Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeKeySync: A Robust Approach for Leakage-free Lip Synchronization in High Resolution
Lip synchronization, known as the task of aligning lip movements in an existing video with new input audio, is typically framed as a simpler variant of audio-driven facial animation. However, as well as suffering from the usual issues in talking head generation (e.g., temporal consistency), lip synchronization presents significant new challenges such as expression leakage from the input video and facial occlusions, which can severely impact real-world applications like automated dubbing, but are often neglected in existing works. To address these shortcomings, we present KeySync, a two-stage framework that succeeds in solving the issue of temporal consistency, while also incorporating solutions for leakage and occlusions using a carefully designed masking strategy. We show that KeySync achieves state-of-the-art results in lip reconstruction and cross-synchronization, improving visual quality and reducing expression leakage according to LipLeak, our novel leakage metric. Furthermore, we demonstrate the effectiveness of our new masking approach in handling occlusions and validate our architectural choices through several ablation studies. Code and model weights can be found at https://antonibigata.github.io/KeySync.
ResourceSync: Leveraging Sitemaps for Resource Synchronization
Many applications need up-to-date copies of collections of changing Web resources. Such synchronization is currently achieved using ad-hoc or proprietary solutions. We propose ResourceSync, a general Web resource synchronization protocol that leverages XML Sitemaps. It provides a set of capabilities that can be combined in a modular manner to meet local or community requirements. We report on work to implement this protocol for arXiv.org and also provide an experimental prototype for the English Wikipedia as well as a client API.
JavisDiT: Joint Audio-Video Diffusion Transformer with Hierarchical Spatio-Temporal Prior Synchronization
This paper introduces JavisDiT, a novel Joint Audio-Video Diffusion Transformer designed for synchronized audio-video generation (JAVG). Built upon the powerful Diffusion Transformer (DiT) architecture, JavisDiT is able to generate high-quality audio and video content simultaneously from open-ended user prompts. To ensure optimal synchronization, we introduce a fine-grained spatio-temporal alignment mechanism through a Hierarchical Spatial-Temporal Synchronized Prior (HiST-Sypo) Estimator. This module extracts both global and fine-grained spatio-temporal priors, guiding the synchronization between the visual and auditory components. Furthermore, we propose a new benchmark, JavisBench, consisting of 10,140 high-quality text-captioned sounding videos spanning diverse scenes and complex real-world scenarios. Further, we specifically devise a robust metric for evaluating the synchronization between generated audio-video pairs in real-world complex content. Experimental results demonstrate that JavisDiT significantly outperforms existing methods by ensuring both high-quality generation and precise synchronization, setting a new standard for JAVG tasks. Our code, model, and dataset will be made publicly available at https://javisdit.github.io/.
DreamCube: 3D Panorama Generation via Multi-plane Synchronization
3D panorama synthesis is a promising yet challenging task that demands high-quality and diverse visual appearance and geometry of the generated omnidirectional content. Existing methods leverage rich image priors from pre-trained 2D foundation models to circumvent the scarcity of 3D panoramic data, but the incompatibility between 3D panoramas and 2D single views limits their effectiveness. In this work, we demonstrate that by applying multi-plane synchronization to the operators from 2D foundation models, their capabilities can be seamlessly extended to the omnidirectional domain. Based on this design, we further introduce DreamCube, a multi-plane RGB-D diffusion model for 3D panorama generation, which maximizes the reuse of 2D foundation model priors to achieve diverse appearances and accurate geometry while maintaining multi-view consistency. Extensive experiments demonstrate the effectiveness of our approach in panoramic image generation, panoramic depth estimation, and 3D scene generation.
SyncTalk: The Devil is in the Synchronization for Talking Head Synthesis
Achieving high synchronization in the synthesis of realistic, speech-driven talking head videos presents a significant challenge. Traditional Generative Adversarial Networks (GAN) struggle to maintain consistent facial identity, while Neural Radiance Fields (NeRF) methods, although they can address this issue, often produce mismatched lip movements, inadequate facial expressions, and unstable head poses. A lifelike talking head requires synchronized coordination of subject identity, lip movements, facial expressions, and head poses. The absence of these synchronizations is a fundamental flaw, leading to unrealistic and artificial outcomes. To address the critical issue of synchronization, identified as the "devil" in creating realistic talking heads, we introduce SyncTalk. This NeRF-based method effectively maintains subject identity, enhancing synchronization and realism in talking head synthesis. SyncTalk employs a Face-Sync Controller to align lip movements with speech and innovatively uses a 3D facial blendshape model to capture accurate facial expressions. Our Head-Sync Stabilizer optimizes head poses, achieving more natural head movements. The Portrait-Sync Generator restores hair details and blends the generated head with the torso for a seamless visual experience. Extensive experiments and user studies demonstrate that SyncTalk outperforms state-of-the-art methods in synchronization and realism. We recommend watching the supplementary video: https://ziqiaopeng.github.io/synctalk
Diff2Lip: Audio Conditioned Diffusion Models for Lip-Synchronization
The task of lip synchronization (lip-sync) seeks to match the lips of human faces with different audio. It has various applications in the film industry as well as for creating virtual avatars and for video conferencing. This is a challenging problem as one needs to simultaneously introduce detailed, realistic lip movements while preserving the identity, pose, emotions, and image quality. Many of the previous methods trying to solve this problem suffer from image quality degradation due to a lack of complete contextual information. In this paper, we present Diff2Lip, an audio-conditioned diffusion-based model which is able to do lip synchronization in-the-wild while preserving these qualities. We train our model on Voxceleb2, a video dataset containing in-the-wild talking face videos. Extensive studies show that our method outperforms popular methods like Wav2Lip and PC-AVS in Fr\'echet inception distance (FID) metric and Mean Opinion Scores (MOS) of the users. We show results on both reconstruction (same audio-video inputs) as well as cross (different audio-video inputs) settings on Voxceleb2 and LRW datasets. Video results and code can be accessed from our project page ( https://soumik-kanad.github.io/diff2lip ).
