Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeSpoken Dialogue System for Medical Prescription Acquisition on Smartphone: Development, Corpus and Evaluation
Hospital information systems (HIS) have become an essential part of healthcare institutions and now incorporate prescribing support software. Prescription support software allows for structured information capture, which improves the safety, appropriateness and efficiency of prescriptions and reduces the number of adverse drug events (ADEs). However, such a system increases the amount of time physicians spend at a computer entering information instead of providing medical care. In addition, any new visiting clinician must learn to manage complex interfaces since each HIS has its own interfaces. In this paper, we present a natural language interface for e-prescribing software in the form of a spoken dialogue system accessible on a smartphone. This system allows prescribers to record their prescriptions verbally, a form of interaction closer to their usual practice. The system extracts the formal representation of the prescription ready to be checked by the prescribing software and uses the dialogue to request mandatory information, correct errors or warn of particular situations. Since, to the best of our knowledge, there is no existing voice-based prescription dialogue system, we present the system developed in a low-resource environment, focusing on dialogue modeling, semantic extraction and data augmentation. The system was evaluated in the wild with 55 participants. This evaluation showed that our system has an average prescription time of 66.15 seconds for physicians and 35.64 seconds for other experts, and a task success rate of 76\% for physicians and 72\% for other experts. All evaluation data were recorded and annotated to form PxCorpus, the first spoken drug prescription corpus that has been made fully available to the community (https://doi.org/10.5281/zenodo.6524162).
Generating Medical Prescriptions with Conditional Transformer
Access to real-world medication prescriptions is essential for medical research and healthcare quality improvement. However, access to real medication prescriptions is often limited due to the sensitive nature of the information expressed. Additionally, manually labelling these instructions for training and fine-tuning Natural Language Processing (NLP) models can be tedious and expensive. We introduce a novel task-specific model architecture, Label-To-Text-Transformer (LT3), tailored to generate synthetic medication prescriptions based on provided labels, such as a vocabulary list of medications and their attributes. LT3 is trained on a set of around 2K lines of medication prescriptions extracted from the MIMIC-III database, allowing the model to produce valuable synthetic medication prescriptions. We evaluate LT3's performance by contrasting it with a state-of-the-art Pre-trained Language Model (PLM), T5, analysing the quality and diversity of generated texts. We deploy the generated synthetic data to train the SpacyNER model for the Named Entity Recognition (NER) task over the n2c2-2018 dataset. The experiments show that the model trained on synthetic data can achieve a 96-98\% F1 score at Label Recognition on Drug, Frequency, Route, Strength, and Form. LT3 codes and data will be shared at https://github.com/HECTA-UoM/Label-To-Text-Transformer
The Russian Drug Reaction Corpus and Neural Models for Drug Reactions and Effectiveness Detection in User Reviews
The Russian Drug Reaction Corpus (RuDReC) is a new partially annotated corpus of consumer reviews in Russian about pharmaceutical products for the detection of health-related named entities and the effectiveness of pharmaceutical products. The corpus itself consists of two parts, the raw one and the labelled one. The raw part includes 1.4 million health-related user-generated texts collected from various Internet sources, including social media. The labelled part contains 500 consumer reviews about drug therapy with drug- and disease-related information. Labels for sentences include health-related issues or their absence. The sentences with one are additionally labelled at the expression level for identification of fine-grained subtypes such as drug classes and drug forms, drug indications, and drug reactions. Further, we present a baseline model for named entity recognition (NER) and multi-label sentence classification tasks on this corpus. The macro F1 score of 74.85% in the NER task was achieved by our RuDR-BERT model. For the sentence classification task, our model achieves the macro F1 score of 68.82% gaining 7.47% over the score of BERT model trained on Russian data. We make the RuDReC corpus and pretrained weights of domain-specific BERT models freely available at https://github.com/cimm-kzn/RuDReC
Large Language Model Distilling Medication Recommendation Model
The recommendation of medication is a vital aspect of intelligent healthcare systems, as it involves prescribing the most suitable drugs based on a patient's specific health needs. Unfortunately, many sophisticated models currently in use tend to overlook the nuanced semantics of medical data, while only relying heavily on identities. Furthermore, these models face significant challenges in handling cases involving patients who are visiting the hospital for the first time, as they lack prior prescription histories to draw upon. To tackle these issues, we harness the powerful semantic comprehension and input-agnostic characteristics of Large Language Models (LLMs). Our research aims to transform existing medication recommendation methodologies using LLMs. In this paper, we introduce a novel approach called Large Language Model Distilling Medication Recommendation (LEADER). We begin by creating appropriate prompt templates that enable LLMs to suggest medications effectively. However, the straightforward integration of LLMs into recommender systems leads to an out-of-corpus issue specific to drugs. We handle it by adapting the LLMs with a novel output layer and a refined tuning loss function. Although LLM-based models exhibit remarkable capabilities, they are plagued by high computational costs during inference, which is impractical for the healthcare sector. To mitigate this, we have developed a feature-level knowledge distillation technique, which transfers the LLM's proficiency to a more compact model. Extensive experiments conducted on two real-world datasets, MIMIC-III and MIMIC-IV, demonstrate that our proposed model not only delivers effective results but also is efficient. To ease the reproducibility of our experiments, we release the implementation code online.
Towards Evaluating and Building Versatile Large Language Models for Medicine
In this study, we present MedS-Bench, a comprehensive benchmark designed to evaluate the performance of large language models (LLMs) in clinical contexts. Unlike existing benchmarks that focus on multiple-choice question answering, MedS-Bench spans 11 high-level clinical tasks, including clinical report summarization, treatment recommendations, diagnosis, named entity recognition, and medical concept explanation, among others. We evaluated six leading LLMs, e.g., MEDITRON, Mistral, InternLM 2, Llama 3, GPT-4, and Claude-3.5 using few-shot prompting, and found that even the most sophisticated models struggle with these complex tasks. To address these limitations, we developed MedS-Ins, a large-scale instruction tuning dataset for medicine. MedS-Ins comprises 58 medically oriented language corpora, totaling 13.5 million samples across 122 tasks. To demonstrate the dataset's utility, we conducted a proof-of-concept experiment by performing instruction tuning on a lightweight, open-source medical language model. The resulting model, MMedIns-Llama 3, significantly outperformed existing models across nearly all clinical tasks. To promote further advancements in the application of LLMs to clinical challenges, we have made the MedS-Ins dataset fully accessible and invite the research community to contribute to its expansion.Additionally, we have launched a dynamic leaderboard for MedS-Bench, which we plan to regularly update the test set to track progress and enhance the adaptation of general LLMs to the medical domain. Leaderboard: https://henrychur.github.io/MedS-Bench/. Github: https://github.com/MAGIC-AI4Med/MedS-Ins.
An analysis of full-size Russian complexly NER labelled corpus of Internet user reviews on the drugs based on deep learning and language neural nets
We present the full-size Russian complexly NER-labeled corpus of Internet user reviews, along with an evaluation of accuracy levels reached on this corpus by a set of advanced deep learning neural networks to extract the pharmacologically meaningful entities from Russian texts. The corpus annotation includes mentions of the following entities: Medication (33005 mentions), Adverse Drug Reaction (1778), Disease (17403), and Note (4490). Two of them - Medication and Disease - comprise a set of attributes. A part of the corpus has the coreference annotation with 1560 coreference chains in 300 documents. Special multi-label model based on a language model and the set of features is developed, appropriate for presented corpus labeling. The influence of the choice of different modifications of the models: word vector representations, types of language models pre-trained for Russian, text normalization styles, and other preliminary processing are analyzed. The sufficient size of our corpus allows to study the effects of particularities of corpus labeling and balancing entities in the corpus. As a result, the state of the art for the pharmacological entity extraction problem for Russian is established on a full-size labeled corpus. In case of the adverse drug reaction (ADR) recognition, it is 61.1 by the F1-exact metric that, as our analysis shows, is on par with the accuracy level for other language corpora with similar characteristics and the ADR representativnes. The evaluated baseline precision of coreference relation extraction on the corpus is 71, that is higher the results reached on other Russian corpora.
A Dataset for Pharmacovigilance in German, French, and Japanese: Annotating Adverse Drug Reactions across Languages
User-generated data sources have gained significance in uncovering Adverse Drug Reactions (ADRs), with an increasing number of discussions occurring in the digital world. However, the existing clinical corpora predominantly revolve around scientific articles in English. This work presents a multilingual corpus of texts concerning ADRs gathered from diverse sources, including patient fora, social media, and clinical reports in German, French, and Japanese. Our corpus contains annotations covering 12 entity types, four attribute types, and 13 relation types. It contributes to the development of real-world multilingual language models for healthcare. We provide statistics to highlight certain challenges associated with the corpus and conduct preliminary experiments resulting in strong baselines for extracting entities and relations between these entities, both within and across languages.
DISC-MedLLM: Bridging General Large Language Models and Real-World Medical Consultation
We propose DISC-MedLLM, a comprehensive solution that leverages Large Language Models (LLMs) to provide accurate and truthful medical response in end-to-end conversational healthcare services. To construct high-quality Supervised Fine-Tuning (SFT) datasets, we employ three strategies: utilizing medical knowledge-graphs, reconstructing real-world dialogues, and incorporating human-guided preference rephrasing. These datasets are instrumental in training DISC-MedLLM, surpassing existing medical LLMs in both single-turn and multi-turn consultation scenarios. Extensive experimental results demonstrate the effectiveness of the proposed model in bridging the gap between general language models and real-world medical consultation. Additionally, we release the constructed dataset and model weights to further contribute to research and development. Further details and resources can be found at https://github.com/FudanDISC/DISC-MedLLM
IIMedGPT: Promoting Large Language Model Capabilities of Medical Tasks by Efficient Human Preference Alignment
Recent researches of large language models(LLM), which is pre-trained on massive general-purpose corpora, have achieved breakthroughs in responding human queries. However, these methods face challenges including limited data insufficiency to support extensive pre-training and can not align responses with users' instructions. To address these issues, we introduce a medical instruction dataset, CMedINS, containing six medical instructions derived from actual medical tasks, which effectively fine-tunes LLM in conjunction with other data. Subsequently, We launch our medical model, IIMedGPT, employing an efficient preference alignment method, Direct preference Optimization(DPO). The results show that our final model outperforms existing medical models in medical dialogue.Datsets, Code and model checkpoints will be released upon acceptance.
Towards an Automated SOAP Note: Classifying Utterances from Medical Conversations
Summaries generated from medical conversations can improve recall and understanding of care plans for patients and reduce documentation burden for doctors. Recent advancements in automatic speech recognition (ASR) and natural language understanding (NLU) offer potential solutions to generate these summaries automatically, but rigorous quantitative baselines for benchmarking research in this domain are lacking. In this paper, we bridge this gap for two tasks: classifying utterances from medical conversations according to (i) the SOAP section and (ii) the speaker role. Both are fundamental building blocks along the path towards an end-to-end, automated SOAP note for medical conversations. We provide details on a dataset that contains human and ASR transcriptions of medical conversations and corresponding machine learning optimized SOAP notes. We then present a systematic analysis in which we adapt an existing deep learning architecture to the two aforementioned tasks. The results suggest that modelling context in a hierarchical manner, which captures both word and utterance level context, yields substantial improvements on both classification tasks. Additionally, we develop and analyze a modular method for adapting our model to ASR output.
Large Language Model-based Role-Playing for Personalized Medical Jargon Extraction
Previous studies reveal that Electronic Health Records (EHR), which have been widely adopted in the U.S. to allow patients to access their personal medical information, do not have high readability to patients due to the prevalence of medical jargon. Tailoring medical notes to individual comprehension by identifying jargon that is difficult for each person will enhance the utility of generative models. We present the first quantitative analysis to measure the impact of role-playing in LLM in medical term extraction. By comparing the results of Mechanical Turk workers over 20 sentences, our study demonstrates that LLM role-playing improves F1 scores in 95% of cases across 14 different socio-demographic backgrounds. Furthermore, applying role-playing with in-context learning outperformed the previous state-of-the-art models. Our research showed that ChatGPT can improve traditional medical term extraction systems by utilizing role-play to deliver personalized patient education, a potential that previous models had not achieved.
Medical Dialogue Generation via Dual Flow Modeling
Medical dialogue systems (MDS) aim to provide patients with medical services, such as diagnosis and prescription. Since most patients cannot precisely describe their symptoms, dialogue understanding is challenging for MDS. Previous studies mainly addressed this by extracting the mentioned medical entities as critical dialogue history information. In this work, we argue that it is also essential to capture the transitions of the medical entities and the doctor's dialogue acts in each turn, as they help the understanding of how the dialogue flows and enhance the prediction of the entities and dialogue acts to be adopted in the following turn. Correspondingly, we propose a Dual Flow enhanced Medical (DFMed) dialogue generation framework. It extracts the medical entities and dialogue acts used in the dialogue history and models their transitions with an entity-centric graph flow and a sequential act flow, respectively. We employ two sequential models to encode them and devise an interweaving component to enhance their interactions. Experiments on two datasets demonstrate that our method exceeds baselines in both automatic and manual evaluations.
Medical Speech Symptoms Classification via Disentangled Representation
Intent is defined for understanding spoken language in existing works. Both textual features and acoustic features involved in medical speech contain intent, which is important for symptomatic diagnosis. In this paper, we propose a medical speech classification model named DRSC that automatically learns to disentangle intent and content representations from textual-acoustic data for classification. The intent representations of the text domain and the Mel-spectrogram domain are extracted via intent encoders, and then the reconstructed text feature and the Mel-spectrogram feature are obtained through two exchanges. After combining the intent from two domains into a joint representation, the integrated intent representation is fed into a decision layer for classification. Experimental results show that our model obtains an average accuracy rate of 95% in detecting 25 different medical symptoms.
Towards Building Multilingual Language Model for Medicine
In this paper, we aim to develop an open-source, multilingual language model for medicine, that the benefits a wider, linguistically diverse audience from different regions. In general, we present the contribution from the following aspects: first, for multilingual medical-specific adaptation, we construct a new multilingual medical corpus, that contains approximately 25.5B tokens encompassing 6 main languages, termed as MMedC, that enables auto-regressive training for existing general LLMs. second, to monitor the development of multilingual LLMs in medicine, we propose a new multilingual medical multi-choice question-answering benchmark with rationale, termed as MMedBench; third, we have assessed a number of popular, opensource large language models (LLMs) on our benchmark, along with those further auto-regressive trained on MMedC, as a result, our final model, termed as MMedLM 2, with only 7B parameters, achieves superior performance compared to all other open-source models, even rivaling GPT-4 on MMedBench. We will make the resources publicly available, including code, model weights, and datasets.
Tool Calling: Enhancing Medication Consultation via Retrieval-Augmented Large Language Models
Large-scale language models (LLMs) have achieved remarkable success across various language tasks but suffer from hallucinations and temporal misalignment. To mitigate these shortcomings, Retrieval-augmented generation (RAG) has been utilized to provide external knowledge to facilitate the answer generation. However, applying such models to the medical domain faces several challenges due to the lack of domain-specific knowledge and the intricacy of real-world scenarios. In this study, we explore LLMs with RAG framework for knowledge-intensive tasks in the medical field. To evaluate the capabilities of LLMs, we introduce MedicineQA, a multi-round dialogue benchmark that simulates the real-world medication consultation scenario and requires LLMs to answer with retrieved evidence from the medicine database. MedicineQA contains 300 multi-round question-answering pairs, each embedded within a detailed dialogue history, highlighting the challenge posed by this knowledge-intensive task to current LLMs. We further propose a new Distill-Retrieve-Read framework instead of the previous Retrieve-then-Read. Specifically, the distillation and retrieval process utilizes a tool calling mechanism to formulate search queries that emulate the keyword-based inquiries used by search engines. With experimental results, we show that our framework brings notable performance improvements and surpasses the previous counterparts in the evidence retrieval process in terms of evidence retrieval accuracy. This advancement sheds light on applying RAG to the medical domain.
Am I eligible? Natural Language Inference for Clinical Trial Patient Recruitment: the Patient's Point of View
Recruiting patients to participate in clinical trials can be challenging and time-consuming. Usually, participation in a clinical trial is initiated by a healthcare professional and proposed to the patient. Promoting clinical trials directly to patients via online recruitment might help to reach them more efficiently. In this study, we address the case where a patient is initiating their own recruitment process and wants to determine whether they are eligible for a given clinical trial, using their own language to describe their medical profile. To study whether this creates difficulties in the patient trial matching process, we design a new dataset and task, Natural Language Inference for Patient Recruitment (NLI4PR), in which patient language profiles must be matched to clinical trials. We create it by adapting the TREC 2022 Clinical Trial Track dataset, which provides patients' medical profiles, and rephrasing them manually using patient language. We also use the associated clinical trial reports where the patients are either eligible or excluded. We prompt several open-source Large Language Models on our task and achieve from 56.5 to 71.8 of F1 score using patient language, against 64.7 to 73.1 for the same task using medical language. When using patient language, we observe only a small loss in performance for the best model, suggesting that having the patient as a starting point could be adopted to help recruit patients for clinical trials. The corpus and code bases are all freely available on our Github and HuggingFace repositories.
Large language models in healthcare and medical domain: A review
The deployment of large language models (LLMs) within the healthcare sector has sparked both enthusiasm and apprehension. These models exhibit the remarkable capability to provide proficient responses to free-text queries, demonstrating a nuanced understanding of professional medical knowledge. This comprehensive survey delves into the functionalities of existing LLMs designed for healthcare applications, elucidating the trajectory of their development, starting from traditional Pretrained Language Models (PLMs) to the present state of LLMs in healthcare sector. First, we explore the potential of LLMs to amplify the efficiency and effectiveness of diverse healthcare applications, particularly focusing on clinical language understanding tasks. These tasks encompass a wide spectrum, ranging from named entity recognition and relation extraction to natural language inference, multi-modal medical applications, document classification, and question-answering. Additionally, we conduct an extensive comparison of the most recent state-of-the-art LLMs in the healthcare domain, while also assessing the utilization of various open-source LLMs and highlighting their significance in healthcare applications. Furthermore, we present the essential performance metrics employed to evaluate LLMs in the biomedical domain, shedding light on their effectiveness and limitations. Finally, we summarize the prominent challenges and constraints faced by large language models in the healthcare sector, offering a holistic perspective on their potential benefits and shortcomings. This review provides a comprehensive exploration of the current landscape of LLMs in healthcare, addressing their role in transforming medical applications and the areas that warrant further research and development.
MultiMed: Multilingual Medical Speech Recognition via Attention Encoder Decoder
Multilingual automatic speech recognition (ASR) in the medical domain serves as a foundational task for various downstream applications such as speech translation, spoken language understanding, and voice-activated assistants. This technology enhances patient care by enabling efficient communication across language barriers, alleviating specialized workforce shortages, and facilitating improved diagnosis and treatment, particularly during pandemics. In this work, we introduce MultiMed, a collection of small-to-large end-to-end ASR models for the medical domain, spanning five languages: Vietnamese, English, German, French, and Mandarin Chinese, together with the corresponding real-world ASR dataset. To our best knowledge, MultiMed stands as the largest and the first multilingual medical ASR dataset, in terms of total duration, number of speakers, diversity of diseases, recording conditions, speaker roles, unique medical terms, accents, and ICD-10 codes. Secondly, we establish the empirical baselines, present the first reproducible study of multilinguality in medical ASR, conduct a layer-wise ablation study for end-to-end ASR training, and provide the first linguistic analysis for multilingual medical ASR. All code, data, and models are available online https://github.com/leduckhai/MultiMed/tree/master/MultiMed
ClinText-SP and RigoBERTa Clinical: a new set of open resources for Spanish Clinical NLP
We present a novel contribution to Spanish clinical natural language processing by introducing the largest publicly available clinical corpus, ClinText-SP, along with a state-of-the-art clinical encoder language model, RigoBERTa Clinical. Our corpus was meticulously curated from diverse open sources, including clinical cases from medical journals and annotated corpora from shared tasks, providing a rich and diverse dataset that was previously difficult to access. RigoBERTa Clinical, developed through domain-adaptive pretraining on this comprehensive dataset, significantly outperforms existing models on multiple clinical NLP benchmarks. By publicly releasing both the dataset and the model, we aim to empower the research community with robust resources that can drive further advancements in clinical NLP and ultimately contribute to improved healthcare applications.
