Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeRepresenting Online Handwriting for Recognition in Large Vision-Language Models
The adoption of tablets with touchscreens and styluses is increasing, and a key feature is converting handwriting to text, enabling search, indexing, and AI assistance. Meanwhile, vision-language models (VLMs) are now the go-to solution for image understanding, thanks to both their state-of-the-art performance across a variety of tasks and the simplicity of a unified approach to training, fine-tuning, and inference. While VLMs obtain high performance on image-based tasks, they perform poorly on handwriting recognition when applied naively, i.e., by rendering handwriting as an image and performing optical character recognition (OCR). In this paper, we study online handwriting recognition with VLMs, going beyond naive OCR. We propose a novel tokenized representation of digital ink (online handwriting) that includes both a time-ordered sequence of strokes as text, and as image. We show that this representation yields results comparable to or better than state-of-the-art online handwriting recognizers. Wide applicability is shown through results with two different VLM families, on multiple public datasets. Our approach can be applied to off-the-shelf VLMs, does not require any changes in their architecture, and can be used in both fine-tuning and parameter-efficient tuning. We perform a detailed ablation study to identify the key elements of the proposed representation.
CLIPDraw: Exploring Text-to-Drawing Synthesis through Language-Image Encoders
This work presents CLIPDraw, an algorithm that synthesizes novel drawings based on natural language input. CLIPDraw does not require any training; rather a pre-trained CLIP language-image encoder is used as a metric for maximizing similarity between the given description and a generated drawing. Crucially, CLIPDraw operates over vector strokes rather than pixel images, a constraint that biases drawings towards simpler human-recognizable shapes. Results compare between CLIPDraw and other synthesis-through-optimization methods, as well as highlight various interesting behaviors of CLIPDraw, such as satisfying ambiguous text in multiple ways, reliably producing drawings in diverse artistic styles, and scaling from simple to complex visual representations as stroke count is increased. Code for experimenting with the method is available at: https://colab.research.google.com/github/kvfrans/clipdraw/blob/main/clipdraw.ipynb
AnyText: Multilingual Visual Text Generation And Editing
Diffusion model based Text-to-Image has achieved impressive achievements recently. Although current technology for synthesizing images is highly advanced and capable of generating images with high fidelity, it is still possible to give the show away when focusing on the text area in the generated image. To address this issue, we introduce AnyText, a diffusion-based multilingual visual text generation and editing model, that focuses on rendering accurate and coherent text in the image. AnyText comprises a diffusion pipeline with two primary elements: an auxiliary latent module and a text embedding module. The former uses inputs like text glyph, position, and masked image to generate latent features for text generation or editing. The latter employs an OCR model for encoding stroke data as embeddings, which blend with image caption embeddings from the tokenizer to generate texts that seamlessly integrate with the background. We employed text-control diffusion loss and text perceptual loss for training to further enhance writing accuracy. AnyText can write characters in multiple languages, to the best of our knowledge, this is the first work to address multilingual visual text generation. It is worth mentioning that AnyText can be plugged into existing diffusion models from the community for rendering or editing text accurately. After conducting extensive evaluation experiments, our method has outperformed all other approaches by a significant margin. Additionally, we contribute the first large-scale multilingual text images dataset, AnyWord-3M, containing 3 million image-text pairs with OCR annotations in multiple languages. Based on AnyWord-3M dataset, we propose AnyText-benchmark for the evaluation of visual text generation accuracy and quality. Our project will be open-sourced on https://github.com/tyxsspa/AnyText to improve and promote the development of text generation technology.
DiffSketcher: Text Guided Vector Sketch Synthesis through Latent Diffusion Models
Even though trained mainly on images, we discover that pretrained diffusion models show impressive power in guiding sketch synthesis. In this paper, we present DiffSketcher, an innovative algorithm that creates vectorized free-hand sketches using natural language input. DiffSketcher is developed based on a pre-trained text-to-image diffusion model. It performs the task by directly optimizing a set of Bezier curves with an extended version of the score distillation sampling (SDS) loss, which allows us to use a raster-level diffusion model as a prior for optimizing a parametric vectorized sketch generator. Furthermore, we explore attention maps embedded in the diffusion model for effective stroke initialization to speed up the generation process. The generated sketches demonstrate multiple levels of abstraction while maintaining recognizability, underlying structure, and essential visual details of the subject drawn. Our experiments show that DiffSketcher achieves greater quality than prior work.
WAS: Dataset and Methods for Artistic Text Segmentation
Accurate text segmentation results are crucial for text-related generative tasks, such as text image generation, text editing, text removal, and text style transfer. Recently, some scene text segmentation methods have made significant progress in segmenting regular text. However, these methods perform poorly in scenarios containing artistic text. Therefore, this paper focuses on the more challenging task of artistic text segmentation and constructs a real artistic text segmentation dataset. One challenge of the task is that the local stroke shapes of artistic text are changeable with diversity and complexity. We propose a decoder with the layer-wise momentum query to prevent the model from ignoring stroke regions of special shapes. Another challenge is the complexity of the global topological structure. We further design a skeleton-assisted head to guide the model to focus on the global structure. Additionally, to enhance the generalization performance of the text segmentation model, we propose a strategy for training data synthesis, based on the large multi-modal model and the diffusion model. Experimental results show that our proposed method and synthetic dataset can significantly enhance the performance of artistic text segmentation and achieve state-of-the-art results on other public datasets.
Separate Scene Text Detector for Unseen Scripts is Not All You Need
Text detection in the wild is a well-known problem that becomes more challenging while handling multiple scripts. In the last decade, some scripts have gained the attention of the research community and achieved good detection performance. However, many scripts are low-resourced for training deep learning-based scene text detectors. It raises a critical question: Is there a need for separate training for new scripts? It is an unexplored query in the field of scene text detection. This paper acknowledges this problem and proposes a solution to detect scripts not present during training. In this work, the analysis has been performed to understand cross-script text detection, i.e., trained on one and tested on another. We found that the identical nature of text annotation (word-level/line-level) is crucial for better cross-script text detection. The different nature of text annotation between scripts degrades cross-script text detection performance. Additionally, for unseen script detection, the proposed solution utilizes vector embedding to map the stroke information of text corresponding to the script category. The proposed method is validated with a well-known multi-lingual scene text dataset under a zero-shot setting. The results show the potential of the proposed method for unseen script detection in natural images.
Arbitrary Style Guidance for Enhanced Diffusion-Based Text-to-Image Generation
Diffusion-based text-to-image generation models like GLIDE and DALLE-2 have gained wide success recently for their superior performance in turning complex text inputs into images of high quality and wide diversity. In particular, they are proven to be very powerful in creating graphic arts of various formats and styles. Although current models supported specifying style formats like oil painting or pencil drawing, fine-grained style features like color distributions and brush strokes are hard to specify as they are randomly picked from a conditional distribution based on the given text input. Here we propose a novel style guidance method to support generating images using arbitrary style guided by a reference image. The generation method does not require a separate style transfer model to generate desired styles while maintaining image quality in generated content as controlled by the text input. Additionally, the guidance method can be applied without a style reference, denoted as self style guidance, to generate images of more diverse styles. Comprehensive experiments prove that the proposed method remains robust and effective in a wide range of conditions, including diverse graphic art forms, image content types and diffusion models.
Hyperstroke: A Novel High-quality Stroke Representation for Assistive Artistic Drawing
Assistive drawing aims to facilitate the creative process by providing intelligent guidance to artists. Existing solutions often fail to effectively model intricate stroke details or adequately address the temporal aspects of drawing. We introduce hyperstroke, a novel stroke representation designed to capture precise fine stroke details, including RGB appearance and alpha-channel opacity. Using a Vector Quantization approach, hyperstroke learns compact tokenized representations of strokes from real-life drawing videos of artistic drawing. With hyperstroke, we propose to model assistive drawing via a transformer-based architecture, to enable intuitive and user-friendly drawing applications, which are experimented in our exploratory evaluation.
Segment and Track Anything
This report presents a framework called Segment And Track Anything (SAMTrack) that allows users to precisely and effectively segment and track any object in a video. Additionally, SAM-Track employs multimodal interaction methods that enable users to select multiple objects in videos for tracking, corresponding to their specific requirements. These interaction methods comprise click, stroke, and text, each possessing unique benefits and capable of being employed in combination. As a result, SAM-Track can be used across an array of fields, ranging from drone technology, autonomous driving, medical imaging, augmented reality, to biological analysis. SAM-Track amalgamates Segment Anything Model (SAM), an interactive key-frame segmentation model, with our proposed AOT-based tracking model (DeAOT), which secured 1st place in four tracks of the VOT 2022 challenge, to facilitate object tracking in video. In addition, SAM-Track incorporates Grounding-DINO, which enables the framework to support text-based interaction. We have demonstrated the remarkable capabilities of SAM-Track on DAVIS-2016 Val (92.0%), DAVIS-2017 Test (79.2%)and its practicability in diverse applications. The project page is available at: https://github.com/z-x-yang/Segment-and-Track-Anything.
TextCtrl: Diffusion-based Scene Text Editing with Prior Guidance Control
Centred on content modification and style preservation, Scene Text Editing (STE) remains a challenging task despite considerable progress in text-to-image synthesis and text-driven image manipulation recently. GAN-based STE methods generally encounter a common issue of model generalization, while Diffusion-based STE methods suffer from undesired style deviations. To address these problems, we propose TextCtrl, a diffusion-based method that edits text with prior guidance control. Our method consists of two key components: (i) By constructing fine-grained text style disentanglement and robust text glyph structure representation, TextCtrl explicitly incorporates Style-Structure guidance into model design and network training, significantly improving text style consistency and rendering accuracy. (ii) To further leverage the style prior, a Glyph-adaptive Mutual Self-attention mechanism is proposed which deconstructs the implicit fine-grained features of the source image to enhance style consistency and vision quality during inference. Furthermore, to fill the vacancy of the real-world STE evaluation benchmark, we create the first real-world image-pair dataset termed ScenePair for fair comparisons. Experiments demonstrate the effectiveness of TextCtrl compared with previous methods concerning both style fidelity and text accuracy.