VideoReTalking: Audio-based Lip Synchronization for Talking Head Video Editing In the Wild
We present VideoReTalking, a new system to edit the faces of a real-world talking head video according to input audio, producing a high-quality and lip-syncing output video even with a different emotion. Our system disentangles this objective into three sequential tasks: (1) face video generation with a canonical expression; (2) audio-driven lip-sync; and (3) face enhancement for improving photo-realism. Given a talking-head video, we first modify the expression of each frame according to the same expression template using the expression editing network, resulting in a video with the canonical expression. This video, together with the given audio, is then fed into the lip-sync network to generate a lip-syncing video. Finally, we improve the photo-realism of the synthesized faces through an identity-aware face enhancement network and post-processing. We use learning-based approaches for all three steps and all our modules can be tackled in a sequential pipeline without any user intervention. Furthermore, our system is a generic approach that does not need to be retrained to a specific person. Evaluations on two widely-used datasets and in-the-wild examples demonstrate the superiority of our framework over other state-of-the-art methods in terms of lip-sync accuracy and visual quality.
CoGenAV: Versatile Audio-Visual Representation Learning via Contrastive-Generative Synchronization
The inherent synchronization between a speaker's lip movements, voice, and the underlying linguistic content offers a rich source of information for improving speech processing tasks, especially in challenging conditions where traditional audio-only systems falter. We introduce CoGenAV, a powerful and data-efficient model designed to learn versatile audio-visual representations applicable across a wide range of speech and audio-visual tasks. CoGenAV is trained by optimizing a dual objective derived from natural audio-visual synchrony, contrastive feature alignment and generative text prediction, using only 223 hours of labeled data from the LRS2 dataset. This contrastive-generative synchronization strategy effectively captures fundamental cross-modal correlations. We showcase the effectiveness and versatility of the learned CoGenAV representations on multiple benchmarks. When utilized for Audio-Visual Speech Recognition (AVSR) on LRS2, these representations contribute to achieving a state-of-the-art Word Error Rate (WER) of 1.27. They also enable strong performance in Visual Speech Recognition (VSR) with a WER of 22.0 on LRS2, and significantly improve performance in noisy environments by over 70%. Furthermore, CoGenAV representations benefit speech reconstruction tasks, boosting performance in Speech Enhancement and Separation, and achieve competitive results in audio-visual synchronization tasks like Active Speaker Detection (ASD). Our model will be open-sourced to facilitate further development and collaboration within both academia and industry.
SayAnything: Audio-Driven Lip Synchronization with Conditional Video Diffusion
Recent advances in diffusion models have led to significant progress in audio-driven lip synchronization. However, existing methods typically rely on constrained audio-visual alignment priors or multi-stage learning of intermediate representations to force lip motion synthesis. This leads to complex training pipelines and limited motion naturalness. In this paper, we present SayAnything, a conditional video diffusion framework that directly synthesizes lip movements from audio input while preserving speaker identity. Specifically, we propose three specialized modules including identity preservation module, audio guidance module, and editing control module. Our novel design effectively balances different condition signals in the latent space, enabling precise control over appearance, motion, and region-specific generation without requiring additional supervision signals or intermediate representations. Extensive experiments demonstrate that SayAnything generates highly realistic videos with improved lip-teeth coherence, enabling unseen characters to say anything, while effectively generalizing to animated characters.
A Quadratic Synchronization Rule for Distributed Deep Learning
In distributed deep learning with data parallelism, synchronizing gradients at each training step can cause a huge communication overhead, especially when many nodes work together to train large models. Local gradient methods, such as Local SGD, address this issue by allowing workers to compute locally for H steps without synchronizing with others, hence reducing communication frequency. While H has been viewed as a hyperparameter to trade optimization efficiency for communication cost, recent research indicates that setting a proper H value can lead to generalization improvement. Yet, selecting a proper H is elusive. This work proposes a theory-grounded method for determining H, named the Quadratic Synchronization Rule (QSR), which recommends dynamically setting H in proportion to 1{eta^2} as the learning rate eta decays over time. Extensive ImageNet experiments on ResNet and ViT show that local gradient methods with QSR consistently improve the test accuracy over other synchronization strategies. Compared with the standard data parallel training, QSR enables Local AdamW on ViT-B to cut the training time on 16 or 64 GPUs down from 26.7 to 20.2 hours or from 8.6 to 5.5 hours and, at the same time, achieves 1.16% or 0.84% higher top-1 validation accuracy.
Robust Angular Synchronization via Directed Graph Neural Networks
The angular synchronization problem aims to accurately estimate (up to a constant additive phase) a set of unknown angles theta_1, dots, theta_nin[0, 2pi) from m noisy measurements of their offsets theta_i-theta_j ;mod ; 2pi. Applications include, for example, sensor network localization, phase retrieval, and distributed clock synchronization. An extension of the problem to the heterogeneous setting (dubbed k-synchronization) is to estimate k groups of angles simultaneously, given noisy observations (with unknown group assignment) from each group. Existing methods for angular synchronization usually perform poorly in high-noise regimes, which are common in applications. In this paper, we leverage neural networks for the angular synchronization problem, and its heterogeneous extension, by proposing GNNSync, a theoretically-grounded end-to-end trainable framework using directed graph neural networks. In addition, new loss functions are devised to encode synchronization objectives. Experimental results on extensive data sets demonstrate that GNNSync attains competitive, and often superior, performance against a comprehensive set of baselines for the angular synchronization problem and its extension, validating the robustness of GNNSync even at high noise levels.