Medical large language models are easily distracted
Large language models (LLMs) have the potential to transform medicine, but real-world clinical scenarios contain extraneous information that can hinder performance. The rise of assistive technologies like ambient dictation, which automatically generates draft notes from live patient encounters, has the potential to introduce additional noise making it crucial to assess the ability of LLM's to filter relevant data. To investigate this, we developed MedDistractQA, a benchmark using USMLE-style questions embedded with simulated real-world distractions. Our findings show that distracting statements (polysemous words with clinical meanings used in a non-clinical context or references to unrelated health conditions) can reduce LLM accuracy by up to 17.9%. Commonly proposed solutions to improve model performance such as retrieval-augmented generation (RAG) and medical fine-tuning did not change this effect and in some cases introduced their own confounders and further degraded performance. Our findings suggest that LLMs natively lack the logical mechanisms necessary to distinguish relevant from irrelevant clinical information, posing challenges for real-world applications. MedDistractQA and our results highlights the need for robust mitigation strategies to enhance LLM resilience to extraneous information.
Extraction of Medication and Temporal Relation from Clinical Text using Neural Language Models
Clinical texts, represented in electronic medical records (EMRs), contain rich medical information and are essential for disease prediction, personalised information recommendation, clinical decision support, and medication pattern mining and measurement. Relation extractions between medication mentions and temporal information can further help clinicians better understand the patients' treatment history. To evaluate the performances of deep learning (DL) and large language models (LLMs) in medication extraction and temporal relations classification, we carry out an empirical investigation of MedTem project using several advanced learning structures including BiLSTM-CRF and CNN-BiLSTM for a clinical domain named entity recognition (NER), and BERT-CNN for temporal relation extraction (RE), in addition to the exploration of different word embedding techniques. Furthermore, we also designed a set of post-processing roles to generate structured output on medications and the temporal relation. Our experiments show that CNN-BiLSTM slightly wins the BiLSTM-CRF model on the i2b2-2009 clinical NER task yielding 75.67, 77.83, and 78.17 for precision, recall, and F1 scores using Macro Average. BERT-CNN model also produced reasonable evaluation scores 64.48, 67.17, and 65.03 for P/R/F1 using Macro Avg on the temporal relation extraction test set from i2b2-2012 challenges. Code and Tools from MedTem will be hosted at https://github.com/HECTA-UoM/MedTem
INSIGHTBUDDY-AI: Medication Extraction and Entity Linking using Large Language Models and Ensemble Learning
Medication Extraction and Mining play an important role in healthcare NLP research due to its practical applications in hospital settings, such as their mapping into standard clinical knowledge bases (SNOMED-CT, BNF, etc.). In this work, we investigate state-of-the-art LLMs in text mining tasks on medications and their related attributes such as dosage, route, strength, and adverse effects. In addition, we explore different ensemble learning methods (Stack-Ensemble and Voting-Ensemble) to augment the model performances from individual LLMs. Our ensemble learning result demonstrated better performances than individually fine-tuned base models BERT, RoBERTa, RoBERTa-L, BioBERT, BioClinicalBERT, BioMedRoBERTa, ClinicalBERT, and PubMedBERT across general and specific domains. Finally, we build up an entity linking function to map extracted medical terminologies into the SNOMED-CT codes and the British National Formulary (BNF) codes, which are further mapped to the Dictionary of Medicines and Devices (dm+d), and ICD. Our model's toolkit and desktop applications are publicly available at https://github.com/HECTA-UoM/ensemble-NER.
A New Data Representation Based on Training Data Characteristics to Extract Drug Named-Entity in Medical Text
One essential task in information extraction from the medical corpus is drug name recognition. Compared with text sources come from other domains, the medical text is special and has unique characteristics. In addition, the medical text mining poses more challenges, e.g., more unstructured text, the fast growing of new terms addition, a wide range of name variation for the same drug. The mining is even more challenging due to the lack of labeled dataset sources and external knowledge, as well as multiple token representations for a single drug name that is more common in the real application setting. Although many approaches have been proposed to overwhelm the task, some problems remained with poor F-score performance (less than 0.75). This paper presents a new treatment in data representation techniques to overcome some of those challenges. We propose three data representation techniques based on the characteristics of word distribution and word similarities as a result of word embedding training. The first technique is evaluated with the standard NN model, i.e., MLP (Multi-Layer Perceptrons). The second technique involves two deep network classifiers, i.e., DBN (Deep Belief Networks), and SAE (Stacked Denoising Encoders). The third technique represents the sentence as a sequence that is evaluated with a recurrent NN model, i.e., LSTM (Long Short Term Memory). In extracting the drug name entities, the third technique gives the best F-score performance compared to the state of the art, with its average F-score being 0.8645.
Medical mT5: An Open-Source Multilingual Text-to-Text LLM for The Medical Domain
Research on language technology for the development of medical applications is currently a hot topic in Natural Language Understanding and Generation. Thus, a number of large language models (LLMs) have recently been adapted to the medical domain, so that they can be used as a tool for mediating in human-AI interaction. While these LLMs display competitive performance on automated medical texts benchmarks, they have been pre-trained and evaluated with a focus on a single language (English mostly). This is particularly true of text-to-text models, which typically require large amounts of domain-specific pre-training data, often not easily accessible for many languages. In this paper, we address these shortcomings by compiling, to the best of our knowledge, the largest multilingual corpus for the medical domain in four languages, namely English, French, Italian and Spanish. This new corpus has been used to train Medical mT5, the first open-source text-to-text multilingual model for the medical domain. Additionally, we present two new evaluation benchmarks for all four languages with the aim of facilitating multilingual research in this domain. A comprehensive evaluation shows that Medical mT5 outperforms both encoders and similarly sized text-to-text models for the Spanish, French, and Italian benchmarks, while being competitive with current state-of-the-art LLMs in English.
ChatDoctor: A Medical Chat Model Fine-tuned on LLaMA Model using Medical Domain Knowledge
Recent large language models (LLMs) in the general domain, such as ChatGPT, have shown remarkable success in following instructions and producing human-like responses. However, such language models have not been learned individually and carefully for the medical domain, resulting in poor diagnostic accuracy and inability to give correct recommendations for medical diagnosis, medications, etc. To address this issue, we collected more than 700 diseases and their corresponding symptoms, recommended medications, and required medical tests, and then generated 5K doctor-patient conversations. By fine-tuning models of doctor-patient conversations, these models emerge with great potential to understand patients' needs, provide informed advice, and offer valuable assistance in a variety of medical-related fields. The integration of these advanced language models into healthcare can revolutionize the way healthcare professionals and patients communicate, ultimately improving the overall quality of care and patient outcomes. In addition, we will open all source code, datasets and model weights to advance the further development of dialogue models in the medical field. In addition, the training data, code, and weights of this project are available at: https://github.com/Kent0n-Li/ChatDoctor.
PHEE: A Dataset for Pharmacovigilance Event Extraction from Text
The primary goal of drug safety researchers and regulators is to promptly identify adverse drug reactions. Doing so may in turn prevent or reduce the harm to patients and ultimately improve public health. Evaluating and monitoring drug safety (i.e., pharmacovigilance) involves analyzing an ever growing collection of spontaneous reports from health professionals, physicians, and pharmacists, and information voluntarily submitted by patients. In this scenario, facilitating analysis of such reports via automation has the potential to rapidly identify safety signals. Unfortunately, public resources for developing natural language models for this task are scant. We present PHEE, a novel dataset for pharmacovigilance comprising over 5000 annotated events from medical case reports and biomedical literature, making it the largest such public dataset to date. We describe the hierarchical event schema designed to provide coarse and fine-grained information about patients' demographics, treatments and (side) effects. Along with the discussion of the dataset, we present a thorough experimental evaluation of current state-of-the-art approaches for biomedical event extraction, point out their limitations, and highlight open challenges to foster future research in this area.
Conversation AI Dialog for Medicare powered by Finetuning and Retrieval Augmented Generation
Large language models (LLMs) have shown impressive capabilities in natural language processing tasks, including dialogue generation. This research aims to conduct a novel comparative analysis of two prominent techniques, fine-tuning with LoRA (Low-Rank Adaptation) and the Retrieval-Augmented Generation (RAG) framework, in the context of doctor-patient chat conversations with multiple datasets of mixed medical domains. The analysis involves three state-of-the-art models: Llama-2, GPT, and the LSTM model. Employing real-world doctor-patient dialogues, we comprehensively evaluate the performance of models, assessing key metrics such as language quality (perplexity, BLEU score), factual accuracy (fact-checking against medical knowledge bases), adherence to medical guidelines, and overall human judgments (coherence, empathy, safety). The findings provide insights into the strengths and limitations of each approach, shedding light on their suitability for healthcare applications. Furthermore, the research investigates the robustness of the models in handling diverse patient queries, ranging from general health inquiries to specific medical conditions. The impact of domain-specific knowledge integration is also explored, highlighting the potential for enhancing LLM performance through targeted data augmentation and retrieval strategies.
Knowledge-Infused Prompting: Assessing and Advancing Clinical Text Data Generation with Large Language Models
Clinical natural language processing requires methods that can address domain-specific challenges, such as complex medical terminology and clinical contexts. Recently, large language models (LLMs) have shown promise in this domain. Yet, their direct deployment can lead to privacy issues and are constrained by resources. To address this challenge, we delve into synthetic clinical text generation using LLMs for clinical NLP tasks. We propose an innovative, resource-efficient approach, ClinGen, which infuses knowledge into the process. Our model involves clinical knowledge extraction and context-informed LLM prompting. Both clinical topics and writing styles are drawn from external domain-specific knowledge graphs and LLMs to guide data generation. Our extensive empirical study across 7 clinical NLP tasks and 16 datasets reveals that ClinGen consistently enhances performance across various tasks, effectively aligning the distribution of real datasets and significantly enriching the diversity of generated training instances. We will publish our code and all the generated data in https://github.com/ritaranx/ClinGen.
Enhancing Healthcare through Large Language Models: A Study on Medical Question Answering
In recent years, the application of Large Language Models (LLMs) in healthcare has shown significant promise in improving the accessibility and dissemination of medical knowledge. This paper presents a detailed study of various LLMs trained on the MedQuAD medical question-answering dataset, with a focus on identifying the most effective model for providing accurate medical information. Among the models tested, the Sentence-t5 combined with Mistral 7B demonstrated superior performance, achieving a precision score of 0.762. This model's enhanced capabilities are attributed to its advanced pretraining techniques, robust architecture, and effective prompt construction methodologies. By leveraging these strengths, the Sentence-t5 + Mistral 7B model excels in understanding and generating precise medical answers. Our findings highlight the potential of integrating sophisticated LLMs in medical contexts to facilitate efficient and accurate medical knowledge retrieval, thus significantly enhancing patient education and support.
VietMed: A Dataset and Benchmark for Automatic Speech Recognition of Vietnamese in the Medical Domain
Due to privacy restrictions, there's a shortage of publicly available speech recognition datasets in the medical domain. In this work, we present VietMed - a Vietnamese speech recognition dataset in the medical domain comprising 16h of labeled medical speech, 1000h of unlabeled medical speech and 1200h of unlabeled general-domain speech. To our best knowledge, VietMed is by far the world's largest public medical speech recognition dataset in 7 aspects: total duration, number of speakers, diseases, recording conditions, speaker roles, unique medical terms and accents. VietMed is also by far the largest public Vietnamese speech dataset in terms of total duration. Additionally, we are the first to present a medical ASR dataset covering all ICD-10 disease groups and all accents within a country. Moreover, we release the first public large-scale pre-trained models for Vietnamese ASR, w2v2-Viet and XLSR-53-Viet, along with the first public large-scale fine-tuned models for medical ASR. Even without any medical data in unsupervised pre-training, our best pre-trained model XLSR-53-Viet generalizes very well to the medical domain by outperforming state-of-the-art XLSR-53, from 51.8% to 29.6% WER on test set (a relative reduction of more than 40%). All code, data and models are made publicly available here: https://github.com/leduckhai/MultiMed.
MedS^3: Towards Medical Small Language Models with Self-Evolved Slow Thinking
Medical language models (MLMs) have become pivotal in advancing medical natural language processing. However, prior models that rely on pre-training or supervised fine-tuning often exhibit low data efficiency and limited practicality in real-world clinical applications. While OpenAIs O1 highlights test-time scaling in mathematics, attempts to replicate this approach in medicine typically distill responses from GPT-series models to open-source models, focusing primarily on multiple-choice tasks. This strategy, though straightforward, neglects critical concerns like data privacy and realistic deployment in clinical settings. In this work, we present a deployable, small-scale medical language model, \mone, designed for long-chain reasoning in clinical tasks using a self-evolution paradigm. Starting with a seed dataset of around 8,000 instances spanning five domains and 16 datasets, we prompt a base policy model to perform Monte Carlo Tree Search (MCTS) to construct verifiable reasoning chains. Each reasoning step is assigned an evolution rollout value, allowing verified trajectories to train the policy model and the reward model. During inference, the policy model generates multiple responses, and the reward model selects the one with the highest reward score. Experiments on eleven evaluation datasets demonstrate that \mone outperforms prior open-source models by 2 points, with the addition of the reward model further boosting performance (sim13 points), surpassing GPT-4o-mini. Code and data are available at https://github.com/pixas/MedSSS.
A Corpus with Multi-Level Annotations of Patients, Interventions and Outcomes to Support Language Processing for Medical Literature
We present a corpus of 5,000 richly annotated abstracts of medical articles describing clinical randomized controlled trials. Annotations include demarcations of text spans that describe the Patient population enrolled, the Interventions studied and to what they were Compared, and the Outcomes measured (the `PICO' elements). These spans are further annotated at a more granular level, e.g., individual interventions within them are marked and mapped onto a structured medical vocabulary. We acquired annotations from a diverse set of workers with varying levels of expertise and cost. We describe our data collection process and the corpus itself in detail. We then outline a set of challenging NLP tasks that would aid searching of the medical literature and the practice of evidence-based medicine.
ChiMed-GPT: A Chinese Medical Large Language Model with Full Training Regime and Better Alignment to Human Preferences
Recently, the increasing demand for superior medical services has highlighted the discrepancies in the medical infrastructure. With big data, especially texts, forming the foundation of medical services, there is an exigent need for effective natural language processing (NLP) solutions tailored to the healthcare domain. Conventional approaches leveraging pre-trained models present promising results in this domain and current large language models (LLMs) offer advanced foundation for medical text processing. However, most medical LLMs are trained only with supervised fine-tuning (SFT), even though it efficiently empowers LLMs to understand and respond to medical instructions but is ineffective in learning domain knowledge and aligning with human preference. Another engineering barrier that prevents current medical LLM from better text processing ability is their restricted context length (e.g., 2,048 tokens), making it hard for the LLMs to process long context, which is frequently required in the medical domain. In this work, we propose ChiMed-GPT, a new benchmark LLM designed explicitly for Chinese medical domain, with enlarged context length to 4,096 tokens and undergoes a comprehensive training regime with pre-training, SFT, and RLHF. Evaluations on real-world tasks including information extraction, question answering, and dialogue generation demonstrate ChiMed-GPT's superior performance over general domain LLMs. Furthermore, we analyze possible biases through prompting ChiMed-GPT to perform attitude scales regarding discrimination of patients, so as to contribute to further responsible development of LLMs in the medical domain. The code and model are released at https://github.com/synlp/ChiMed-GPT.
MEDITRON-70B: Scaling Medical Pretraining for Large Language Models
Large language models (LLMs) can potentially democratize access to medical knowledge. While many efforts have been made to harness and improve LLMs' medical knowledge and reasoning capacities, the resulting models are either closed-source (e.g., PaLM, GPT-4) or limited in scale (<= 13B parameters), which restricts their abilities. In this work, we improve access to large-scale medical LLMs by releasing MEDITRON: a suite of open-source LLMs with 7B and 70B parameters adapted to the medical domain. MEDITRON builds on Llama-2 (through our adaptation of Nvidia's Megatron-LM distributed trainer), and extends pretraining on a comprehensively curated medical corpus, including selected PubMed articles, abstracts, and internationally-recognized medical guidelines. Evaluations using four major medical benchmarks show significant performance gains over several state-of-the-art baselines before and after task-specific finetuning. Overall, MEDITRON achieves a 6% absolute performance gain over the best public baseline in its parameter class and 3% over the strongest baseline we finetuned from Llama-2. Compared to closed-source LLMs, MEDITRON-70B outperforms GPT-3.5 and Med-PaLM and is within 5% of GPT-4 and 10% of Med-PaLM-2. We release our code for curating the medical pretraining corpus and the MEDITRON model weights to drive open-source development of more capable medical LLMs.
RadioTalk: a large-scale corpus of talk radio transcripts
We introduce RadioTalk, a corpus of speech recognition transcripts sampled from talk radio broadcasts in the United States between October of 2018 and March of 2019. The corpus is intended for use by researchers in the fields of natural language processing, conversational analysis, and the social sciences. The corpus encompasses approximately 2.8 billion words of automatically transcribed speech from 284,000 hours of radio, together with metadata about the speech, such as geographical location, speaker turn boundaries, gender, and radio program information. In this paper we summarize why and how we prepared the corpus, give some descriptive statistics on stations, shows and speakers, and carry out a few high-level analyses.
Medical Spoken Named Entity Recognition
Spoken Named Entity Recognition (NER) aims to extracting named entities from speech and categorizing them into types like person, location, organization, etc. In this work, we present VietMed-NER - the first spoken NER dataset in the medical domain. To our best knowledge, our real-world dataset is the largest spoken NER dataset in the world in terms of the number of entity types, featuring 18 distinct types. Secondly, we present baseline results using various state-of-the-art pre-trained models: encoder-only and sequence-to-sequence. We found that pre-trained multilingual models XLM-R outperformed all monolingual models on both reference text and ASR output. Also in general, encoders perform better than sequence-to-sequence models for the NER task. By simply translating, the transcript is applicable not just to Vietnamese but to other languages as well. All code, data and models are made publicly available here: https://github.com/leduckhai/MultiMed
EHRmonize: A Framework for Medical Concept Abstraction from Electronic Health Records using Large Language Models
Electronic health records (EHRs) contain vast amounts of complex data, but harmonizing and processing this information remains a challenging and costly task requiring significant clinical expertise. While large language models (LLMs) have shown promise in various healthcare applications, their potential for abstracting medical concepts from EHRs remains largely unexplored. We introduce EHRmonize, a framework leveraging LLMs to abstract medical concepts from EHR data. Our study uses medication data from two real-world EHR databases to evaluate five LLMs on two free-text extraction and six binary classification tasks across various prompting strategies. GPT-4o's with 10-shot prompting achieved the highest performance in all tasks, accompanied by Claude-3.5-Sonnet in a subset of tasks. GPT-4o achieved an accuracy of 97% in identifying generic route names, 82% for generic drug names, and 100% in performing binary classification of antibiotics. While EHRmonize significantly enhances efficiency, reducing annotation time by an estimated 60%, we emphasize that clinician oversight remains essential. Our framework, available as a Python package, offers a promising tool to assist clinicians in EHR data abstraction, potentially accelerating healthcare research and improving data harmonization processes.
FineMedLM-o1: Enhancing the Medical Reasoning Ability of LLM from Supervised Fine-Tuning to Test-Time Training
Recent advancements in large language models (LLMs) have shown promise in medical applications such as disease diagnosis and treatment planning. However, most existing medical LLMs struggle with the advanced reasoning required for complex clinical scenarios, such as differential diagnosis or personalized treatment suggestions. We proposed FineMedLM-o1, which leverages high-quality synthetic medical data and long-form reasoning data for Supervised Fine-Tuning (SFT) and Direct Preference Optimization (DPO), enabling advanced dialogue and deep reasoning capabilities. Additionally, we introduced Test-Time Training (TTT) in the medical domain for the first time, facilitating domain adaptation and ensuring reliable, accurate reasoning. Experimental results demonstrate that FineMedLM-o1 achieves a 23% average performance improvement over prior models on key medical benchmarks. Furthermore, the introduction of TTT provides an additional 14% performance boost, highlighting its effectiveness in enhancing medical reasoning capabilities. To support this process, we also proposed a novel method for synthesizing medical dialogue. Compared to other open-source datasets, our dataset stands out as superior in both quality and complexity. The project and data will be released on GitHub.
LLMs-in-the-loop Part-1: Expert Small AI Models for Bio-Medical Text Translation
Machine translation is indispensable in healthcare for enabling the global dissemination of medical knowledge across languages. However, complex medical terminology poses unique challenges to achieving adequate translation quality and accuracy. This study introduces a novel "LLMs-in-the-loop" approach to develop supervised neural machine translation models optimized specifically for medical texts. While large language models (LLMs) have demonstrated powerful capabilities, this research shows that small, specialized models trained on high-quality in-domain (mostly synthetic) data can outperform even vastly larger LLMs. Custom parallel corpora in six languages were compiled from scientific articles, synthetically generated clinical documents, and medical texts. Our LLMs-in-the-loop methodology employs synthetic data generation, rigorous evaluation, and agent orchestration to enhance performance. We developed small medical translation models using the MarianMT base model. We introduce a new medical translation test dataset to standardize evaluation in this domain. Assessed using BLEU, METEOR, ROUGE, and BERT scores on this test set, our MarianMT-based models outperform Google Translate, DeepL, and GPT-4-Turbo. Results demonstrate that our LLMs-in-the-loop approach, combined with fine-tuning high-quality, domain-specific data, enables specialized models to outperform general-purpose and some larger systems. This research, part of a broader series on expert small models, paves the way for future healthcare-related AI developments, including deidentification and bio-medical entity extraction models. Our study underscores the potential of tailored neural translation models and the LLMs-in-the-loop methodology to advance the field through improved data generation, evaluation, agent, and modeling techniques.