SketchXAI: A First Look at Explainability for Human Sketches
This paper, for the very first time, introduces human sketches to the landscape of XAI (Explainable Artificial Intelligence). We argue that sketch as a ``human-centred'' data form, represents a natural interface to study explainability. We focus on cultivating sketch-specific explainability designs. This starts by identifying strokes as a unique building block that offers a degree of flexibility in object construction and manipulation impossible in photos. Following this, we design a simple explainability-friendly sketch encoder that accommodates the intrinsic properties of strokes: shape, location, and order. We then move on to define the first ever XAI task for sketch, that of stroke location inversion SLI. Just as we have heat maps for photos, and correlation matrices for text, SLI offers an explainability angle to sketch in terms of asking a network how well it can recover stroke locations of an unseen sketch. We offer qualitative results for readers to interpret as snapshots of the SLI process in the paper, and as GIFs on the project page. A minor but interesting note is that thanks to its sketch-specific design, our sketch encoder also yields the best sketch recognition accuracy to date while having the smallest number of parameters. The code is available at https://sketchxai.github.io.
Improving Diffusion Models for Scene Text Editing with Dual Encoders
Scene text editing is a challenging task that involves modifying or inserting specified texts in an image while maintaining its natural and realistic appearance. Most previous approaches to this task rely on style-transfer models that crop out text regions and feed them into image transfer models, such as GANs. However, these methods are limited in their ability to change text style and are unable to insert texts into images. Recent advances in diffusion models have shown promise in overcoming these limitations with text-conditional image editing. However, our empirical analysis reveals that state-of-the-art diffusion models struggle with rendering correct text and controlling text style. To address these problems, we propose DIFFSTE to improve pre-trained diffusion models with a dual encoder design, which includes a character encoder for better text legibility and an instruction encoder for better style control. An instruction tuning framework is introduced to train our model to learn the mapping from the text instruction to the corresponding image with either the specified style or the style of the surrounding texts in the background. Such a training method further brings our method the zero-shot generalization ability to the following three scenarios: generating text with unseen font variation, e.g., italic and bold, mixing different fonts to construct a new font, and using more relaxed forms of natural language as the instructions to guide the generation task. We evaluate our approach on five datasets and demonstrate its superior performance in terms of text correctness, image naturalness, and style controllability. Our code is publicly available. https://github.com/UCSB-NLP-Chang/DiffSTE
Expressive Text-to-Image Generation with Rich Text
Plain text has become a prevalent interface for text-to-image synthesis. However, its limited customization options hinder users from accurately describing desired outputs. For example, plain text makes it hard to specify continuous quantities, such as the precise RGB color value or importance of each word. Furthermore, creating detailed text prompts for complex scenes is tedious for humans to write and challenging for text encoders to interpret. To address these challenges, we propose using a rich-text editor supporting formats such as font style, size, color, and footnote. We extract each word's attributes from rich text to enable local style control, explicit token reweighting, precise color rendering, and detailed region synthesis. We achieve these capabilities through a region-based diffusion process. We first obtain each word's region based on attention maps of a diffusion process using plain text. For each region, we enforce its text attributes by creating region-specific detailed prompts and applying region-specific guidance, and maintain its fidelity against plain-text generation through region-based injections. We present various examples of image generation from rich text and demonstrate that our method outperforms strong baselines with quantitative evaluations.
SpaText: Spatio-Textual Representation for Controllable Image Generation
Recent text-to-image diffusion models are able to generate convincing results of unprecedented quality. However, it is nearly impossible to control the shapes of different regions/objects or their layout in a fine-grained fashion. Previous attempts to provide such controls were hindered by their reliance on a fixed set of labels. To this end, we present SpaText - a new method for text-to-image generation using open-vocabulary scene control. In addition to a global text prompt that describes the entire scene, the user provides a segmentation map where each region of interest is annotated by a free-form natural language description. Due to lack of large-scale datasets that have a detailed textual description for each region in the image, we choose to leverage the current large-scale text-to-image datasets and base our approach on a novel CLIP-based spatio-textual representation, and show its effectiveness on two state-of-the-art diffusion models: pixel-based and latent-based. In addition, we show how to extend the classifier-free guidance method in diffusion models to the multi-conditional case and present an alternative accelerated inference algorithm. Finally, we offer several automatic evaluation metrics and use them, in addition to FID scores and a user study, to evaluate our method and show that it achieves state-of-the-art results on image generation with free-form textual scene control.
TextDiffuser: Diffusion Models as Text Painters
Diffusion models have gained increasing attention for their impressive generation abilities but currently struggle with rendering accurate and coherent text. To address this issue, we introduce TextDiffuser, focusing on generating images with visually appealing text that is coherent with backgrounds. TextDiffuser consists of two stages: first, a Transformer model generates the layout of keywords extracted from text prompts, and then diffusion models generate images conditioned on the text prompt and the generated layout. Additionally, we contribute the first large-scale text images dataset with OCR annotations, MARIO-10M, containing 10 million image-text pairs with text recognition, detection, and character-level segmentation annotations. We further collect the MARIO-Eval benchmark to serve as a comprehensive tool for evaluating text rendering quality. Through experiments and user studies, we show that TextDiffuser is flexible and controllable to create high-quality text images using text prompts alone or together with text template images, and conduct text inpainting to reconstruct incomplete images with text. The code, model, and dataset will be available at https://aka.ms/textdiffuser.
Grounded Text-to-Image Synthesis with Attention Refocusing
Driven by scalable diffusion models trained on large-scale paired text-image datasets, text-to-image synthesis methods have shown compelling results. However, these models still fail to precisely follow the text prompt when multiple objects, attributes, and spatial compositions are involved in the prompt. In this paper, we identify the potential reasons in both the cross-attention and self-attention layers of the diffusion model. We propose two novel losses to refocus the attention maps according to a given layout during the sampling process. We perform comprehensive experiments on the DrawBench and HRS benchmarks using layouts synthesized by Large Language Models, showing that our proposed losses can be integrated easily and effectively into existing text-to-image methods and consistently improve their alignment between the generated images and the text prompts.
TextCaps: a Dataset for Image Captioning with Reading Comprehension
Image descriptions can help visually impaired people to quickly understand the image content. While we made significant progress in automatically describing images and optical character recognition, current approaches are unable to include written text in their descriptions, although text is omnipresent in human environments and frequently critical to understand our surroundings. To study how to comprehend text in the context of an image we collect a novel dataset, TextCaps, with 145k captions for 28k images. Our dataset challenges a model to recognize text, relate it to its visual context, and decide what part of the text to copy or paraphrase, requiring spatial, semantic, and visual reasoning between multiple text tokens and visual entities, such as objects. We study baselines and adapt existing approaches to this new task, which we refer to as image captioning with reading comprehension. Our analysis with automatic and human studies shows that our new TextCaps dataset provides many new technical challenges over previous datasets.
EmpLite: A Lightweight Sequence Labeling Model for Emphasis Selection of Short Texts
Word emphasis in textual content aims at conveying the desired intention by changing the size, color, typeface, style (bold, italic, etc.), and other typographical features. The emphasized words are extremely helpful in drawing the readers' attention to specific information that the authors wish to emphasize. However, performing such emphasis using a soft keyboard for social media interactions is time-consuming and has an associated learning curve. In this paper, we propose a novel approach to automate the emphasis word detection on short written texts. To the best of our knowledge, this work presents the first lightweight deep learning approach for smartphone deployment of emphasis selection. Experimental results show that our approach achieves comparable accuracy at a much lower model size than existing models. Our best lightweight model has a memory footprint of 2.82 MB with a matching score of 0.716 on SemEval-2020 public benchmark dataset.
Beyond Color and Lines: Zero-Shot Style-Specific Image Variations with Coordinated Semantics
Traditionally, style has been primarily considered in terms of artistic elements such as colors, brushstrokes, and lighting. However, identical semantic subjects, like people, boats, and houses, can vary significantly across different artistic traditions, indicating that style also encompasses the underlying semantics. Therefore, in this study, we propose a zero-shot scheme for image variation with coordinated semantics. Specifically, our scheme transforms the image-to-image problem into an image-to-text-to-image problem. The image-to-text operation employs vision-language models e.g., BLIP) to generate text describing the content of the input image, including the objects and their positions. Subsequently, the input style keyword is elaborated into a detailed description of this style and then merged with the content text using the reasoning capabilities of ChatGPT. Finally, the text-to-image operation utilizes a Diffusion model to generate images based on the text prompt. To enable the Diffusion model to accommodate more styles, we propose a fine-tuning strategy that injects text and style constraints into cross-attention. This ensures that the output image exhibits similar semantics in the desired style. To validate the performance of the proposed scheme, we constructed a benchmark comprising images of various styles and scenes and introduced two novel metrics. Despite its simplicity, our scheme yields highly plausible results in a zero-shot manner, particularly for generating stylized images with high-fidelity semantics.
Text Detection and Recognition in the Wild: A Review
Detection and recognition of text in natural images are two main problems in the field of computer vision that have a wide variety of applications in analysis of sports videos, autonomous driving, industrial automation, to name a few. They face common challenging problems that are factors in how text is represented and affected by several environmental conditions. The current state-of-the-art scene text detection and/or recognition methods have exploited the witnessed advancement in deep learning architectures and reported a superior accuracy on benchmark datasets when tackling multi-resolution and multi-oriented text. However, there are still several remaining challenges affecting text in the wild images that cause existing methods to underperform due to there models are not able to generalize to unseen data and the insufficient labeled data. Thus, unlike previous surveys in this field, the objectives of this survey are as follows: first, offering the reader not only a review on the recent advancement in scene text detection and recognition, but also presenting the results of conducting extensive experiments using a unified evaluation framework that assesses pre-trained models of the selected methods on challenging cases, and applies the same evaluation criteria on these techniques. Second, identifying several existing challenges for detecting or recognizing text in the wild images, namely, in-plane-rotation, multi-oriented and multi-resolution text, perspective distortion, illumination reflection, partial occlusion, complex fonts, and special characters. Finally, the paper also presents insight into the potential research directions in this field to address some of the mentioned challenges that are still encountering scene text detection and recognition techniques.