Audio-driven Talking Face Generation with Stabilized Synchronization Loss
Talking face generation aims to create realistic videos with accurate lip synchronization and high visual quality, using given audio and reference video while preserving identity and visual characteristics. In this paper, we start by identifying several issues with existing synchronization learning methods. These involve unstable training, lip synchronization, and visual quality issues caused by lip-sync loss, SyncNet, and lip leaking from the identity reference. To address these issues, we first tackle the lip leaking problem by introducing a silent-lip generator, which changes the lips of the identity reference to alleviate leakage. We then introduce stabilized synchronization loss and AVSyncNet to overcome problems caused by lip-sync loss and SyncNet. Experiments show that our model outperforms state-of-the-art methods in both visual quality and lip synchronization. Comprehensive ablation studies further validate our individual contributions and their cohesive effects.
Deep learning-based stereo camera multi-video synchronization
Stereo vision is essential for many applications. Currently, the synchronization of the streams coming from two cameras is done using mostly hardware. A software-based synchronization method would reduce the cost, weight and size of the entire system and allow for more flexibility when building such systems. With this goal in mind, we present here a comparison of different deep learning-based systems and prove that some are efficient and generalizable enough for such a task. This study paves the way to a production ready software-based video synchronization system.
ModEFormer: Modality-Preserving Embedding for Audio-Video Synchronization using Transformers
Lack of audio-video synchronization is a common problem during television broadcasts and video conferencing, leading to an unsatisfactory viewing experience. A widely accepted paradigm is to create an error detection mechanism that identifies the cases when audio is leading or lagging. We propose ModEFormer, which independently extracts audio and video embeddings using modality-specific transformers. Different from the other transformer-based approaches, ModEFormer preserves the modality of the input streams which allows us to use a larger batch size with more negative audio samples for contrastive learning. Further, we propose a trade-off between the number of negative samples and number of unique samples in a batch to significantly exceed the performance of previous methods. Experimental results show that ModEFormer achieves state-of-the-art performance, 94.5% for LRS2 and 90.9% for LRS3. Finally, we demonstrate how ModEFormer can be used for offset detection for test clips.
On the Audio-visual Synchronization for Lip-to-Speech Synthesis
Most lip-to-speech (LTS) synthesis models are trained and evaluated under the assumption that the audio-video pairs in the dataset are perfectly synchronized. In this work, we show that the commonly used audio-visual datasets, such as GRID, TCD-TIMIT, and Lip2Wav, can have data asynchrony issues. Training lip-to-speech with such datasets may further cause the model asynchrony issue -- that is, the generated speech and the input video are out of sync. To address these asynchrony issues, we propose a synchronized lip-to-speech (SLTS) model with an automatic synchronization mechanism (ASM) to correct data asynchrony and penalize model asynchrony. We further demonstrate the limitation of the commonly adopted evaluation metrics for LTS with asynchronous test data and introduce an audio alignment frontend before the metrics sensitive to time alignment for better evaluation. We compare our method with state-of-the-art approaches on conventional and time-aligned metrics to show the benefits of synchronization training.
MuseTalk: Real-Time High Quality Lip Synchronization with Latent Space Inpainting
Achieving high-resolution, identity consistency, and accurate lip-speech synchronization in face visual dubbing presents significant challenges, particularly for real-time applications like live video streaming. We propose MuseTalk, which generates lip-sync targets in a latent space encoded by a Variational Autoencoder, enabling high-fidelity talking face video generation with efficient inference. Specifically, we project the occluded lower half of the face image and itself as an reference into a low-dimensional latent space and use a multi-scale U-Net to fuse audio and visual features at various levels. We further propose a novel sampling strategy during training, which selects reference images with head poses closely matching the target, allowing the model to focus on precise lip movement by filtering out redundant information. Additionally, we analyze the mechanism of lip-sync loss and reveal its relationship with input information volume. Extensive experiments show that MuseTalk consistently outperforms recent state-of-the-art methods in visual fidelity and achieves comparable lip-sync accuracy. As MuseTalk supports the online generation of face at 256x256 at more than 30 FPS with negligible starting latency, it paves the way for real-time applications.
PoseSync: Robust pose based video synchronization
Pose based video sychronization can have applications in multiple domains such as gameplay performance evaluation, choreography or guiding athletes. The subject's actions could be compared and evaluated against those performed by professionals side by side. In this paper, we propose an end to end pipeline for synchronizing videos based on pose. The first step crops the region where the person present in the image followed by pose detection on the cropped image. This is followed by application of Dynamic Time Warping(DTW) on angle/ distance measures between the pose keypoints leading to a scale and shift invariant pose matching pipeline.
MuVi: Video-to-Music Generation with Semantic Alignment and Rhythmic Synchronization
Generating music that aligns with the visual content of a video has been a challenging task, as it requires a deep understanding of visual semantics and involves generating music whose melody, rhythm, and dynamics harmonize with the visual narratives. This paper presents MuVi, a novel framework that effectively addresses these challenges to enhance the cohesion and immersive experience of audio-visual content. MuVi analyzes video content through a specially designed visual adaptor to extract contextually and temporally relevant features. These features are used to generate music that not only matches the video's mood and theme but also its rhythm and pacing. We also introduce a contrastive music-visual pre-training scheme to ensure synchronization, based on the periodicity nature of music phrases. In addition, we demonstrate that our flow-matching-based music generator has in-context learning ability, allowing us to control the style and genre of the generated music. Experimental results show that MuVi demonstrates superior performance in both audio quality and temporal synchronization. The generated music video samples are available at https://muvi-v2m.github.io.