A Biomedical Entity Extraction Pipeline for Oncology Health Records in Portuguese
Textual health records of cancer patients are usually protracted and highly unstructured, making it very time-consuming for health professionals to get a complete overview of the patient's therapeutic course. As such limitations can lead to suboptimal and/or inefficient treatment procedures, healthcare providers would greatly benefit from a system that effectively summarizes the information of those records. With the advent of deep neural models, this objective has been partially attained for English clinical texts, however, the research community still lacks an effective solution for languages with limited resources. In this paper, we present the approach we developed to extract procedures, drugs, and diseases from oncology health records written in European Portuguese. This project was conducted in collaboration with the Portuguese Institute for Oncology which, besides holding over 10 years of duly protected medical records, also provided oncologist expertise throughout the development of the project. Since there is no annotated corpus for biomedical entity extraction in Portuguese, we also present the strategy we followed in annotating the corpus for the development of the models. The final models, which combined a neural architecture with entity linking, achieved F_1 scores of 88.6, 95.0, and 55.8 per cent in the mention extraction of procedures, drugs, and diseases, respectively.
Clinical Document Corpora and Assorted Domain Proxies: A Survey of Diversity in Corpus Design, with Focus on German Text Data
We survey clinical document corpora, with focus on German textual data. Due to rigid data privacy legislation in Germany these resources, with only few exceptions, are stored in safe clinical data spaces and locked against clinic-external researchers. This situation stands in stark contrast with established workflows in the field of natural language processing where easy accessibility and reuse of data collections are common practice. Hence, alternative corpus designs have been examined to escape from this data poverty. Besides machine translation of English clinical datasets and the generation of synthetic corpora with fictitious clinical contents, several other types of domain proxies have come up as substitutes for authentic clinical documents. Common instances of close proxies are medical journal publications, clinical therapy guidelines, drug labels, etc., more distant proxies include online encyclopedic medical articles or medical contents from social media channels. After PRISM-conformant screening of 359 hits from four bibliographic systems, 75 relevant documents were finally selected for this review and 59 distinct corpora were determined. We identified 24 real clinical corpora (from 40 publications) out of which only 5 are publicly distributable. 2 translations of real corpora and 3 synthetic ones complement the set of clinical corpora. 14 corpora were categorized as close domain proxies, 16 as distant ones. There is a clear divide between the large number of non-accessible authentic clinical German-language corpora and their publicly accessible substitutes: translated or synthetic, close or more distant proxies. So on first sight, the data bottleneck seems broken. Intuitively yet, differences in genre-specific writing style, wording and medical domain expertise in this typological space are also obvious. This raises the question how valid alternative corpus designs really are.
Lived Experience Not Found: LLMs Struggle to Align with Experts on Addressing Adverse Drug Reactions from Psychiatric Medication Use
Adverse Drug Reactions (ADRs) from psychiatric medications are the leading cause of hospitalizations among mental health patients. With healthcare systems and online communities facing limitations in resolving ADR-related issues, Large Language Models (LLMs) have the potential to fill this gap. Despite the increasing capabilities of LLMs, past research has not explored their capabilities in detecting ADRs related to psychiatric medications or in providing effective harm reduction strategies. To address this, we introduce the Psych-ADR benchmark and the Adverse Drug Reaction Response Assessment (ADRA) framework to systematically evaluate LLM performance in detecting ADR expressions and delivering expert-aligned mitigation strategies. Our analyses show that LLMs struggle with understanding the nuances of ADRs and differentiating between types of ADRs. While LLMs align with experts in terms of expressed emotions and tone of the text, their responses are more complex, harder to read, and only 70.86% aligned with expert strategies. Furthermore, they provide less actionable advice by a margin of 12.32% on average. Our work provides a comprehensive benchmark and evaluation framework for assessing LLMs in strategy-driven tasks within high-risk domains.
How far is Language Model from 100% Few-shot Named Entity Recognition in Medical Domain
Recent advancements in language models (LMs) have led to the emergence of powerful models such as Small LMs (e.g., T5) and Large LMs (e.g., GPT-4). These models have demonstrated exceptional capabilities across a wide range of tasks, such as name entity recognition (NER) in the general domain. (We define SLMs as pre-trained models with fewer parameters compared to models like GPT-3/3.5/4, such as T5, BERT, and others.) Nevertheless, their efficacy in the medical section remains uncertain and the performance of medical NER always needs high accuracy because of the particularity of the field. This paper aims to provide a thorough investigation to compare the performance of LMs in medical few-shot NER and answer How far is LMs from 100\% Few-shot NER in Medical Domain, and moreover to explore an effective entity recognizer to help improve the NER performance. Based on our extensive experiments conducted on 16 NER models spanning from 2018 to 2023, our findings clearly indicate that LLMs outperform SLMs in few-shot medical NER tasks, given the presence of suitable examples and appropriate logical frameworks. Despite the overall superiority of LLMs in few-shot medical NER tasks, it is important to note that they still encounter some challenges, such as misidentification, wrong template prediction, etc. Building on previous findings, we introduce a simple and effective method called RT (Retrieving and Thinking), which serves as retrievers, finding relevant examples, and as thinkers, employing a step-by-step reasoning process. Experimental results show that our proposed RT framework significantly outperforms the strong open baselines on the two open medical benchmark datasets
Zhongjing: Enhancing the Chinese Medical Capabilities of Large Language Model through Expert Feedback and Real-world Multi-turn Dialogue
Recent advances in Large Language Models (LLMs) have achieved remarkable breakthroughs in understanding and responding to user intents. However, their performance lag behind general use cases in some expertise domains, such as Chinese medicine. Existing efforts to incorporate Chinese medicine into LLMs rely on Supervised Fine-Tuning (SFT) with single-turn and distilled dialogue data. These models lack the ability for doctor-like proactive inquiry and multi-turn comprehension and cannot align responses with experts' intentions. In this work, we introduce Zhongjing, the first Chinese medical LLaMA-based LLM that implements an entire training pipeline from continuous pre-training, SFT, to Reinforcement Learning from Human Feedback (RLHF). Additionally, we construct a Chinese multi-turn medical dialogue dataset of 70,000 authentic doctor-patient dialogues, CMtMedQA, which significantly enhances the model's capability for complex dialogue and proactive inquiry initiation. We also define a refined annotation rule and evaluation criteria given the unique characteristics of the biomedical domain. Extensive experimental results show that Zhongjing outperforms baselines in various capacities and matches the performance of ChatGPT in some abilities, despite the 100x parameters. Ablation studies also demonstrate the contributions of each component: pre-training enhances medical knowledge, and RLHF further improves instruction-following ability and safety. Our code, datasets, and models are available at https://github.com/SupritYoung/Zhongjing.
BioLORD-2023: Semantic Textual Representations Fusing LLM and Clinical Knowledge Graph Insights
In this study, we investigate the potential of Large Language Models to complement biomedical knowledge graphs in the training of semantic models for the biomedical and clinical domains. Drawing on the wealth of the UMLS knowledge graph and harnessing cutting-edge Large Language Models, we propose a new state-of-the-art approach for obtaining high-fidelity representations of biomedical concepts and sentences, consisting of three steps: an improved contrastive learning phase, a novel self-distillation phase, and a weight averaging phase. Through rigorous evaluations via the extensive BioLORD testing suite and diverse downstream tasks, we demonstrate consistent and substantial performance improvements over the previous state of the art (e.g. +2pts on MedSTS, +2.5pts on MedNLI-S, +6.1pts on EHR-Rel-B). Besides our new state-of-the-art biomedical model for English, we also distill and release a multilingual model compatible with 50+ languages and finetuned on 7 European languages. Many clinical pipelines can benefit from our latest models. Our new multilingual model enables a range of languages to benefit from our advancements in biomedical semantic representation learning, opening a new avenue for bioinformatics researchers around the world. As a result, we hope to see BioLORD-2023 becoming a precious tool for future biomedical applications.
InMD-X: Large Language Models for Internal Medicine Doctors
In this paper, we introduce InMD-X, a collection of multiple large language models specifically designed to cater to the unique characteristics and demands of Internal Medicine Doctors (IMD). InMD-X represents a groundbreaking development in natural language processing, offering a suite of language models fine-tuned for various aspects of the internal medicine field. These models encompass a wide range of medical sub-specialties, enabling IMDs to perform more efficient and accurate research, diagnosis, and documentation. InMD-X's versatility and adaptability make it a valuable tool for improving the healthcare industry, enhancing communication between healthcare professionals, and advancing medical research. Each model within InMD-X is meticulously tailored to address specific challenges faced by IMDs, ensuring the highest level of precision and comprehensiveness in clinical text analysis and decision support. This paper provides an overview of the design, development, and evaluation of InMD-X, showcasing its potential to revolutionize the way internal medicine practitioners interact with medical data and information. We present results from extensive testing, demonstrating the effectiveness and practical utility of InMD-X in real-world medical scenarios.
ClinicalMamba: A Generative Clinical Language Model on Longitudinal Clinical Notes
The advancement of natural language processing (NLP) systems in healthcare hinges on language model ability to interpret the intricate information contained within clinical notes. This process often requires integrating information from various time points in a patient's medical history. However, most earlier clinical language models were pretrained with a context length limited to roughly one clinical document. In this study, We introduce ClinicalMamba, a specialized version of the Mamba language model, pretrained on a vast corpus of longitudinal clinical notes to address the unique linguistic characteristics and information processing needs of the medical domain. ClinicalMamba, with 130 million and 2.8 billion parameters, demonstrates a superior performance in modeling clinical language across extended text lengths compared to Mamba and clinical Llama. With few-shot learning, ClinicalMamba achieves notable benchmarks in speed and accuracy, outperforming existing clinical language models and general domain large models like GPT-4 in longitudinal clinical notes information extraction tasks.
Multilingual Clinical NER: Translation or Cross-lingual Transfer?
Natural language tasks like Named Entity Recognition (NER) in the clinical domain on non-English texts can be very time-consuming and expensive due to the lack of annotated data. Cross-lingual transfer (CLT) is a way to circumvent this issue thanks to the ability of multilingual large language models to be fine-tuned on a specific task in one language and to provide high accuracy for the same task in another language. However, other methods leveraging translation models can be used to perform NER without annotated data in the target language, by either translating the training set or test set. This paper compares cross-lingual transfer with these two alternative methods, to perform clinical NER in French and in German without any training data in those languages. To this end, we release MedNERF a medical NER test set extracted from French drug prescriptions and annotated with the same guidelines as an English dataset. Through extensive experiments on this dataset and on a German medical dataset (Frei and Kramer, 2021), we show that translation-based methods can achieve similar performance to CLT but require more care in their design. And while they can take advantage of monolingual clinical language models, those do not guarantee better results than large general-purpose multilingual models, whether with cross-lingual transfer or translation.
Language Models are Surprisingly Fragile to Drug Names in Biomedical Benchmarks
Medical knowledge is context-dependent and requires consistent reasoning across various natural language expressions of semantically equivalent phrases. This is particularly crucial for drug names, where patients often use brand names like Advil or Tylenol instead of their generic equivalents. To study this, we create a new robustness dataset, RABBITS, to evaluate performance differences on medical benchmarks after swapping brand and generic drug names using physician expert annotations. We assess both open-source and API-based LLMs on MedQA and MedMCQA, revealing a consistent performance drop ranging from 1-10\%. Furthermore, we identify a potential source of this fragility as the contamination of test data in widely used pre-training datasets. All code is accessible at https://github.com/BittermanLab/RABBITS, and a HuggingFace leaderboard is available at https://huggingface.co/spaces/AIM-Harvard/rabbits-leaderboard.
Unsupervised Pre-Training for Vietnamese Automatic Speech Recognition in the HYKIST Project
In today's interconnected globe, moving abroad is more and more prevalent, whether it's for employment, refugee resettlement, or other causes. Language difficulties between natives and immigrants present a common issue on a daily basis, especially in medical domain. This can make it difficult for patients and doctors to communicate during anamnesis or in the emergency room, which compromises patient care. The goal of the HYKIST Project is to develop a speech translation system to support patient-doctor communication with ASR and MT. ASR systems have recently displayed astounding performance on particular tasks for which enough quantities of training data are available, such as LibriSpeech. Building a good model is still difficult due to a variety of speaking styles, acoustic and recording settings, and a lack of in-domain training data. In this thesis, we describe our efforts to construct ASR systems for a conversational telephone speech recognition task in the medical domain for Vietnamese language to assist emergency room contact between doctors and patients across linguistic barriers. In order to enhance the system's performance, we investigate various training schedules and data combining strategies. We also examine how best to make use of the little data that is available. The use of publicly accessible models like XLSR-53 is compared to the use of customized pre-trained models, and both supervised and unsupervised approaches are utilized using wav2vec 2.0 as architecture.
Instruction-tuned Large Language Models for Machine Translation in the Medical Domain
Large Language Models (LLMs) have shown promising results on machine translation for high resource language pairs and domains. However, in specialised domains (e.g. medical) LLMs have shown lower performance compared to standard neural machine translation models. The consistency in the machine translation of terminology is crucial for users, researchers, and translators in specialised domains. In this study, we compare the performance between baseline LLMs and instruction-tuned LLMs in the medical domain. In addition, we introduce terminology from specialised medical dictionaries into the instruction formatted datasets for fine-tuning LLMs. The instruction-tuned LLMs significantly outperform the baseline models with automatic metrics.
MultiQT: Multimodal Learning for Real-Time Question Tracking in Speech
We address a challenging and practical task of labeling questions in speech in real time during telephone calls to emergency medical services in English, which embeds within a broader decision support system for emergency call-takers. We propose a novel multimodal approach to real-time sequence labeling in speech. Our model treats speech and its own textual representation as two separate modalities or views, as it jointly learns from streamed audio and its noisy transcription into text via automatic speech recognition. Our results show significant gains of jointly learning from the two modalities when compared to text or audio only, under adverse noise and limited volume of training data. The results generalize to medical symptoms detection where we observe a similar pattern of improvements with multimodal learning.
COMETA: A Corpus for Medical Entity Linking in the Social Media
Whilst there has been growing progress in Entity Linking (EL) for general language, existing datasets fail to address the complex nature of health terminology in layman's language. Meanwhile, there is a growing need for applications that can understand the public's voice in the health domain. To address this we introduce a new corpus called COMETA, consisting of 20k English biomedical entity mentions from Reddit expert-annotated with links to SNOMED CT, a widely-used medical knowledge graph. Our corpus satisfies a combination of desirable properties, from scale and coverage to diversity and quality, that to the best of our knowledge has not been met by any of the existing resources in the field. Through benchmark experiments on 20 EL baselines from string- to neural-based models we shed light on the ability of these systems to perform complex inference on entities and concepts under 2 challenging evaluation scenarios. Our experimental results on COMETA illustrate that no golden bullet exists and even the best mainstream techniques still have a significant performance gap to fill, while the best solution relies on combining different views of data.
Clinical knowledge in LLMs does not translate to human interactions
Global healthcare providers are exploring use of large language models (LLMs) to provide medical advice to the public. LLMs now achieve nearly perfect scores on medical licensing exams, but this does not necessarily translate to accurate performance in real-world settings. We tested if LLMs can assist members of the public in identifying underlying conditions and choosing a course of action (disposition) in ten medical scenarios in a controlled study with 1,298 participants. Participants were randomly assigned to receive assistance from an LLM (GPT-4o, Llama 3, Command R+) or a source of their choice (control). Tested alone, LLMs complete the scenarios accurately, correctly identifying conditions in 94.9% of cases and disposition in 56.3% on average. However, participants using the same LLMs identified relevant conditions in less than 34.5% of cases and disposition in less than 44.2%, both no better than the control group. We identify user interactions as a challenge to the deployment of LLMs for medical advice. Standard benchmarks for medical knowledge and simulated patient interactions do not predict the failures we find with human participants. Moving forward, we recommend systematic human user testing to evaluate interactive capabilities prior to public deployments in healthcare.
Review of Natural Language Processing in Pharmacology
Natural language processing (NLP) is an area of artificial intelligence that applies information technologies to process the human language, understand it to a certain degree, and use it in various applications. This area has rapidly developed in the last few years and now employs modern variants of deep neural networks to extract relevant patterns from large text corpora. The main objective of this work is to survey the recent use of NLP in the field of pharmacology. As our work shows, NLP is a highly relevant information extraction and processing approach for pharmacology. It has been used extensively, from intelligent searches through thousands of medical documents to finding traces of adversarial drug interactions in social media. We split our coverage into five categories to survey modern NLP methodology, commonly addressed tasks, relevant textual data, knowledge bases, and useful programming libraries. We split each of the five categories into appropriate subcategories, describe their main properties and ideas, and summarize them in a tabular form. The resulting survey presents a comprehensive overview of the area, useful to practitioners and interested observers.
Distilling Large Language Models for Biomedical Knowledge Extraction: A Case Study on Adverse Drug Events
Large language models (LLMs), such as GPT-4, have demonstrated remarkable capabilities across a wide range of tasks, including health applications. In this paper, we study how LLMs can be used to scale biomedical knowledge curation. We find that while LLMs already possess decent competency in structuring biomedical text, by distillation into a task-specific student model through self-supervised learning, substantial gains can be attained over out-of-box LLMs, with additional advantages such as cost, efficiency, and white-box model access. We conduct a case study on adverse drug event (ADE) extraction, which is an important area for improving care. On standard ADE extraction evaluation, a GPT-3.5 distilled PubMedBERT model attained comparable accuracy as supervised state-of-the-art models without using any labeled data. Despite being over 1,000 times smaller, the distilled model outperformed its teacher GPT-3.5 by over 6 absolute points in F1 and GPT-4 by over 5 absolute points. Ablation studies on distillation model choice (e.g., PubMedBERT vs BioGPT) and ADE extraction architecture shed light on best practice for biomedical knowledge extraction. Similar gains were attained by distillation for other standard biomedical knowledge extraction tasks such as gene-disease associations and protected health information, further illustrating the promise of this approach.
Doctors Handwritten Prescription Recognition System In Multi Language Using Deep Learning
Doctors typically write in incomprehensible handwriting, making it difficult for both the general public and some pharmacists to understand the medications they have prescribed. It is not ideal for them to write the prescription quietly and methodically because they will be dealing with dozens of patients every day and will be swamped with work.As a result, their handwriting is illegible. This may result in reports or prescriptions consisting of short forms and cursive writing that a typical person or pharmacist won't be able to read properly, which will cause prescribed medications to be misspelled. However, some individuals are accustomed to writing prescriptions in regional languages because we all live in an area with a diversity of regional languages. It makes analyzing the content much more challenging. So, in this project, we'll use a recognition system to build a tool that can translate the handwriting of physicians in any language. This system will be made into an application which is fully autonomous in functioning. As the user uploads the prescription image the program will pre-process the image by performing image pre-processing, and word segmentations initially before processing the image for training. And it will be done for every language we require the model to detect. And as of the deduction model will be made using deep learning techniques including CNN, RNN, and LSTM, which are utilized to train the model. To match words from various languages that will be written in the system, Unicode will be used. Furthermore, fuzzy search and market basket analysis are employed to offer an end result that will be optimized from the pharmaceutical database and displayed to the user as a structured output.
MedDialog: Two Large-scale Medical Dialogue Datasets
Medical dialogue systems are promising in assisting in telemedicine to increase access to healthcare services, improve the quality of patient care, and reduce medical costs. To facilitate the research and development of medical dialogue systems, we build two large-scale medical dialogue datasets: MedDialog-EN and MedDialog-CN. MedDialog-EN is an English dataset containing 0.3 million conversations between patients and doctors and 0.5 million utterances. MedDialog-CN is an Chinese dataset containing 1.1 million conversations and 4 million utterances. To our best knowledge, MedDialog-(EN,CN) are the largest medical dialogue datasets to date. The dataset is available at https://github.com/UCSD-AI4H/Medical-Dialogue-System
MedSyn: LLM-based Synthetic Medical Text Generation Framework
Generating synthetic text addresses the challenge of data availability in privacy-sensitive domains such as healthcare. This study explores the applicability of synthetic data in real-world medical settings. We introduce MedSyn, a novel medical text generation framework that integrates large language models with a Medical Knowledge Graph (MKG). We use MKG to sample prior medical information for the prompt and generate synthetic clinical notes with GPT-4 and fine-tuned LLaMA models. We assess the benefit of synthetic data through application in the ICD code prediction task. Our research indicates that synthetic data can increase the classification accuracy of vital and challenging codes by up to 17.8% compared to settings without synthetic data. Furthermore, to provide new data for further research in the healthcare domain, we present the largest open-source synthetic dataset of clinical notes for the Russian language, comprising over 41k samples covering 219 ICD-10 codes.