Glyph-ByT5: A Customized Text Encoder for Accurate Visual Text Rendering
Visual text rendering poses a fundamental challenge for contemporary text-to-image generation models, with the core problem lying in text encoder deficiencies. To achieve accurate text rendering, we identify two crucial requirements for text encoders: character awareness and alignment with glyphs. Our solution involves crafting a series of customized text encoder, Glyph-ByT5, by fine-tuning the character-aware ByT5 encoder using a meticulously curated paired glyph-text dataset. We present an effective method for integrating Glyph-ByT5 with SDXL, resulting in the creation of the Glyph-SDXL model for design image generation. This significantly enhances text rendering accuracy, improving it from less than 20% to nearly 90% on our design image benchmark. Noteworthy is Glyph-SDXL's newfound ability for text paragraph rendering, achieving high spelling accuracy for tens to hundreds of characters with automated multi-line layouts. Finally, through fine-tuning Glyph-SDXL with a small set of high-quality, photorealistic images featuring visual text, we showcase a substantial improvement in scene text rendering capabilities in open-domain real images. These compelling outcomes aim to encourage further exploration in designing customized text encoders for diverse and challenging tasks.
Digital Peter: Dataset, Competition and Handwriting Recognition Methods
This paper presents a new dataset of Peter the Great's manuscripts and describes a segmentation procedure that converts initial images of documents into the lines. The new dataset may be useful for researchers to train handwriting text recognition models as a benchmark for comparing different models. It consists of 9 694 images and text files corresponding to lines in historical documents. The open machine learning competition Digital Peter was held based on the considered dataset. The baseline solution for this competition as well as more advanced methods on handwritten text recognition are described in the article. Full dataset and all code are publicly available.
On Recognizing Texts of Arbitrary Shapes with 2D Self-Attention
Scene text recognition (STR) is the task of recognizing character sequences in natural scenes. While there have been great advances in STR methods, current methods still fail to recognize texts in arbitrary shapes, such as heavily curved or rotated texts, which are abundant in daily life (e.g. restaurant signs, product labels, company logos, etc). This paper introduces a novel architecture to recognizing texts of arbitrary shapes, named Self-Attention Text Recognition Network (SATRN), which is inspired by the Transformer. SATRN utilizes the self-attention mechanism to describe two-dimensional (2D) spatial dependencies of characters in a scene text image. Exploiting the full-graph propagation of self-attention, SATRN can recognize texts with arbitrary arrangements and large inter-character spacing. As a result, SATRN outperforms existing STR models by a large margin of 5.7 pp on average in "irregular text" benchmarks. We provide empirical analyses that illustrate the inner mechanisms and the extent to which the model is applicable (e.g. rotated and multi-line text). We will open-source the code.
Kinetic Typography Diffusion Model
This paper introduces a method for realistic kinetic typography that generates user-preferred animatable 'text content'. We draw on recent advances in guided video diffusion models to achieve visually-pleasing text appearances. To do this, we first construct a kinetic typography dataset, comprising about 600K videos. Our dataset is made from a variety of combinations in 584 templates designed by professional motion graphics designers and involves changing each letter's position, glyph, and size (i.e., flying, glitches, chromatic aberration, reflecting effects, etc.). Next, we propose a video diffusion model for kinetic typography. For this, there are three requirements: aesthetic appearances, motion effects, and readable letters. This paper identifies the requirements. For this, we present static and dynamic captions used as spatial and temporal guidance of a video diffusion model, respectively. The static caption describes the overall appearance of the video, such as colors, texture and glyph which represent a shape of each letter. The dynamic caption accounts for the movements of letters and backgrounds. We add one more guidance with zero convolution to determine which text content should be visible in the video. We apply the zero convolution to the text content, and impose it on the diffusion model. Lastly, our glyph loss, only minimizing a difference between the predicted word and its ground-truth, is proposed to make the prediction letters readable. Experiments show that our model generates kinetic typography videos with legible and artistic letter motions based on text prompts.
All you need is a second look: Towards Tighter Arbitrary shape text detection
Deep learning-based scene text detection methods have progressed substantially over the past years. However, there remain several problems to be solved. Generally, long curve text instances tend to be fragmented because of the limited receptive field size of CNN. Besides, simple representations using rectangle or quadrangle bounding boxes fall short when dealing with more challenging arbitrary-shaped texts. In addition, the scale of text instances varies greatly which leads to the difficulty of accurate prediction through a single segmentation network. To address these problems, we innovatively propose a two-stage segmentation based arbitrary text detector named NASK (Need A Second looK). Specifically, NASK consists of a Text Instance Segmentation network namely TIS (\(1^{st}\) stage), a Text RoI Pooling module and a Fiducial pOint eXpression module termed as FOX (\(2^{nd}\) stage). Firstly, TIS conducts instance segmentation to obtain rectangle text proposals with a proposed Group Spatial and Channel Attention module (GSCA) to augment the feature expression. Then, Text RoI Pooling transforms these rectangles to the fixed size. Finally, FOX is introduced to reconstruct text instances with a more tighter representation using the predicted geometrical attributes including text center line, text line orientation, character scale and character orientation. Experimental results on two public benchmarks including Total-Text and SCUT-CTW1500 have demonstrated that the proposed NASK achieves state-of-the-art results.
Dynamic Typography: Bringing Words to Life
Text animation serves as an expressive medium, transforming static communication into dynamic experiences by infusing words with motion to evoke emotions, emphasize meanings, and construct compelling narratives. Crafting animations that are semantically aware poses significant challenges, demanding expertise in graphic design and animation. We present an automated text animation scheme, termed "Dynamic Typography", which combines two challenging tasks. It deforms letters to convey semantic meaning and infuses them with vibrant movements based on user prompts. Our technique harnesses vector graphics representations and an end-to-end optimization-based framework. This framework employs neural displacement fields to convert letters into base shapes and applies per-frame motion, encouraging coherence with the intended textual concept. Shape preservation techniques and perceptual loss regularization are employed to maintain legibility and structural integrity throughout the animation process. We demonstrate the generalizability of our approach across various text-to-video models and highlight the superiority of our end-to-end methodology over baseline methods, which might comprise separate tasks. Through quantitative and qualitative evaluations, we demonstrate the effectiveness of our framework in generating coherent text animations that faithfully interpret user prompts while maintaining readability. Our code is available at: https://animate-your-word.github.io/demo/.
Investigating Prompt Engineering in Diffusion Models
With the spread of the use of Text2Img diffusion models such as DALL-E 2, Imagen, Mid Journey and Stable Diffusion, one challenge that artists face is selecting the right prompts to achieve the desired artistic output. We present techniques for measuring the effect that specific words and phrases in prompts have, and (in the Appendix) present guidance on the selection of prompts to produce desired effects.
Breaking Barriers to Creative Expression: Co-Designing and Implementing an Accessible Text-to-Image Interface
Text-to-image generation models have grown in popularity due to their ability to produce high-quality images from a text prompt. One use for this technology is to enable the creation of more accessible art creation software. In this paper, we document the development of an alternative user interface that reduces the typing effort needed to enter image prompts by providing suggestions from a large language model, developed through iterative design and testing within the project team. The results of this testing demonstrate how generative text models can support the accessibility of text-to-image models, enabling users with a range of abilities to create visual art.
StyleCLIPDraw: Coupling Content and Style in Text-to-Drawing Translation
Generating images that fit a given text description using machine learning has improved greatly with the release of technologies such as the CLIP image-text encoder model; however, current methods lack artistic control of the style of image to be generated. We present an approach for generating styled drawings for a given text description where a user can specify a desired drawing style using a sample image. Inspired by a theory in art that style and content are generally inseparable during the creative process, we propose a coupled approach, known here as StyleCLIPDraw, whereby the drawing is generated by optimizing for style and content simultaneously throughout the process as opposed to applying style transfer after creating content in a sequence. Based on human evaluation, the styles of images generated by StyleCLIPDraw are strongly preferred to those by the sequential approach. Although the quality of content generation degrades for certain styles, overall considering both content and style, StyleCLIPDraw is found far more preferred, indicating the importance of style, look, and feel of machine generated images to people as well as indicating that style is coupled in the drawing process itself. Our code (https://github.com/pschaldenbrand/StyleCLIPDraw), a demonstration (https://replicate.com/pschaldenbrand/style-clip-draw), and style evaluation data (https://www.kaggle.com/pittsburghskeet/drawings-with-style-evaluation-styleclipdraw) are publicly available.
CLIPDrawX: Primitive-based Explanations for Text Guided Sketch Synthesis
With the goal of understanding the visual concepts that CLIP associates with text prompts, we show that the latent space of CLIP can be visualized solely in terms of linear transformations on simple geometric primitives like circles and straight lines. Although existing approaches achieve this by sketch-synthesis-through-optimization, they do so on the space of B\'ezier curves, which exhibit a wastefully large set of structures that they can evolve into, as most of them are non-essential for generating meaningful sketches. We present CLIPDrawX, an algorithm that provides significantly better visualizations for CLIP text embeddings, using only simple primitive shapes like straight lines and circles. This constrains the set of possible outputs to linear transformations on these primitives, thereby exhibiting an inherently simpler mathematical form. The synthesis process of CLIPDrawX can be tracked end-to-end, with each visual concept being explained exclusively in terms of primitives. Implementation will be released upon acceptance. Project Page: https://clipdrawx.github.io/{https://clipdrawx.github.io/}.