LLS: Local Learning Rule for Deep Neural Networks Inspired by Neural Activity Synchronization
Training deep neural networks (DNNs) using traditional backpropagation (BP) presents challenges in terms of computational complexity and energy consumption, particularly for on-device learning where computational resources are limited. Various alternatives to BP, including random feedback alignment, forward-forward, and local classifiers, have been explored to address these challenges. These methods have their advantages, but they can encounter difficulties when dealing with intricate visual tasks or demand considerable computational resources. In this paper, we propose a novel Local Learning rule inspired by neural activity Synchronization phenomena (LLS) observed in the brain. LLS utilizes fixed periodic basis vectors to synchronize neuron activity within each layer, enabling efficient training without the need for additional trainable parameters. We demonstrate the effectiveness of LLS and its variations, LLS-M and LLS-MxM, on multiple image classification datasets, achieving accuracy comparable to BP with reduced computational complexity and minimal additional parameters. Furthermore, the performance of LLS on the Visual Wake Word (VWW) dataset highlights its suitability for on-device learning tasks, making it a promising candidate for edge hardware implementations.
SyNDock: N Rigid Protein Docking via Learnable Group Synchronization
The regulation of various cellular processes heavily relies on the protein complexes within a living cell, necessitating a comprehensive understanding of their three-dimensional structures to elucidate the underlying mechanisms. While neural docking techniques have exhibited promising outcomes in binary protein docking, the application of advanced neural architectures to multimeric protein docking remains uncertain. This study introduces SyNDock, an automated framework that swiftly assembles precise multimeric complexes within seconds, showcasing performance that can potentially surpass or be on par with recent advanced approaches. SyNDock possesses several appealing advantages not present in previous approaches. Firstly, SyNDock formulates multimeric protein docking as a problem of learning global transformations to holistically depict the placement of chain units of a complex, enabling a learning-centric solution. Secondly, SyNDock proposes a trainable two-step SE(3) algorithm, involving initial pairwise transformation and confidence estimation, followed by global transformation synchronization. This enables effective learning for assembling the complex in a globally consistent manner. Lastly, extensive experiments conducted on our proposed benchmark dataset demonstrate that SyNDock outperforms existing docking software in crucial performance metrics, including accuracy and runtime. For instance, it achieves a 4.5% improvement in performance and a remarkable millionfold acceleration in speed.
Learning Music-Dance Representations through Explicit-Implicit Rhythm Synchronization
Although audio-visual representation has been proved to be applicable in many downstream tasks, the representation of dancing videos, which is more specific and always accompanied by music with complex auditory contents, remains challenging and uninvestigated. Considering the intrinsic alignment between the cadent movement of dancer and music rhythm, we introduce MuDaR, a novel Music-Dance Representation learning framework to perform the synchronization of music and dance rhythms both in explicit and implicit ways. Specifically, we derive the dance rhythms based on visual appearance and motion cues inspired by the music rhythm analysis. Then the visual rhythms are temporally aligned with the music counterparts, which are extracted by the amplitude of sound intensity. Meanwhile, we exploit the implicit coherence of rhythms implied in audio and visual streams by contrastive learning. The model learns the joint embedding by predicting the temporal consistency between audio-visual pairs. The music-dance representation, together with the capability of detecting audio and visual rhythms, can further be applied to three downstream tasks: (a) dance classification, (b) music-dance retrieval, and (c) music-dance retargeting. Extensive experiments demonstrate that our proposed framework outperforms other self-supervised methods by a large margin.
SyncDiff: Synchronized Motion Diffusion for Multi-Body Human-Object Interaction Synthesis
Synthesizing realistic human-object interaction motions is a critical problem in VR/AR and human animation. Unlike the commonly studied scenarios involving a single human or hand interacting with one object, we address a more generic multi-body setting with arbitrary numbers of humans, hands, and objects. This complexity introduces significant challenges in synchronizing motions due to the high correlations and mutual influences among bodies. To address these challenges, we introduce SyncDiff, a novel method for multi-body interaction synthesis using a synchronized motion diffusion strategy. SyncDiff employs a single diffusion model to capture the joint distribution of multi-body motions. To enhance motion fidelity, we propose a frequency-domain motion decomposition scheme. Additionally, we introduce a new set of alignment scores to emphasize the synchronization of different body motions. SyncDiff jointly optimizes both data sample likelihood and alignment likelihood through an explicit synchronization strategy. Extensive experiments across four datasets with various multi-body configurations demonstrate the superiority of SyncDiff over existing state-of-the-art motion synthesis methods.
Decentralised, Self-Organising Drone Swarms using Coupled Oscillators
The problem of robotic synchronisation and coordination is a long-standing one. Combining autonomous, computerised systems with unpredictable real-world conditions can have consequences ranging from poor performance to collisions and damage. This paper proposes using coupled oscillators to create a drone swarm that is decentralised and self organising. This allows for greater flexibility and adaptiveness than a hard-coded swarm, with more resilience and scalability than a centralised system. Our method allows for a variable number of drones to spontaneously form a swarm and react to changing swarm conditions. Additionally, this method includes provisions to prevent communication interference between drones, and signal processing techniques to ensure a smooth and cohesive swarm.
4Real-Video: Learning Generalizable Photo-Realistic 4D Video Diffusion
We propose 4Real-Video, a novel framework for generating 4D videos, organized as a grid of video frames with both time and viewpoint axes. In this grid, each row contains frames sharing the same timestep, while each column contains frames from the same viewpoint. We propose a novel two-stream architecture. One stream performs viewpoint updates on columns, and the other stream performs temporal updates on rows. After each diffusion transformer layer, a synchronization layer exchanges information between the two token streams. We propose two implementations of the synchronization layer, using either hard or soft synchronization. This feedforward architecture improves upon previous work in three ways: higher inference speed, enhanced visual quality (measured by FVD, CLIP, and VideoScore), and improved temporal and viewpoint consistency (measured by VideoScore and Dust3R-Confidence).