Do "New Snow Tablets" Contain Snow? Large Language Models Over-Rely on Names to Identify Ingredients of Chinese Drugs
Traditional Chinese Medicine (TCM) has seen increasing adoption in healthcare, with specialized Large Language Models (LLMs) emerging to support clinical applications. A fundamental requirement for these models is accurate identification of TCM drug ingredients. In this paper, we evaluate how general and TCM-specialized LLMs perform when identifying ingredients of Chinese drugs. Our systematic analysis reveals consistent failure patterns: models often interpret drug names literally, overuse common herbs regardless of relevance, and exhibit erratic behaviors when faced with unfamiliar formulations. LLMs also fail to understand the verification task. These findings demonstrate that current LLMs rely primarily on drug names rather than possessing systematic pharmacological knowledge. To address these limitations, we propose a Retrieval Augmented Generation (RAG) approach focused on ingredient names. Experiments across 220 TCM formulations show our method significantly improves accuracy from approximately 50% to 82% in ingredient verification tasks. Our work highlights critical weaknesses in current TCM-specific LLMs and offers a practical solution for enhancing their clinical reliability.
PharmaGPT: Domain-Specific Large Language Models for Bio-Pharmaceutical and Chemistry
Large language models (LLMs) have revolutionized Natural Language Processing (NLP) by minimizing the need for complex feature engineering. However, the application of LLMs in specialized domains like biopharmaceuticals and chemistry remains largely unexplored. These fields are characterized by intricate terminologies, specialized knowledge, and a high demand for precision areas where general purpose LLMs often fall short. In this study, we introduce PharmaGPT, a suite of domain specilized LLMs with 13 billion and 70 billion parameters, specifically trained on a comprehensive corpus tailored to the Bio-Pharmaceutical and Chemical domains. Our evaluation shows that PharmaGPT surpasses existing general models on specific-domain benchmarks such as NAPLEX, demonstrating its exceptional capability in domain-specific tasks. Remarkably, this performance is achieved with a model that has only a fraction, sometimes just one-tenth-of the parameters of general-purpose large models. This advancement establishes a new benchmark for LLMs in the bio-pharmaceutical and chemical fields, addressing the existing gap in specialized language modeling. It also suggests a promising path for enhanced research and development, paving the way for more precise and effective NLP applications in these areas.
IryoNLP at MEDIQA-CORR 2024: Tackling the Medical Error Detection & Correction Task On the Shoulders of Medical Agents
In natural language processing applied to the clinical domain, utilizing large language models has emerged as a promising avenue for error detection and correction on clinical notes, a knowledge-intensive task for which annotated data is scarce. This paper presents MedReAct'N'MedReFlex, which leverages a suite of four LLM-based medical agents. The MedReAct agent initiates the process by observing, analyzing, and taking action, generating trajectories to guide the search to target a potential error in the clinical notes. Subsequently, the MedEval agent employs five evaluators to assess the targeted error and the proposed correction. In cases where MedReAct's actions prove insufficient, the MedReFlex agent intervenes, engaging in reflective analysis and proposing alternative strategies. Finally, the MedFinalParser agent formats the final output, preserving the original style while ensuring the integrity of the error correction process. One core component of our method is our RAG pipeline based on our ClinicalCorp corpora. Among other well-known sources containing clinical guidelines and information, we preprocess and release the open-source MedWiki dataset for clinical RAG application. Our results demonstrate the central role of our RAG approach with ClinicalCorp leveraged through the MedReAct'N'MedReFlex framework. It achieved the ninth rank on the MEDIQA-CORR 2024 final leaderboard.
Wait, but Tylenol is Acetaminophen... Investigating and Improving Language Models' Ability to Resist Requests for Misinformation
Background: Large language models (LLMs) are trained to follow directions, but this introduces a vulnerability to blindly comply with user requests even if they generate wrong information. In medicine, this could accelerate the generation of misinformation that impacts human well-being. Objectives/Methods: We analyzed compliance to requests to generate misleading content about medications in settings where models know the request is illogical. We investigated whether in-context directions and instruction-tuning of LLMs to prioritize logical reasoning over compliance reduced misinformation risk. Results: While all frontier LLMs complied with misinformation requests, both prompt-based and parameter-based approaches can improve the detection of logic flaws in requests and prevent the dissemination of medical misinformation. Conclusion: Shifting LLMs to prioritize logic over compliance could reduce risks of exploitation for medical misinformation.
Self-Verification Improves Few-Shot Clinical Information Extraction
Extracting patient information from unstructured text is a critical task in health decision-support and clinical research. Large language models (LLMs) have shown the potential to accelerate clinical curation via few-shot in-context learning, in contrast to supervised learning which requires much more costly human annotations. However, despite drastic advances in modern LLMs such as GPT-4, they still struggle with issues regarding accuracy and interpretability, especially in mission-critical domains such as health. Here, we explore a general mitigation framework using self-verification, which leverages the LLM to provide provenance for its own extraction and check its own outputs. This is made possible by the asymmetry between verification and generation, where the latter is often much easier than the former. Experimental results show that our method consistently improves accuracy for various LLMs in standard clinical information extraction tasks. Additionally, self-verification yields interpretations in the form of a short text span corresponding to each output, which makes it very efficient for human experts to audit the results, paving the way towards trustworthy extraction of clinical information in resource-constrained scenarios. To facilitate future research in this direction, we release our code and prompts.
BRIDGE: Benchmarking Large Language Models for Understanding Real-world Clinical Practice Text
Large language models (LLMs) hold great promise for medical applications and are evolving rapidly, with new models being released at an accelerated pace. However, current evaluations of LLMs in clinical contexts remain limited. Most existing benchmarks rely on medical exam-style questions or PubMed-derived text, failing to capture the complexity of real-world electronic health record (EHR) data. Others focus narrowly on specific application scenarios, limiting their generalizability across broader clinical use. To address this gap, we present BRIDGE, a comprehensive multilingual benchmark comprising 87 tasks sourced from real-world clinical data sources across nine languages. We systematically evaluated 52 state-of-the-art LLMs (including DeepSeek-R1, GPT-4o, Gemini, and Llama 4) under various inference strategies. With a total of 13,572 experiments, our results reveal substantial performance variation across model sizes, languages, natural language processing tasks, and clinical specialties. Notably, we demonstrate that open-source LLMs can achieve performance comparable to proprietary models, while medically fine-tuned LLMs based on older architectures often underperform versus updated general-purpose models. The BRIDGE and its corresponding leaderboard serve as a foundational resource and a unique reference for the development and evaluation of new LLMs in real-world clinical text understanding.
PMC-LLaMA: Towards Building Open-source Language Models for Medicine
Recently, Large Language Models (LLMs) have showcased remarkable capabilities in natural language understanding. While demonstrating proficiency in everyday conversations and question-answering situations, these models frequently struggle in domains that require precision, such as medical applications, due to their lack of domain-specific knowledge. In this paper, we describe the procedure for building a powerful, open-source language model specifically designed for medicine applications, termed as PMC-LLaMA. Our contributions are threefold: (i) we systematically investigate the process of adapting a general-purpose foundation language model towards medical domain, this involves data-centric knowledge injection through the integration of 4.8M biomedical academic papers and 30K medical textbooks, as well as comprehensive fine-tuning for alignment with domain-specific instructions; (ii) we contribute a large-scale, comprehensive dataset for instruction tuning. This dataset encompasses medical question-answering (QA), rationale for reasoning, and conversational dialogues, comprising a total of 202M tokens; (iii) we conduct thorough ablation studies to demonstrate the effectiveness of each proposed component. While evaluating on various public medical question-answering benchmarks, our lightweight PMCLLaMA, which consists of only 13 billion parameters, exhibits superior performance, even surpassing ChatGPT. All models, codes, datasets can be found in https://github.com/chaoyi-wu/PMC-LLaMA.
Explanatory Argument Extraction of Correct Answers in Resident Medical Exams
Developing the required technology to assist medical experts in their everyday activities is currently a hot topic in the Artificial Intelligence research field. Thus, a number of large language models (LLMs) and automated benchmarks have recently been proposed with the aim of facilitating information extraction in Evidence-Based Medicine (EBM) using natural language as a tool for mediating in human-AI interaction. The most representative benchmarks are limited to either multiple-choice or long-form answers and are available only in English. In order to address these shortcomings, in this paper we present a new dataset which, unlike previous work: (i) includes not only explanatory arguments for the correct answer, but also arguments to reason why the incorrect answers are not correct; (ii) the explanations are written originally by medical doctors to answer questions from the Spanish Residency Medical Exams. Furthermore, this new benchmark allows us to setup a novel extractive task which consists of identifying the explanation of the correct answer written by medical doctors. An additional benefit of our setting is that we can leverage the extractive QA paradigm to automatically evaluate performance of LLMs without resorting to costly manual evaluation by medical experts. Comprehensive experimentation with language models for Spanish shows that sometimes multilingual models fare better than monolingual ones, even outperforming models which have been adapted to the medical domain. Furthermore, results across the monolingual models are mixed, with supposedly smaller and inferior models performing competitively. In any case, the obtained results show that our novel dataset and approach can be an effective technique to help medical practitioners in identifying relevant evidence-based explanations for medical questions.
A Dataset for N-ary Relation Extraction of Drug Combinations
Combination therapies have become the standard of care for diseases such as cancer, tuberculosis, malaria and HIV. However, the combinatorial set of available multi-drug treatments creates a challenge in identifying effective combination therapies available in a situation. To assist medical professionals in identifying beneficial drug-combinations, we construct an expert-annotated dataset for extracting information about the efficacy of drug combinations from the scientific literature. Beyond its practical utility, the dataset also presents a unique NLP challenge, as the first relation extraction dataset consisting of variable-length relations. Furthermore, the relations in this dataset predominantly require language understanding beyond the sentence level, adding to the challenge of this task. We provide a promising baseline model and identify clear areas for further improvement. We release our dataset, code, and baseline models publicly to encourage the NLP community to participate in this task.
Text2MDT: Extracting Medical Decision Trees from Medical Texts
Knowledge of the medical decision process, which can be modeled as medical decision trees (MDTs), is critical to build clinical decision support systems. However, the current MDT construction methods rely heavily on time-consuming and laborious manual annotation. In this work, we propose a novel task, Text2MDT, to explore the automatic extraction of MDTs from medical texts such as medical guidelines and textbooks. We normalize the form of the MDT and create an annotated Text-to-MDT dataset in Chinese with the participation of medical experts. We investigate two different methods for the Text2MDT tasks: (a) an end-to-end framework which only relies on a GPT style large language models (LLM) instruction tuning to generate all the node information and tree structures. (b) The pipeline framework which decomposes the Text2MDT task to three subtasks. Experiments on our Text2MDT dataset demonstrate that: (a) the end-to-end method basd on LLMs (7B parameters or larger) show promising results, and successfully outperform the pipeline methods. (b) The chain-of-thought (COT) prompting method Wei2022ChainOT can improve the performance of the fine-tuned LLMs on the Text2MDT test set. (c) the lightweight pipelined method based on encoder-based pretrained models can perform comparably with LLMs with model complexity two magnititudes smaller. Our Text2MDT dataset is open-sourced at https://tianchi.aliyun.com/dataset/95414, and the source codes are open-sourced at https://github.com/michael-wzhu/text2dt.
MedExQA: Medical Question Answering Benchmark with Multiple Explanations
This paper introduces MedExQA, a novel benchmark in medical question-answering, to evaluate large language models' (LLMs) understanding of medical knowledge through explanations. By constructing datasets across five distinct medical specialties that are underrepresented in current datasets and further incorporating multiple explanations for each question-answer pair, we address a major gap in current medical QA benchmarks which is the absence of comprehensive assessments of LLMs' ability to generate nuanced medical explanations. Our work highlights the importance of explainability in medical LLMs, proposes an effective methodology for evaluating models beyond classification accuracy, and sheds light on one specific domain, speech language pathology, where current LLMs including GPT4 lack good understanding. Our results show generation evaluation with multiple explanations aligns better with human assessment, highlighting an opportunity for a more robust automated comprehension assessment for LLMs. To diversify open-source medical LLMs (currently mostly based on Llama2), this work also proposes a new medical model, MedPhi-2, based on Phi-2 (2.7B). The model outperformed medical LLMs based on Llama2-70B in generating explanations, showing its effectiveness in the resource-constrained medical domain. We will share our benchmark datasets and the trained model.
MEDEC: A Benchmark for Medical Error Detection and Correction in Clinical Notes
Several studies showed that Large Language Models (LLMs) can answer medical questions correctly, even outperforming the average human score in some medical exams. However, to our knowledge, no study has been conducted to assess the ability of language models to validate existing or generated medical text for correctness and consistency. In this paper, we introduce MEDEC (https://github.com/abachaa/MEDEC), the first publicly available benchmark for medical error detection and correction in clinical notes, covering five types of errors (Diagnosis, Management, Treatment, Pharmacotherapy, and Causal Organism). MEDEC consists of 3,848 clinical texts, including 488 clinical notes from three US hospital systems that were not previously seen by any LLM. The dataset has been used for the MEDIQA-CORR shared task to evaluate seventeen participating systems [Ben Abacha et al., 2024]. In this paper, we describe the data creation methods and we evaluate recent LLMs (e.g., o1-preview, GPT-4, Claude 3.5 Sonnet, and Gemini 2.0 Flash) for the tasks of detecting and correcting medical errors requiring both medical knowledge and reasoning capabilities. We also conducted a comparative study where two medical doctors performed the same task on the MEDEC test set. The results showed that MEDEC is a sufficiently challenging benchmark to assess the ability of models to validate existing or generated notes and to correct medical errors. We also found that although recent LLMs have a good performance in error detection and correction, they are still outperformed by medical doctors in these tasks. We discuss the potential factors behind this gap, the insights from our experiments, the limitations of current evaluation metrics, and share potential pointers for future research.
Cross-lingual Argument Mining in the Medical Domain
Nowadays the medical domain is receiving more and more attention in applications involving Artificial Intelligence. Clinicians have to deal with an enormous amount of unstructured textual data to make a conclusion about patients' health in their everyday life. Argument mining helps to provide a structure to such data by detecting argumentative components in the text and classifying the relations between them. However, as it is the case for many tasks in Natural Language Processing in general and in medical text processing in particular, the large majority of the work on computational argumentation has been done only for English. This is also the case with the only dataset available for argumentation in the medical domain, namely, the annotated medical data of abstracts of Randomized Controlled Trials (RCT) from the MEDLINE database. In order to mitigate the lack of annotated data for other languages, we empirically investigate several strategies to perform argument mining and classification in medical texts for a language for which no annotated data is available. This project shows that automatically translating and project annotations from English to a target language (Spanish) is an effective way to generate annotated data without manual intervention. Furthermore, our experiments demonstrate that the translation and projection approach outperforms zero-shot cross-lingual approaches using a large masked multilingual language model. Finally, we show how the automatically generated data in Spanish can also be used to improve results in the original English evaluation setting.
MedExpQA: Multilingual Benchmarking of Large Language Models for Medical Question Answering
Large Language Models (LLMs) have the potential of facilitating the development of Artificial Intelligence technology to assist medical experts for interactive decision support, which has been demonstrated by their competitive performances in Medical QA. However, while impressive, the required quality bar for medical applications remains far from being achieved. Currently, LLMs remain challenged by outdated knowledge and by their tendency to generate hallucinated content. Furthermore, most benchmarks to assess medical knowledge lack reference gold explanations which means that it is not possible to evaluate the reasoning of LLMs predictions. Finally, the situation is particularly grim if we consider benchmarking LLMs for languages other than English which remains, as far as we know, a totally neglected topic. In order to address these shortcomings, in this paper we present MedExpQA, the first multilingual benchmark based on medical exams to evaluate LLMs in Medical Question Answering. To the best of our knowledge, MedExpQA includes for the first time reference gold explanations written by medical doctors which can be leveraged to establish various gold-based upper-bounds for comparison with LLMs performance. Comprehensive multilingual experimentation using both the gold reference explanations and Retrieval Augmented Generation (RAG) approaches show that performance of LLMs still has large room for improvement, especially for languages other than English. Furthermore, and despite using state-of-the-art RAG methods, our results also demonstrate the difficulty of obtaining and integrating readily available medical knowledge that may positively impact results on downstream evaluations for Medical Question Answering. So far the benchmark is available in four languages, but we hope that this work may encourage further development to other languages.
A Survey of Large Language Models in Medicine: Principles, Applications, and Challenges
Large language models (LLMs), such as ChatGPT, have received substantial attention due to their impressive human language understanding and generation capabilities. Therefore, the application of LLMs in medicine to assist physicians and patient care emerges as a promising research direction in both artificial intelligence and clinical medicine. To reflect this trend, this survey provides a comprehensive overview of the principles, applications, and challenges faced by LLMs in medicine. Specifically, we aim to address the following questions: 1) How can medical LLMs be built? 2) What are the downstream performances of medical LLMs? 3) How can medical LLMs be utilized in real-world clinical practice? 4) What challenges arise from the use of medical LLMs? and 5) How can we better construct and utilize medical LLMs? As a result, this survey aims to provide insights into the opportunities and challenges of LLMs in medicine and serve as a valuable resource for constructing practical and effective medical LLMs. A regularly updated list of practical guides on medical LLMs can be found at https://github.com/AI-in-Health/MedLLMsPracticalGuide.
Automatic Speech Recognition for Biomedical Data in Bengali Language
This paper presents the development of a prototype Automatic Speech Recognition (ASR) system specifically designed for Bengali biomedical data. Recent advancements in Bengali ASR are encouraging, but a lack of domain-specific data limits the creation of practical healthcare ASR models. This project bridges this gap by developing an ASR system tailored for Bengali medical terms like symptoms, severity levels, and diseases, encompassing two major dialects: Bengali and Sylheti. We train and evaluate two popular ASR frameworks on a comprehensive 46-hour Bengali medical corpus. Our core objective is to create deployable health-domain ASR systems for digital health applications, ultimately increasing accessibility for non-technical users in the healthcare sector.
Do We Still Need Clinical Language Models?
Although recent advances in scaling large language models (LLMs) have resulted in improvements on many NLP tasks, it remains unclear whether these models trained primarily with general web text are the right tool in highly specialized, safety critical domains such as clinical text. Recent results have suggested that LLMs encode a surprising amount of medical knowledge. This raises an important question regarding the utility of smaller domain-specific language models. With the success of general-domain LLMs, is there still a need for specialized clinical models? To investigate this question, we conduct an extensive empirical analysis of 12 language models, ranging from 220M to 175B parameters, measuring their performance on 3 different clinical tasks that test their ability to parse and reason over electronic health records. As part of our experiments, we train T5-Base and T5-Large models from scratch on clinical notes from MIMIC III and IV to directly investigate the efficiency of clinical tokens. We show that relatively small specialized clinical models substantially outperform all in-context learning approaches, even when finetuned on limited annotated data. Further, we find that pretraining on clinical tokens allows for smaller, more parameter-efficient models that either match or outperform much larger language models trained on general text. We release the code and the models used under the PhysioNet Credentialed Health Data license and data use agreement.
SilVar-Med: A Speech-Driven Visual Language Model for Explainable Abnormality Detection in Medical Imaging
Medical Visual Language Models have shown great potential in various healthcare applications, including medical image captioning and diagnostic assistance. However, most existing models rely on text-based instructions, limiting their usability in real-world clinical environments especially in scenarios such as surgery, text-based interaction is often impractical for physicians. In addition, current medical image analysis models typically lack comprehensive reasoning behind their predictions, which reduces their reliability for clinical decision-making. Given that medical diagnosis errors can have life-changing consequences, there is a critical need for interpretable and rational medical assistance. To address these challenges, we introduce an end-to-end speech-driven medical VLM, SilVar-Med, a multimodal medical image assistant that integrates speech interaction with VLMs, pioneering the task of voice-based communication for medical image analysis. In addition, we focus on the interpretation of the reasoning behind each prediction of medical abnormalities with a proposed reasoning dataset. Through extensive experiments, we demonstrate a proof-of-concept study for reasoning-driven medical image interpretation with end-to-end speech interaction. We believe this work will advance the field of medical AI by fostering more transparent, interactive, and clinically viable diagnostic support systems. Our code and dataset are publicly available at SiVar-Med.
