynamics across years, spanning the full spectrum of outcomes, and avoiding survivorship bias in sampling. We documented all technical details of data curation and cleaning, verified the presence of lead-lag dynamics through statistical and classification tests, and benchmarked parametric and non-parametric baselines for regression. Our study establishes LLF as a novel forecasting paradigm and lays an empirical foundation for its systematic exploration in social and usage data. Our data portal with downloads and documentation is available at https://lead-lag-forecasting.github.io/.

  • 12 authors
·
Nov 5

EigenTrajectory: Low-Rank Descriptors for Multi-Modal Trajectory Forecasting

Capturing high-dimensional social interactions and feasible futures is essential for predicting trajectories. To address this complex nature, several attempts have been devoted to reducing the dimensionality of the output variables via parametric curve fitting such as the B\'ezier curve and B-spline function. However, these functions, which originate in computer graphics fields, are not suitable to account for socially acceptable human dynamics. In this paper, we present EigenTrajectory (ET), a trajectory prediction approach that uses a novel trajectory descriptor to form a compact space, known here as ET space, in place of Euclidean space, for representing pedestrian movements. We first reduce the complexity of the trajectory descriptor via a low-rank approximation. We transform the pedestrians' history paths into our ET space represented by spatio-temporal principle components, and feed them into off-the-shelf trajectory forecasting models. The inputs and outputs of the models as well as social interactions are all gathered and aggregated in the corresponding ET space. Lastly, we propose a trajectory anchor-based refinement method to cover all possible futures in the proposed ET space. Extensive experiments demonstrate that our EigenTrajectory predictor can significantly improve both the prediction accuracy and reliability of existing trajectory forecasting models on public benchmarks, indicating that the proposed descriptor is suited to represent pedestrian behaviors. Code is publicly available at https://github.com/inhwanbae/EigenTrajectory .

  • 3 authors
·
Jul 18, 2023

DynST: Dynamic Sparse Training for Resource-Constrained Spatio-Temporal Forecasting

The ever-increasing sensor service, though opening a precious path and providing a deluge of earth system data for deep-learning-oriented earth science, sadly introduce a daunting obstacle to their industrial level deployment. Concretely, earth science systems rely heavily on the extensive deployment of sensors, however, the data collection from sensors is constrained by complex geographical and social factors, making it challenging to achieve comprehensive coverage and uniform deployment. To alleviate the obstacle, traditional approaches to sensor deployment utilize specific algorithms to design and deploy sensors. These methods dynamically adjust the activation times of sensors to optimize the detection process across each sub-region. Regrettably, formulating an activation strategy generally based on historical observations and geographic characteristics, which make the methods and resultant models were neither simple nor practical. Worse still, the complex technical design may ultimately lead to a model with weak generalizability. In this paper, we introduce for the first time the concept of spatio-temporal data dynamic sparse training and are committed to adaptively, dynamically filtering important sensor distributions. To our knowledge, this is the first proposal (termed DynST) of an industry-level deployment optimization concept at the data level. However, due to the existence of the temporal dimension, pruning of spatio-temporal data may lead to conflicts at different timestamps. To achieve this goal, we employ dynamic merge technology, along with ingenious dimensional mapping to mitigate potential impacts caused by the temporal aspect. During the training process, DynST utilize iterative pruning and sparse training, repeatedly identifying and dynamically removing sensor perception areas that contribute the least to future predictions.

  • 8 authors
·
Mar 5, 2024

Twitter conversations predict the daily confirmed COVID-19 cases

As of writing this paper, COVID-19 (Coronavirus disease 2019) has spread to more than 220 countries and territories. Following the outbreak, the pandemic's seriousness has made people more active on social media, especially on the microblogging platforms such as Twitter and Weibo. The pandemic-specific discourse has remained on-trend on these platforms for months now. Previous studies have confirmed the contributions of such socially generated conversations towards situational awareness of crisis events. The early forecasts of cases are essential to authorities to estimate the requirements of resources needed to cope with the outgrowths of the virus. Therefore, this study attempts to incorporate the public discourse in the design of forecasting models particularly targeted for the steep-hill region of an ongoing wave. We propose a sentiment-involved topic-based latent variables search methodology for designing forecasting models from publicly available Twitter conversations. As a use case, we implement the proposed methodology on Australian COVID-19 daily cases and Twitter conversations generated within the country. Experimental results: (i) show the presence of latent social media variables that Granger-cause the daily COVID-19 confirmed cases, and (ii) confirm that those variables offer additional prediction capability to forecasting models. Further, the results show that the inclusion of social media variables introduces 48.83--51.38% improvements on RMSE over the baseline models. We also release the large-scale COVID-19 specific geotagged global tweets dataset, MegaGeoCOV, to the public anticipating that the geotagged data of this scale would aid in understanding the conversational dynamics of the pandemic through other spatial and temporal contexts.

  • 3 authors
·
Jun 21, 2022

Predicting the Flu from Instagram

Conventional surveillance systems for monitoring infectious diseases, such as influenza, face challenges due to shortage of skilled healthcare professionals, remoteness of communities and absence of communication infrastructures. Internet-based approaches for surveillance are appealing logistically as well as economically. Search engine queries and Twitter have been the primarily used data sources in such approaches. The aim of this study is to assess the predictive power of an alternative data source, Instagram. By using 317 weeks of publicly available data from Instagram, we trained several machine learning algorithms to both nowcast and forecast the number of official influenza-like illness incidents in Finland where population-wide official statistics about the weekly incidents are available. In addition to date and hashtag count features of online posts, we were able to utilize also the visual content of the posted images with the help of deep convolutional neural networks. Our best nowcasting model reached a mean absolute error of 11.33 incidents per week and a correlation coefficient of 0.963 on the test data. Forecasting models for predicting 1 week and 2 weeks ahead showed statistical significance as well by reaching correlation coefficients of 0.903 and 0.862, respectively. This study demonstrates how social media and in particular, digital photographs shared in them, can be a valuable source of information for the field of infodemiology.

  • 2 authors
·
Nov 27, 2018

Graph Deep Learning for Time Series Forecasting

Graph-based deep learning methods have become popular tools to process collections of correlated time series. Differently from traditional multivariate forecasting methods, neural graph-based predictors take advantage of pairwise relationships by conditioning forecasts on a (possibly dynamic) graph spanning the time series collection. The conditioning can take the form of an architectural inductive bias on the neural forecasting architecture, resulting in a family of deep learning models called spatiotemporal graph neural networks. Such relational inductive biases enable the training of global forecasting models on large time-series collections, while at the same time localizing predictions w.r.t. each element in the set (i.e., graph nodes) by accounting for local correlations among them (i.e., graph edges). Indeed, recent theoretical and practical advances in graph neural networks and deep learning for time series forecasting make the adoption of such processing frameworks appealing and timely. However, most of the studies in the literature focus on proposing variations of existing neural architectures by taking advantage of modern deep learning practices, while foundational and methodological aspects have not been subject to systematic investigation. To fill the gap, this paper aims to introduce a comprehensive methodological framework that formalizes the forecasting problem and provides design principles for graph-based predictive models and methods to assess their performance. At the same time, together with an overview of the field, we provide design guidelines, recommendations, and best practices, as well as an in-depth discussion of open challenges and future research directions.

  • 4 authors
·
Oct 24, 2023

Context is Key: A Benchmark for Forecasting with Essential Textual Information

Forecasting is a critical task in decision-making across numerous domains. While historical numerical data provide a start, they fail to convey the complete context for reliable and accurate predictions. Human forecasters frequently rely on additional information, such as background knowledge and constraints, which can efficiently be communicated through natural language. However, in spite of recent progress with LLM-based forecasters, their ability to effectively integrate this textual information remains an open question. To address this, we introduce "Context is Key" (CiK), a time-series forecasting benchmark that pairs numerical data with diverse types of carefully crafted textual context, requiring models to integrate both modalities; crucially, every task in CiK requires understanding textual context to be solved successfully. We evaluate a range of approaches, including statistical models, time series foundation models, and LLM-based forecasters, and propose a simple yet effective LLM prompting method that outperforms all other tested methods on our benchmark. Our experiments highlight the importance of incorporating contextual information, demonstrate surprising performance when using LLM-based forecasting models, and also reveal some of their critical shortcomings. This benchmark aims to advance multimodal forecasting by promoting models that are both accurate and accessible to decision-makers with varied technical expertise. The benchmark can be visualized at https://servicenow.github.io/context-is-key-forecasting/v0/.