Focus, Distinguish, and Prompt: Unleashing CLIP for Efficient and Flexible Scene Text Retrieval
Scene text retrieval aims to find all images containing the query text from an image gallery. Current efforts tend to adopt an Optical Character Recognition (OCR) pipeline, which requires complicated text detection and/or recognition processes, resulting in inefficient and inflexible retrieval. Different from them, in this work we propose to explore the intrinsic potential of Contrastive Language-Image Pre-training (CLIP) for OCR-free scene text retrieval. Through empirical analysis, we observe that the main challenges of CLIP as a text retriever are: 1) limited text perceptual scale, and 2) entangled visual-semantic concepts. To this end, a novel model termed FDP (Focus, Distinguish, and Prompt) is developed. FDP first focuses on scene text via shifting the attention to the text area and probing the hidden text knowledge, and then divides the query text into content word and function word for processing, in which a semantic-aware prompting scheme and a distracted queries assistance module are utilized. Extensive experiments show that FDP significantly enhances the inference speed while achieving better or competitive retrieval accuracy compared to existing methods. Notably, on the IIIT-STR benchmark, FDP surpasses the state-of-the-art model by 4.37% with a 4 times faster speed. Furthermore, additional experiments under phrase-level and attribute-aware scene text retrieval settings validate FDP's particular advantages in handling diverse forms of query text. The source code will be publicly available at https://github.com/Gyann-z/FDP.
ControlStyle: Text-Driven Stylized Image Generation Using Diffusion Priors
Recently, the multimedia community has witnessed the rise of diffusion models trained on large-scale multi-modal data for visual content creation, particularly in the field of text-to-image generation. In this paper, we propose a new task for ``stylizing'' text-to-image models, namely text-driven stylized image generation, that further enhances editability in content creation. Given input text prompt and style image, this task aims to produce stylized images which are both semantically relevant to input text prompt and meanwhile aligned with the style image in style. To achieve this, we present a new diffusion model (ControlStyle) via upgrading a pre-trained text-to-image model with a trainable modulation network enabling more conditions of text prompts and style images. Moreover, diffusion style and content regularizations are simultaneously introduced to facilitate the learning of this modulation network with these diffusion priors, pursuing high-quality stylized text-to-image generation. Extensive experiments demonstrate the effectiveness of our ControlStyle in producing more visually pleasing and artistic results, surpassing a simple combination of text-to-image model and conventional style transfer techniques.
DiffusionPen: Towards Controlling the Style of Handwritten Text Generation
Handwritten Text Generation (HTG) conditioned on text and style is a challenging task due to the variability of inter-user characteristics and the unlimited combinations of characters that form new words unseen during training. Diffusion Models have recently shown promising results in HTG but still remain under-explored. We present DiffusionPen (DiffPen), a 5-shot style handwritten text generation approach based on Latent Diffusion Models. By utilizing a hybrid style extractor that combines metric learning and classification, our approach manages to capture both textual and stylistic characteristics of seen and unseen words and styles, generating realistic handwritten samples. Moreover, we explore several variation strategies of the data with multi-style mixtures and noisy embeddings, enhancing the robustness and diversity of the generated data. Extensive experiments using IAM offline handwriting database show that our method outperforms existing methods qualitatively and quantitatively, and its additional generated data can improve the performance of Handwriting Text Recognition (HTR) systems. The code is available at: https://github.com/koninik/DiffusionPen.
Learning Continuous 3D Words for Text-to-Image Generation
Current controls over diffusion models (e.g., through text or ControlNet) for image generation fall short in recognizing abstract, continuous attributes like illumination direction or non-rigid shape change. In this paper, we present an approach for allowing users of text-to-image models to have fine-grained control of several attributes in an image. We do this by engineering special sets of input tokens that can be transformed in a continuous manner -- we call them Continuous 3D Words. These attributes can, for example, be represented as sliders and applied jointly with text prompts for fine-grained control over image generation. Given only a single mesh and a rendering engine, we show that our approach can be adopted to provide continuous user control over several 3D-aware attributes, including time-of-day illumination, bird wing orientation, dollyzoom effect, and object poses. Our method is capable of conditioning image creation with multiple Continuous 3D Words and text descriptions simultaneously while adding no overhead to the generative process. Project Page: https://ttchengab.github.io/continuous_3d_words
Handwriting Transformers
We propose a novel transformer-based styled handwritten text image generation approach, HWT, that strives to learn both style-content entanglement as well as global and local writing style patterns. The proposed HWT captures the long and short range relationships within the style examples through a self-attention mechanism, thereby encoding both global and local style patterns. Further, the proposed transformer-based HWT comprises an encoder-decoder attention that enables style-content entanglement by gathering the style representation of each query character. To the best of our knowledge, we are the first to introduce a transformer-based generative network for styled handwritten text generation. Our proposed HWT generates realistic styled handwritten text images and significantly outperforms the state-of-the-art demonstrated through extensive qualitative, quantitative and human-based evaluations. The proposed HWT can handle arbitrary length of text and any desired writing style in a few-shot setting. Further, our HWT generalizes well to the challenging scenario where both words and writing style are unseen during training, generating realistic styled handwritten text images.
Zero-shot spatial layout conditioning for text-to-image diffusion models
Large-scale text-to-image diffusion models have significantly improved the state of the art in generative image modelling and allow for an intuitive and powerful user interface to drive the image generation process. Expressing spatial constraints, e.g. to position specific objects in particular locations, is cumbersome using text; and current text-based image generation models are not able to accurately follow such instructions. In this paper we consider image generation from text associated with segments on the image canvas, which combines an intuitive natural language interface with precise spatial control over the generated content. We propose ZestGuide, a zero-shot segmentation guidance approach that can be plugged into pre-trained text-to-image diffusion models, and does not require any additional training. It leverages implicit segmentation maps that can be extracted from cross-attention layers, and uses them to align the generation with input masks. Our experimental results combine high image quality with accurate alignment of generated content with input segmentations, and improve over prior work both quantitatively and qualitatively, including methods that require training on images with corresponding segmentations. Compared to Paint with Words, the previous state-of-the art in image generation with zero-shot segmentation conditioning, we improve by 5 to 10 mIoU points on the COCO dataset with similar FID scores.
SceneTextGen: Layout-Agnostic Scene Text Image Synthesis with Diffusion Models
While diffusion models have significantly advanced the quality of image generation, their capability to accurately and coherently render text within these images remains a substantial challenge. Conventional diffusion-based methods for scene text generation are typically limited by their reliance on an intermediate layout output. This dependency often results in a constrained diversity of text styles and fonts, an inherent limitation stemming from the deterministic nature of the layout generation phase. To address these challenges, this paper introduces SceneTextGen, a novel diffusion-based model specifically designed to circumvent the need for a predefined layout stage. By doing so, SceneTextGen facilitates a more natural and varied representation of text. The novelty of SceneTextGen lies in its integration of three key components: a character-level encoder for capturing detailed typographic properties, coupled with a character-level instance segmentation model and a word-level spotting model to address the issues of unwanted text generation and minor character inaccuracies. We validate the performance of our method by demonstrating improved character recognition rates on generated images across different public visual text datasets in comparison to both standard diffusion based methods and text specific methods.
FontStudio: Shape-Adaptive Diffusion Model for Coherent and Consistent Font Effect Generation
Recently, the application of modern diffusion-based text-to-image generation models for creating artistic fonts, traditionally the domain of professional designers, has garnered significant interest. Diverging from the majority of existing studies that concentrate on generating artistic typography, our research aims to tackle a novel and more demanding challenge: the generation of text effects for multilingual fonts. This task essentially requires generating coherent and consistent visual content within the confines of a font-shaped canvas, as opposed to a traditional rectangular canvas. To address this task, we introduce a novel shape-adaptive diffusion model capable of interpreting the given shape and strategically planning pixel distributions within the irregular canvas. To achieve this, we curate a high-quality shape-adaptive image-text dataset and incorporate the segmentation mask as a visual condition to steer the image generation process within the irregular-canvas. This approach enables the traditionally rectangle canvas-based diffusion model to produce the desired concepts in accordance with the provided geometric shapes. Second, to maintain consistency across multiple letters, we also present a training-free, shape-adaptive effect transfer method for transferring textures from a generated reference letter to others. The key insights are building a font effect noise prior and propagating the font effect information in a concatenated latent space. The efficacy of our FontStudio system is confirmed through user preference studies, which show a marked preference (78% win-rates on aesthetics) for our system even when compared to the latest unrivaled commercial product, Adobe Firefly.
TIP: Text-Driven Image Processing with Semantic and Restoration Instructions
Text-driven diffusion models have become increasingly popular for various image editing tasks, including inpainting, stylization, and object replacement. However, it still remains an open research problem to adopt this language-vision paradigm for more fine-level image processing tasks, such as denoising, super-resolution, deblurring, and compression artifact removal. In this paper, we develop TIP, a Text-driven Image Processing framework that leverages natural language as a user-friendly interface to control the image restoration process. We consider the capacity of text information in two dimensions. First, we use content-related prompts to enhance the semantic alignment, effectively alleviating identity ambiguity in the restoration outcomes. Second, our approach is the first framework that supports fine-level instruction through language-based quantitative specification of the restoration strength, without the need for explicit task-specific design. In addition, we introduce a novel fusion mechanism that augments the existing ControlNet architecture by learning to rescale the generative prior, thereby achieving better restoration fidelity. Our extensive experiments demonstrate the superior restoration performance of TIP compared to the state of the arts, alongside offering the flexibility of text-based control over the restoration effects.