README: Bridging Medical Jargon and Lay Understanding for Patient Education through Data-Centric NLP
The advancement in healthcare has shifted focus toward patient-centric approaches, particularly in self-care and patient education, facilitated by access to Electronic Health Records (EHR). However, medical jargon in EHRs poses significant challenges in patient comprehension. To address this, we introduce a new task of automatically generating lay definitions, aiming to simplify complex medical terms into patient-friendly lay language. We first created the README dataset, an extensive collection of over 50,000 unique (medical term, lay definition) pairs and 300,000 mentions, each offering context-aware lay definitions manually annotated by domain experts. We have also engineered a data-centric Human-AI pipeline that synergizes data filtering, augmentation, and selection to improve data quality. We then used README as the training data for models and leveraged a Retrieval-Augmented Generation method to reduce hallucinations and improve the quality of model outputs. Our extensive automatic and human evaluations demonstrate that open-source mobile-friendly models, when fine-tuned with high-quality data, are capable of matching or even surpassing the performance of state-of-the-art closed-source large language models like ChatGPT. This research represents a significant stride in closing the knowledge gap in patient education and advancing patient-centric healthcare solutions.
Weakly supervised information extraction from inscrutable handwritten document images
State-of-the-art information extraction methods are limited by OCR errors. They work well for printed text in form-like documents, but unstructured, handwritten documents still remain a challenge. Adapting existing models to domain-specific training data is quite expensive, because of two factors, 1) limited availability of the domain-specific documents (such as handwritten prescriptions, lab notes, etc.), and 2) annotations become even more challenging as one needs domain-specific knowledge to decode inscrutable handwritten document images. In this work, we focus on the complex problem of extracting medicine names from handwritten prescriptions using only weakly labeled data. The data consists of images along with the list of medicine names in it, but not their location in the image. We solve the problem by first identifying the regions of interest, i.e., medicine lines from just weak labels and then injecting a domain-specific medicine language model learned using only synthetically generated data. Compared to off-the-shelf state-of-the-art methods, our approach performs >2.5x better in medicine names extraction from prescriptions.
Large Language Models are Few-Shot Clinical Information Extractors
A long-running goal of the clinical NLP community is the extraction of important variables trapped in clinical notes. However, roadblocks have included dataset shift from the general domain and a lack of public clinical corpora and annotations. In this work, we show that large language models, such as InstructGPT, perform well at zero- and few-shot information extraction from clinical text despite not being trained specifically for the clinical domain. Whereas text classification and generation performance have already been studied extensively in such models, here we additionally demonstrate how to leverage them to tackle a diverse set of NLP tasks which require more structured outputs, including span identification, token-level sequence classification, and relation extraction. Further, due to the dearth of available data to evaluate these systems, we introduce new datasets for benchmarking few-shot clinical information extraction based on a manual re-annotation of the CASI dataset for new tasks. On the clinical extraction tasks we studied, the GPT-3 systems significantly outperform existing zero- and few-shot baselines.
Real-time Speech Summarization for Medical Conversations
In doctor-patient conversations, identifying medically relevant information is crucial, posing the need for conversation summarization. In this work, we propose the first deployable real-time speech summarization system for real-world applications in industry, which generates a local summary after every N speech utterances within a conversation and a global summary after the end of a conversation. Our system could enhance user experience from a business standpoint, while also reducing computational costs from a technical perspective. Secondly, we present VietMed-Sum which, to our knowledge, is the first speech summarization dataset for medical conversations. Thirdly, we are the first to utilize LLM and human annotators collaboratively to create gold standard and synthetic summaries for medical conversation summarization. Finally, we present baseline results of state-of-the-art models on VietMed-Sum. All code, data (English-translated and Vietnamese) and models are available online: https://github.com/leduckhai/MultiMed
Enhancing Large Language Models with Domain-specific Retrieval Augment Generation: A Case Study on Long-form Consumer Health Question Answering in Ophthalmology
Despite the potential of Large Language Models (LLMs) in medicine, they may generate responses lacking supporting evidence or based on hallucinated evidence. While Retrieval Augment Generation (RAG) is popular to address this issue, few studies implemented and evaluated RAG in downstream domain-specific applications. We developed a RAG pipeline with 70,000 ophthalmology-specific documents that retrieve relevant documents to augment LLMs during inference time. In a case study on long-form consumer health questions, we systematically evaluated the responses including over 500 references of LLMs with and without RAG on 100 questions with 10 healthcare professionals. The evaluation focuses on factuality of evidence, selection and ranking of evidence, attribution of evidence, and answer accuracy and completeness. LLMs without RAG provided 252 references in total. Of which, 45.3% hallucinated, 34.1% consisted of minor errors, and 20.6% were correct. In contrast, LLMs with RAG significantly improved accuracy (54.5% being correct) and reduced error rates (18.8% with minor hallucinations and 26.7% with errors). 62.5% of the top 10 documents retrieved by RAG were selected as the top references in the LLM response, with an average ranking of 4.9. The use of RAG also improved evidence attribution (increasing from 1.85 to 2.49 on a 5-point scale, P<0.001), albeit with slight decreases in accuracy (from 3.52 to 3.23, P=0.03) and completeness (from 3.47 to 3.27, P=0.17). The results demonstrate that LLMs frequently exhibited hallucinated and erroneous evidence in the responses, raising concerns for downstream applications in the medical domain. RAG substantially reduced the proportion of such evidence but encountered challenges.
ClinLinker: Medical Entity Linking of Clinical Concept Mentions in Spanish
Advances in natural language processing techniques, such as named entity recognition and normalization to widely used standardized terminologies like UMLS or SNOMED-CT, along with the digitalization of electronic health records, have significantly advanced clinical text analysis. This study presents ClinLinker, a novel approach employing a two-phase pipeline for medical entity linking that leverages the potential of in-domain adapted language models for biomedical text mining: initial candidate retrieval using a SapBERT-based bi-encoder and subsequent re-ranking with a cross-encoder, trained by following a contrastive-learning strategy to be tailored to medical concepts in Spanish. This methodology, focused initially on content in Spanish, substantially outperforming multilingual language models designed for the same purpose. This is true even for complex scenarios involving heterogeneous medical terminologies and being trained on a subset of the original data. Our results, evaluated using top-k accuracy at 25 and other top-k metrics, demonstrate our approach's performance on two distinct clinical entity linking Gold Standard corpora, DisTEMIST (diseases) and MedProcNER (clinical procedures), outperforming previous benchmarks by 40 points in DisTEMIST and 43 points in MedProcNER, both normalized to SNOMED-CT codes. These findings highlight our approach's ability to address language-specific nuances and set a new benchmark in entity linking, offering a potent tool for enhancing the utility of digital medical records. The resulting system is of practical value, both for large scale automatic generation of structured data derived from clinical records, as well as for exhaustive extraction and harmonization of predefined clinical variables of interest.
Better to Ask in English: Cross-Lingual Evaluation of Large Language Models for Healthcare Queries
Large language models (LLMs) are transforming the ways the general public accesses and consumes information. Their influence is particularly pronounced in pivotal sectors like healthcare, where lay individuals are increasingly appropriating LLMs as conversational agents for everyday queries. While LLMs demonstrate impressive language understanding and generation proficiencies, concerns regarding their safety remain paramount in these high-stake domains. Moreover, the development of LLMs is disproportionately focused on English. It remains unclear how these LLMs perform in the context of non-English languages, a gap that is critical for ensuring equity in the real-world use of these systems.This paper provides a framework to investigate the effectiveness of LLMs as multi-lingual dialogue systems for healthcare queries. Our empirically-derived framework XlingEval focuses on three fundamental criteria for evaluating LLM responses to naturalistic human-authored health-related questions: correctness, consistency, and verifiability. Through extensive experiments on four major global languages, including English, Spanish, Chinese, and Hindi, spanning three expert-annotated large health Q&A datasets, and through an amalgamation of algorithmic and human-evaluation strategies, we found a pronounced disparity in LLM responses across these languages, indicating a need for enhanced cross-lingual capabilities. We further propose XlingHealth, a cross-lingual benchmark for examining the multilingual capabilities of LLMs in the healthcare context. Our findings underscore the pressing need to bolster the cross-lingual capacities of these models, and to provide an equitable information ecosystem accessible to all.
Improving Medical Dialogue Generation with Abstract Meaning Representations
Medical Dialogue Generation serves a critical role in telemedicine by facilitating the dissemination of medical expertise to patients. Existing studies focus on incorporating textual representations, which have limited their ability to represent the semantics of text, such as ignoring important medical entities. To enhance the model's understanding of the textual semantics and the medical knowledge including entities and relations, we introduce the use of Abstract Meaning Representations (AMR) to construct graphical representations that delineate the roles of language constituents and medical entities within the dialogues. In this paper, We propose a novel framework that models dialogues between patients and healthcare professionals using AMR graphs, where the neural networks incorporate textual and graphical knowledge with a dual attention mechanism. Experimental results show that our framework outperforms strong baseline models in medical dialogue generation, demonstrating the effectiveness of AMR graphs in enhancing the representations of medical knowledge and logical relationships. Furthermore, to support future research in this domain, we provide the corresponding source code at https://github.com/Bernard-Yang/MedDiaAMR.
BiMediX: Bilingual Medical Mixture of Experts LLM
In this paper, we introduce BiMediX, the first bilingual medical mixture of experts LLM designed for seamless interaction in both English and Arabic. Our model facilitates a wide range of medical interactions in English and Arabic, including multi-turn chats to inquire about additional details such as patient symptoms and medical history, multiple-choice question answering, and open-ended question answering. We propose a semi-automated English-to-Arabic translation pipeline with human refinement to ensure high-quality translations. We also introduce a comprehensive evaluation benchmark for Arabic medical LLMs. Furthermore, we introduce BiMed1.3M, an extensive Arabic-English bilingual instruction set covering 1.3 Million diverse medical interactions, resulting in over 632 million healthcare specialized tokens for instruction tuning. Our BiMed1.3M dataset includes 250k synthesized multi-turn doctor-patient chats and maintains a 1:2 Arabic-to-English ratio. Our model outperforms state-of-the-art Med42 and Meditron by average absolute gains of 2.5% and 4.1%, respectively, computed across multiple medical evaluation benchmarks in English, while operating at 8-times faster inference. Moreover, our BiMediX outperforms the generic Arabic-English bilingual LLM, Jais-30B, by average absolute gains of 10% on our Arabic medical benchmark and 15% on bilingual evaluations across multiple datasets. Our project page with source code and trained model is available at https://github.com/mbzuai-oryx/BiMediX .
Demystifying Large Language Models for Medicine: A Primer
Large language models (LLMs) represent a transformative class of AI tools capable of revolutionizing various aspects of healthcare by generating human-like responses across diverse contexts and adapting to novel tasks following human instructions. Their potential application spans a broad range of medical tasks, such as clinical documentation, matching patients to clinical trials, and answering medical questions. In this primer paper, we propose an actionable guideline to help healthcare professionals more efficiently utilize LLMs in their work, along with a set of best practices. This approach consists of several main phases, including formulating the task, choosing LLMs, prompt engineering, fine-tuning, and deployment. We start with the discussion of critical considerations in identifying healthcare tasks that align with the core capabilities of LLMs and selecting models based on the selected task and data, performance requirements, and model interface. We then review the strategies, such as prompt engineering and fine-tuning, to adapt standard LLMs to specialized medical tasks. Deployment considerations, including regulatory compliance, ethical guidelines, and continuous monitoring for fairness and bias, are also discussed. By providing a structured step-by-step methodology, this tutorial aims to equip healthcare professionals with the tools necessary to effectively integrate LLMs into clinical practice, ensuring that these powerful technologies are applied in a safe, reliable, and impactful manner.
Named Clinical Entity Recognition Benchmark
This technical report introduces a Named Clinical Entity Recognition Benchmark for evaluating language models in healthcare, addressing the crucial natural language processing (NLP) task of extracting structured information from clinical narratives to support applications like automated coding, clinical trial cohort identification, and clinical decision support. The leaderboard provides a standardized platform for assessing diverse language models, including encoder and decoder architectures, on their ability to identify and classify clinical entities across multiple medical domains. A curated collection of openly available clinical datasets is utilized, encompassing entities such as diseases, symptoms, medications, procedures, and laboratory measurements. Importantly, these entities are standardized according to the Observational Medical Outcomes Partnership (OMOP) Common Data Model, ensuring consistency and interoperability across different healthcare systems and datasets, and a comprehensive evaluation of model performance. Performance of models is primarily assessed using the F1-score, and it is complemented by various assessment modes to provide comprehensive insights into model performance. The report also includes a brief analysis of models evaluated to date, highlighting observed trends and limitations. By establishing this benchmarking framework, the leaderboard aims to promote transparency, facilitate comparative analyses, and drive innovation in clinical entity recognition tasks, addressing the need for robust evaluation methods in healthcare NLP.
Generalist embedding models are better at short-context clinical semantic search than specialized embedding models
The increasing use of tools and solutions based on Large Language Models (LLMs) for various tasks in the medical domain has become a prominent trend. Their use in this highly critical and sensitive domain has thus raised important questions about their robustness, especially in response to variations in input, and the reliability of the generated outputs. This study addresses these questions by constructing a textual dataset based on the ICD-10-CM code descriptions, widely used in US hospitals and containing many clinical terms, and their easily reproducible rephrasing. We then benchmarked existing embedding models, either generalist or specialized in the clinical domain, in a semantic search task where the goal was to correctly match the rephrased text to the original description. Our results showed that generalist models performed better than clinical models, suggesting that existing clinical specialized models are more sensitive to small changes in input that confuse them. The highlighted problem of specialized models may be due to the fact that they have not been trained on sufficient data, and in particular on datasets that are not diverse enough to have a reliable global language understanding, which is still necessary for accurate handling of medical documents.
Automatically Labeling $200B Life-Saving Datasets: A Large Clinical Trial Outcome Benchmark
The global cost of drug discovery and development exceeds $200 billion annually. The main results of drug discovery and development are the outcomes of clinical trials, which directly influence the regulatory approval of new drug candidates and ultimately affect patient outcomes. Despite their significance, large-scale, high-quality clinical trial outcome data are not readily available to the public. Suppose a large clinical trial outcome dataset is provided; machine learning researchers can potentially develop accurate prediction models using past trials and outcome labels, which could help prioritize and optimize therapeutic programs, ultimately benefiting patients. This paper introduces Clinical Trial Outcome (CTO) dataset, the largest trial outcome dataset with around 479K clinical trials, aggregating outcomes from multiple sources of weakly supervised labels, minimizing the noise from individual sources, and eliminating the need for human annotation. These sources include large language model (LLM) decisions on trial-related documents, news headline sentiments, stock prices of trial sponsors, trial linkages across phases, and other signals such as patient dropout rates and adverse events. CTO's labels show unprecedented agreement with supervised clinical trial outcome labels from test split of the supervised TOP dataset, with a 91 F1.
LLMs for Doctors: Leveraging Medical LLMs to Assist Doctors, Not Replace Them
The recent success of Large Language Models (LLMs) has had a significant impact on the healthcare field, providing patients with medical advice, diagnostic information, and more. However, due to a lack of professional medical knowledge, patients are easily misled by generated erroneous information from LLMs, which may result in serious medical problems. To address this issue, we focus on tuning the LLMs to be medical assistants who collaborate with more experienced doctors. We first conduct a two-stage survey by inspiration-feedback to gain a broad understanding of the real needs of doctors for medical assistants. Based on this, we construct a Chinese medical dataset called DoctorFLAN to support the entire workflow of doctors, which includes 92K Q\&A samples from 22 tasks and 27 specialists. Moreover, we evaluate LLMs in doctor-oriented scenarios by constructing the DoctorFLAN-test containing 550 single-turn Q\&A and DotaBench containing 74 multi-turn conversations. The evaluation results indicate that being a medical assistant still poses challenges for existing open-source models, but DoctorFLAN can help them significantly. It demonstrates that the doctor-oriented dataset and benchmarks we construct can complement existing patient-oriented work and better promote medical LLMs research.
PILL: Plug Into LLM with Adapter Expert and Attention Gate
Due to the remarkable capabilities of powerful Large Language Models (LLMs) in effectively following instructions, there has been a growing number of assistants in the community to assist humans. Recently, significant progress has been made in the development of Vision Language Models (VLMs), expanding the capabilities of LLMs and enabling them to execute more diverse instructions. However, it is foreseeable that models will likely need to handle tasks involving additional modalities such as speech, video, and others. This poses a particularly prominent challenge of dealing with the complexity of mixed modalities. To address this, we introduce a novel architecture called PILL: Plug Into LLM with adapter expert and attention gate to better decouple these complex modalities and leverage efficient fine-tuning. We introduce two modules: Firstly, utilizing Mixture-of-Modality-Adapter-Expert to independently handle different modalities, enabling better adaptation to downstream tasks while preserving the expressive capability of the original model. Secondly, by introducing Modality-Attention-Gating, which enables adaptive control of the contribution of modality tokens to the overall representation. In addition, we have made improvements to the Adapter to enhance its learning and expressive capabilities. Experimental results demonstrate that our approach exhibits competitive performance compared to other mainstream methods for modality fusion. For researchers interested in our work, we provide free access to the code and models at https://github.com/DsaltYfish/PILL.
Training Models to Extract Treatment Plans from Clinical Notes Using Contents of Sections with Headings
Objective: Using natural language processing (NLP) to find sentences that state treatment plans in a clinical note, would automate plan extraction and would further enable their use in tools that help providers and care managers. However, as in the most NLP tasks on clinical text, creating gold standard to train and test NLP models is tedious and expensive. Fortuitously, sometimes but not always clinical notes contain sections with a heading that identifies the section as a plan. Leveraging contents of such labeled sections as a noisy training data, we assessed accuracy of NLP models trained with the data. Methods: We used common variations of plan headings and rule-based heuristics to find plan sections with headings in clinical notes, and we extracted sentences from them and formed a noisy training data of plan sentences. We trained Support Vector Machine (SVM) and Convolutional Neural Network (CNN) models with the data. We measured accuracy of the trained models on the noisy dataset using ten-fold cross validation and separately on a set-aside manually annotated dataset. Results: About 13% of 117,730 clinical notes contained treatment plans sections with recognizable headings in the 1001 longitudinal patient records that were obtained from Cleveland Clinic under an IRB approval. We were able to extract and create a noisy training data of 13,492 plan sentences from the clinical notes. CNN achieved best F measures, 0.91 and 0.97 in the cross-validation and set-aside evaluation experiments respectively. SVM slightly underperformed with F measures of 0.89 and 0.96 in the same experiments. Conclusion: Our study showed that the training supervised learning models using noisy plan sentences was effective in identifying them in all clinical notes. More broadly, sections with informal headings in clinical notes can be a good source for generating effective training data.
Publicly Shareable Clinical Large Language Model Built on Synthetic Clinical Notes
The development of large language models tailored for handling patients' clinical notes is often hindered by the limited accessibility and usability of these notes due to strict privacy regulations. To address these challenges, we first create synthetic large-scale clinical notes using publicly available case reports extracted from biomedical literature. We then use these synthetic notes to train our specialized clinical large language model, Asclepius. While Asclepius is trained on synthetic data, we assess its potential performance in real-world applications by evaluating it using real clinical notes. We benchmark Asclepius against several other large language models, including GPT-3.5-turbo and other open-source alternatives. To further validate our approach using synthetic notes, we also compare Asclepius with its variants trained on real clinical notes. Our findings convincingly demonstrate that synthetic clinical notes can serve as viable substitutes for real ones when constructing high-performing clinical language models. This conclusion is supported by detailed evaluations conducted by both GPT-4 and medical professionals. All resources including weights, codes, and data used in the development of Asclepius are made publicly accessible for future research.
Exploring the Effectiveness of Instruction Tuning in Biomedical Language Processing
Large Language Models (LLMs), particularly those similar to ChatGPT, have significantly influenced the field of Natural Language Processing (NLP). While these models excel in general language tasks, their performance in domain-specific downstream tasks such as biomedical and clinical Named Entity Recognition (NER), Relation Extraction (RE), and Medical Natural Language Inference (NLI) is still evolving. In this context, our study investigates the potential of instruction tuning for biomedical language processing, applying this technique to two general LLMs of substantial scale. We present a comprehensive, instruction-based model trained on a dataset that consists of approximately 200,000 instruction-focused samples. This dataset represents a carefully curated compilation of existing data, meticulously adapted and reformatted to align with the specific requirements of our instruction-based tasks. This initiative represents an important step in utilising such models to achieve results on par with specialised encoder-only models like BioBERT and BioClinicalBERT for various classical biomedical NLP tasks. Our work includes an analysis of the dataset's composition and its impact on model performance, providing insights into the intricacies of instruction tuning. By sharing our codes, models, and the distinctively assembled instruction-based dataset, we seek to encourage ongoing research and development in this area.