Dynamical properties of a small heterogeneous chain network of neurons in discrete time
We propose a novel nonlinear bidirectionally coupled heterogeneous chain network whose dynamics evolve in discrete time. The backbone of the model is a pair of popular map-based neuron models, the Chialvo and the Rulkov maps. This model is assumed to proximate the intricate dynamical properties of neurons in the widely complex nervous system. The model is first realized via various nonlinear analysis techniques: fixed point analysis, phase portraits, Jacobian matrix, and bifurcation diagrams. We observe the coexistence of chaotic and period-4 attractors. Various codimension-1 and -2 patterns for example saddle-node, period-doubling, Neimark-Sacker, double Neimark-Sacker, flip- and fold-Neimark Sacker, and 1:1 and 1:2 resonance are also explored. Furthermore, the study employs two synchronization measures to quantify how the oscillators in the network behave in tandem with each other over a long number of iterations. Finally, a time series analysis of the model is performed to investigate its complexity in terms of sample entropy.
Collective Dynamics from Stochastic Thermodynamics
From a viewpoint of stochastic thermodynamics, we derive equations that describe the collective dynamics near the order-disorder transition in the globally coupled XY model and near the synchronization-desynchronization transition in the Kuramoto model. A new way of thinking is to interpret the deterministic time evolution of a macroscopic variable as an external operation to a thermodynamic system. We then find that the irreversible work determines the equation for the collective dynamics. When analyzing the Kuramoto model, we employ a generalized concept of irreversible work which originates from a non-equilibrium identity associated with steady state thermodynamics.
On the higher-order smallest ring star network of Chialvo neurons under diffusive couplings
We put forward the dynamical study of a novel higher-order small network of Chialvo neurons arranged in a ring-star topology, with the neurons interacting via linear diffusive couplings. This model is perceived to imitate the nonlinear dynamical properties exhibited by a realistic nervous system where the neurons transfer information through higher-order multi-body interactions. We first analyze our model using the tools from nonlinear dynamics literature: fixed point analysis, Jacobian matrix, and bifurcation patterns. We observe the coexistence of chaotic attractors, and also an intriguing route to chaos starting from a fixed point, to period-doubling, to cyclic quasiperiodic closed invariant curves, to ultimately chaos. We numerically observe the existence of codimension-1 bifurcation patterns: saddle-node, period-doubling, and Neimark Sacker. We also qualitatively study the typical phase portraits of the system and numerically quantify chaos and complexity using the 0-1 test and sample entropy measure respectively. Finally, we study the collective behavior of the neurons in terms of two synchronization measures: the cross-correlation coefficient, and the Kuramoto order parameter.
Streaming DiLoCo with overlapping communication: Towards a Distributed Free Lunch
Training of large language models (LLMs) is typically distributed across a large number of accelerators to reduce training time. Since internal states and parameter gradients need to be exchanged at each and every single gradient step, all devices need to be co-located using low-latency high-bandwidth communication links to support the required high volume of exchanged bits. Recently, distributed algorithms like DiLoCo have relaxed such co-location constraint: accelerators can be grouped into ``workers'', where synchronizations between workers only occur infrequently. This in turn means that workers can afford being connected by lower bandwidth communication links without affecting learning quality. However, in these methods, communication across workers still requires the same peak bandwidth as before, as the synchronizations require all parameters to be exchanged across all workers. In this paper, we improve DiLoCo in three ways. First, we synchronize only subsets of parameters in sequence, rather than all at once, which greatly reduces peak bandwidth. Second, we allow workers to continue training while synchronizing, which decreases wall clock time. Third, we quantize the data exchanged by workers, which further reduces bandwidth across workers. By properly combining these modifications, we show experimentally that we can distribute training of billion-scale parameters and reach similar quality as before, but reducing required bandwidth by two orders of magnitude.
SyncFusion: Multimodal Onset-synchronized Video-to-Audio Foley Synthesis
Sound design involves creatively selecting, recording, and editing sound effects for various media like cinema, video games, and virtual/augmented reality. One of the most time-consuming steps when designing sound is synchronizing audio with video. In some cases, environmental recordings from video shoots are available, which can aid in the process. However, in video games and animations, no reference audio exists, requiring manual annotation of event timings from the video. We propose a system to extract repetitive actions onsets from a video, which are then used - in conjunction with audio or textual embeddings - to condition a diffusion model trained to generate a new synchronized sound effects audio track. In this way, we leave complete creative control to the sound designer while removing the burden of synchronization with video. Furthermore, editing the onset track or changing the conditioning embedding requires much less effort than editing the audio track itself, simplifying the sonification process. We provide sound examples, source code, and pretrained models to faciliate reproducibility
Papaya: Practical, Private, and Scalable Federated Learning
Cross-device Federated Learning (FL) is a distributed learning paradigm with several challenges that differentiate it from traditional distributed learning, variability in the system characteristics on each device, and millions of clients coordinating with a central server being primary ones. Most FL systems described in the literature are synchronous - they perform a synchronized aggregation of model updates from individual clients. Scaling synchronous FL is challenging since increasing the number of clients training in parallel leads to diminishing returns in training speed, analogous to large-batch training. Moreover, stragglers hinder synchronous FL training. In this work, we outline a production asynchronous FL system design. Our work tackles the aforementioned issues, sketches of some of the system design challenges and their solutions, and touches upon principles that emerged from building a production FL system for millions of clients. Empirically, we demonstrate that asynchronous FL converges faster than synchronous FL when training across nearly one hundred million devices. In particular, in high concurrency settings, asynchronous FL is 5x faster and has nearly 8x less communication overhead than synchronous FL.