  • 11 authors
·
Oct 24, 2024

TimeSeriesScientist: A General-Purpose AI Agent for Time Series Analysis

Time series forecasting is central to decision-making in domains as diverse as energy, finance, climate, and public health. In practice, forecasters face thousands of short, noisy series that vary in frequency, quality, and horizon, where the dominant cost lies not in model fitting, but in the labor-intensive preprocessing, validation, and ensembling required to obtain reliable predictions. Prevailing statistical and deep learning models are tailored to specific datasets or domains and generalize poorly. A general, domain-agnostic framework that minimizes human intervention is urgently in demand. In this paper, we introduce TimeSeriesScientist (TSci), the first LLM-driven agentic framework for general time series forecasting. The framework comprises four specialized agents: Curator performs LLM-guided diagnostics augmented by external tools that reason over data statistics to choose targeted preprocessing; Planner narrows the hypothesis space of model choice by leveraging multi-modal diagnostics and self-planning over the input; Forecaster performs model fitting and validation and, based on the results, adaptively selects the best model configuration as well as ensemble strategy to make final predictions; and Reporter synthesizes the whole process into a comprehensive, transparent report. With transparent natural-language rationales and comprehensive reports, TSci transforms the forecasting workflow into a white-box system that is both interpretable and extensible across tasks. Empirical results on eight established benchmarks demonstrate that TSci consistently outperforms both statistical and LLM-based baselines, reducing forecast error by an average of 10.4% and 38.2%, respectively. Moreover, TSci produces a clear and rigorous report that makes the forecasting workflow more transparent and interpretable.

  • 7 authors
·
Oct 1 2

Wisdom of the Silicon Crowd: LLM Ensemble Prediction Capabilities Match Human Crowd Accuracy

Human forecasting accuracy in practice relies on the 'wisdom of the crowd' effect, in which predictions about future events are significantly improved by aggregating across a crowd of individual forecasters. Past work on the forecasting ability of large language models (LLMs) suggests that frontier LLMs, as individual forecasters, underperform compared to the gold standard of a human crowd forecasting tournament aggregate. In Study 1, we expand this research by using an LLM ensemble approach consisting of a crowd of twelve LLMs. We compare the aggregated LLM predictions on 31 binary questions to that of a crowd of 925 human forecasters from a three-month forecasting tournament. Our main analysis shows that the LLM crowd outperforms a simple no-information benchmark and is statistically equivalent to the human crowd. We also observe an acquiescence effect, with mean model predictions being significantly above 50%, despite an almost even split of positive and negative resolutions. Moreover, in Study 2, we test whether LLM predictions (of GPT-4 and Claude 2) can be improved by drawing on human cognitive output. We find that both models' forecasting accuracy benefits from exposure to the median human prediction as information, improving accuracy by between 17% and 28%: though this leads to less accurate predictions than simply averaging human and machine forecasts. Our results suggest that LLMs can achieve forecasting accuracy rivaling that of human crowd forecasting tournaments: via the simple, practically applicable method of forecast aggregation. This replicates the 'wisdom of the crowd' effect for LLMs, and opens up their use for a variety applications throughout society.

  • 4 authors
·
Feb 29, 2024

Large Language Model Prediction Capabilities: Evidence from a Real-World Forecasting Tournament

Accurately predicting the future would be an important milestone in the capabilities of artificial intelligence. However, research on the ability of large language models to provide probabilistic predictions about future events remains nascent. To empirically test this ability, we enrolled OpenAI's state-of-the-art large language model, GPT-4, in a three-month forecasting tournament hosted on the Metaculus platform. The tournament, running from July to October 2023, attracted 843 participants and covered diverse topics including Big Tech, U.S. politics, viral outbreaks, and the Ukraine conflict. Focusing on binary forecasts, we show that GPT-4's probabilistic forecasts are significantly less accurate than the median human-crowd forecasts. We find that GPT-4's forecasts did not significantly differ from the no-information forecasting strategy of assigning a 50% probability to every question. We explore a potential explanation, that GPT-4 might be predisposed to predict probabilities close to the midpoint of the scale, but our data do not support this hypothesis. Overall, we find that GPT-4 significantly underperforms in real-world predictive tasks compared to median human-crowd forecasts. A potential explanation for this underperformance is that in real-world forecasting tournaments, the true answers are genuinely unknown at the time of prediction; unlike in other benchmark tasks like professional exams or time series forecasting, where strong performance may at least partly be due to the answers being memorized from the training data. This makes real-world forecasting tournaments an ideal environment for testing the generalized reasoning and prediction capabilities of artificial intelligence going forward.

  • 2 authors
·
Oct 17, 2023

The EpiBench Platform to Propel AI/ML-based Epidemic Forecasting: A Prototype Demonstration Reaching Human Expert-level Performance

During the COVID-19 pandemic, a significant effort has gone into developing ML-driven epidemic forecasting techniques. However, benchmarks do not exist to claim if a new AI/ML technique is better than the existing ones. The "covid-forecast-hub" is a collection of more than 30 teams, including us, that submit their forecasts weekly to the CDC. It is not possible to declare whether one method is better than the other using those forecasts because each team's submission may correspond to different techniques over the period and involve human interventions as the teams are continuously changing/tuning their approach. Such forecasts may be considered "human-expert" forecasts and do not qualify as AI/ML approaches, although they can be used as an indicator of human expert performance. We are interested in supporting AI/ML research in epidemic forecasting which can lead to scalable forecasting without human intervention. Which modeling technique, learning strategy, and data pre-processing technique work well for epidemic forecasting is still an open problem. To help advance the state-of-the-art AI/ML applied to epidemiology, a benchmark with a collection of performance points is needed and the current "state-of-the-art" techniques need to be identified. We propose EpiBench a platform consisting of community-driven benchmarks for AI/ML applied to epidemic forecasting to standardize the challenge with a uniform evaluation protocol. In this paper, we introduce a prototype of EpiBench which is currently running and accepting submissions for the task of forecasting COVID-19 cases and deaths in the US states and We demonstrate that we can utilize the prototype to develop an ensemble relying on fully automated epidemic forecasts (no human intervention) that reaches human-expert level ensemble currently being used by the CDC.

  • 3 authors
·
Feb 4, 2021

Chronos-2: From Univariate to Universal Forecasting

Pretrained time series models have enabled inference-only forecasting systems that produce accurate predictions without task-specific training. However, existing approaches largely focus on univariate forecasting, limiting their applicability in real-world scenarios where multivariate data and covariates play a crucial role. We present Chronos-2, a pretrained model capable of handling univariate, multivariate, and covariate-informed forecasting tasks in a zero-shot manner. Chronos-2 employs a group attention mechanism that facilitates in-context learning (ICL) through efficient information sharing across multiple time series within a group, which may represent sets of related series, variates of a multivariate series, or targets and covariates in a forecasting task. These general capabilities are achieved through training on synthetic datasets that impose diverse multivariate structures on univariate series. Chronos-2 delivers state-of-the-art performance across three comprehensive benchmarks: fev-bench, GIFT-Eval, and Chronos Benchmark II. On fev-bench, which emphasizes multivariate and covariate-informed forecasting, Chronos-2's universal ICL capabilities lead to substantial improvements over existing models. On tasks involving covariates, it consistently outperforms baselines by a wide margin. Case studies in the energy and retail domains further highlight its practical advantages. The in-context learning capabilities of Chronos-2 establish it as a general-purpose forecasting model that can be used "as is" in real-world forecasting pipelines.