MedAlign: A Clinician-Generated Dataset for Instruction Following with Electronic Medical Records
The ability of large language models (LLMs) to follow natural language instructions with human-level fluency suggests many opportunities in healthcare to reduce administrative burden and improve quality of care. However, evaluating LLMs on realistic text generation tasks for healthcare remains challenging. Existing question answering datasets for electronic health record (EHR) data fail to capture the complexity of information needs and documentation burdens experienced by clinicians. To address these challenges, we introduce MedAlign, a benchmark dataset of 983 natural language instructions for EHR data. MedAlign is curated by 15 clinicians (7 specialities), includes clinician-written reference responses for 303 instructions, and provides 276 longitudinal EHRs for grounding instruction-response pairs. We used MedAlign to evaluate 6 general domain LLMs, having clinicians rank the accuracy and quality of each LLM response. We found high error rates, ranging from 35% (GPT-4) to 68% (MPT-7B-Instruct), and an 8.3% drop in accuracy moving from 32k to 2k context lengths for GPT-4. Finally, we report correlations between clinician rankings and automated natural language generation metrics as a way to rank LLMs without human review. We make MedAlign available under a research data use agreement to enable LLM evaluations on tasks aligned with clinician needs and preferences.
MEDIC: Towards a Comprehensive Framework for Evaluating LLMs in Clinical Applications
The rapid development of Large Language Models (LLMs) for healthcare applications has spurred calls for holistic evaluation beyond frequently-cited benchmarks like USMLE, to better reflect real-world performance. While real-world assessments are valuable indicators of utility, they often lag behind the pace of LLM evolution, likely rendering findings obsolete upon deployment. This temporal disconnect necessitates a comprehensive upfront evaluation that can guide model selection for specific clinical applications. We introduce MEDIC, a framework assessing LLMs across five critical dimensions of clinical competence: medical reasoning, ethics and bias, data and language understanding, in-context learning, and clinical safety. MEDIC features a novel cross-examination framework quantifying LLM performance across areas like coverage and hallucination detection, without requiring reference outputs. We apply MEDIC to evaluate LLMs on medical question-answering, safety, summarization, note generation, and other tasks. Our results show performance disparities across model sizes, baseline vs medically finetuned models, and have implications on model selection for applications requiring specific model strengths, such as low hallucination or lower cost of inference. MEDIC's multifaceted evaluation reveals these performance trade-offs, bridging the gap between theoretical capabilities and practical implementation in healthcare settings, ensuring that the most promising models are identified and adapted for diverse healthcare applications.
Scaling Clinical Trial Matching Using Large Language Models: A Case Study in Oncology
Clinical trial matching is a key process in health delivery and discovery. In practice, it is plagued by overwhelming unstructured data and unscalable manual processing. In this paper, we conduct a systematic study on scaling clinical trial matching using large language models (LLMs), with oncology as the focus area. Our study is grounded in a clinical trial matching system currently in test deployment at a large U.S. health network. Initial findings are promising: out of box, cutting-edge LLMs, such as GPT-4, can already structure elaborate eligibility criteria of clinical trials and extract complex matching logic (e.g., nested AND/OR/NOT). While still far from perfect, LLMs substantially outperform prior strong baselines and may serve as a preliminary solution to help triage patient-trial candidates with humans in the loop. Our study also reveals a few significant growth areas for applying LLMs to end-to-end clinical trial matching, such as context limitation and accuracy, especially in structuring patient information from longitudinal medical records.
AlpaCare:Instruction-tuned Large Language Models for Medical Application
Large Language Models (LLMs) have demonstrated significant enhancements in instruction-following abilities through instruction tuning, achieving notable performances across various tasks. Previous research has focused on fine-tuning medical domain-specific LLMs using an extensive array of medical-specific data, incorporating millions of pieces of biomedical literature to augment their medical capabilities. However, existing medical instruction-tuned LLMs have been constrained by the limited scope of tasks and instructions available, restricting the efficacy of instruction tuning and adversely affecting performance in the general domain. In this paper, we fine-tune LLaMA-series models using 52k diverse, machine-generated, medical instruction-following data, MedInstruct-52k, resulting in the model AlpaCare. Comprehensive experimental results on both general and medical-specific domain free-form instruction evaluations showcase AlpaCare's strong medical proficiency and generalizability compared to previous instruction-tuned models in both medical and general domains. We provide public access to our MedInstruct-52k dataset and a clinician-crafted free-form instruction test set, MedInstruct-test, along with our codebase, to foster further research and development. Our project page is available at https://github.com/XZhang97666/AlpaCare.
Large Language Models Illuminate a Progressive Pathway to Artificial Healthcare Assistant: A Review
With the rapid development of artificial intelligence, large language models (LLMs) have shown promising capabilities in mimicking human-level language comprehension and reasoning. This has sparked significant interest in applying LLMs to enhance various aspects of healthcare, ranging from medical education to clinical decision support. However, medicine involves multifaceted data modalities and nuanced reasoning skills, presenting challenges for integrating LLMs. This paper provides a comprehensive review on the applications and implications of LLMs in medicine. It begins by examining the fundamental applications of general-purpose and specialized LLMs, demonstrating their utilities in knowledge retrieval, research support, clinical workflow automation, and diagnostic assistance. Recognizing the inherent multimodality of medicine, the review then focuses on multimodal LLMs, investigating their ability to process diverse data types like medical imaging and EHRs to augment diagnostic accuracy. To address LLMs' limitations regarding personalization and complex clinical reasoning, the paper explores the emerging development of LLM-powered autonomous agents for healthcare. Furthermore, it summarizes the evaluation methodologies for assessing LLMs' reliability and safety in medical contexts. Overall, this review offers an extensive analysis on the transformative potential of LLMs in modern medicine. It also highlights the pivotal need for continuous optimizations and ethical oversight before these models can be effectively integrated into clinical practice. Visit https://github.com/mingze-yuan/Awesome-LLM-Healthcare for an accompanying GitHub repository containing latest papers.
Enhancing Adverse Drug Event Detection with Multimodal Dataset: Corpus Creation and Model Development
The mining of adverse drug events (ADEs) is pivotal in pharmacovigilance, enhancing patient safety by identifying potential risks associated with medications, facilitating early detection of adverse events, and guiding regulatory decision-making. Traditional ADE detection methods are reliable but slow, not easily adaptable to large-scale operations, and offer limited information. With the exponential increase in data sources like social media content, biomedical literature, and Electronic Medical Records (EMR), extracting relevant ADE-related information from these unstructured texts is imperative. Previous ADE mining studies have focused on text-based methodologies, overlooking visual cues, limiting contextual comprehension, and hindering accurate interpretation. To address this gap, we present a MultiModal Adverse Drug Event (MMADE) detection dataset, merging ADE-related textual information with visual aids. Additionally, we introduce a framework that leverages the capabilities of LLMs and VLMs for ADE detection by generating detailed descriptions of medical images depicting ADEs, aiding healthcare professionals in visually identifying adverse events. Using our MMADE dataset, we showcase the significance of integrating visual cues from images to enhance overall performance. This approach holds promise for patient safety, ADE awareness, and healthcare accessibility, paving the way for further exploration in personalized healthcare.
MING-MOE: Enhancing Medical Multi-Task Learning in Large Language Models with Sparse Mixture of Low-Rank Adapter Experts
Large language models like ChatGPT have shown substantial progress in natural language understanding and generation, proving valuable across various disciplines, including the medical field. Despite advancements, challenges persist due to the complexity and diversity inherent in medical tasks which often require multi-task learning capabilities. Previous approaches, although beneficial, fall short in real-world applications because they necessitate task-specific annotations at inference time, limiting broader generalization. This paper introduces MING-MOE, a novel Mixture-of-Expert~(MOE)-based medical large language model designed to manage diverse and complex medical tasks without requiring task-specific annotations, thus enhancing its usability across extensive datasets. MING-MOE employs a Mixture of Low-Rank Adaptation (MoLoRA) technique, allowing for efficient parameter usage by maintaining base model parameters static while adapting through a minimal set of trainable parameters. We demonstrate that MING-MOE achieves state-of-the-art (SOTA) performance on over 20 medical tasks, illustrating a significant improvement over existing models. This approach not only extends the capabilities of medical language models but also improves inference efficiency.
LongHealth: A Question Answering Benchmark with Long Clinical Documents
Background: Recent advancements in large language models (LLMs) offer potential benefits in healthcare, particularly in processing extensive patient records. However, existing benchmarks do not fully assess LLMs' capability in handling real-world, lengthy clinical data. Methods: We present the LongHealth benchmark, comprising 20 detailed fictional patient cases across various diseases, with each case containing 5,090 to 6,754 words. The benchmark challenges LLMs with 400 multiple-choice questions in three categories: information extraction, negation, and sorting, challenging LLMs to extract and interpret information from large clinical documents. Results: We evaluated nine open-source LLMs with a minimum of 16,000 tokens and also included OpenAI's proprietary and cost-efficient GPT-3.5 Turbo for comparison. The highest accuracy was observed for Mixtral-8x7B-Instruct-v0.1, particularly in tasks focused on information retrieval from single and multiple patient documents. However, all models struggled significantly in tasks requiring the identification of missing information, highlighting a critical area for improvement in clinical data interpretation. Conclusion: While LLMs show considerable potential for processing long clinical documents, their current accuracy levels are insufficient for reliable clinical use, especially in scenarios requiring the identification of missing information. The LongHealth benchmark provides a more realistic assessment of LLMs in a healthcare setting and highlights the need for further model refinement for safe and effective clinical application. We make the benchmark and evaluation code publicly available.
MedINST: Meta Dataset of Biomedical Instructions
The integration of large language model (LLM) techniques in the field of medical analysis has brought about significant advancements, yet the scarcity of large, diverse, and well-annotated datasets remains a major challenge. Medical data and tasks, which vary in format, size, and other parameters, require extensive preprocessing and standardization for effective use in training LLMs. To address these challenges, we introduce MedINST, the Meta Dataset of Biomedical Instructions, a novel multi-domain, multi-task instructional meta-dataset. MedINST comprises 133 biomedical NLP tasks and over 7 million training samples, making it the most comprehensive biomedical instruction dataset to date. Using MedINST as the meta dataset, we curate MedINST32, a challenging benchmark with different task difficulties aiming to evaluate LLMs' generalization ability. We fine-tune several LLMs on MedINST and evaluate on MedINST32, showcasing enhanced cross-task generalization.
ChatGPT-powered Conversational Drug Editing Using Retrieval and Domain Feedback
Recent advancements in conversational large language models (LLMs), such as ChatGPT, have demonstrated remarkable promise in various domains, including drug discovery. However, existing works mainly focus on investigating the capabilities of conversational LLMs on chemical reaction and retrosynthesis. While drug editing, a critical task in the drug discovery pipeline, remains largely unexplored. To bridge this gap, we propose ChatDrug, a framework to facilitate the systematic investigation of drug editing using LLMs. ChatDrug jointly leverages a prompt module, a retrieval and domain feedback (ReDF) module, and a conversation module to streamline effective drug editing. We empirically show that ChatDrug reaches the best performance on 33 out of 39 drug editing tasks, encompassing small molecules, peptides, and proteins. We further demonstrate, through 10 case studies, that ChatDrug can successfully identify the key substructures (e.g., the molecule functional groups, peptide motifs, and protein structures) for manipulation, generating diverse and valid suggestions for drug editing. Promisingly, we also show that ChatDrug can offer insightful explanations from a domain-specific perspective, enhancing interpretability and enabling informed decision-making. This research sheds light on the potential of ChatGPT and conversational LLMs for drug editing. It paves the way for a more efficient and collaborative drug discovery pipeline, contributing to the advancement of pharmaceutical research and development.
Large Language Models Encode Clinical Knowledge
Large language models (LLMs) have demonstrated impressive capabilities in natural language understanding and generation, but the quality bar for medical and clinical applications is high. Today, attempts to assess models' clinical knowledge typically rely on automated evaluations on limited benchmarks. There is no standard to evaluate model predictions and reasoning across a breadth of tasks. To address this, we present MultiMedQA, a benchmark combining six existing open question answering datasets spanning professional medical exams, research, and consumer queries; and HealthSearchQA, a new free-response dataset of medical questions searched online. We propose a framework for human evaluation of model answers along multiple axes including factuality, precision, possible harm, and bias. In addition, we evaluate PaLM (a 540-billion parameter LLM) and its instruction-tuned variant, Flan-PaLM, on MultiMedQA. Using a combination of prompting strategies, Flan-PaLM achieves state-of-the-art accuracy on every MultiMedQA multiple-choice dataset (MedQA, MedMCQA, PubMedQA, MMLU clinical topics), including 67.6% accuracy on MedQA (US Medical License Exam questions), surpassing prior state-of-the-art by over 17%. However, human evaluation reveals key gaps in Flan-PaLM responses. To resolve this we introduce instruction prompt tuning, a parameter-efficient approach for aligning LLMs to new domains using a few exemplars. The resulting model, Med-PaLM, performs encouragingly, but remains inferior to clinicians. We show that comprehension, recall of knowledge, and medical reasoning improve with model scale and instruction prompt tuning, suggesting the potential utility of LLMs in medicine. Our human evaluations reveal important limitations of today's models, reinforcing the importance of both evaluation frameworks and method development in creating safe, helpful LLM models for clinical applications.
ClinicalGPT: Large Language Models Finetuned with Diverse Medical Data and Comprehensive Evaluation
Large language models have exhibited exceptional performance on various Natural Language Processing (NLP) tasks, leveraging techniques such as the pre-training, and instruction fine-tuning. Despite these advances, their effectiveness in medical applications is limited, due to challenges such as factual inaccuracies, reasoning abilities, and lack grounding in real-world experience. In this study, we present ClinicalGPT, a language model explicitly designed and optimized for clinical scenarios. By incorporating extensive and diverse real-world data, such as medical records, domain-specific knowledge, and multi-round dialogue consultations in the training process, ClinicalGPT is better prepared to handle multiple clinical task. Furthermore, we introduce a comprehensive evaluation framework that includes medical knowledge question-answering, medical exams, patient consultations, and diagnostic analysis of medical records. Our results demonstrate that ClinicalGPT significantly outperforms other models in these tasks, highlighting the effectiveness of our approach in adapting large language models to the critical domain of healthcare.
Clinical Camel: An Open-Source Expert-Level Medical Language Model with Dialogue-Based Knowledge Encoding
Large Language Models (LLMs) present immense potential in the medical field, yet concerns over data privacy, regulatory compliance, and model stability restrict their widespread adoption. Although the distillation of high-performing closed-source LLMs has proven effective for general tasks, their application in healthcare is limited due to reduced domain knowledge and remnants of alignment behavior hindering clinical tasks. To address these challenges, we propose Dialogue-Based Knowledge Encoding (DBKE). DBKE enhances models' implicit knowledge base and primes them for conversational recall, augmenting their conversational capabilities and enabling a soft alignment for subsequent use cases. By transforming dense academic source text into synthetic dialogue, DBKE broadens the model's knowledge base and enables a soft alignment that guides downstream behaviours. We present Clinical Camel, an open-source, healthcare-focused conversational model, to showcase the effectiveness of DBKE. Clinical Camel outperforms GPT-3.5 on the United States Medical Licensing Examination (USMLE) Step 1 and Step 3 with scores of 53.2 % and 58.2 %, respectively, compared to GPT-3.5's scores of 36.1 % and 55.7 %. Clinical Camel adeptly handles multi-stage clinical case problems, provides adaptive counseling, and generates clinical notes. However, it is prone to hallucinations, which pose a significant obstacle in safety-critical settings. The performance of Clinical Camel underscores the importance of continued research and development of open-source models for the safe and effective integration of LLMs in healthcare settings.
GERNERMED -- An Open German Medical NER Model
The current state of adoption of well-structured electronic health records and integration of digital methods for storing medical patient data in structured formats can often considered as inferior compared to the use of traditional, unstructured text based patient data documentation. Data mining in the field of medical data analysis often needs to rely solely on processing of unstructured data to retrieve relevant data. In natural language processing (NLP), statistical models have been shown successful in various tasks like part-of-speech tagging, relation extraction (RE) and named entity recognition (NER). In this work, we present GERNERMED, the first open, neural NLP model for NER tasks dedicated to detect medical entity types in German text data. Here, we avoid the conflicting goals of protection of sensitive patient data from training data extraction and the publication of the statistical model weights by training our model on a custom dataset that was translated from publicly available datasets in foreign language by a pretrained neural machine translation model. The sample code and the statistical model is available at: https://github.com/frankkramer-lab/GERNERMED
Automated Coding of Under-Studied Medical Concept Domains: Linking Physical Activity Reports to the International Classification of Functioning, Disability, and Health
Linking clinical narratives to standardized vocabularies and coding systems is a key component of unlocking the information in medical text for analysis. However, many domains of medical concepts lack well-developed terminologies that can support effective coding of medical text. We present a framework for developing natural language processing (NLP) technologies for automated coding of under-studied types of medical information, and demonstrate its applicability via a case study on physical mobility function. Mobility is a component of many health measures, from post-acute care and surgical outcomes to chronic frailty and disability, and is coded in the International Classification of Functioning, Disability, and Health (ICF). However, mobility and other types of functional activity remain under-studied in medical informatics, and neither the ICF nor commonly-used medical terminologies capture functional status terminology in practice. We investigated two data-driven paradigms, classification and candidate selection, to link narrative observations of mobility to standardized ICF codes, using a dataset of clinical narratives from physical therapy encounters. Recent advances in language modeling and word embedding were used as features for established machine learning models and a novel deep learning approach, achieving a macro F-1 score of 84% on linking mobility activity reports to ICF codes. Both classification and candidate selection approaches present distinct strengths for automated coding in under-studied domains, and we highlight that the combination of (i) a small annotated data set; (ii) expert definitions of codes of interest; and (iii) a representative text corpus is sufficient to produce high-performing automated coding systems. This study has implications for the ongoing growth of NLP tools for a variety of specialized applications in clinical care and research.
DR.BENCH: Diagnostic Reasoning Benchmark for Clinical Natural Language Processing
The meaningful use of electronic health records (EHR) continues to progress in the digital era with clinical decision support systems augmented by artificial intelligence. A priority in improving provider experience is to overcome information overload and reduce the cognitive burden so fewer medical errors and cognitive biases are introduced during patient care. One major type of medical error is diagnostic error due to systematic or predictable errors in judgment that rely on heuristics. The potential for clinical natural language processing (cNLP) to model diagnostic reasoning in humans with forward reasoning from data to diagnosis and potentially reduce the cognitive burden and medical error has not been investigated. Existing tasks to advance the science in cNLP have largely focused on information extraction and named entity recognition through classification tasks. We introduce a novel suite of tasks coined as Diagnostic Reasoning Benchmarks, DR.BENCH, as a new benchmark for developing and evaluating cNLP models with clinical diagnostic reasoning ability. The suite includes six tasks from ten publicly available datasets addressing clinical text understanding, medical knowledge reasoning, and diagnosis generation. DR.BENCH is the first clinical suite of tasks designed to be a natural language generation framework to evaluate pre-trained language models. Experiments with state-of-the-art pre-trained generative language models using large general domain models and models that were continually trained on a medical corpus demonstrate opportunities for improvement when evaluated in DR. BENCH. We share DR. BENCH as a publicly available GitLab repository with a systematic approach to load and evaluate models for the cNLP community.
A Study of Generative Large Language Model for Medical Research and Healthcare
There is enormous enthusiasm and concerns in using large language models (LLMs) in healthcare, yet current assumptions are all based on general-purpose LLMs such as ChatGPT. This study develops a clinical generative LLM, GatorTronGPT, using 277 billion words of mixed clinical and English text with a GPT-3 architecture of 20 billion parameters. GatorTronGPT improves biomedical natural language processing for medical research. Synthetic NLP models trained using GatorTronGPT generated text outperform NLP models trained using real-world clinical text. Physicians Turing test using 1 (worst) to 9 (best) scale shows that there is no significant difference in linguistic readability (p = 0.22; 6.57 of GatorTronGPT compared with 6.93 of human) and clinical relevance (p = 0.91; 7.0 of GatorTronGPT compared with 6.97 of human) and that physicians cannot differentiate them (p < 0.001). This study provides insights on the opportunities and challenges of LLMs for medical research and healthcare.