Character-Aware Models Improve Visual Text Rendering
Current image generation models struggle to reliably produce well-formed visual text. In this paper, we investigate a key contributing factor: popular text-to-image models lack character-level input features, making it much harder to predict a word's visual makeup as a series of glyphs. To quantify this effect, we conduct a series of experiments comparing character-aware vs. character-blind text encoders. In the text-only domain, we find that character-aware models provide large gains on a novel spelling task (WikiSpell). Applying our learnings to the visual domain, we train a suite of image generation models, and show that character-aware variants outperform their character-blind counterparts across a range of novel text rendering tasks (our DrawText benchmark). Our models set a much higher state-of-the-art on visual spelling, with 30+ point accuracy gains over competitors on rare words, despite training on far fewer examples.
Generative AI-Based Text Generation Methods Using Pre-Trained GPT-2 Model
This work delved into the realm of automatic text generation, exploring a variety of techniques ranging from traditional deterministic approaches to more modern stochastic methods. Through analysis of greedy search, beam search, top-k sampling, top-p sampling, contrastive searching, and locally typical searching, this work has provided valuable insights into the strengths, weaknesses, and potential applications of each method. Each text-generating method is evaluated using several standard metrics and a comparative study has been made on the performance of the approaches. Finally, some future directions of research in the field of automatic text generation are also identified.
UDiffText: A Unified Framework for High-quality Text Synthesis in Arbitrary Images via Character-aware Diffusion Models
Text-to-Image (T2I) generation methods based on diffusion model have garnered significant attention in the last few years. Although these image synthesis methods produce visually appealing results, they frequently exhibit spelling errors when rendering text within the generated images. Such errors manifest as missing, incorrect or extraneous characters, thereby severely constraining the performance of text image generation based on diffusion models. To address the aforementioned issue, this paper proposes a novel approach for text image generation, utilizing a pre-trained diffusion model (i.e., Stable Diffusion [27]). Our approach involves the design and training of a light-weight character-level text encoder, which replaces the original CLIP encoder and provides more robust text embeddings as conditional guidance. Then, we fine-tune the diffusion model using a large-scale dataset, incorporating local attention control under the supervision of character-level segmentation maps. Finally, by employing an inference stage refinement process, we achieve a notably high sequence accuracy when synthesizing text in arbitrarily given images. Both qualitative and quantitative results demonstrate the superiority of our method to the state of the art. Furthermore, we showcase several potential applications of the proposed UDiffText, including text-centric image synthesis, scene text editing, etc. Code and model will be available at https://github.com/ZYM-PKU/UDiffText .
SketchAgent: Language-Driven Sequential Sketch Generation
Sketching serves as a versatile tool for externalizing ideas, enabling rapid exploration and visual communication that spans various disciplines. While artificial systems have driven substantial advances in content creation and human-computer interaction, capturing the dynamic and abstract nature of human sketching remains challenging. In this work, we introduce SketchAgent, a language-driven, sequential sketch generation method that enables users to create, modify, and refine sketches through dynamic, conversational interactions. Our approach requires no training or fine-tuning. Instead, we leverage the sequential nature and rich prior knowledge of off-the-shelf multimodal large language models (LLMs). We present an intuitive sketching language, introduced to the model through in-context examples, enabling it to "draw" using string-based actions. These are processed into vector graphics and then rendered to create a sketch on a pixel canvas, which can be accessed again for further tasks. By drawing stroke by stroke, our agent captures the evolving, dynamic qualities intrinsic to sketching. We demonstrate that SketchAgent can generate sketches from diverse prompts, engage in dialogue-driven drawing, and collaborate meaningfully with human users.
ARTIST: Improving the Generation of Text-rich Images by Disentanglement
Diffusion models have demonstrated exceptional capabilities in generating a broad spectrum of visual content, yet their proficiency in rendering text is still limited: they often generate inaccurate characters or words that fail to blend well with the underlying image. To address these shortcomings, we introduce a new framework named ARTIST. This framework incorporates a dedicated textual diffusion model to specifically focus on the learning of text structures. Initially, we pretrain this textual model to capture the intricacies of text representation. Subsequently, we finetune a visual diffusion model, enabling it to assimilate textual structure information from the pretrained textual model. This disentangled architecture design and the training strategy significantly enhance the text rendering ability of the diffusion models for text-rich image generation. Additionally, we leverage the capabilities of pretrained large language models to better interpret user intentions, contributing to improved generation quality. Empirical results on the MARIO-Eval benchmark underscore the effectiveness of the proposed method, showing an improvement of up to 15\% in various metrics.
Prompt Expansion for Adaptive Text-to-Image Generation
Text-to-image generation models are powerful but difficult to use. Users craft specific prompts to get better images, though the images can be repetitive. This paper proposes a Prompt Expansion framework that helps users generate high-quality, diverse images with less effort. The Prompt Expansion model takes a text query as input and outputs a set of expanded text prompts that are optimized such that when passed to a text-to-image model, generates a wider variety of appealing images. We conduct a human evaluation study that shows that images generated through Prompt Expansion are more aesthetically pleasing and diverse than those generated by baseline methods. Overall, this paper presents a novel and effective approach to improving the text-to-image generation experience.
Control3D: Towards Controllable Text-to-3D Generation
Recent remarkable advances in large-scale text-to-image diffusion models have inspired a significant breakthrough in text-to-3D generation, pursuing 3D content creation solely from a given text prompt. However, existing text-to-3D techniques lack a crucial ability in the creative process: interactively control and shape the synthetic 3D contents according to users' desired specifications (e.g., sketch). To alleviate this issue, we present the first attempt for text-to-3D generation conditioning on the additional hand-drawn sketch, namely Control3D, which enhances controllability for users. In particular, a 2D conditioned diffusion model (ControlNet) is remoulded to guide the learning of 3D scene parameterized as NeRF, encouraging each view of 3D scene aligned with the given text prompt and hand-drawn sketch. Moreover, we exploit a pre-trained differentiable photo-to-sketch model to directly estimate the sketch of the rendered image over synthetic 3D scene. Such estimated sketch along with each sampled view is further enforced to be geometrically consistent with the given sketch, pursuing better controllable text-to-3D generation. Through extensive experiments, we demonstrate that our proposal can generate accurate and faithful 3D scenes that align closely with the input text prompts and sketches.
Conditional Text-to-Image Generation with Reference Guidance
Text-to-image diffusion models have demonstrated tremendous success in synthesizing visually stunning images given textual instructions. Despite remarkable progress in creating high-fidelity visuals, text-to-image models can still struggle with precisely rendering subjects, such as text spelling. To address this challenge, this paper explores using additional conditions of an image that provides visual guidance of the particular subjects for diffusion models to generate. In addition, this reference condition empowers the model to be conditioned in ways that the vocabularies of the text tokenizer cannot adequately represent, and further extends the model's generalization to novel capabilities such as generating non-English text spellings. We develop several small-scale expert plugins that efficiently endow a Stable Diffusion model with the capability to take different references. Each plugin is trained with auxiliary networks and loss functions customized for applications such as English scene-text generation, multi-lingual scene-text generation, and logo-image generation. Our expert plugins demonstrate superior results than the existing methods on all tasks, each containing only 28.55M trainable parameters.
TextMonkey: An OCR-Free Large Multimodal Model for Understanding Document
We present TextMonkey, a large multimodal model (LMM) tailored for text-centric tasks. Our approach introduces enhancement across several dimensions: By adopting Shifted Window Attention with zero-initialization, we achieve cross-window connectivity at higher input resolutions and stabilize early training; We hypothesize that images may contain redundant tokens, and by using similarity to filter out significant tokens, we can not only streamline the token length but also enhance the model's performance. Moreover, by expanding our model's capabilities to encompass text spotting and grounding, and incorporating positional information into responses, we enhance interpretability. It also learns to perform screenshot tasks through finetuning. Evaluation on 12 benchmarks shows notable improvements: 5.2% in Scene Text-Centric tasks (including STVQA, TextVQA, and OCRVQA), 6.9% in Document-Oriented tasks (such as DocVQA, InfoVQA, ChartVQA, DeepForm, Kleister Charity, and WikiTableQuestions), and 2.8% in Key Information Extraction tasks (comprising FUNSD, SROIE, and POIE). It outperforms in scene text spotting with a 10.9\% increase and sets a new standard on OCRBench, a comprehensive benchmark consisting of 29 OCR-related assessments, with a score of 561, surpassing previous open-sourced large multimodal models for document understanding. Code will be released at https://github.com/Yuliang-Liu/Monkey.
Visual Text Generation in the Wild
Recently, with the rapid advancements of generative models, the field of visual text generation has witnessed significant progress. However, it is still challenging to render high-quality text images in real-world scenarios, as three critical criteria should be satisfied: (1) Fidelity: the generated text images should be photo-realistic and the contents are expected to be the same as specified in the given conditions; (2) Reasonability: the regions and contents of the generated text should cohere with the scene; (3) Utility: the generated text images can facilitate related tasks (e.g., text detection and recognition). Upon investigation, we find that existing methods, either rendering-based or diffusion-based, can hardly meet all these aspects simultaneously, limiting their application range. Therefore, we propose in this paper a visual text generator (termed SceneVTG), which can produce high-quality text images in the wild. Following a two-stage paradigm, SceneVTG leverages a Multimodal Large Language Model to recommend reasonable text regions and contents across multiple scales and levels, which are used by a conditional diffusion model as conditions to generate text images. Extensive experiments demonstrate that the proposed SceneVTG significantly outperforms traditional rendering-based methods and recent diffusion-based methods in terms of fidelity and reasonability. Besides, the generated images provide superior utility for tasks involving text detection and text recognition. Code and datasets are available at AdvancedLiterateMachinery.