amazon Amazon
·
Oct 17 3

S^3: Social-network Simulation System with Large Language Model-Empowered Agents

Social network simulation plays a crucial role in addressing various challenges within social science. It offers extensive applications such as state prediction, phenomena explanation, and policy-making support, among others. In this work, we harness the formidable human-like capabilities exhibited by large language models (LLMs) in sensing, reasoning, and behaving, and utilize these qualities to construct the S^3 system (short for Social network Simulation System). Adhering to the widely employed agent-based simulation paradigm, we employ prompt engineering and prompt tuning techniques to ensure that the agent's behavior closely emulates that of a genuine human within the social network. Specifically, we simulate three pivotal aspects: emotion, attitude, and interaction behaviors. By endowing the agent in the system with the ability to perceive the informational environment and emulate human actions, we observe the emergence of population-level phenomena, including the propagation of information, attitudes, and emotions. We conduct an evaluation encompassing two levels of simulation, employing real-world social network data. Encouragingly, the results demonstrate promising accuracy. This work represents an initial step in the realm of social network simulation empowered by LLM-based agents. We anticipate that our endeavors will serve as a source of inspiration for the development of simulation systems within, but not limited to, social science.

  • 8 authors
·
Jul 27, 2023

BALM-TSF: Balanced Multimodal Alignment for LLM-Based Time Series Forecasting

Time series forecasting is a long-standing and highly challenging research topic. Recently, driven by the rise of large language models (LLMs), research has increasingly shifted from purely time series methods toward harnessing textual modalities to enhance forecasting performance. However, the vast discrepancy between text and temporal data often leads current multimodal architectures to over-emphasise one modality while neglecting the other, resulting in information loss that harms forecasting performance. To address this modality imbalance, we introduce BALM-TSF (Balanced Multimodal Alignment for LLM-Based Time Series Forecasting), a lightweight time series forecasting framework that maintains balance between the two modalities. Specifically, raw time series are processed by the time series encoder, while descriptive statistics of raw time series are fed to an LLM with learnable prompt, producing compact textual embeddings. To ensure balanced cross-modal context alignment of time series and textual embeddings, a simple yet effective scaling strategy combined with a contrastive objective then maps these textual embeddings into the latent space of the time series embeddings. Finally, the aligned textual semantic embeddings and time series embeddings are together integrated for forecasting. Extensive experiments on standard benchmarks show that, with minimal trainable parameters, BALM-TSF achieves state-of-the-art performance in both long-term and few-shot forecasting, confirming its ability to harness complementary information from text and time series. Code is available at https://github.com/ShiqiaoZhou/BALM-TSF.

  • 5 authors
·
Aug 30

AutoCast++: Enhancing World Event Prediction with Zero-shot Ranking-based Context Retrieval

Machine-based prediction of real-world events is garnering attention due to its potential for informed decision-making. Whereas traditional forecasting predominantly hinges on structured data like time-series, recent breakthroughs in language models enable predictions using unstructured text. In particular, (Zou et al., 2022) unveils AutoCast, a new benchmark that employs news articles for answering forecasting queries. Nevertheless, existing methods still trail behind human performance. The cornerstone of accurate forecasting, we argue, lies in identifying a concise, yet rich subset of news snippets from a vast corpus. With this motivation, we introduce AutoCast++, a zero-shot ranking-based context retrieval system, tailored to sift through expansive news document collections for event forecasting. Our approach first re-ranks articles based on zero-shot question-passage relevance, honing in on semantically pertinent news. Following this, the chosen articles are subjected to zero-shot summarization to attain succinct context. Leveraging a pre-trained language model, we conduct both the relevance evaluation and article summarization without needing domain-specific training. Notably, recent articles can sometimes be at odds with preceding ones due to new facts or unanticipated incidents, leading to fluctuating temporal dynamics. To tackle this, our re-ranking mechanism gives preference to more recent articles, and we further regularize the multi-passage representation learning to align with human forecaster responses made on different dates. Empirical results underscore marked improvements across multiple metrics, improving the performance for multiple-choice questions (MCQ) by 48% and true/false (TF) questions by up to 8%.

  • 5 authors
·
Oct 3, 2023

Self-Exploring Language Models for Explainable Link Forecasting on Temporal Graphs via Reinforcement Learning

Forecasting future links is a central task in temporal graph (TG) reasoning, requiring models to leverage historical interactions to predict upcoming ones. Traditional neural approaches, such as temporal graph neural networks, achieve strong performance but lack explainability and cannot be applied to unseen graphs without retraining. Recent studies have begun to explore using large language models (LLMs) for graph reasoning, but most of them are constrained to static graphs or small synthetic TGs and lack the evaluation of the quality of reasoning traces generated by LLMs. In this work, we present Reasoning-Enhanced Learning for Temporal Graphs (ReaL-TG), a reinforcement learning framework that fine-tunes LLMs to perform explainable link forecasting on real-world TGs. ReaL-TG uses outcome-based reward to encourage models to self-explore reasoning strategies from graph structure and to produce explanations that directly justify their predictions. To enable evaluation on LLM-generated reasoning traces, we propose a new evaluation protocol combining ranking metrics with an LLM-as-a-Judge system that assesses both the quality of reasoning and the impact of hallucinations. Experiments with ReaL-TG-4B, obtained by fine-tuning Qwen3-4B under our framework, show that it outperforms much larger frontier LLMs, including GPT-5 mini, on ranking metrics, while producing high-quality explanations confirmed by both the LLM judge and human evaluation.

  • 14 authors
·
Aug 31

Predicting Users' Value Changes by the Friends' Influence from Social Media Usage

Basic human values represent a set of values such as security, independence, success, kindness, and pleasure, which we deem important to our lives. Each of us holds different values with different degrees of significance. Existing studies show that values of a person can be identified from their social network usage. However, the value priority of a person may change over time due to different factors such as life experiences, influence, social structure and technology. Existing studies do not conduct any analysis regarding the change of users' value from the social influence, i.e., group persuasion, form the social media usage. In our research, first, we predict users' value score by the influence of friends from their social media usage. We propose a Bounded Confidence Model (BCM) based value dynamics model from 275 different ego networks in Facebook that predicts how social influence may persuade a person to change their value over time. Then, to predict better, we use particle swarm optimization based hyperparameter tuning technique. We observe that these optimized hyperparameters produce accurate future value score. We also run our approach with different machine learning based methods and find support vector regression (SVR) outperforms other regressor models. By using SVR with the best hyperparameters of BCM model, we find the lowest Mean Squared Error (MSE) score 0.00347.

  • 5 authors
·
Sep 12, 2021

Pay Attention to Evolution: Time Series Forecasting with Deep Graph-Evolution Learning

Time-series forecasting is one of the most active research topics in artificial intelligence. Applications in real-world time series should consider two factors for achieving reliable predictions: modeling dynamic dependencies among multiple variables and adjusting the model's intrinsic hyperparameters. A still open gap in that literature is that statistical and ensemble learning approaches systematically present lower predictive performance than deep learning methods. They generally disregard the data sequence aspect entangled with multivariate data represented in more than one time series. Conversely, this work presents a novel neural network architecture for time-series forecasting that combines the power of graph evolution with deep recurrent learning on distinct data distributions; we named our method Recurrent Graph Evolution Neural Network (ReGENN). The idea is to infer multiple multivariate relationships between co-occurring time-series by assuming that the temporal data depends not only on inner variables and intra-temporal relationships (i.e., observations from itself) but also on outer variables and inter-temporal relationships (i.e., observations from other-selves). An extensive set of experiments was conducted comparing ReGENN with dozens of ensemble methods and classical statistical ones, showing sound improvement of up to 64.87% over the competing algorithms. Furthermore, we present an analysis of the intermediate weights arising from ReGENN, showing that by looking at inter and intra-temporal relationships simultaneously, time-series forecasting is majorly improved if paying attention to how multiple multivariate data synchronously evolve.