Zero-Shot ATC Coding with Large Language Models for Clinical Assessments
Manual assignment of Anatomical Therapeutic Chemical (ATC) codes to prescription records is a significant bottleneck in healthcare research and operations at Ontario Health and InterRAI Canada, requiring extensive expert time and effort. To automate this process while maintaining data privacy, we develop a practical approach using locally deployable large language models (LLMs). Inspired by recent advances in automatic International Classification of Diseases (ICD) coding, our method frames ATC coding as a hierarchical information extraction task, guiding LLMs through the ATC ontology level by level. We evaluate our approach using GPT-4o as an accuracy ceiling and focus development on open-source Llama models suitable for privacy-sensitive deployment. Testing across Health Canada drug product data, the RABBITS benchmark, and real clinical notes from Ontario Health, our method achieves 78% exact match accuracy with GPT-4o and 60% with Llama 3.1 70B. We investigate knowledge grounding through drug definitions, finding modest improvements in accuracy. Further, we show that fine-tuned Llama 3.1 8B matches zero-shot Llama 3.1 70B accuracy, suggesting that effective ATC coding is feasible with smaller models. Our results demonstrate the feasibility of automatic ATC coding in privacy-sensitive healthcare environments, providing a foundation for future deployments.
Hierarchical Pretraining for Biomedical Term Embeddings
Electronic health records (EHR) contain narrative notes that provide extensive details on the medical condition and management of patients. Natural language processing (NLP) of clinical notes can use observed frequencies of clinical terms as predictive features for downstream applications such as clinical decision making and patient trajectory prediction. However, due to the vast number of highly similar and related clinical concepts, a more effective modeling strategy is to represent clinical terms as semantic embeddings via representation learning and use the low dimensional embeddings as feature vectors for predictive modeling. To achieve efficient representation, fine-tuning pretrained language models with biomedical knowledge graphs may generate better embeddings for biomedical terms than those from standard language models alone. These embeddings can effectively discriminate synonymous pairs of from those that are unrelated. However, they often fail to capture different degrees of similarity or relatedness for concepts that are hierarchical in nature. To overcome this limitation, we propose HiPrBERT, a novel biomedical term representation model trained on additionally complied data that contains hierarchical structures for various biomedical terms. We modify an existing contrastive loss function to extract information from these hierarchies. Our numerical experiments demonstrate that HiPrBERT effectively learns the pair-wise distance from hierarchical information, resulting in a substantially more informative embeddings for further biomedical applications
CUPCase: Clinically Uncommon Patient Cases and Diagnoses Dataset
Medical benchmark datasets significantly contribute to developing Large Language Models (LLMs) for medical knowledge extraction, diagnosis, summarization, and other uses. Yet, current benchmarks are mainly derived from exam questions given to medical students or cases described in the medical literature, lacking the complexity of real-world patient cases that deviate from classic textbook abstractions. These include rare diseases, uncommon presentations of common diseases, and unexpected treatment responses. Here, we construct Clinically Uncommon Patient Cases and Diagnosis Dataset (CUPCase) based on 3,562 real-world case reports from BMC, including diagnoses in open-ended textual format and as multiple-choice options with distractors. Using this dataset, we evaluate the ability of state-of-the-art LLMs, including both general-purpose and Clinical LLMs, to identify and correctly diagnose a patient case, and test models' performance when only partial information about cases is available. Our findings show that general-purpose GPT-4o attains the best performance in both the multiple-choice task (average accuracy of 87.9%) and the open-ended task (BERTScore F1 of 0.764), outperforming several LLMs with a focus on the medical domain such as Meditron-70B and MedLM-Large. Moreover, GPT-4o was able to maintain 87% and 88% of its performance with only the first 20% of tokens of the case presentation in multiple-choice and free text, respectively, highlighting the potential of LLMs to aid in early diagnosis in real-world cases. CUPCase expands our ability to evaluate LLMs for clinical decision support in an open and reproducible manner.
The Multilingual TEDx Corpus for Speech Recognition and Translation
We present the Multilingual TEDx corpus, built to support speech recognition (ASR) and speech translation (ST) research across many non-English source languages. The corpus is a collection of audio recordings from TEDx talks in 8 source languages. We segment transcripts into sentences and align them to the source-language audio and target-language translations. The corpus is released along with open-sourced code enabling extension to new talks and languages as they become available. Our corpus creation methodology can be applied to more languages than previous work, and creates multi-way parallel evaluation sets. We provide baselines in multiple ASR and ST settings, including multilingual models to improve translation performance for low-resource language pairs.
BianCang: A Traditional Chinese Medicine Large Language Model
The rise of large language models (LLMs) has driven significant progress in medical applications, including traditional Chinese medicine (TCM). However, current medical LLMs struggle with TCM diagnosis and syndrome differentiation due to substantial differences between TCM and modern medical theory, and the scarcity of specialized, high-quality corpora. This paper addresses these challenges by proposing BianCang, a TCM-specific LLM, using a two-stage training process that first injects domain-specific knowledge and then aligns it through targeted stimulation. To enhance diagnostic and differentiation capabilities, we constructed pre-training corpora, instruction-aligned datasets based on real hospital records, and the ChP-TCM dataset derived from the Pharmacopoeia of the People's Republic of China. We compiled extensive TCM and medical corpora for continuous pre-training and supervised fine-tuning, building a comprehensive dataset to refine the model's understanding of TCM. Evaluations across 11 test sets involving 29 models and 4 tasks demonstrate the effectiveness of BianCang, offering valuable insights for future research. Code, datasets, and models are available at https://github.com/QLU-NLP/BianCang.
Eir: Thai Medical Large Language Models
We present Eir Thai Medical LLM, a large language model with 8 billion parameters, specifically designed to enhance the accuracy of handling medical tasks in the Thai language. This model focuses on providing clear and easy-to-understand answers for both healthcare professionals and patients, thereby improving the efficiency of diagnosis and treatment processes. Human evaluation was conducted to ensure that the model adheres to care standards and provides unbiased answers. To prioritize data security, the model is deployed within the hospital's internal network, ensuring both high security and faster processing speeds. The internal API connection is secured with encryption and strict authentication measures to prevent data leaks and unauthorized access. We evaluated several open-source large language models with 8 billion parameters on four medical benchmarks: MedQA, MedMCQA, PubMedQA, and the medical subset of MMLU. The best-performing baselines were used to develop Eir Thai Medical LLM. Our evaluation employed multiple questioning strategies, including zero-shot, few-shot, chain-of-thought reasoning, and ensemble/self-consistency voting methods. Our model outperformed commercially available Thai-language large language models by more than 10%. In addition, we developed enhanced model testing tailored for clinical use in Thai across 18 clinical tasks, where our model exceeded GPT-4o performance by more than 11%
Augmenting Black-box LLMs with Medical Textbooks for Clinical Question Answering
Large-scale language models (LLMs), such as ChatGPT, are capable of generating human-like responses for various downstream tasks, such as task-oriented dialogues and question answering. However, applying LLMs to medical domains remains challenging due to their inability to leverage domain-specific knowledge. In this study, we present the Large-scale Language Models Augmented with Medical Textbooks (LLM-AMT), which integrates authoritative medical textbooks as the cornerstone of its design, enhancing its proficiency in the specialized domain through plug-and-play modules, comprised of a Hybrid Textbook Retriever, supplemented by the Query Augmenter and the LLM Reader. Experimental evaluation on three open-domain medical question-answering tasks reveals a substantial enhancement in both the professionalism and accuracy of the LLM responses when utilizing LLM-AMT, exhibiting an improvement ranging from 11.4% to 13.2%. Despite being 100 times smaller, we found that medical textbooks as the retrieval corpus serves as a more valuable external knowledge source than Wikipedia in the medical domain. Our experiments show that textbook augmentation results in a performance improvement ranging from 9.7% to 12.2% over Wikipedia augmentation.
Open Source MagicData-RAMC: A Rich Annotated Mandarin Conversational(RAMC) Speech Dataset
This paper introduces a high-quality rich annotated Mandarin conversational (RAMC) speech dataset called MagicData-RAMC. The MagicData-RAMC corpus contains 180 hours of conversational speech data recorded from native speakers of Mandarin Chinese over mobile phones with a sampling rate of 16 kHz. The dialogs in MagicData-RAMC are classified into 15 diversified domains and tagged with topic labels, ranging from science and technology to ordinary life. Accurate transcription and precise speaker voice activity timestamps are manually labeled for each sample. Speakers' detailed information is also provided. As a Mandarin speech dataset designed for dialog scenarios with high quality and rich annotations, MagicData-RAMC enriches the data diversity in the Mandarin speech community and allows extensive research on a series of speech-related tasks, including automatic speech recognition, speaker diarization, topic detection, keyword search, text-to-speech, etc. We also conduct several relevant tasks and provide experimental results to help evaluate the dataset.
Large Language Models with Retrieval-Augmented Generation for Zero-Shot Disease Phenotyping
Identifying disease phenotypes from electronic health records (EHRs) is critical for numerous secondary uses. Manually encoding physician knowledge into rules is particularly challenging for rare diseases due to inadequate EHR coding, necessitating review of clinical notes. Large language models (LLMs) offer promise in text understanding but may not efficiently handle real-world clinical documentation. We propose a zero-shot LLM-based method enriched by retrieval-augmented generation and MapReduce, which pre-identifies disease-related text snippets to be used in parallel as queries for the LLM to establish diagnosis. We show that this method as applied to pulmonary hypertension (PH), a rare disease characterized by elevated arterial pressures in the lungs, significantly outperforms physician logic rules (F_1 score of 0.62 vs. 0.75). This method has the potential to enhance rare disease cohort identification, expanding the scope of robust clinical research and care gap identification.
Boosting Healthcare LLMs Through Retrieved Context
Large Language Models (LLMs) have demonstrated remarkable capabilities in natural language processing, and yet, their factual inaccuracies and hallucinations limits their application, particularly in critical domains like healthcare. Context retrieval methods, by introducing relevant information as input, have emerged as a crucial approach for enhancing LLM factuality and reliability. This study explores the boundaries of context retrieval methods within the healthcare domain, optimizing their components and benchmarking their performance against open and closed alternatives. Our findings reveal how open LLMs, when augmented with an optimized retrieval system, can achieve performance comparable to the biggest private solutions on established healthcare benchmarks (multiple-choice question answering). Recognizing the lack of realism of including the possible answers within the question (a setup only found in medical exams), and after assessing a strong LLM performance degradation in the absence of those options, we extend the context retrieval system in that direction. In particular, we propose OpenMedPrompt a pipeline that improves the generation of more reliable open-ended answers, moving this technology closer to practical application.
Almanac: Retrieval-Augmented Language Models for Clinical Medicine
Large-language models have recently demonstrated impressive zero-shot capabilities in a variety of natural language tasks such as summarization, dialogue generation, and question-answering. Despite many promising applications in clinical medicine, adoption of these models in real-world settings has been largely limited by their tendency to generate incorrect and sometimes even toxic statements. In this study, we develop Almanac, a large language model framework augmented with retrieval capabilities for medical guideline and treatment recommendations. Performance on a novel dataset of clinical scenarios (n = 130) evaluated by a panel of 5 board-certified and resident physicians demonstrates significant increases in factuality (mean of 18% at p-value < 0.05) across all specialties, with improvements in completeness and safety. Our results demonstrate the potential for large language models to be effective tools in the clinical decision-making process, while also emphasizing the importance of careful testing and deployment to mitigate their shortcomings.
Beyond Multiple-Choice Accuracy: Real-World Challenges of Implementing Large Language Models in Healthcare
Large Language Models (LLMs) have gained significant attention in the medical domain for their human-level capabilities, leading to increased efforts to explore their potential in various healthcare applications. However, despite such a promising future, there are multiple challenges and obstacles that remain for their real-world uses in practical settings. This work discusses key challenges for LLMs in medical applications from four unique aspects: operational vulnerabilities, ethical and social considerations, performance and assessment difficulties, and legal and regulatory compliance. Addressing these challenges is crucial for leveraging LLMs to their full potential and ensuring their responsible integration into healthcare.
Evaluation of Language Models in the Medical Context Under Resource-Constrained Settings
Since the emergence of the Transformer architecture, language model development has increased, driven by their promising potential. However, releasing these models into production requires properly understanding their behavior, particularly in sensitive domains such as medicine. Despite this need, the medical literature still lacks technical assessments of pre-trained language models, which are especially valuable in resource-constrained settings in terms of computational power or limited budget. To address this gap, we provide a comprehensive survey of language models in the medical domain. In addition, we selected a subset of these models for thorough evaluation, focusing on classification and text generation tasks. Our subset encompasses 53 models, ranging from 110 million to 13 billion parameters, spanning the three families of Transformer-based models and from diverse knowledge domains. This study employs a series of approaches for text classification together with zero-shot prompting instead of model training or fine-tuning, which closely resembles the limited resource setting in which many users of language models find themselves. Encouragingly, our findings reveal remarkable performance across various tasks and datasets, underscoring the latent potential of certain models to contain medical knowledge, even without domain specialization. Consequently, our study advocates for further exploration of model applications in medical contexts, particularly in resource-constrained settings. The code is available on https://github.com/anpoc/Language-models-in-medicine.
MultiMed-ST: Large-scale Many-to-many Multilingual Medical Speech Translation
Multilingual speech translation (ST) in the medical domain enhances patient care by enabling efficient communication across language barriers, alleviating specialized workforce shortages, and facilitating improved diagnosis and treatment, particularly during pandemics. In this work, we present the first systematic study on medical ST, to our best knowledge, by releasing MultiMed-ST, a large-scale ST dataset for the medical domain, spanning all translation directions in five languages: Vietnamese, English, German, French, Traditional Chinese and Simplified Chinese, together with the models. With 290,000 samples, our dataset is the largest medical machine translation (MT) dataset and the largest many-to-many multilingual ST among all domains. Secondly, we present the most extensive analysis study in ST research to date, including: empirical baselines, bilingual-multilingual comparative study, end-to-end vs. cascaded comparative study, task-specific vs. multi-task sequence-to-sequence (seq2seq) comparative study, code-switch analysis, and quantitative-qualitative error analysis. All code, data, and models are available online: https://github.com/leduckhai/MultiMed-ST.
Medical Adaptation of Large Language and Vision-Language Models: Are We Making Progress?
Several recent works seek to develop foundation models specifically for medical applications, adapting general-purpose large language models (LLMs) and vision-language models (VLMs) via continued pretraining on publicly available biomedical corpora. These works typically claim that such domain-adaptive pretraining (DAPT) improves performance on downstream medical tasks, such as answering medical licensing exam questions. In this paper, we compare seven public "medical" LLMs and two VLMs against their corresponding base models, arriving at a different conclusion: all medical VLMs and nearly all medical LLMs fail to consistently improve over their base models in the zero-/few-shot prompting regime for medical question-answering (QA) tasks. For instance, across the tasks and model pairs we consider in the 3-shot setting, medical LLMs only outperform their base models in 12.1% of cases, reach a (statistical) tie in 49.8% of cases, and are significantly worse than their base models in the remaining 38.2% of cases. Our conclusions are based on (i) comparing each medical model head-to-head, directly against the corresponding base model; (ii) optimizing the prompts for each model separately; and (iii) accounting for statistical uncertainty in comparisons. While these basic practices are not consistently adopted in the literature, our ablations show that they substantially impact conclusions. Our findings suggest that state-of-the-art general-domain models may already exhibit strong medical knowledge and reasoning capabilities, and offer recommendations to strengthen the conclusions of future studies.
MedHal: An Evaluation Dataset for Medical Hallucination Detection
We present MedHal, a novel large-scale dataset specifically designed to evaluate if models can detect hallucinations in medical texts. Current hallucination detection methods face significant limitations when applied to specialized domains like medicine, where they can have disastrous consequences. Existing medical datasets are either too small, containing only a few hundred samples, or focus on a single task like Question Answering or Natural Language Inference. MedHal addresses these gaps by: (1) incorporating diverse medical text sources and tasks; (2) providing a substantial volume of annotated samples suitable for training medical hallucination detection models; and (3) including explanations for factual inconsistencies to guide model learning. We demonstrate MedHal's utility by training and evaluating a baseline medical hallucination detection model, showing improvements over general-purpose hallucination detection approaches. This resource enables more efficient evaluation of medical text generation systems while reducing reliance on costly expert review, potentially accelerating the development of medical AI research.
RyanSpeech: A Corpus for Conversational Text-to-Speech Synthesis
This paper introduces RyanSpeech, a new speech corpus for research on automated text-to-speech (TTS) systems. Publicly available TTS corpora are often noisy, recorded with multiple speakers, or lack quality male speech data. In order to meet the need for a high quality, publicly available male speech corpus within the field of speech recognition, we have designed and created RyanSpeech which contains textual materials from real-world conversational settings. These materials contain over 10 hours of a professional male voice actor's speech recorded at 44.1 kHz. This corpus's design and pipeline make RyanSpeech ideal for developing TTS systems in real-world applications. To provide a baseline for future research, protocols, and benchmarks, we trained 4 state-of-the-art speech models and a vocoder on RyanSpeech. The results show 3.36 in mean opinion scores (MOS) in our best model. We have made both the corpus and trained models for public use.
Making the Most Out of the Limited Context Length: Predictive Power Varies with Clinical Note Type and Note Section
Recent advances in large language models have led to renewed interest in natural language processing in healthcare using the free text of clinical notes. One distinguishing characteristic of clinical notes is their long time span over multiple long documents. The unique structure of clinical notes creates a new design choice: when the context length for a language model predictor is limited, which part of clinical notes should we choose as the input? Existing studies either choose the inputs with domain knowledge or simply truncate them. We propose a framework to analyze the sections with high predictive power. Using MIMIC-III, we show that: 1) predictive power distribution is different between nursing notes and discharge notes and 2) combining different types of notes could improve performance when the context length is large. Our findings suggest that a carefully selected sampling function could enable more efficient information extraction from clinical notes.
FT Speech: Danish Parliament Speech Corpus
This paper introduces FT Speech, a new speech corpus created from the recorded meetings of the Danish Parliament, otherwise known as the Folketing (FT). The corpus contains over 1,800 hours of transcribed speech by a total of 434 speakers. It is significantly larger in duration, vocabulary, and amount of spontaneous speech than the existing public speech corpora for Danish, which are largely limited to read-aloud and dictation data. We outline design considerations, including the preprocessing methods and the alignment procedure. To evaluate the quality of the corpus, we train automatic speech recognition systems on the new resource and compare them to the systems trained on the Danish part of Sprakbanken, the largest public ASR corpus for Danish to date. Our baseline results show that we achieve a 14.01 WER on the new corpus. A combination of FT Speech with in-domain language data provides comparable results to models trained specifically on Sprakbanken, showing that FT Speech transfers well to this data set. Interestingly, our results demonstrate that the opposite is not the case. This shows that FT Speech provides a valuable resource for promoting research on Danish ASR with more spontaneous speech.
MedHalu: Hallucinations in Responses to Healthcare Queries by Large Language Models
The remarkable capabilities of large language models (LLMs) in language understanding and generation have not rendered them immune to hallucinations. LLMs can still generate plausible-sounding but factually incorrect or fabricated information. As LLM-empowered chatbots become popular, laypeople may frequently ask health-related queries and risk falling victim to these LLM hallucinations, resulting in various societal and healthcare implications. In this work, we conduct a pioneering study of hallucinations in LLM-generated responses to real-world healthcare queries from patients. We propose MedHalu, a carefully crafted first-of-its-kind medical hallucination dataset with a diverse range of health-related topics and the corresponding hallucinated responses from LLMs with labeled hallucination types and hallucinated text spans. We also introduce MedHaluDetect framework to evaluate capabilities of various LLMs in detecting hallucinations. We also employ three groups of evaluators -- medical experts, LLMs, and laypeople -- to study who are more vulnerable to these medical hallucinations. We find that LLMs are much worse than the experts. They also perform no better than laypeople and even worse in few cases in detecting hallucinations. To fill this gap, we propose expert-in-the-loop approach to improve hallucination detection through LLMs by infusing expert reasoning. We observe significant performance gains for all the LLMs with an average macro-F1 improvement of 6.3 percentage points for GPT-4.
Towards Efficient Methods in Medical Question Answering using Knowledge Graph Embeddings
In Natural Language Processing (NLP), Machine Reading Comprehension (MRC) is the task of answering a question based on a given context. To handle questions in the medical domain, modern language models such as BioBERT, SciBERT and even ChatGPT are trained on vast amounts of in-domain medical corpora. However, in-domain pre-training is expensive in terms of time and resources. In this paper, we propose a resource-efficient approach for injecting domain knowledge into a model without relying on such domain-specific pre-training. Knowledge graphs are powerful resources for accessing medical information. Building on existing work, we introduce a method using Multi-Layer Perceptrons (MLPs) for aligning and integrating embeddings extracted from medical knowledge graphs with the embedding spaces of pre-trained language models (LMs). The aligned embeddings are fused with open-domain LMs BERT and RoBERTa that are fine-tuned for two MRC tasks, span detection (COVID-QA) and multiple-choice questions (PubMedQA). We compare our method to prior techniques that rely on a vocabulary overlap for embedding alignment and show how our method circumvents this requirement to deliver better performance. On both datasets, our method allows BERT/RoBERTa to either perform on par (occasionally exceeding) with stronger domain-specific models or show improvements in general over prior techniques. With the proposed approach, we signal an alternative method to in-domain pre-training to achieve domain proficiency.