VisFocus: Prompt-Guided Vision Encoders for OCR-Free Dense Document Understanding
In recent years, notable advancements have been made in the domain of visual document understanding, with the prevailing architecture comprising a cascade of vision and language models. The text component can either be extracted explicitly with the use of external OCR models in OCR-based approaches, or alternatively, the vision model can be endowed with reading capabilities in OCR-free approaches. Typically, the queries to the model are input exclusively to the language component, necessitating the visual features to encompass the entire document. In this paper, we present VisFocus, an OCR-free method designed to better exploit the vision encoder's capacity by coupling it directly with the language prompt. To do so, we replace the down-sampling layers with layers that receive the input prompt and allow highlighting relevant parts of the document, while disregarding others. We pair the architecture enhancements with a novel pre-training task, using language masking on a snippet of the document text fed to the visual encoder in place of the prompt, to empower the model with focusing capabilities. Consequently, VisFocus learns to allocate its attention to text patches pertinent to the provided prompt. Our experiments demonstrate that this prompt-guided visual encoding approach significantly improves performance, achieving state-of-the-art results on various benchmarks.
SKED: Sketch-guided Text-based 3D Editing
Text-to-image diffusion models are gradually introduced into computer graphics, recently enabling the development of Text-to-3D pipelines in an open domain. However, for interactive editing purposes, local manipulations of content through a simplistic textual interface can be arduous. Incorporating user guided sketches with Text-to-image pipelines offers users more intuitive control. Still, as state-of-the-art Text-to-3D pipelines rely on optimizing Neural Radiance Fields (NeRF) through gradients from arbitrary rendering views, conditioning on sketches is not straightforward. In this paper, we present SKED, a technique for editing 3D shapes represented by NeRFs. Our technique utilizes as few as two guiding sketches from different views to alter an existing neural field. The edited region respects the prompt semantics through a pre-trained diffusion model. To ensure the generated output adheres to the provided sketches, we propose novel loss functions to generate the desired edits while preserving the density and radiance of the base instance. We demonstrate the effectiveness of our proposed method through several qualitative and quantitative experiments. https://sked-paper.github.io/
Refining Text-to-Image Generation: Towards Accurate Training-Free Glyph-Enhanced Image Generation
Over the past few years, Text-to-Image (T2I) generation approaches based on diffusion models have gained significant attention. However, vanilla diffusion models often suffer from spelling inaccuracies in the text displayed within the generated images. The capability to generate visual text is crucial, offering both academic interest and a wide range of practical applications. To produce accurate visual text images, state-of-the-art techniques adopt a glyph-controlled image generation approach, consisting of a text layout generator followed by an image generator that is conditioned on the generated text layout. Nevertheless, our study reveals that these models still face three primary challenges, prompting us to develop a testbed to facilitate future research. We introduce a benchmark, LenCom-Eval, specifically designed for testing models' capability in generating images with Lengthy and Complex visual text. Subsequently, we introduce a training-free framework to enhance the two-stage generation approaches. We examine the effectiveness of our approach on both LenCom-Eval and MARIO-Eval benchmarks and demonstrate notable improvements across a range of evaluation metrics, including CLIPScore, OCR precision, recall, F1 score, accuracy, and edit distance scores. For instance, our proposed framework improves the backbone model, TextDiffuser, by more than 23\% and 13.5\% in terms of OCR word F1 on LenCom-Eval and MARIO-Eval, respectively. Our work makes a unique contribution to the field by focusing on generating images with long and rare text sequences, a niche previously unexplored by existing literature
A-STAR: Test-time Attention Segregation and Retention for Text-to-image Synthesis
While recent developments in text-to-image generative models have led to a suite of high-performing methods capable of producing creative imagery from free-form text, there are several limitations. By analyzing the cross-attention representations of these models, we notice two key issues. First, for text prompts that contain multiple concepts, there is a significant amount of pixel-space overlap (i.e., same spatial regions) among pairs of different concepts. This eventually leads to the model being unable to distinguish between the two concepts and one of them being ignored in the final generation. Next, while these models attempt to capture all such concepts during the beginning of denoising (e.g., first few steps) as evidenced by cross-attention maps, this knowledge is not retained by the end of denoising (e.g., last few steps). Such loss of knowledge eventually leads to inaccurate generation outputs. To address these issues, our key innovations include two test-time attention-based loss functions that substantially improve the performance of pretrained baseline text-to-image diffusion models. First, our attention segregation loss reduces the cross-attention overlap between attention maps of different concepts in the text prompt, thereby reducing the confusion/conflict among various concepts and the eventual capture of all concepts in the generated output. Next, our attention retention loss explicitly forces text-to-image diffusion models to retain cross-attention information for all concepts across all denoising time steps, thereby leading to reduced information loss and the preservation of all concepts in the generated output.
Full Page Handwriting Recognition via Image to Sequence Extraction
We present a Neural Network based Handwritten Text Recognition (HTR) model architecture that can be trained to recognize full pages of handwritten or printed text without image segmentation. Being based on Image to Sequence architecture, it can extract text present in an image and then sequence it correctly without imposing any constraints regarding orientation, layout and size of text and non-text. Further, it can also be trained to generate auxiliary markup related to formatting, layout and content. We use character level vocabulary, thereby enabling language and terminology of any subject. The model achieves a new state-of-art in paragraph level recognition on the IAM dataset. When evaluated on scans of real world handwritten free form test answers - beset with curved and slanted lines, drawings, tables, math, chemistry and other symbols - it performs better than all commercially available HTR cloud APIs. It is deployed in production as part of a commercial web application.
Handwritten Code Recognition for Pen-and-Paper CS Education
Teaching Computer Science (CS) by having students write programs by hand on paper has key pedagogical advantages: It allows focused learning and requires careful thinking compared to the use of Integrated Development Environments (IDEs) with intelligent support tools or "just trying things out". The familiar environment of pens and paper also lessens the cognitive load of students with no prior experience with computers, for whom the mere basic usage of computers can be intimidating. Finally, this teaching approach opens learning opportunities to students with limited access to computers. However, a key obstacle is the current lack of teaching methods and support software for working with and running handwritten programs. Optical character recognition (OCR) of handwritten code is challenging: Minor OCR errors, perhaps due to varied handwriting styles, easily make code not run, and recognizing indentation is crucial for languages like Python but is difficult to do due to inconsistent horizontal spacing in handwriting. Our approach integrates two innovative methods. The first combines OCR with an indentation recognition module and a language model designed for post-OCR error correction without introducing hallucinations. This method, to our knowledge, surpasses all existing systems in handwritten code recognition. It reduces error from 30\% in the state of the art to 5\% with minimal hallucination of logical fixes to student programs. The second method leverages a multimodal language model to recognize handwritten programs in an end-to-end fashion. We hope this contribution can stimulate further pedagogical research and contribute to the goal of making CS education universally accessible. We release a dataset of handwritten programs and code to support future research at https://github.com/mdoumbouya/codeocr
Glyph-ByT5-v2: A Strong Aesthetic Baseline for Accurate Multilingual Visual Text Rendering
Recently, Glyph-ByT5 has achieved highly accurate visual text rendering performance in graphic design images. However, it still focuses solely on English and performs relatively poorly in terms of visual appeal. In this work, we address these two fundamental limitations by presenting Glyph-ByT5-v2 and Glyph-SDXL-v2, which not only support accurate visual text rendering for 10 different languages but also achieve much better aesthetic quality. To achieve this, we make the following contributions: (i) creating a high-quality multilingual glyph-text and graphic design dataset consisting of more than 1 million glyph-text pairs and 10 million graphic design image-text pairs covering nine other languages, (ii) building a multilingual visual paragraph benchmark consisting of 1,000 prompts, with 100 for each language, to assess multilingual visual spelling accuracy, and (iii) leveraging the latest step-aware preference learning approach to enhance the visual aesthetic quality. With the combination of these techniques, we deliver a powerful customized multilingual text encoder, Glyph-ByT5-v2, and a strong aesthetic graphic generation model, Glyph-SDXL-v2, that can support accurate spelling in 10 different languages. We perceive our work as a significant advancement, considering that the latest DALL-E3 and Ideogram 1.0 still struggle with the multilingual visual text rendering task.
Few-Shot Font Generation by Learning Fine-Grained Local Styles
Few-shot font generation (FFG), which aims to generate a new font with a few examples, is gaining increasing attention due to the significant reduction in labor cost. A typical FFG pipeline considers characters in a standard font library as content glyphs and transfers them to a new target font by extracting style information from the reference glyphs. Most existing solutions explicitly disentangle content and style of reference glyphs globally or component-wisely. However, the style of glyphs mainly lies in the local details, i.e. the styles of radicals, components, and strokes together depict the style of a glyph. Therefore, even a single character can contain different styles distributed over spatial locations. In this paper, we propose a new font generation approach by learning 1) the fine-grained local styles from references, and 2) the spatial correspondence between the content and reference glyphs. Therefore, each spatial location in the content glyph can be assigned with the right fine-grained style. To this end, we adopt cross-attention over the representation of the content glyphs as the queries and the representations of the reference glyphs as the keys and values. Instead of explicitly disentangling global or component-wise modeling, the cross-attention mechanism can attend to the right local styles in the reference glyphs and aggregate the reference styles into a fine-grained style representation for the given content glyphs. The experiments show that the proposed method outperforms the state-of-the-art methods in FFG. In particular, the user studies also demonstrate the style consistency of our approach significantly outperforms previous methods.
Sketch and Text Guided Diffusion Model for Colored Point Cloud Generation
Diffusion probabilistic models have achieved remarkable success in text guided image generation. However, generating 3D shapes is still challenging due to the lack of sufficient data containing 3D models along with their descriptions. Moreover, text based descriptions of 3D shapes are inherently ambiguous and lack details. In this paper, we propose a sketch and text guided probabilistic diffusion model for colored point cloud generation that conditions the denoising process jointly with a hand drawn sketch of the object and its textual description. We incrementally diffuse the point coordinates and color values in a joint diffusion process to reach a Gaussian distribution. Colored point cloud generation thus amounts to learning the reverse diffusion process, conditioned by the sketch and text, to iteratively recover the desired shape and color. Specifically, to learn effective sketch-text embedding, our model adaptively aggregates the joint embedding of text prompt and the sketch based on a capsule attention network. Our model uses staged diffusion to generate the shape and then assign colors to different parts conditioned on the appearance prompt while preserving precise shapes from the first stage. This gives our model the flexibility to extend to multiple tasks, such as appearance re-editing and part segmentation. Experimental results demonstrate that our model outperforms recent state-of-the-art in point cloud generation.