  • 6 authors
·
Aug 28, 2020

Before It's Too Late: A State Space Model for the Early Prediction of Misinformation and Disinformation Engagement

In today's digital age, conspiracies and information campaigns can emerge rapidly and erode social and democratic cohesion. While recent deep learning approaches have made progress in modeling engagement through language and propagation models, they struggle with irregularly sampled data and early trajectory assessment. We present IC-Mamba, a novel state space model that forecasts social media engagement by modeling interval-censored data with integrated temporal embeddings. Our model excels at predicting engagement patterns within the crucial first 15-30 minutes of posting (RMSE 0.118-0.143), enabling rapid assessment of content reach. By incorporating interval-censored modeling into the state space framework, IC-Mamba captures fine-grained temporal dynamics of engagement growth, achieving a 4.72% improvement over state-of-the-art across multiple engagement metrics (likes, shares, comments, and emojis). Our experiments demonstrate IC-Mamba's effectiveness in forecasting both post-level dynamics and broader narrative patterns (F1 0.508-0.751 for narrative-level predictions). The model maintains strong predictive performance across extended time horizons, successfully forecasting opinion-level engagement up to 28 days ahead using observation windows of 3-10 days. These capabilities enable earlier identification of potentially problematic content, providing crucial lead time for designing and implementing countermeasures. Code is available at: https://github.com/ltian678/ic-mamba. An interactive dashboard demonstrating our results is available at: https://ic-mamba.behavioral-ds.science.

  • 5 authors
·
Feb 6

AI Predicts AGI: Leveraging AGI Forecasting and Peer Review to Explore LLMs' Complex Reasoning Capabilities

We tasked 16 state-of-the-art large language models (LLMs) with estimating the likelihood of Artificial General Intelligence (AGI) emerging by 2030. To assess the quality of these forecasts, we implemented an automated peer review process (LLM-PR). The LLMs' estimates varied widely, ranging from 3% (Reka- Core) to 47.6% (GPT-4o), with a median of 12.5%. These estimates closely align with a recent expert survey that projected a 10% likelihood of AGI by 2027, underscoring the relevance of LLMs in forecasting complex, speculative scenarios. The LLM-PR process demonstrated strong reliability, evidenced by a high Intraclass Correlation Coefficient (ICC = 0.79), reflecting notable consistency in scoring across the models. Among the models, Pplx-70b-online emerged as the top performer, while Gemini-1.5-pro-api ranked the lowest. A cross-comparison with external benchmarks, such as LMSYS Chatbot Arena, revealed that LLM rankings remained consistent across different evaluation methods, suggesting that existing benchmarks may not encapsulate some of the skills relevant for AGI prediction. We further explored the use of weighting schemes based on external benchmarks, optimizing the alignment of LLMs' predictions with human expert forecasts. This analysis led to the development of a new, 'AGI benchmark' designed to highlight performance differences in AGI-related tasks. Our findings offer insights into LLMs' capabilities in speculative, interdisciplinary forecasting tasks and emphasize the growing need for innovative evaluation frameworks for assessing AI performance in complex, uncertain real-world scenarios.

  • 3 authors
·
Dec 12, 2024

Teaching Time Series to See and Speak: Forecasting with Aligned Visual and Textual Perspectives

Time series forecasting traditionally relies on unimodal numerical inputs, which often struggle to capture high-level semantic patterns due to their dense and unstructured nature. While recent approaches have explored representing time series as text using large language models (LLMs), these methods remain limited by the discrete nature of token sequences and lack the perceptual intuition humans typically apply, such as interpreting visual patterns. In this paper, we propose a multimodal contrastive learning framework that transforms raw time series into structured visual and textual perspectives. Rather than using natural language or real-world images, we construct both modalities directly from numerical sequences. We then align these views in a shared semantic space via contrastive learning, enabling the model to capture richer and more complementary representations. Furthermore, we introduce a variate selection module that leverages the aligned representations to identify the most informative variables for multivariate forecasting. Extensive experiments on fifteen short-term and six long-term forecasting benchmarks demonstrate that our approach consistently outperforms strong unimodal and cross-modal baselines, highlighting the effectiveness of multimodal alignment in enhancing time series forecasting. Code is available at: https://github.com/Ironieser/TimesCLIP.

  • 4 authors
·
Jun 30

Job-SDF: A Multi-Granularity Dataset for Job Skill Demand Forecasting and Benchmarking

In a rapidly evolving job market, skill demand forecasting is crucial as it enables policymakers and businesses to anticipate and adapt to changes, ensuring that workforce skills align with market needs, thereby enhancing productivity and competitiveness. Additionally, by identifying emerging skill requirements, it directs individuals towards relevant training and education opportunities, promoting continuous self-learning and development. However, the absence of comprehensive datasets presents a significant challenge, impeding research and the advancement of this field. To bridge this gap, we present Job-SDF, a dataset designed to train and benchmark job-skill demand forecasting models. Based on 10.35 million public job advertisements collected from major online recruitment platforms in China between 2021 and 2023, this dataset encompasses monthly recruitment demand for 2,324 types of skills across 521 companies. Our dataset uniquely enables evaluating skill demand forecasting models at various granularities, including occupation, company, and regional levels. We benchmark a range of models on this dataset, evaluating their performance in standard scenarios, in predictions focused on lower value ranges, and in the presence of structural breaks, providing new insights for further research. Our code and dataset are publicly accessible via the https://github.com/Job-SDF/benchmark.

  • 8 authors
·
Jun 17, 2024

Generative Pretrained Hierarchical Transformer for Time Series Forecasting

Recent efforts have been dedicated to enhancing time series forecasting accuracy by introducing advanced network architectures and self-supervised pretraining strategies. Nevertheless, existing approaches still exhibit two critical drawbacks. Firstly, these methods often rely on a single dataset for training, limiting the model's generalizability due to the restricted scale of the training data. Secondly, the one-step generation schema is widely followed, which necessitates a customized forecasting head and overlooks the temporal dependencies in the output series, and also leads to increased training costs under different horizon length settings. To address these issues, we propose a novel generative pretrained hierarchical transformer architecture for forecasting, named GPHT. There are two aspects of key designs in GPHT. On the one hand, we advocate for constructing a mixed dataset for pretraining our model, comprising various datasets from diverse data scenarios. This approach significantly expands the scale of training data, allowing our model to uncover commonalities in time series data and facilitating improved transfer to specific datasets. On the other hand, GPHT employs an auto-regressive forecasting approach under the channel-independent assumption, effectively modeling temporal dependencies in the output series. Importantly, no customized forecasting head is required, enabling a single model to forecast at arbitrary horizon settings. We conduct sufficient experiments on eight datasets with mainstream self-supervised pretraining models and supervised models. The results demonstrated that GPHT surpasses the baseline models across various fine-tuning and zero/few-shot learning settings in the traditional long-term forecasting task, providing support for verifying the feasibility of pretrained time series large models.

  • 5 authors
·
Feb 26, 2024

Why Do Transformers Fail to Forecast Time Series In-Context?

Time series forecasting (TSF) remains a challenging and largely unsolved problem in machine learning, despite significant recent efforts leveraging Large Language Models (LLMs), which predominantly rely on Transformer architectures. Empirical evidence consistently shows that even powerful Transformers often fail to outperform much simpler models, e.g., linear models, on TSF tasks; however, a rigorous theoretical understanding of this phenomenon remains limited. In this paper, we provide a theoretical analysis of Transformers' limitations for TSF through the lens of In-Context Learning (ICL) theory. Specifically, under AR(p) data, we establish that: (1) Linear Self-Attention (LSA) models cannot achieve lower expected MSE than classical linear models for in-context forecasting; (2) as the context length approaches to infinity, LSA asymptotically recovers the optimal linear predictor; and (3) under Chain-of-Thought (CoT) style inference, predictions collapse to the mean exponentially. We empirically validate these findings through carefully designed experiments. Our theory not only sheds light on several previously underexplored phenomena but also offers practical insights for designing more effective forecasting architectures. We hope our work encourages the broader research community to revisit the fundamental theoretical limitations of TSF and to critically evaluate the direct application of increasingly sophisticated architectures without deeper scrutiny.