Synchronize Feature Extracting and Matching: A Single Branch Framework for 3D Object Tracking
Siamese network has been a de facto benchmark framework for 3D LiDAR object tracking with a shared-parametric encoder extracting features from template and search region, respectively. This paradigm relies heavily on an additional matching network to model the cross-correlation/similarity of the template and search region. In this paper, we forsake the conventional Siamese paradigm and propose a novel single-branch framework, SyncTrack, synchronizing the feature extracting and matching to avoid forwarding encoder twice for template and search region as well as introducing extra parameters of matching network. The synchronization mechanism is based on the dynamic affinity of the Transformer, and an in-depth analysis of the relevance is provided theoretically. Moreover, based on the synchronization, we introduce a novel Attentive Points-Sampling strategy into the Transformer layers (APST), replacing the random/Farthest Points Sampling (FPS) method with sampling under the supervision of attentive relations between the template and search region. It implies connecting point-wise sampling with the feature learning, beneficial to aggregating more distinctive and geometric features for tracking with sparse points. Extensive experiments on two benchmark datasets (KITTI and NuScenes) show that SyncTrack achieves state-of-the-art performance in real-time tracking.
Lattice models of random advection and diffusion and their statistics
We study in detail a one-dimensional lattice model of a continuum, conserved field (mass) that is transferred deterministically between neighbouring random sites. The model falls in a wider class of lattice models capturing the joint effect of random advection and diffusion and encompassing as specific cases, some models studied in the literature, like the Kang-Redner, Kipnis-Marchioro-Presutti, Takayasu-Taguchi, etc. The motivation for our setup comes from a straightforward interpretation as advection of particles in one-dimensional turbulence, but it is also related to a problem of synchronization of dynamical systems driven by common noise. For finite lattices, we study both the coalescence of an initially spread field (interpreted as roughening), and the statistical steady-state properties. We distinguish two main size-dependent regimes, depending on the strength of the diffusion term and on the lattice size. Using numerical simulations and mean-field approach, we study the statistics of the field. For weak diffusion, we unveil a characteristic hierarchical structure of the field. We also connect the model and the iterated function systems concept.
Artificial Kuramoto Oscillatory Neurons
It has long been known in both neuroscience and AI that ``binding'' between neurons leads to a form of competitive learning where representations are compressed in order to represent more abstract concepts in deeper layers of the network. More recently, it was also hypothesized that dynamic (spatiotemporal) representations play an important role in both neuroscience and AI. Building on these ideas, we introduce Artificial Kuramoto Oscillatory Neurons (AKOrN) as a dynamical alternative to threshold units, which can be combined with arbitrary connectivity designs such as fully connected, convolutional, or attentive mechanisms. Our generalized Kuramoto updates bind neurons together through their synchronization dynamics. We show that this idea provides performance improvements across a wide spectrum of tasks such as unsupervised object discovery, adversarial robustness, calibrated uncertainty quantification, and reasoning. We believe that these empirical results show the importance of rethinking our assumptions at the most basic neuronal level of neural representation, and in particular show the importance of dynamical representations.
Entanglement-verified time distribution in a metropolitan network
The precise synchronization of distant clocks is a fundamental requirement for a wide range of applications. Here, we experimentally demonstrate a novel approach of quantum clock synchronization utilizing entangled and correlated photon pairs generated by a quantum dot at telecom wavelength. By distributing these entangled photons through a metropolitan fiber network in the Stockholm area and measuring the remote correlations, we achieve a synchronization accuracy of tens of picoseconds by leveraging the tight time correlation between the entangled photons. We show that our synchronization scheme is secure against spoofing attacks by performing a remote quantum state tomography to verify the origin of the entangled photons. We measured a distributed maximum entanglement fidelity of 0.817 pm 0.040 to the |Phi^+rangle Bell state and a concurrence of 0.660 pm 0.086. These results highlight the potential of quantum dot-generated entangled pairs as a shared resource for secure time synchronization and quantum key distribution in real-world quantum networks.
Audio-Synchronized Visual Animation
Current visual generation methods can produce high quality videos guided by texts. However, effectively controlling object dynamics remains a challenge. This work explores audio as a cue to generate temporally synchronized image animations. We introduce Audio Synchronized Visual Animation (ASVA), a task animating a static image to demonstrate motion dynamics, temporally guided by audio clips across multiple classes. To this end, we present AVSync15, a dataset curated from VGGSound with videos featuring synchronized audio visual events across 15 categories. We also present a diffusion model, AVSyncD, capable of generating dynamic animations guided by audios. Extensive evaluations validate AVSync15 as a reliable benchmark for synchronized generation and demonstrate our models superior performance. We further explore AVSyncDs potential in a variety of audio synchronized generation tasks, from generating full videos without a base image to controlling object motions with various sounds. We hope our established benchmark can open new avenues for controllable visual generation. More videos on project webpage https://lzhangbj.github.io/projects/asva/asva.html.
Precise spiking motifs in neurobiological and neuromorphic data
Why do neurons communicate through spikes? By definition, spikes are all-or-none neural events which occur at continuous times. In other words, spikes are on one side binary, existing or not without further details, and on the other can occur at any asynchronous time, without the need for a centralized clock. This stands in stark contrast to the analog representation of values and the discretized timing classically used in digital processing and at the base of modern-day neural networks. As neural systems almost systematically use this so-called event-based representation in the living world, a better understanding of this phenomenon remains a fundamental challenge in neurobiology in order to better interpret the profusion of recorded data. With the growing need for intelligent embedded systems, it also emerges as a new computing paradigm to enable the efficient operation of a new class of sensors and event-based computers, called neuromorphic, which could enable significant gains in computation time and energy consumption -- a major societal issue in the era of the digital economy and global warming. In this review paper, we provide evidence from biology, theory and engineering that the precise timing of spikes plays a crucial role in our understanding of the efficiency of neural networks.