Custom-Edit: Text-Guided Image Editing with Customized Diffusion Models
Text-to-image diffusion models can generate diverse, high-fidelity images based on user-provided text prompts. Recent research has extended these models to support text-guided image editing. While text guidance is an intuitive editing interface for users, it often fails to ensure the precise concept conveyed by users. To address this issue, we propose Custom-Edit, in which we (i) customize a diffusion model with a few reference images and then (ii) perform text-guided editing. Our key discovery is that customizing only language-relevant parameters with augmented prompts improves reference similarity significantly while maintaining source similarity. Moreover, we provide our recipe for each customization and editing process. We compare popular customization methods and validate our findings on two editing methods using various datasets.
Let Me Choose: From Verbal Context to Font Selection
In this paper, we aim to learn associations between visual attributes of fonts and the verbal context of the texts they are typically applied to. Compared to related work leveraging the surrounding visual context, we choose to focus only on the input text as this can enable new applications for which the text is the only visual element in the document. We introduce a new dataset, containing examples of different topics in social media posts and ads, labeled through crowd-sourcing. Due to the subjective nature of the task, multiple fonts might be perceived as acceptable for an input text, which makes this problem challenging. To this end, we investigate different end-to-end models to learn label distributions on crowd-sourced data and capture inter-subjectivity across all annotations.
Controllable Text-to-Image Generation with GPT-4
Current text-to-image generation models often struggle to follow textual instructions, especially the ones requiring spatial reasoning. On the other hand, Large Language Models (LLMs), such as GPT-4, have shown remarkable precision in generating code snippets for sketching out text inputs graphically, e.g., via TikZ. In this work, we introduce Control-GPT to guide the diffusion-based text-to-image pipelines with programmatic sketches generated by GPT-4, enhancing their abilities for instruction following. Control-GPT works by querying GPT-4 to write TikZ code, and the generated sketches are used as references alongside the text instructions for diffusion models (e.g., ControlNet) to generate photo-realistic images. One major challenge to training our pipeline is the lack of a dataset containing aligned text, images, and sketches. We address the issue by converting instance masks in existing datasets into polygons to mimic the sketches used at test time. As a result, Control-GPT greatly boosts the controllability of image generation. It establishes a new state-of-art on the spatial arrangement and object positioning generation and enhances users' control of object positions, sizes, etc., nearly doubling the accuracy of prior models. Our work, as a first attempt, shows the potential for employing LLMs to enhance the performance in computer vision tasks.
Zero-shot Image-to-Image Translation
Large-scale text-to-image generative models have shown their remarkable ability to synthesize diverse and high-quality images. However, it is still challenging to directly apply these models for editing real images for two reasons. First, it is hard for users to come up with a perfect text prompt that accurately describes every visual detail in the input image. Second, while existing models can introduce desirable changes in certain regions, they often dramatically alter the input content and introduce unexpected changes in unwanted regions. In this work, we propose pix2pix-zero, an image-to-image translation method that can preserve the content of the original image without manual prompting. We first automatically discover editing directions that reflect desired edits in the text embedding space. To preserve the general content structure after editing, we further propose cross-attention guidance, which aims to retain the cross-attention maps of the input image throughout the diffusion process. In addition, our method does not need additional training for these edits and can directly use the existing pre-trained text-to-image diffusion model. We conduct extensive experiments and show that our method outperforms existing and concurrent works for both real and synthetic image editing.
LivePhoto: Real Image Animation with Text-guided Motion Control
Despite the recent progress in text-to-video generation, existing studies usually overlook the issue that only spatial contents but not temporal motions in synthesized videos are under the control of text. Towards such a challenge, this work presents a practical system, named LivePhoto, which allows users to animate an image of their interest with text descriptions. We first establish a strong baseline that helps a well-learned text-to-image generator (i.e., Stable Diffusion) take an image as a further input. We then equip the improved generator with a motion module for temporal modeling and propose a carefully designed training pipeline to better link texts and motions. In particular, considering the facts that (1) text can only describe motions roughly (e.g., regardless of the moving speed) and (2) text may include both content and motion descriptions, we introduce a motion intensity estimation module as well as a text re-weighting module to reduce the ambiguity of text-to-motion mapping. Empirical evidence suggests that our approach is capable of well decoding motion-related textual instructions into videos, such as actions, camera movements, or even conjuring new contents from thin air (e.g., pouring water into an empty glass). Interestingly, thanks to the proposed intensity learning mechanism, our system offers users an additional control signal (i.e., the motion intensity) besides text for video customization.
AlignIT: Enhancing Prompt Alignment in Customization of Text-to-Image Models
We consider the problem of customizing text-to-image diffusion models with user-supplied reference images. Given new prompts, the existing methods can capture the key concept from the reference images but fail to align the generated image with the prompt. In this work, we seek to address this key issue by proposing new methods that can easily be used in conjunction with existing customization methods that optimize the embeddings/weights at various intermediate stages of the text encoding process. The first contribution of this paper is a dissection of the various stages of the text encoding process leading up to the conditioning vector for text-to-image models. We take a holistic view of existing customization methods and notice that key and value outputs from this process differs substantially from their corresponding baseline (non-customized) models (e.g., baseline stable diffusion). While this difference does not impact the concept being customized, it leads to other parts of the generated image not being aligned with the prompt. Further, we also observe that these keys and values allow independent control various aspects of the final generation, enabling semantic manipulation of the output. Taken together, the features spanning these keys and values, serve as the basis for our next contribution where we fix the aforementioned issues with existing methods. We propose a new post-processing algorithm, AlignIT, that infuses the keys and values for the concept of interest while ensuring the keys and values for all other tokens in the input prompt are unchanged. Our proposed method can be plugged in directly to existing customization methods, leading to a substantial performance improvement in the alignment of the final result with the input prompt while retaining the customization quality.
Development of a New Image-to-text Conversion System for Pashto, Farsi and Traditional Chinese
We report upon the results of a research and prototype building project Worldly~OCR dedicated to developing new, more accurate image-to-text conversion software for several languages and writing systems. These include the cursive scripts Farsi and Pashto, and Latin cursive scripts. We also describe approaches geared towards Traditional Chinese, which is non-cursive, but features an extremely large character set of 65,000 characters. Our methodology is based on Machine Learning, especially Deep Learning, and Data Science, and is directed towards vast quantities of original documents, exceeding a billion pages. The target audience of this paper is a general audience with interest in Digital Humanities or in retrieval of accurate full-text and metadata from digital images.
Harnessing the Spatial-Temporal Attention of Diffusion Models for High-Fidelity Text-to-Image Synthesis
Diffusion-based models have achieved state-of-the-art performance on text-to-image synthesis tasks. However, one critical limitation of these models is the low fidelity of generated images with respect to the text description, such as missing objects, mismatched attributes, and mislocated objects. One key reason for such inconsistencies is the inaccurate cross-attention to text in both the spatial dimension, which controls at what pixel region an object should appear, and the temporal dimension, which controls how different levels of details are added through the denoising steps. In this paper, we propose a new text-to-image algorithm that adds explicit control over spatial-temporal cross-attention in diffusion models. We first utilize a layout predictor to predict the pixel regions for objects mentioned in the text. We then impose spatial attention control by combining the attention over the entire text description and that over the local description of the particular object in the corresponding pixel region of that object. The temporal attention control is further added by allowing the combination weights to change at each denoising step, and the combination weights are optimized to ensure high fidelity between the image and the text. Experiments show that our method generates images with higher fidelity compared to diffusion-model-based baselines without fine-tuning the diffusion model. Our code is publicly available at https://github.com/UCSB-NLP-Chang/Diffusion-SpaceTime-Attn.
Out of Length Text Recognition with Sub-String Matching
Scene Text Recognition (STR) methods have demonstrated robust performance in word-level text recognition. However, in real applications the text image is sometimes long due to detected with multiple horizontal words. It triggers the requirement to build long text recognition models from readily available short (i.e., word-level) text datasets, which has been less studied previously. In this paper, we term this task Out of Length (OOL) text recognition. We establish the first Long Text Benchmark (LTB) to facilitate the assessment of different methods in long text recognition. Meanwhile, we propose a novel method called OOL Text Recognition with sub-String Matching (SMTR). SMTR comprises two cross-attention-based modules: one encodes a sub-string containing multiple characters into next and previous queries, and the other employs the queries to attend to the image features, matching the sub-string and simultaneously recognizing its next and previous character. SMTR can recognize text of arbitrary length by iterating the process above. To avoid being trapped in recognizing highly similar sub-strings, we introduce a regularization training to compel SMTR to effectively discover subtle differences between similar sub-strings for precise matching. In addition, we propose an inference augmentation strategy to alleviate confusion caused by identical sub-strings in the same text and improve the overall recognition efficiency. Extensive experimental results reveal that SMTR, even when trained exclusively on short text, outperforms existing methods in public short text benchmarks and exhibits a clear advantage on LTB. Code: https://github.com/Topdu/OpenOCR.