  • 4 authors
·
Oct 10 2

Time-LLM: Time Series Forecasting by Reprogramming Large Language Models

Time series forecasting holds significant importance in many real-world dynamic systems and has been extensively studied. Unlike natural language process (NLP) and computer vision (CV), where a single large model can tackle multiple tasks, models for time series forecasting are often specialized, necessitating distinct designs for different tasks and applications. While pre-trained foundation models have made impressive strides in NLP and CV, their development in time series domains has been constrained by data sparsity. Recent studies have revealed that large language models (LLMs) possess robust pattern recognition and reasoning abilities over complex sequences of tokens. However, the challenge remains in effectively aligning the modalities of time series data and natural language to leverage these capabilities. In this work, we present Time-LLM, a reprogramming framework to repurpose LLMs for general time series forecasting with the backbone language models kept intact. We begin by reprogramming the input time series with text prototypes before feeding it into the frozen LLM to align the two modalities. To augment the LLM's ability to reason with time series data, we propose Prompt-as-Prefix (PaP), which enriches the input context and directs the transformation of reprogrammed input patches. The transformed time series patches from the LLM are finally projected to obtain the forecasts. Our comprehensive evaluations demonstrate that Time-LLM is a powerful time series learner that outperforms state-of-the-art, specialized forecasting models. Moreover, Time-LLM excels in both few-shot and zero-shot learning scenarios.

  • 11 authors
·
Oct 2, 2023

Foresight -- Generative Pretrained Transformer (GPT) for Modelling of Patient Timelines using EHRs

Background: Electronic Health Records hold detailed longitudinal information about each patient's health status and general clinical history, a large portion of which is stored within the unstructured text. Existing approaches focus mostly on structured data and a subset of single-domain outcomes. We explore how temporal modelling of patients from free text and structured data, using deep generative transformers can be used to forecast a wide range of future disorders, substances, procedures or findings. Methods: We present Foresight, a novel transformer-based pipeline that uses named entity recognition and linking tools to convert document text into structured, coded concepts, followed by providing probabilistic forecasts for future medical events such as disorders, substances, procedures and findings. We processed the entire free-text portion from three different hospital datasets totalling 811336 patients covering both physical and mental health. Findings: On tests in two UK hospitals (King's College Hospital, South London and Maudsley) and the US MIMIC-III dataset precision@10 0.68, 0.76 and 0.88 was achieved for forecasting the next disorder in a patient timeline, while precision@10 of 0.80, 0.81 and 0.91 was achieved for forecasting the next biomedical concept. Foresight was also validated on 34 synthetic patient timelines by five clinicians and achieved relevancy of 97% for the top forecasted candidate disorder. As a generative model, it can forecast follow-on biomedical concepts for as many steps as required. Interpretation: Foresight is a general-purpose model for biomedical concept modelling that can be used for real-world risk forecasting, virtual trials and clinical research to study the progression of disorders, simulate interventions and counterfactuals, and educational purposes.

  • 12 authors
·
Dec 13, 2022

SFHand: A Streaming Framework for Language-guided 3D Hand Forecasting and Embodied Manipulation

Real-time 3D hand forecasting is a critical component for fluid human-computer interaction in applications like AR and assistive robotics. However, existing methods are ill-suited for these scenarios, as they typically require offline access to accumulated video sequences and cannot incorporate language guidance that conveys task intent. To overcome these limitations, we introduce SFHand, the first streaming framework for language-guided 3D hand forecasting. SFHand autoregressively predicts a comprehensive set of future 3D hand states, including hand type, 2D bounding box, 3D pose, and trajectory, from a continuous stream of video and language instructions. Our framework combines a streaming autoregressive architecture with an ROI-enhanced memory layer, capturing temporal context while focusing on salient hand-centric regions. To enable this research, we also introduce EgoHaFL, the first large-scale dataset featuring synchronized 3D hand poses and language instructions. We demonstrate that SFHand achieves new state-of-the-art results in 3D hand forecasting, outperforming prior work by a significant margin of up to 35.8%. Furthermore, we show the practical utility of our learned representations by transferring them to downstream embodied manipulation tasks, improving task success rates by up to 13.4% on multiple benchmarks. Dataset page: https://huggingface.co/datasets/ut-vision/EgoHaFL, project page: https://github.com/ut-vision/SFHand.

  • 5 authors
·
Nov 22

Efficient Multivariate Time Series Forecasting via Calibrated Language Models with Privileged Knowledge Distillation

Multivariate time series forecasting (MTSF) endeavors to predict future observations given historical data, playing a crucial role in time series data management systems. With advancements in large language models (LLMs), recent studies employ textual prompt tuning to infuse the knowledge of LLMs into MTSF. However, the deployment of LLMs often suffers from low efficiency during the inference phase. To address this problem, we introduce TimeKD, an efficient MTSF framework that leverages the calibrated language models and privileged knowledge distillation. TimeKD aims to generate high-quality future representations from the proposed cross-modality teacher model and cultivate an effective student model. The cross-modality teacher model adopts calibrated language models (CLMs) with ground truth prompts, motivated by the paradigm of Learning Under Privileged Information (LUPI). In addition, we design a subtractive cross attention (SCA) mechanism to refine these representations. To cultivate an effective student model, we propose an innovative privileged knowledge distillation (PKD) mechanism including correlation and feature distillation. PKD enables the student to replicate the teacher's behavior while minimizing their output discrepancy. Extensive experiments on real data offer insight into the effectiveness, efficiency, and scalability of the proposed TimeKD.

  • 8 authors
·
May 4

AgentSociety: Large-Scale Simulation of LLM-Driven Generative Agents Advances Understanding of Human Behaviors and Society

Understanding human behavior and society is a central focus in social sciences, with the rise of generative social science marking a significant paradigmatic shift. By leveraging bottom-up simulations, it replaces costly and logistically challenging traditional experiments with scalable, replicable, and systematic computational approaches for studying complex social dynamics. Recent advances in large language models (LLMs) have further transformed this research paradigm, enabling the creation of human-like generative social agents and realistic simulacra of society. In this paper, we propose AgentSociety, a large-scale social simulator that integrates LLM-driven agents, a realistic societal environment, and a powerful large-scale simulation engine. Based on the proposed simulator, we generate social lives for over 10k agents, simulating their 5 million interactions both among agents and between agents and their environment. Furthermore, we explore the potential of AgentSociety as a testbed for computational social experiments, focusing on four key social issues: polarization, the spread of inflammatory messages, the effects of universal basic income policies, and the impact of external shocks such as hurricanes. These four issues serve as valuable cases for assessing AgentSociety's support for typical research methods -- such as surveys, interviews, and interventions -- as well as for investigating the patterns, causes, and underlying mechanisms of social issues. The alignment between AgentSociety's outcomes and real-world experimental results not only demonstrates its ability to capture human behaviors and their underlying mechanisms, but also underscores its potential as an important platform for social scientists and policymakers.

  • 16 authors
·
Feb 12

Predict, Refine, Synthesize: Self-Guiding Diffusion Models for Probabilistic Time Series Forecasting

Diffusion models have achieved state-of-the-art performance in generative modeling tasks across various domains. Prior works on time series diffusion models have primarily focused on developing conditional models tailored to specific forecasting or imputation tasks. In this work, we explore the potential of task-agnostic, unconditional diffusion models for several time series applications. We propose TSDiff, an unconditionally trained diffusion model for time series. Our proposed self-guidance mechanism enables conditioning TSDiff for downstream tasks during inference, without requiring auxiliary networks or altering the training procedure. We demonstrate the effectiveness of our method on three different time series tasks: forecasting, refinement, and synthetic data generation. First, we show that TSDiff is competitive with several task-specific conditional forecasting methods (predict). Second, we leverage the learned implicit probability density of TSDiff to iteratively refine the predictions of base forecasters with reduced computational overhead over reverse diffusion (refine). Notably, the generative performance of the model remains intact -- downstream forecasters trained on synthetic samples from TSDiff outperform forecasters that are trained on samples from other state-of-the-art generative time series models, occasionally even outperforming models trained on real data (synthesize).