The Claire French Dialogue Dataset
We present the Claire French Dialogue Dataset (CFDD), a resource created by members of LINAGORA Labs in the context of the OpenLLM France initiative. CFDD is a corpus containing roughly 160 million words from transcripts and stage plays in French that we have assembled and publicly released in an effort to further the development of multilingual, open source language models. This paper describes the 24 individual corpora of which CFDD is composed and provides links and citations to their original sources. It also provides our proposed breakdown of the full CFDD dataset into eight categories of subcorpora and describes the process we followed to standardize the format of the final dataset. We conclude with a discussion of similar work and future directions.
GERNERMED++: Transfer Learning in German Medical NLP
We present a statistical model for German medical natural language processing trained for named entity recognition (NER) as an open, publicly available model. The work serves as a refined successor to our first GERNERMED model which is substantially outperformed by our work. We demonstrate the effectiveness of combining multiple techniques in order to achieve strong results in entity recognition performance by the means of transfer-learning on pretrained deep language models (LM), word-alignment and neural machine translation. Due to the sparse situation on open, public medical entity recognition models for German texts, this work offers benefits to the German research community on medical NLP as a baseline model. Since our model is based on public English data, its weights are provided without legal restrictions on usage and distribution. The sample code and the statistical model is available at: https://github.com/frankkramer-lab/GERNERMED-pp
Benchmarking Retrieval-Augmented Generation for Medicine
While large language models (LLMs) have achieved state-of-the-art performance on a wide range of medical question answering (QA) tasks, they still face challenges with hallucinations and outdated knowledge. Retrieval-augmented generation (RAG) is a promising solution and has been widely adopted. However, a RAG system can involve multiple flexible components, and there is a lack of best practices regarding the optimal RAG setting for various medical purposes. To systematically evaluate such systems, we propose the Medical Information Retrieval-Augmented Generation Evaluation (MIRAGE), a first-of-its-kind benchmark including 7,663 questions from five medical QA datasets. Using MIRAGE, we conducted large-scale experiments with over 1.8 trillion prompt tokens on 41 combinations of different corpora, retrievers, and backbone LLMs through the MedRAG toolkit introduced in this work. Overall, MedRAG improves the accuracy of six different LLMs by up to 18% over chain-of-thought prompting, elevating the performance of GPT-3.5 and Mixtral to GPT-4-level. Our results show that the combination of various medical corpora and retrievers achieves the best performance. In addition, we discovered a log-linear scaling property and the "lost-in-the-middle" effects in medical RAG. We believe our comprehensive evaluations can serve as practical guidelines for implementing RAG systems for medicine.
PMC-Patients: A Large-scale Dataset of Patient Notes and Relations Extracted from Case Reports in PubMed Central
Objective: Data unavailability has been one of the biggest barriers in clinical natural language processing. This paper is aimed at providing a large-scale and publicly available patient note dataset, named PMC-Patients, with relevant articles and similar patients annotations. The ultimate goal of PMC-Patients is to facilitate the development of retrieval-based clinical decision support systems. Materials and Methods: To collect PMC-Patients, we extract patient notes from case reports in PubMed Central by recognizing certain section patterns. Patient-article relevance and patient-patient similarity are annotated by citation relationships in PubMed. In addition, we perform three tasks with PMC-Patients to demonstrate its utility in providing clinical decision support for a given patient, including (1) classifying whether another patient is similar, (2) retrieving similar patients in PMC-Patients, and (3) retrieving relevant articles in PubMed. Results: We collect and release PMC-Patients under the CC BY-NC-SA license, which becomes the largest publicly available patient note dataset so far. PMC-Patients contains 167k patient notes that are annotated with 3.1M relevant articles and 293k similar patients. Qualitative and quantitative analyses reveal the high quality and richness of our dataset. Experiments show that classifying the similarity of patient pairs is relatively easy, but it is hard to retrieve similar patients or relevant articles for a given patient from a large set of candidates. Conclusion: We present PMC-Patients, a large-scale dataset of patient notes with high quality, easy access, diverse conditions, and rich annotations. The proposed dataset can also serve as a hard benchmark for evaluating retrieval-based clinical decision support systems.
MedHallu: A Comprehensive Benchmark for Detecting Medical Hallucinations in Large Language Models
Advancements in Large Language Models (LLMs) and their increasing use in medical question-answering necessitate rigorous evaluation of their reliability. A critical challenge lies in hallucination, where models generate plausible yet factually incorrect outputs. In the medical domain, this poses serious risks to patient safety and clinical decision-making. To address this, we introduce MedHallu, the first benchmark specifically designed for medical hallucination detection. MedHallu comprises 10,000 high-quality question-answer pairs derived from PubMedQA, with hallucinated answers systematically generated through a controlled pipeline. Our experiments show that state-of-the-art LLMs, including GPT-4o, Llama-3.1, and the medically fine-tuned UltraMedical, struggle with this binary hallucination detection task, with the best model achieving an F1 score as low as 0.625 for detecting "hard" category hallucinations. Using bidirectional entailment clustering, we show that harder-to-detect hallucinations are semantically closer to ground truth. Through experiments, we also show incorporating domain-specific knowledge and introducing a "not sure" category as one of the answer categories improves the precision and F1 scores by up to 38% relative to baselines.
Huatuo-26M, a Large-scale Chinese Medical QA Dataset
In this paper, we release a largest ever medical Question Answering (QA) dataset with 26 million QA pairs. We benchmark many existing approaches in our dataset in terms of both retrieval and generation. Experimental results show that the existing models perform far lower than expected and the released dataset is still challenging in the pre-trained language model era. Moreover, we also experimentally show the benefit of the proposed dataset in many aspects: (i) trained models for other QA datasets in a zero-shot fashion; and (ii) as external knowledge for retrieval-augmented generation (RAG); and (iii) improving existing pre-trained language models by using the QA pairs as a pre-training corpus in continued training manner. We believe that this dataset will not only contribute to medical research but also facilitate both the patients and clinical doctors. See https://github.com/FreedomIntelligence/Huatuo-26M.
HuatuoGPT-Vision, Towards Injecting Medical Visual Knowledge into Multimodal LLMs at Scale
The rapid development of multimodal large language models (MLLMs), such as GPT-4V, has led to significant advancements. However, these models still face challenges in medical multimodal capabilities due to limitations in the quantity and quality of medical vision-text data, stemming from data privacy concerns and high annotation costs. While pioneering approaches utilize PubMed's large-scale, de-identified medical image-text pairs to address these limitations, they still fall short due to inherent data noise. To tackle this, we refined medical image-text pairs from PubMed and employed MLLMs (GPT-4V) in an 'unblinded' capacity to denoise and reformat the data, resulting in the creation of the PubMedVision dataset with 1.3 million medical VQA samples. Our validation demonstrates that: (1) PubMedVision can significantly enhance the medical multimodal capabilities of current MLLMs, showing significant improvement in benchmarks including the MMMU Health & Medicine track; (2) manual checks by medical experts and empirical results validate the superior data quality of our dataset compared to other data construction methods. Using PubMedVision, we train a 34B medical MLLM HuatuoGPT-Vision, which shows superior performance in medical multimodal scenarios among open-source MLLMs.
Hippocrates: An Open-Source Framework for Advancing Large Language Models in Healthcare
The integration of Large Language Models (LLMs) into healthcare promises to transform medical diagnostics, research, and patient care. Yet, the progression of medical LLMs faces obstacles such as complex training requirements, rigorous evaluation demands, and the dominance of proprietary models that restrict academic exploration. Transparent, comprehensive access to LLM resources is essential for advancing the field, fostering reproducibility, and encouraging innovation in healthcare AI. We present Hippocrates, an open-source LLM framework specifically developed for the medical domain. In stark contrast to previous efforts, it offers unrestricted access to its training datasets, codebase, checkpoints, and evaluation protocols. This open approach is designed to stimulate collaborative research, allowing the community to build upon, refine, and rigorously evaluate medical LLMs within a transparent ecosystem. Also, we introduce Hippo, a family of 7B models tailored for the medical domain, fine-tuned from Mistral and LLaMA2 through continual pre-training, instruction tuning, and reinforcement learning from human and AI feedback. Our models outperform existing open medical LLMs models by a large-margin, even surpassing models with 70B parameters. Through Hippocrates, we aspire to unlock the full potential of LLMs not just to advance medical knowledge and patient care but also to democratize the benefits of AI research in healthcare, making them available across the globe.
Adapting LLMs for the Medical Domain in Portuguese: A Study on Fine-Tuning and Model Evaluation
This study evaluates the performance of large language models (LLMs) as medical agents in Portuguese, aiming to develop a reliable and relevant virtual assistant for healthcare professionals. The HealthCareMagic-100k-en and MedQuAD datasets, translated from English using GPT-3.5, were used to fine-tune the ChatBode-7B model using the PEFT-QLoRA method. The InternLM2 model, with initial training on medical data, presented the best overall performance, with high precision and adequacy in metrics such as accuracy, completeness and safety. However, DrBode models, derived from ChatBode, exhibited a phenomenon of catastrophic forgetting of acquired medical knowledge. Despite this, these models performed frequently or even better in aspects such as grammaticality and coherence. A significant challenge was low inter-rater agreement, highlighting the need for more robust assessment protocols. This work paves the way for future research, such as evaluating multilingual models specific to the medical field, improving the quality of training data, and developing more consistent evaluation methodologies for the medical field.
Med-HALT: Medical Domain Hallucination Test for Large Language Models
This research paper focuses on the challenges posed by hallucinations in large language models (LLMs), particularly in the context of the medical domain. Hallucination, wherein these models generate plausible yet unverified or incorrect information, can have serious consequences in healthcare applications. We propose a new benchmark and dataset, Med-HALT (Medical Domain Hallucination Test), designed specifically to evaluate and reduce hallucinations. Med-HALT provides a diverse multinational dataset derived from medical examinations across various countries and includes multiple innovative testing modalities. Med-HALT includes two categories of tests reasoning and memory-based hallucination tests, designed to assess LLMs's problem-solving and information retrieval abilities. Our study evaluated leading LLMs, including Text Davinci, GPT-3.5, LlaMa-2, MPT, and Falcon, revealing significant differences in their performance. The paper provides detailed insights into the dataset, promoting transparency and reproducibility. Through this work, we aim to contribute to the development of safer and more reliable language models in healthcare. Our benchmark can be found at medhalt.github.io
A Survey of Large Language Models for Healthcare: from Data, Technology, and Applications to Accountability and Ethics
The utilization of large language models (LLMs) in the Healthcare domain has generated both excitement and concern due to their ability to effectively respond to freetext queries with certain professional knowledge. This survey outlines the capabilities of the currently developed LLMs for Healthcare and explicates their development process, with the aim of providing an overview of the development roadmap from traditional Pretrained Language Models (PLMs) to LLMs. Specifically, we first explore the potential of LLMs to enhance the efficiency and effectiveness of various Healthcare applications highlighting both the strengths and limitations. Secondly, we conduct a comparison between the previous PLMs and the latest LLMs, as well as comparing various LLMs with each other. Then we summarize related Healthcare training data, training methods, optimization strategies, and usage. Finally, the unique concerns associated with deploying LLMs in Healthcare settings are investigated, particularly regarding fairness, accountability, transparency and ethics. Our survey provide a comprehensive investigation from perspectives of both computer science and Healthcare specialty. Besides the discussion about Healthcare concerns, we supports the computer science community by compiling a collection of open source resources, such as accessible datasets, the latest methodologies, code implementations, and evaluation benchmarks in the Github. Summarily, we contend that a significant paradigm shift is underway, transitioning from PLMs to LLMs. This shift encompasses a move from discriminative AI approaches to generative AI approaches, as well as a shift from model-centered methodologies to datacentered methodologies.
Reddit-Impacts: A Named Entity Recognition Dataset for Analyzing Clinical and Social Effects of Substance Use Derived from Social Media
Substance use disorders (SUDs) are a growing concern globally, necessitating enhanced understanding of the problem and its trends through data-driven research. Social media are unique and important sources of information about SUDs, particularly since the data in such sources are often generated by people with lived experiences. In this paper, we introduce Reddit-Impacts, a challenging Named Entity Recognition (NER) dataset curated from subreddits dedicated to discussions on prescription and illicit opioids, as well as medications for opioid use disorder. The dataset specifically concentrates on the lesser-studied, yet critically important, aspects of substance use--its clinical and social impacts. We collected data from chosen subreddits using the publicly available Application Programming Interface for Reddit. We manually annotated text spans representing clinical and social impacts reported by people who also reported personal nonmedical use of substances including but not limited to opioids, stimulants and benzodiazepines. Our objective is to create a resource that can enable the development of systems that can automatically detect clinical and social impacts of substance use from text-based social media data. The successful development of such systems may enable us to better understand how nonmedical use of substances affects individual health and societal dynamics, aiding the development of effective public health strategies. In addition to creating the annotated data set, we applied several machine learning models to establish baseline performances. Specifically, we experimented with transformer models like BERT, and RoBERTa, one few-shot learning model DANN by leveraging the full training dataset, and GPT-3.5 by using one-shot learning, for automatic NER of clinical and social impacts. The dataset has been made available through the 2024 SMM4H shared tasks.
LLM-MedQA: Enhancing Medical Question Answering through Case Studies in Large Language Models
Accurate and efficient question-answering systems are essential for delivering high-quality patient care in the medical field. While Large Language Models (LLMs) have made remarkable strides across various domains, they continue to face significant challenges in medical question answering, particularly in understanding domain-specific terminologies and performing complex reasoning. These limitations undermine their effectiveness in critical medical applications. To address these issues, we propose a novel approach incorporating similar case generation within a multi-agent medical question-answering (MedQA) system. Specifically, we leverage the Llama3.1:70B model, a state-of-the-art LLM, in a multi-agent architecture to enhance performance on the MedQA dataset using zero-shot learning. Our method capitalizes on the model's inherent medical knowledge and reasoning capabilities, eliminating the need for additional training data. Experimental results show substantial performance gains over existing benchmark models, with improvements of 7% in both accuracy and F1-score across various medical QA tasks. Furthermore, we examine the model's interpretability and reliability in addressing complex medical queries. This research not only offers a robust solution for medical question answering but also establishes a foundation for broader applications of LLMs in the medical domain.
Towards Democratizing Multilingual Large Language Models For Medicine Through A Two-Stage Instruction Fine-tuning Approach
Open-source, multilingual medical large language models (LLMs) have the potential to serve linguistically diverse populations across different regions. Adapting generic LLMs for healthcare often requires continual pretraining, but this approach is computationally expensive and sometimes impractical. Instruction fine-tuning on a specific task may not always guarantee optimal performance due to the lack of broader domain knowledge that the model needs to understand and reason effectively in diverse scenarios. To address these challenges, we introduce two multilingual instruction fine-tuning datasets, MMed-IFT and MMed-IFT-MC, containing over 200k high-quality medical samples in six languages. We propose a two-stage training paradigm: the first stage injects general medical knowledge using MMed-IFT, while the second stage fine-tunes task-specific multiple-choice questions with MMed-IFT-MC. Our method achieves competitive results on both English and multilingual benchmarks, striking a balance between computational efficiency and performance. We plan to make our dataset and model weights public at https://github.com/SpassMed/Med-Llama3 in the future.
The Ethics of ChatGPT in Medicine and Healthcare: A Systematic Review on Large Language Models (LLMs)
With the introduction of ChatGPT, Large Language Models (LLMs) have received enormous attention in healthcare. Despite their potential benefits, researchers have underscored various ethical implications. While individual instances have drawn much attention, the debate lacks a systematic overview of practical applications currently researched and ethical issues connected to them. Against this background, this work aims to map the ethical landscape surrounding the current stage of deployment of LLMs in medicine and healthcare. Electronic databases and preprint servers were queried using a comprehensive search strategy. Studies were screened and extracted following a modified rapid review approach. Methodological quality was assessed using a hybrid approach. For 53 records, a meta-aggregative synthesis was performed. Four fields of applications emerged and testify to a vivid exploration phase. Advantages of using LLMs are attributed to their capacity in data analysis, personalized information provisioning, support in decision-making, mitigating information loss and enhancing information accessibility. However, we also identifies recurrent ethical concerns connected to fairness, bias, non-maleficence, transparency, and privacy. A distinctive concern is the tendency to produce harmful misinformation or convincingly but inaccurate content. A recurrent plea for ethical guidance and human oversight is evident. Given the variety of use cases, it is suggested that the ethical guidance debate be reframed to focus on defining what constitutes acceptable human oversight across the spectrum of applications. This involves considering diverse settings, varying potentials for harm, and different acceptable thresholds for performance and certainty in healthcare. In addition, a critical inquiry is necessary to determine the extent to which the current experimental use of LLMs is necessary and justified.
Capabilities of GPT-4 on Medical Challenge Problems
Large language models (LLMs) have demonstrated remarkable capabilities in natural language understanding and generation across various domains, including medicine. We present a comprehensive evaluation of GPT-4, a state-of-the-art LLM, on medical competency examinations and benchmark datasets. GPT-4 is a general-purpose model that is not specialized for medical problems through training or engineered to solve clinical tasks. Our analysis covers two sets of official practice materials for the USMLE, a three-step examination program used to assess clinical competency and grant licensure in the United States. We also evaluate performance on the MultiMedQA suite of benchmark datasets. Beyond measuring model performance, experiments were conducted to investigate the influence of test questions containing both text and images on model performance, probe for memorization of content during training, and study probability calibration, which is of critical importance in high-stakes applications like medicine. Our results show that GPT-4, without any specialized prompt crafting, exceeds the passing score on USMLE by over 20 points and outperforms earlier general-purpose models (GPT-3.5) as well as models specifically fine-tuned on medical knowledge (Med-PaLM, a prompt-tuned version of Flan-PaLM 540B). In addition, GPT-4 is significantly better calibrated than GPT-3.5, demonstrating a much-improved ability to predict the likelihood that its answers are correct. We also explore the behavior of the model qualitatively through a case study that shows the ability of GPT-4 to explain medical reasoning, personalize explanations to students, and interactively craft new counterfactual scenarios around a medical case. Implications of the findings are discussed for potential uses of GPT-4 in medical education, assessment, and clinical practice, with appropriate attention to challenges of accuracy and safety.
Apollo: Lightweight Multilingual Medical LLMs towards Democratizing Medical AI to 6B People
Despite the vast repository of global medical knowledge predominantly being in English, local languages are crucial for delivering tailored healthcare services, particularly in areas with limited medical resources. To extend the reach of medical AI advancements to a broader population, we aim to develop medical LLMs across the six most widely spoken languages, encompassing a global population of 6.1 billion. This effort culminates in the creation of the ApolloCorpora multilingual medical dataset and the XMedBench benchmark. In the multilingual medical benchmark, the released Apollo models, at various relatively-small sizes (i.e., 0.5B, 1.8B, 2B, 6B, and 7B), achieve the best performance among models of equivalent size. Especially, Apollo-7B is the state-of-the-art multilingual medical LLMs up to 70B. Additionally, these lite models could be used to improve the multi-lingual medical capabilities of larger models without fine-tuning in a proxy-tuning fashion. We will open-source training corpora, code, model weights and evaluation benchmark.
The Limited Impact of Medical Adaptation of Large Language and Vision-Language Models
Several recent works seek to develop foundation models specifically for medical applications, adapting general-purpose large language models (LLMs) and vision-language models (VLMs) via continued pretraining on publicly available biomedical corpora. These works typically claim that such domain-adaptive pretraining (DAPT) improves performance on downstream medical tasks, such as answering medical licensing exam questions. In this paper, we compare ten public "medical" LLMs and two VLMs against their corresponding base models, arriving at a different conclusion: all medical VLMs and nearly all medical LLMs fail to consistently improve over their base models in the zero-/few-shot prompting and supervised fine-tuning regimes for medical question-answering (QA). For instance, across all tasks and model pairs we consider in the 3-shot setting, medical LLMs only outperform their base models in 22.7% of cases, reach a (statistical) tie in 36.8% of cases, and are significantly worse than their base models in the remaining 40.5% of cases. Our conclusions are based on (i) comparing each medical model head-to-head, directly against the corresponding base model; (ii) optimizing the prompts for each model separately in zero-/few-shot prompting; and (iii) accounting for statistical uncertainty in comparisons. While these basic practices are not consistently adopted in the literature, our ablations show that they substantially impact conclusions. Meanwhile, we find that after fine-tuning on specific QA tasks, medical LLMs can show performance improvements, but the benefits do not carry over to tasks based on clinical notes. Our findings suggest that state-of-the-art general-domain models may already exhibit strong medical knowledge and reasoning capabilities, and offer recommendations to strengthen the conclusions of future studies.