Taming Multimodal Joint Training for High-Quality Video-to-Audio Synthesis
We propose to synthesize high-quality and synchronized audio, given video and optional text conditions, using a novel multimodal joint training framework MMAudio. In contrast to single-modality training conditioned on (limited) video data only, MMAudio is jointly trained with larger-scale, readily available text-audio data to learn to generate semantically aligned high-quality audio samples. Additionally, we improve audio-visual synchrony with a conditional synchronization module that aligns video conditions with audio latents at the frame level. Trained with a flow matching objective, MMAudio achieves new video-to-audio state-of-the-art among public models in terms of audio quality, semantic alignment, and audio-visual synchronization, while having a low inference time (1.23s to generate an 8s clip) and just 157M parameters. MMAudio also achieves surprisingly competitive performance in text-to-audio generation, showing that joint training does not hinder single-modality performance. Code and demo are available at: https://hkchengrex.github.io/MMAudio
Single replica spin-glass phase detection using field variation and machine learning
The Sherrington-Kirkpatrick spin-glass model used the replica symmetry method to find the phase transition of the system. In 1979-1980, Parisi proposed a solution based on replica symmetry breaking (RSB), which allowed him to identify the underlying phases of complex systems such as spin-glasses. Regardless of the method used for detection, the intrinsic phase of a system exists whether or not replicas are considered. We introduce a single replica method of spin-glass phase detection using the field's variation experienced by each spin in a system configuration. This method focuses on a single replica with quenched random couplings. Each spin inevitably observes a different field from the others. Our results show that the mean and variance of fields named "Spontaneous Configurational Field" experienced by spins are suitable indicators to explore different ferromagnetic, paramagnetic, and mixed phases. To classify different phases of the system with defined indicators we have developed an algorithm based on machine learning to analyze the desired samples.
Progress measures for grokking via mechanistic interpretability
Neural networks often exhibit emergent behavior, where qualitatively new capabilities arise from scaling up the amount of parameters, training data, or training steps. One approach to understanding emergence is to find continuous progress measures that underlie the seemingly discontinuous qualitative changes. We argue that progress measures can be found via mechanistic interpretability: reverse-engineering learned behaviors into their individual components. As a case study, we investigate the recently-discovered phenomenon of ``grokking'' exhibited by small transformers trained on modular addition tasks. We fully reverse engineer the algorithm learned by these networks, which uses discrete Fourier transforms and trigonometric identities to convert addition to rotation about a circle. We confirm the algorithm by analyzing the activations and weights and by performing ablations in Fourier space. Based on this understanding, we define progress measures that allow us to study the dynamics of training and split training into three continuous phases: memorization, circuit formation, and cleanup. Our results show that grokking, rather than being a sudden shift, arises from the gradual amplification of structured mechanisms encoded in the weights, followed by the later removal of memorizing components.
Artificial Intelligence for EEG Prediction: Applied Chaos Theory
In the present research, we delve into the intricate realm of electroencephalogram (EEG) data analysis, focusing on sequence-to-sequence prediction of data across 32 EEG channels. The study harmoniously fuses the principles of applied chaos theory and dynamical systems theory to engender a novel feature set, enriching the representational capacity of our deep learning model. The endeavour's cornerstone is a transformer-based sequence-to-sequence architecture, calibrated meticulously to capture the non-linear and high-dimensional temporal dependencies inherent in EEG sequences. Through judicious architecture design, parameter initialisation strategies, and optimisation techniques, we have navigated the intricate balance between computational expediency and predictive performance. Our model stands as a vanguard in EEG data sequence prediction, demonstrating remarkable generalisability and robustness. The findings not only extend our understanding of EEG data dynamics but also unveil a potent analytical framework that can be adapted to diverse temporal sequence prediction tasks in neuroscience and beyond.
Paris: A Decentralized Trained Open-Weight Diffusion Model
We present Paris, the first publicly released diffusion model pre-trained entirely through decentralized computation. Paris demonstrates that high-quality text-to-image generation can be achieved without centrally coordinated infrastructure. Paris is open for research and commercial use. Paris required implementing our Distributed Diffusion Training framework from scratch. The model consists of 8 expert diffusion models (129M-605M parameters each) trained in complete isolation with no gradient, parameter, or intermediate activation synchronization. Rather than requiring synchronized gradient updates across thousands of GPUs, we partition data into semantically coherent clusters where each expert independently optimizes its subset while collectively approximating the full distribution. A lightweight transformer router dynamically selects appropriate experts at inference, achieving generation quality comparable to centrally coordinated baselines. Eliminating synchronization enables training on heterogeneous hardware without specialized interconnects. Empirical validation confirms that Paris's decentralized training maintains generation quality while removing the dedicated GPU cluster requirement for large-scale diffusion models. Paris achieves this using 14times less training data and 16times less compute than the prior decentralized baseline.
Audio-Visual Speech Representation Expert for Enhanced Talking Face Video Generation and Evaluation
In the task of talking face generation, the objective is to generate a face video with lips synchronized to the corresponding audio while preserving visual details and identity information. Current methods face the challenge of learning accurate lip synchronization while avoiding detrimental effects on visual quality, as well as robustly evaluating such synchronization. To tackle these problems, we propose utilizing an audio-visual speech representation expert (AV-HuBERT) for calculating lip synchronization loss during training. Moreover, leveraging AV-HuBERT's features, we introduce three novel lip synchronization evaluation metrics, aiming to provide a comprehensive assessment of lip synchronization performance. Experimental results, along with a detailed ablation study, demonstrate the effectiveness of our approach and the utility of the proposed evaluation metrics.