  • 6 authors
·
Jul 21, 2023

What Constitutes Good Contrastive Learning in Time-Series Forecasting?

In recent years, the introduction of self-supervised contrastive learning (SSCL) has demonstrated remarkable improvements in representation learning across various domains, including natural language processing and computer vision. By leveraging the inherent benefits of self-supervision, SSCL enables the pre-training of representation models using vast amounts of unlabeled data. Despite these advances, there remains a significant gap in understanding the impact of different SSCL strategies on time series forecasting performance, as well as the specific benefits that SSCL can bring. This paper aims to address these gaps by conducting a comprehensive analysis of the effectiveness of various training variables, including different SSCL algorithms, learning strategies, model architectures, and their interplay. Additionally, to gain deeper insights into the improvements brought about by SSCL in the context of time-series forecasting, a qualitative analysis of the empirical receptive field is performed. Through our experiments, we demonstrate that the end-to-end training of a Transformer model using the Mean Squared Error (MSE) loss and SSCL emerges as the most effective approach in time series forecasting. Notably, the incorporation of the contrastive objective enables the model to prioritize more pertinent information for forecasting, such as scale and periodic relationships. These findings contribute to a better understanding of the benefits of SSCL in time series forecasting and provide valuable insights for future research in this area. Our codes are available at https://github.com/chiyuzhang94/contrastive_learning_time-series_e2e.

  • 4 authors
·
Jun 21, 2023

TimeXer: Empowering Transformers for Time Series Forecasting with Exogenous Variables

Deep models have demonstrated remarkable performance in time series forecasting. However, due to the partially-observed nature of real-world applications, solely focusing on the target of interest, so-called endogenous variables, is usually insufficient to guarantee accurate forecasting. Notably, a system is often recorded into multiple variables, where the exogenous variables can provide valuable external information for endogenous variables. Thus, unlike well-established multivariate or univariate forecasting paradigms that either treat all the variables equally or ignore exogenous information, this paper focuses on a more practical setting: time series forecasting with exogenous variables. We propose a novel approach, TimeXer, to ingest external information to enhance the forecasting of endogenous variables. With deftly designed embedding layers, TimeXer empowers the canonical Transformer with the ability to reconcile endogenous and exogenous information, where patch-wise self-attention and variate-wise cross-attention are used simultaneously. Moreover, global endogenous tokens are learned to effectively bridge the causal information underlying exogenous series into endogenous temporal patches. Experimentally, TimeXer achieves consistent state-of-the-art performance on twelve real-world forecasting benchmarks and exhibits notable generality and scalability. Code is available at this repository: https://github.com/thuml/TimeXer.

  • 9 authors
·
Feb 29, 2024

VisionTS++: Cross-Modal Time Series Foundation Model with Continual Pre-trained Vision Backbones

Recent studies have indicated that vision models pre-trained on images can serve as time series foundation models (TSFMs) by reformulating time series forecasting (TSF) as image reconstruction. However, effective cross-modal transfer from vision to time series remains challenging due to three discrepancies: (1) the data-modality gap between structured, bounded image data and unbounded, heterogeneous time series; (2) the multivariate-forecasting gap between fixed RGB-three-channel vision models and time series with arbitrary numbers of variates; and (3) the probabilistic-forecasting gap between the deterministic outputs of vision models and the requirement for uncertainty-aware probabilistic predictions. To bridge these gaps, we propose VisonTS++, a TSFM based on continual pre-training of a vision model on large-scale time series. Our approach introduces three key innovations: (1) vision-model-based filtering to identify high-quality sequences to stabilize pre-training and mitigate modality gap; (2) colorized multivariate conversion, encoding multivariate series as multi-subfigure RGB images to enhance cross-variate modeling; (3) multi-quantile forecasting, using parallel reconstruction heads to generate quantile forecasts without parametric assumptions. Experiments show that VisionTS++ achieves state-of-the-art performance in both in-distribution and out-of-distribution forecasting, outperforming specialized TSFMs by 6%-44% in MSE reduction and ranking first in GIFT-Eval benchmark which comprises 23 datasets across 7 domains. Our work demonstrates that with appropriate adaptation, vision models can effectively generalize to TSF, thus advancing the pursuit of universal TSFMs. Code is available at https://github.com/HALF111/VisionTSpp.

  • 8 authors
·
Aug 6

Scaling transformer neural networks for skillful and reliable medium-range weather forecasting

Weather forecasting is a fundamental problem for anticipating and mitigating the impacts of climate change. Recently, data-driven approaches for weather forecasting based on deep learning have shown great promise, achieving accuracies that are competitive with operational systems. However, those methods often employ complex, customized architectures without sufficient ablation analysis, making it difficult to understand what truly contributes to their success. Here we introduce Stormer, a simple transformer model that achieves state-of-the-art performance on weather forecasting with minimal changes to the standard transformer backbone. We identify the key components of Stormer through careful empirical analyses, including weather-specific embedding, randomized dynamics forecast, and pressure-weighted loss. At the core of Stormer is a randomized forecasting objective that trains the model to forecast the weather dynamics over varying time intervals. During inference, this allows us to produce multiple forecasts for a target lead time and combine them to obtain better forecast accuracy. On WeatherBench 2, Stormer performs competitively at short to medium-range forecasts and outperforms current methods beyond 7 days, while requiring orders-of-magnitude less training data and compute. Additionally, we demonstrate Stormer's favorable scaling properties, showing consistent improvements in forecast accuracy with increases in model size and training tokens. Code and checkpoints are available at https://github.com/tung-nd/stormer.

  • 9 authors
·
Dec 6, 2023

TimeCMA: Towards LLM-Empowered Time Series Forecasting via Cross-Modality Alignment

The widespread adoption of scalable mobile sensing has led to large amounts of time series data for real-world applications. A fundamental application is multivariate time series forecasting (MTSF), which aims to predict future time series values based on historical observations. Existing MTSF methods suffer from limited parameterization and small-scale training data. Recently, Large language models (LLMs) have been introduced in time series, which achieve promising forecasting performance but incur heavy computational costs. To solve these challenges, we propose TimeCMA, an LLM-empowered framework for time series forecasting with cross-modality alignment. We design a dual-modality encoding module with two branches, where the time series encoding branch extracts relatively low-quality yet pure embeddings of time series through an inverted Transformer. In addition, the LLM-empowered encoding branch wraps the same time series as prompts to obtain high-quality yet entangled prompt embeddings via a Pre-trained LLM. Then, we design a cross-modality alignment module to retrieve high-quality and pure time series embeddings from the prompt embeddings. Moreover, we develop a time series forecasting module to decode the aligned embeddings while capturing dependencies among multiple variables for forecasting. Notably, we tailor the prompt to encode sufficient temporal information into a last token and design the last token embedding storage to reduce computational costs. Extensive experiments on real data offer insight into the accuracy and efficiency of the proposed framework.

