8 DubWise: Video-Guided Speech Duration Control in Multimodal LLM-based Text-to-Speech for Dubbing Audio-visual alignment after dubbing is a challenging research problem. To this end, we propose a novel method, DubWise Multi-modal Large Language Model (LLM)-based Text-to-Speech (TTS), which can control the speech duration of synthesized speech in such a way that it aligns well with the speakers lip movements given in the reference video even when the spoken text is different or in a different language. To accomplish this, we propose to utilize cross-modal attention techniques in a pre-trained GPT-based TTS. We combine linguistic tokens from text, speaker identity tokens via a voice cloning network, and video tokens via a proposed duration controller network. We demonstrate the effectiveness of our system on the Lip2Wav-Chemistry and LRS2 datasets. Also, the proposed method achieves improved lip sync and naturalness compared to the SOTAs for the same language but different text (i.e., non-parallel) and the different language, different text (i.e., cross-lingual) scenarios. 5 authors · Jun 13, 2024 1
- Autoregressive Speech Enhancement via Acoustic Tokens In speech processing pipelines, improving the quality and intelligibility of real-world recordings is crucial. While supervised regression is the primary method for speech enhancement, audio tokenization is emerging as a promising alternative for a smooth integration with other modalities. However, research on speech enhancement using discrete representations is still limited. Previous work has mainly focused on semantic tokens, which tend to discard key acoustic details such as speaker identity. Additionally, these studies typically employ non-autoregressive models, assuming conditional independence of outputs and overlooking the potential improvements offered by autoregressive modeling. To address these gaps we: 1) conduct a comprehensive study of the performance of acoustic tokens for speech enhancement, including the effect of bitrate and noise strength; 2) introduce a novel transducer-based autoregressive architecture specifically designed for this task. Experiments on VoiceBank and Libri1Mix datasets show that acoustic tokens outperform semantic tokens in terms of preserving speaker identity, and that our autoregressive approach can further improve performance. Nevertheless, we observe that discrete representations still fall short compared to continuous ones, highlighting the need for further research in this area. 3 authors · Jul 17
- How Should We Extract Discrete Audio Tokens from Self-Supervised Models? Discrete audio tokens have recently gained attention for their potential to bridge the gap between audio and language processing. Ideal audio tokens must preserve content, paralinguistic elements, speaker identity, and many other audio details. Current audio tokenization methods fall into two categories: Semantic tokens, acquired through quantization of Self-Supervised Learning (SSL) models, and Neural compression-based tokens (codecs). Although previous studies have benchmarked codec models to identify optimal configurations, the ideal setup for quantizing pretrained SSL models remains unclear. This paper explores the optimal configuration of semantic tokens across discriminative and generative tasks. We propose a scalable solution to train a universal vocoder across multiple SSL layers. Furthermore, an attention mechanism is employed to identify task-specific influential layers, enhancing the adaptability and performance of semantic tokens in diverse audio applications. 7 authors · Jun 15, 2024
- Style Tokens: Unsupervised Style Modeling, Control and Transfer in End-to-End Speech Synthesis In this work, we propose "global style tokens" (GSTs), a bank of embeddings that are jointly trained within Tacotron, a state-of-the-art end-to-end speech synthesis system. The embeddings are trained with no explicit labels, yet learn to model a large range of acoustic expressiveness. GSTs lead to a rich set of significant results. The soft interpretable "labels" they generate can be used to control synthesis in novel ways, such as varying speed and speaking style - independently of the text content. They can also be used for style transfer, replicating the speaking style of a single audio clip across an entire long-form text corpus. When trained on noisy, unlabeled found data, GSTs learn to factorize noise and speaker identity, providing a path towards highly scalable but robust speech synthesis. 10 authors · Mar 23, 2018
1 Llama-Mimi: Speech Language Models with Interleaved Semantic and Acoustic Tokens We propose Llama-Mimi, a speech language model that uses a unified tokenizer and a single Transformer decoder to jointly model sequences of interleaved semantic and acoustic tokens. Comprehensive evaluation shows that Llama-Mimi achieves state-of-the-art performance in acoustic consistency and possesses the ability to preserve speaker identity. Our analysis further demonstrates that increasing the number of quantizers improves acoustic fidelity but degrades linguistic performance, highlighting the inherent challenge of maintaining long-term coherence. We additionally introduce an LLM-as-a-Judge-based evaluation to assess the spoken content quality of generated outputs. Our models, code, and speech samples are publicly available. 4 authors · Sep 18
- DASB - Discrete Audio and Speech Benchmark Discrete audio tokens have recently gained considerable attention for their potential to connect audio and language processing, enabling the creation of modern multimodal large language models. Ideal audio tokens must effectively preserve phonetic and semantic content along with paralinguistic information, speaker identity, and other details. While several types of audio tokens have been recently proposed, identifying the optimal tokenizer for various tasks is challenging due to the inconsistent evaluation settings in existing studies. To address this gap, we release the Discrete Audio and Speech Benchmark (DASB), a comprehensive leaderboard for benchmarking discrete audio tokens across a wide range of discriminative tasks, including speech recognition, speaker identification and verification, emotion recognition, keyword spotting, and intent classification, as well as generative tasks such as speech enhancement, separation, and text-to-speech. Our results show that, on average, semantic tokens outperform compression tokens across most discriminative and generative tasks. However, the performance gap between semantic tokens and standard continuous representations remains substantial, highlighting the need for further research in this field. 6 authors · Jun 20, 2024
- Self-Supervised Syllable Discovery Based on Speaker-Disentangled HuBERT Self-supervised speech representation learning has become essential for extracting meaningful features from untranscribed audio. Recent advances highlight the potential of deriving discrete symbols from the features correlated with linguistic units, which enables text-less training across diverse tasks. In particular, sentence-level Self-Distillation of the pretrained HuBERT (SD-HuBERT) induces syllabic structures within latent speech frame representations extracted from an intermediate Transformer layer. In SD-HuBERT, sentence-level representation is accumulated from speech frame features through self-attention layers using a special CLS token. However, we observe that the information aggregated in the CLS token correlates more with speaker identity than with linguistic content. To address this, we propose a speech-only self-supervised fine-tuning approach that separates syllabic units from speaker information. Our method introduces speaker perturbation as data augmentation and adopts a frame-level training objective to prevent the CLS token from aggregating paralinguistic information. Experimental results show that our approach surpasses the current state-of-the-art method in most syllable segmentation and syllabic unit quality metrics on Librispeech, underscoring its effectiveness in promoting syllabic organization within speech-only models. 2 authors · Sep 16, 2024