A brain basis of dynamical intelligence for AI and computational neuroscience
The deep neural nets of modern artificial intelligence (AI) have not achieved defining features of biological intelligence, including abstraction, causal learning, and energy-efficiency. While scaling to larger models has delivered performance improvements for current applications, more brain-like capacities may demand new theories, models, and methods for designing artificial learning systems. Here, we argue that this opportunity to reassess insights from the brain should stimulate cooperation between AI research and theory-driven computational neuroscience (CN). To motivate a brain basis of neural computation, we present a dynamical view of intelligence from which we elaborate concepts of sparsity in network structure, temporal dynamics, and interactive learning. In particular, we suggest that temporal dynamics, as expressed through neural synchrony, nested oscillations, and flexible sequences, provide a rich computational layer for reading and updating hierarchical models distributed in long-term memory networks. Moreover, embracing agent-centered paradigms in AI and CN will accelerate our understanding of the complex dynamics and behaviors that build useful world models. A convergence of AI/CN theories and objectives will reveal dynamical principles of intelligence for brains and engineered learning systems. This article was inspired by our symposium on dynamical neuroscience and machine learning at the 6th Annual US/NIH BRAIN Initiative Investigators Meeting.
EgoSonics: Generating Synchronized Audio for Silent Egocentric Videos
We introduce EgoSonics, a method to generate semantically meaningful and synchronized audio tracks conditioned on silent egocentric videos. Generating audio for silent egocentric videos could open new applications in virtual reality, assistive technologies, or for augmenting existing datasets. Existing work has been limited to domains like speech, music, or impact sounds and cannot easily capture the broad range of audio frequencies found in egocentric videos. EgoSonics addresses these limitations by building on the strength of latent diffusion models for conditioned audio synthesis. We first encode and process audio and video data into a form that is suitable for generation. The encoded data is used to train our model to generate audio tracks that capture the semantics of the input video. Our proposed SyncroNet builds on top of ControlNet to provide control signals that enables temporal synchronization to the synthesized audio. Extensive evaluations show that our model outperforms existing work in audio quality, and in our newly proposed synchronization evaluation method. Furthermore, we demonstrate downstream applications of our model in improving video summarization.
Mamba Integrated with Physics Principles Masters Long-term Chaotic System Forecasting
Long-term forecasting of chaotic systems from short-term observations remains a fundamental and underexplored challenge due to the intrinsic sensitivity to initial conditions and the complex geometry of strange attractors. Existing approaches often rely on long-term training data or focus on short-term sequence correlations, struggling to maintain predictive stability and dynamical coherence over extended horizons. We propose PhyxMamba, a novel framework that integrates a Mamba-based state-space model with physics-informed principles to capture the underlying dynamics of chaotic systems. By reconstructing the attractor manifold from brief observations using time-delay embeddings, PhyxMamba extracts global dynamical features essential for accurate forecasting. Our generative training scheme enables Mamba to replicate the physical process, augmented by multi-token prediction and attractor geometry regularization for physical constraints, enhancing prediction accuracy and preserving key statistical invariants. Extensive evaluations on diverse simulated and real-world chaotic systems demonstrate that PhyxMamba delivers superior long-term forecasting and faithfully captures essential dynamical invariants from short-term data. This framework opens new avenues for reliably predicting chaotic systems under observation-scarce conditions, with broad implications across climate science, neuroscience, epidemiology, and beyond. Our code is open-source at https://github.com/tsinghua-fib-lab/PhyxMamba.
DeMo: Decoupled Momentum Optimization
Training large neural networks typically requires sharing gradients between accelerators through specialized high-speed interconnects. Drawing from the signal processing principles of frequency decomposition and energy compaction, we demonstrate that synchronizing full optimizer states and model parameters during training is unnecessary. By decoupling momentum updates and allowing controlled divergence in optimizer states across accelerators, we achieve improved convergence compared to state-of-the-art optimizers. We introduce {De}coupled {Mo}mentum (DeMo), a fused optimizer and data parallel algorithm that reduces inter-accelerator communication requirements by several orders of magnitude. This enables training of large neural networks even with limited network bandwidth and heterogeneous hardware. Our method is topology-agnostic and architecture-independent and supports scalable clock-synchronous distributed training with negligible compute and memory overhead. Empirical results show that models trained with DeMo match or exceed the performance of equivalent models trained with AdamW, while eliminating the need for high-speed interconnects when pre-training large scale foundation models. An open source reference PyTorch implementation is published on GitHub at https://github.com/bloc97/DeMo
Continuous Thought Machines
Biological brains demonstrate complex neural activity, where the timing and interplay between neurons is critical to how brains process information. Most deep learning architectures simplify neural activity by abstracting away temporal dynamics. In this paper we challenge that paradigm. By incorporating neuron-level processing and synchronization, we can effectively reintroduce neural timing as a foundational element. We present the Continuous Thought Machine (CTM), a model designed to leverage neural dynamics as its core representation. The CTM has two core innovations: (1) neuron-level temporal processing, where each neuron uses unique weight parameters to process a history of incoming signals; and (2) neural synchronization employed as a latent representation. The CTM aims to strike a balance between oversimplified neuron abstractions that improve computational efficiency, and biological realism. It operates at a level of abstraction that effectively captures essential temporal dynamics while remaining computationally tractable for deep learning. We demonstrate the CTM's strong performance and versatility across a range of challenging tasks, including ImageNet-1K classification, solving 2D mazes, sorting, parity computation, question-answering, and RL tasks. Beyond displaying rich internal representations and offering a natural avenue for interpretation owing to its internal process, the CTM is able to perform tasks that require complex sequential reasoning. The CTM can also leverage adaptive compute, where it can stop earlier for simpler tasks, or keep computing when faced with more challenging instances. The goal of this work is to share the CTM and its associated innovations, rather than pushing for new state-of-the-art results. To that end, we believe the CTM represents a significant step toward developing more biologically plausible and powerful artificial intelligence systems.