  • 8 authors
·
Jun 2, 2024

Rating Multi-Modal Time-Series Forecasting Models (MM-TSFM) for Robustness Through a Causal Lens

AI systems are notorious for their fragility; minor input changes can potentially cause major output swings. When such systems are deployed in critical areas like finance, the consequences of their uncertain behavior could be severe. In this paper, we focus on multi-modal time-series forecasting, where imprecision due to noisy or incorrect data can lead to erroneous predictions, impacting stakeholders such as analysts, investors, and traders. Recently, it has been shown that beyond numeric data, graphical transformations can be used with advanced visual models to achieve better performance. In this context, we introduce a rating methodology to assess the robustness of Multi-Modal Time-Series Forecasting Models (MM-TSFM) through causal analysis, which helps us understand and quantify the isolated impact of various attributes on the forecasting accuracy of MM-TSFM. We apply our novel rating method on a variety of numeric and multi-modal forecasting models in a large experimental setup (six input settings of control and perturbations, ten data distributions, time series from six leading stocks in three industries over a year of data, and five time-series forecasters) to draw insights on robust forecasting models and the context of their strengths. Within the scope of our study, our main result is that multi-modal (numeric + visual) forecasting, which was found to be more accurate than numeric forecasting in previous studies, can also be more robust in diverse settings. Our work will help different stakeholders of time-series forecasting understand the models` behaviors along trust (robustness) and accuracy dimensions to select an appropriate model for forecasting using our rating method, leading to improved decision-making.

  • 7 authors
·
Jun 12, 2024

A Survey of Graph Neural Networks for Social Recommender Systems

Social recommender systems (SocialRS) simultaneously leverage user-to-item interactions as well as user-to-user social relations for the task of generating item recommendations to users. Additionally exploiting social relations is clearly effective in understanding users' tastes due to the effects of homophily and social influence. For this reason, SocialRS has increasingly attracted attention. In particular, with the advance of Graph Neural Networks (GNN), many GNN-based SocialRS methods have been developed recently. Therefore, we conduct a comprehensive and systematic review of the literature on GNN-based SocialRS. In this survey, we first identify 80 papers on GNN-based SocialRS after annotating 2151 papers by following the PRISMA framework (Preferred Reporting Items for Systematic Reviews and Meta-Analysis). Then, we comprehensively review them in terms of their inputs and architectures to propose a novel taxonomy: (1) input taxonomy includes 5 groups of input type notations and 7 groups of input representation notations; (2) architecture taxonomy includes 8 groups of GNN encoder, 2 groups of decoder, and 12 groups of loss function notations. We classify the GNN-based SocialRS methods into several categories as per the taxonomy and describe their details. Furthermore, we summarize the benchmark datasets and metrics widely used to evaluate the GNN-based SocialRS methods. Finally, we conclude this survey by presenting some future research directions.

  • 7 authors
·
Dec 8, 2022

Adapting LLMs to Time Series Forecasting via Temporal Heterogeneity Modeling and Semantic Alignment

Large Language Models (LLMs) have recently demonstrated impressive capabilities in natural language processing due to their strong generalization and sequence modeling capabilities. However, their direct application to time series forecasting remains challenging due to two fundamental issues: the inherent heterogeneity of temporal patterns and the modality gap between continuous numerical signals and discrete language representations. In this work, we propose TALON, a unified framework that enhances LLM-based forecasting by modeling temporal heterogeneity and enforcing semantic alignment. Specifically, we design a Heterogeneous Temporal Encoder that partitions multivariate time series into structurally coherent segments, enabling localized expert modeling across diverse temporal patterns. To bridge the modality gap, we introduce a Semantic Alignment Module that aligns temporal features with LLM-compatible representations, enabling effective integration of time series into language-based models while eliminating the need for handcrafted prompts during inference. Extensive experiments on seven real-world benchmarks demonstrate that TALON achieves superior performance across all datasets, with average MSE improvements of up to 11\% over recent state-of-the-art methods. These results underscore the effectiveness of incorporating both pattern-aware and semantic-aware designs when adapting LLMs for time series forecasting. The code is available at: https://github.com/syrGitHub/TALON.

  • 8 authors
·
Aug 10

Social Simulacra: Creating Populated Prototypes for Social Computing Systems

Social computing prototypes probe the social behaviors that may arise in an envisioned system design. This prototyping practice is currently limited to recruiting small groups of people. Unfortunately, many challenges do not arise until a system is populated at a larger scale. Can a designer understand how a social system might behave when populated, and make adjustments to the design before the system falls prey to such challenges? We introduce social simulacra, a prototyping technique that generates a breadth of realistic social interactions that may emerge when a social computing system is populated. Social simulacra take as input the designer's description of a community's design -- goal, rules, and member personas -- and produce as output an instance of that design with simulated behavior, including posts, replies, and anti-social behaviors. We demonstrate that social simulacra shift the behaviors that they generate appropriately in response to design changes, and that they enable exploration of "what if?" scenarios where community members or moderators intervene. To power social simulacra, we contribute techniques for prompting a large language model to generate thousands of distinct community members and their social interactions with each other; these techniques are enabled by the observation that large language models' training data already includes a wide variety of positive and negative behavior on social media platforms. In evaluations, we show that participants are often unable to distinguish social simulacra from actual community behavior and that social computing designers successfully refine their social computing designs when using social simulacra.

  • 6 authors
·
Aug 8, 2022

AI-Augmented Surveys: Leveraging Large Language Models and Surveys for Opinion Prediction

Large language models (LLMs) that produce human-like responses have begun to revolutionize research practices in the social sciences. We develop a novel methodological framework that fine-tunes LLMs with repeated cross-sectional surveys to incorporate the meaning of survey questions, individual beliefs, and temporal contexts for opinion prediction. We introduce two new emerging applications of the AI-augmented survey: retrodiction (i.e., predict year-level missing responses) and unasked opinion prediction (i.e., predict entirely missing responses). Among 3,110 binarized opinions from 68,846 Americans in the General Social Survey from 1972 to 2021, our models based on Alpaca-7b excel in retrodiction (AUC = 0.86 for personal opinion prediction, rho = 0.98 for public opinion prediction). These remarkable prediction capabilities allow us to fill in missing trends with high confidence and pinpoint when public attitudes changed, such as the rising support for same-sex marriage. On the other hand, our fine-tuned Alpaca-7b models show modest success in unasked opinion prediction (AUC = 0.73, rho = 0.67). We discuss practical constraints and ethical concerns regarding individual autonomy and privacy when using LLMs for opinion prediction. Our study demonstrates that LLMs and surveys can mutually enhance each other's capabilities: LLMs can broaden survey potential, while surveys can improve the alignment of LLMs.

  • 2 authors
·
May 16, 2023

TS-RAG: Retrieval-Augmented Generation based Time Series Foundation Models are Stronger Zero-Shot Forecaster

Large Language Models (LLMs) and Foundation Models (FMs) have recently become prevalent for time series forecasting tasks. While fine-tuning LLMs enables domain adaptation, they often struggle to generalize across diverse and unseen datasets. Moreover, existing Time Series Foundation Models (TSFMs) still face challenges in handling non-stationary dynamics and distribution shifts, largely due to the lack of effective mechanisms for adaptation. To this end, we present TS-RAG, a retrieval-augmented generation framework for time series forecasting that enhances the generalization and interpretability of TSFMs. Specifically, TS-RAG leverages pre-trained time series encoders to retrieve semantically relevant segments from a dedicated knowledge base, enriching the contextual representation of the input query. Furthermore, we propose an Adaptive Retrieval Mixer (ARM) module that dynamically fuses the retrieved patterns with the TSFM's internal representation, improving forecasting accuracy without requiring task-specific fine-tuning. Thorough empirical studies on seven public benchmark datasets demonstrate that TS-RAG achieves state-of-the-art zero-shot forecasting performance, outperforming the existing TSFMs by up to 6.84% across diverse domains while also providing desirable interpretability. Our code and data are available at: https://github.com/UConn-DSIS/TS-RAG

  • 10 authors
·
Mar 6

AIMI: Leveraging Future Knowledge and Personalization in Sparse Event Forecasting for Treatment Adherence

Adherence to prescribed treatments is crucial for individuals with chronic conditions to avoid costly or adverse health outcomes. For certain patient groups, intensive lifestyle interventions are vital for enhancing medication adherence. Accurate forecasting of treatment adherence can open pathways to developing an on-demand intervention tool, enabling timely and personalized support. With the increasing popularity of smartphones and wearables, it is now easier than ever to develop and deploy smart activity monitoring systems. However, effective forecasting systems for treatment adherence based on wearable sensors are still not widely available. We close this gap by proposing Adherence Forecasting and Intervention with Machine Intelligence (AIMI). AIMI is a knowledge-guided adherence forecasting system that leverages smartphone sensors and previous medication history to estimate the likelihood of forgetting to take a prescribed medication. A user study was conducted with 27 participants who took daily medications to manage their cardiovascular diseases. We designed and developed CNN and LSTM-based forecasting models with various combinations of input features and found that LSTM models can forecast medication adherence with an accuracy of 0.932 and an F-1 score of 0.936. Moreover, through a series of ablation studies involving convolutional and recurrent neural network architectures, we demonstrate that leveraging known knowledge about future and personalized training enhances the accuracy of medication adherence forecasting. Code available: https://github.com/ab9mamun/AIMI.

  • 3 authors
·
Mar 20 2

OneForecast: A Universal Framework for Global and Regional Weather Forecasting

Accurate weather forecasts are important for disaster prevention, agricultural planning, etc. Traditional numerical weather prediction (NWP) methods offer physically interpretable high-accuracy predictions but are computationally expensive and fail to fully leverage rapidly growing historical data. In recent years, deep learning models have made significant progress in weather forecasting, but challenges remain, such as balancing global and regional high-resolution forecasts, excessive smoothing in extreme event predictions, and insufficient dynamic system modeling. To address these issues, this paper proposes a global-regional nested weather forecasting framework (OneForecast) based on graph neural networks. By combining a dynamic system perspective with multi-grid theory, we construct a multi-scale graph structure and densify the target region to capture local high-frequency features. We introduce an adaptive messaging mechanism, using dynamic gating units to deeply integrate node and edge features for more accurate extreme event forecasting. For high-resolution regional forecasts, we propose a neural nested grid method to mitigate boundary information loss. Experimental results show that OneForecast performs excellently across global to regional scales and short-term to long-term forecasts, especially in extreme event predictions. Codes link https://github.com/YuanGao-YG/OneForecast.

  • 14 authors
·
Feb 1

ARIES: Relation Assessment and Model Recommendation for Deep Time Series Forecasting

Recent advancements in deep learning models for time series forecasting have been significant. These models often leverage fundamental time series properties such as seasonality and non-stationarity, which may suggest an intrinsic link between model performance and data properties. However, existing benchmark datasets fail to offer diverse and well-defined temporal patterns, restricting the systematic evaluation of such connections. Additionally, there is no effective model recommendation approach, leading to high time and cost expenditures when testing different architectures across different downstream applications. For those reasons, we propose ARIES, a framework for assessing relation between time series properties and modeling strategies, and for recommending deep forcasting models for realistic time series. First, we construct a synthetic dataset with multiple distinct patterns, and design a comprehensive system to compute the properties of time series. Next, we conduct an extensive benchmarking of over 50 forecasting models, and establish the relationship between time series properties and modeling strategies. Our experimental results reveal a clear correlation. Based on these findings, we propose the first deep forecasting model recommender, capable of providing interpretable suggestions for real-world time series. In summary, ARIES is the first study to establish the relations between the properties of time series data and modeling strategies, while also implementing a model recommendation system. The code is available at: https://github.com/blisky-li/ARIES.

  • 8 authors
·
Sep 7

Generative Pre-Trained Diffusion Paradigm for Zero-Shot Time Series Forecasting

In recent years, generative pre-trained paradigms such as Large Language Models (LLMs) and Large Vision Models (LVMs) have achieved revolutionary advancements and widespread real-world applications. Particularly, the emergence of pre-trained LLMs-based temporal works, compared to previous deep model approaches, has demonstrated superior generalization and robustness, showcasing the potential of generative pre-trained paradigms as foundation models for time series. However, those LLMs-based works mainly focus on cross-modal research, i.e., leveraging the language capabilities of LLMs in time series contexts. Although they have achieved impressive performance, there still exist the issues of concept drift caused by differences in data distribution and inflexibility caused by misalignment of dimensions. To this end, inspired by recent work on LVMs, we reconsider the paradigm of time series modeling. In this paper, we comprehensively explore, for the first time, the effectiveness and superiority of the Generative Pre-trained Diffusion (GPD) paradigm in real-world multivariate time series forecasting (TSF). Specifically, to mitigate performance bias introduced by sophisticated networks, we propose a straightforward MLP diffusion network for unconditional modeling of time series. Then we employ a zero-shot and tuning-free method to predict (generate) future data using historical data as prompts. The GPD paradigm is established on the time series modality, effectively preventing the phenomenon of concept drift, and enabling flexible forecasting of arbitrary lengths. We demonstrate that the GPD paradigm achieves comprehensive performance and generalization comparable to current SOTA LLM-based and deep model paradigms on mainstream benchmarks and various TSF tasks. Extensive experiments validate the potential of the GPD paradigm and its assistance in future related research.

  • 9 authors
·
Jun 4, 2024

CoRA: Covariate-Aware Adaptation of Time Series Foundation Models

Time Series Foundation Models (TSFMs) have shown significant impact through their model capacity, scalability, and zero-shot generalization. However, due to the heterogeneity of inter-variate dependencies and the backbone scalability on large-scale multivariate datasets, most TSFMs are typically pre-trained on univariate time series. This limitation renders them oblivious to crucial information from diverse covariates in real-world forecasting tasks. To further enhance the performance of TSFMs, we propose a general covariate-aware adaptation (CoRA) framework for TSFMs. It leverages pre-trained backbones of foundation models while effectively incorporating exogenous covariates from various modalities, including time series, language, and images, to improve the quality of predictions. Technically, CoRA maintains the equivalence of initialization and parameter consistency during adaptation. With preserved backbones of foundation models as frozen feature extractors, the outcome embeddings from foundation models are empirically demonstrated more informative than raw data. Further, CoRA employs a novel Granger Causality Embedding (GCE) to automatically evaluate covariates regarding their causal predictability with respect to the target variate. We incorporate these weighted embeddings with a zero-initialized condition-injection mechanism, avoiding catastrophic forgetting of pre-trained foundation models and gradually integrates exogenous information. Extensive experiments show that CoRA of TSFMs surpasses state-of-the-art covariate-aware deep forecasters with full or few-shot training samples, achieving 31.1% MSE reduction on covariate-aware forecasting. Compared to other adaptation methods, CoRA exhibits strong compatibility with various advanced TSFMs and extends the scope of covariates to other modalities, presenting a practical paradigm for the application of TSFMs.

  • 8 authors
·
Oct 14

S^2IP-LLM: Semantic Space Informed Prompt Learning with LLM for Time Series Forecasting

Recently, there has been a growing interest in leveraging pre-trained large language models (LLMs) for various time series applications. However, the semantic space of LLMs, established through the pre-training, is still underexplored and may help yield more distinctive and informative representations to facilitate time series forecasting. To this end, we propose Semantic Space Informed Prompt learning with LLM (S^2IP-LLM) to align the pre-trained semantic space with time series embeddings space and perform time series forecasting based on learned prompts from the joint space. We first design a tokenization module tailored for cross-modality alignment, which explicitly concatenates patches of decomposed time series components to create embeddings that effectively encode the temporal dynamics. Next, we leverage the pre-trained word token embeddings to derive semantic anchors and align selected anchors with time series embeddings by maximizing the cosine similarity in the joint space. This way, S^2IP-LLM can retrieve relevant semantic anchors as prompts to provide strong indicators (context) for time series that exhibit different temporal dynamics. With thorough empirical studies on multiple benchmark datasets, we demonstrate that the proposed S^2IP-LLM can achieve superior forecasting performance over state-of-the-art baselines. Furthermore, our ablation studies and visualizations verify the necessity of prompt learning informed by semantic space.

  • 6 authors
·
Mar 9, 2024