LISTER: Neighbor Decoding for Length-Insensitive Scene Text Recognition
The diversity in length constitutes a significant characteristic of text. Due to the long-tail distribution of text lengths, most existing methods for scene text recognition (STR) only work well on short or seen-length text, lacking the capability of recognizing longer text or performing length extrapolation. This is a crucial issue, since the lengths of the text to be recognized are usually not given in advance in real-world applications, but it has not been adequately investigated in previous works. Therefore, we propose in this paper a method called Length-Insensitive Scene TExt Recognizer (LISTER), which remedies the limitation regarding the robustness to various text lengths. Specifically, a Neighbor Decoder is proposed to obtain accurate character attention maps with the assistance of a novel neighbor matrix regardless of the text lengths. Besides, a Feature Enhancement Module is devised to model the long-range dependency with low computation cost, which is able to perform iterations with the neighbor decoder to enhance the feature map progressively. To the best of our knowledge, we are the first to achieve effective length-insensitive scene text recognition. Extensive experiments demonstrate that the proposed LISTER algorithm exhibits obvious superiority on long text recognition and the ability for length extrapolation, while comparing favourably with the previous state-of-the-art methods on standard benchmarks for STR (mainly short text).
StreamMultiDiffusion: Real-Time Interactive Generation with Region-Based Semantic Control
The enormous success of diffusion models in text-to-image synthesis has made them promising candidates for the next generation of end-user applications for image generation and editing. Previous works have focused on improving the usability of diffusion models by reducing the inference time or increasing user interactivity by allowing new, fine-grained controls such as region-based text prompts. However, we empirically find that integrating both branches of works is nontrivial, limiting the potential of diffusion models. To solve this incompatibility, we present StreamMultiDiffusion, the first real-time region-based text-to-image generation framework. By stabilizing fast inference techniques and restructuring the model into a newly proposed multi-prompt stream batch architecture, we achieve times 10 faster panorama generation than existing solutions, and the generation speed of 1.57 FPS in region-based text-to-image synthesis on a single RTX 2080 Ti GPU. Our solution opens up a new paradigm for interactive image generation named semantic palette, where high-quality images are generated in real-time from given multiple hand-drawn regions, encoding prescribed semantic meanings (e.g., eagle, girl). Our code and demo application are available at https://github.com/ironjr/StreamMultiDiffusion.
Text Style Transfer Evaluation Using Large Language Models
Evaluating Text Style Transfer (TST) is a complex task due to its multifaceted nature. The quality of the generated text is measured based on challenging factors, such as style transfer accuracy, content preservation, and overall fluency. While human evaluation is considered to be the gold standard in TST assessment, it is costly and often hard to reproduce. Therefore, automated metrics are prevalent in these domains. Nevertheless, it remains unclear whether these automated metrics correlate with human evaluations. Recent strides in Large Language Models (LLMs) have showcased their capacity to match and even exceed average human performance across diverse, unseen tasks. This suggests that LLMs could be a feasible alternative to human evaluation and other automated metrics in TST evaluation. We compare the results of different LLMs in TST using multiple input prompts. Our findings highlight a strong correlation between (even zero-shot) prompting and human evaluation, showing that LLMs often outperform traditional automated metrics. Furthermore, we introduce the concept of prompt ensembling, demonstrating its ability to enhance the robustness of TST evaluation. This research contributes to the ongoing evaluation of LLMs in diverse tasks, offering insights into successful outcomes and areas of limitation.
A Taxonomy of Prompt Modifiers for Text-To-Image Generation
Text-to-image generation has seen an explosion of interest since 2021. Today, beautiful and intriguing digital images and artworks can be synthesized from textual inputs ("prompts") with deep generative models. Online communities around text-to-image generation and AI generated art have quickly emerged. This paper identifies six types of prompt modifiers used by practitioners in the online community based on a 3-month ethnographic study. The novel taxonomy of prompt modifiers provides researchers a conceptual starting point for investigating the practice of text-to-image generation, but may also help practitioners of AI generated art improve their images. We further outline how prompt modifiers are applied in the practice of "prompt engineering." We discuss research opportunities of this novel creative practice in the field of Human-Computer Interaction (HCI). The paper concludes with a discussion of broader implications of prompt engineering from the perspective of Human-AI Interaction (HAI) in future applications beyond the use case of text-to-image generation and AI generated art.
MOSAIC: Multi-Object Segmented Arbitrary Stylization Using CLIP
Style transfer driven by text prompts paved a new path for creatively stylizing the images without collecting an actual style image. Despite having promising results, with text-driven stylization, the user has no control over the stylization. If a user wants to create an artistic image, the user requires fine control over the stylization of various entities individually in the content image, which is not addressed by the current state-of-the-art approaches. On the other hand, diffusion style transfer methods also suffer from the same issue because the regional stylization control over the stylized output is ineffective. To address this problem, We propose a new method Multi-Object Segmented Arbitrary Stylization Using CLIP (MOSAIC), that can apply styles to different objects in the image based on the context extracted from the input prompt. Text-based segmentation and stylization modules which are based on vision transformer architecture, were used to segment and stylize the objects. Our method can extend to any arbitrary objects, styles and produce high-quality images compared to the current state of art methods. To our knowledge, this is the first attempt to perform text-guided arbitrary object-wise stylization. We demonstrate the effectiveness of our approach through qualitative and quantitative analysis, showing that it can generate visually appealing stylized images with enhanced control over stylization and the ability to generalize to unseen object classes.
Make-A-Scene: Scene-Based Text-to-Image Generation with Human Priors
Recent text-to-image generation methods provide a simple yet exciting conversion capability between text and image domains. While these methods have incrementally improved the generated image fidelity and text relevancy, several pivotal gaps remain unanswered, limiting applicability and quality. We propose a novel text-to-image method that addresses these gaps by (i) enabling a simple control mechanism complementary to text in the form of a scene, (ii) introducing elements that substantially improve the tokenization process by employing domain-specific knowledge over key image regions (faces and salient objects), and (iii) adapting classifier-free guidance for the transformer use case. Our model achieves state-of-the-art FID and human evaluation results, unlocking the ability to generate high fidelity images in a resolution of 512x512 pixels, significantly improving visual quality. Through scene controllability, we introduce several new capabilities: (i) Scene editing, (ii) text editing with anchor scenes, (iii) overcoming out-of-distribution text prompts, and (iv) story illustration generation, as demonstrated in the story we wrote.
P+: Extended Textual Conditioning in Text-to-Image Generation
We introduce an Extended Textual Conditioning space in text-to-image models, referred to as P+. This space consists of multiple textual conditions, derived from per-layer prompts, each corresponding to a layer of the denoising U-net of the diffusion model. We show that the extended space provides greater disentangling and control over image synthesis. We further introduce Extended Textual Inversion (XTI), where the images are inverted into P+, and represented by per-layer tokens. We show that XTI is more expressive and precise, and converges faster than the original Textual Inversion (TI) space. The extended inversion method does not involve any noticeable trade-off between reconstruction and editability and induces more regular inversions. We conduct a series of extensive experiments to analyze and understand the properties of the new space, and to showcase the effectiveness of our method for personalizing text-to-image models. Furthermore, we utilize the unique properties of this space to achieve previously unattainable results in object-style mixing using text-to-image models. Project page: https://prompt-plus.github.io
Enhancing Diffusion Models with Text-Encoder Reinforcement Learning
Text-to-image diffusion models are typically trained to optimize the log-likelihood objective, which presents challenges in meeting specific requirements for downstream tasks, such as image aesthetics and image-text alignment. Recent research addresses this issue by refining the diffusion U-Net using human rewards through reinforcement learning or direct backpropagation. However, many of them overlook the importance of the text encoder, which is typically pretrained and fixed during training. In this paper, we demonstrate that by finetuning the text encoder through reinforcement learning, we can enhance the text-image alignment of the results, thereby improving the visual quality. Our primary motivation comes from the observation that the current text encoder is suboptimal, often requiring careful prompt adjustment. While fine-tuning the U-Net can partially improve performance, it remains suffering from the suboptimal text encoder. Therefore, we propose to use reinforcement learning with low-rank adaptation to finetune the text encoder based on task-specific rewards, referred as TexForce. We first show that finetuning the text encoder can improve the performance of diffusion models. Then, we illustrate that TexForce can be simply combined with existing U-Net finetuned models to get much better results without additional training. Finally, we showcase the adaptability of our method in diverse applications, including the generation of high-quality face and hand images.
LEDITS++: Limitless Image Editing using Text-to-Image Models
Text-to-image diffusion models have recently received increasing interest for their astonishing ability to produce high-fidelity images from solely text inputs. Subsequent research efforts aim to exploit and apply their capabilities to real image editing. However, existing image-to-image methods are often inefficient, imprecise, and of limited versatility. They either require time-consuming fine-tuning, deviate unnecessarily strongly from the input image, and/or lack support for multiple, simultaneous edits. To address these issues, we introduce LEDITS++, an efficient yet versatile and precise textual image manipulation technique. LEDITS++'s novel inversion approach requires no tuning nor optimization and produces high-fidelity results with a few diffusion steps. Second, our methodology supports multiple simultaneous edits and is architecture-agnostic. Third, we use a novel implicit masking technique that limits changes to relevant image regions. We propose the novel TEdBench++ benchmark as part of our exhaustive evaluation. Our results demonstrate the capabilities of LEDITS++ and its improvements over previous methods. The project page is available at https://leditsplusplus-project.static.hf.space .
Seek for Incantations: Towards Accurate Text-to-Image Diffusion Synthesis through Prompt Engineering
The text-to-image synthesis by diffusion models has recently shown remarkable performance in generating high-quality images. Although performs well for simple texts, the models may get confused when faced with complex texts that contain multiple objects or spatial relationships. To get the desired images, a feasible way is to manually adjust the textual descriptions, i.e., narrating the texts or adding some words, which is labor-consuming. In this paper, we propose a framework to learn the proper textual descriptions for diffusion models through prompt learning. By utilizing the quality guidance and the semantic guidance derived from the pre-trained diffusion model, our method can effectively learn the prompts to improve the matches between the input text and the generated images. Extensive experiments and analyses have validated the effectiveness of the proposed method.
TextDiffuser-2: Unleashing the Power of Language Models for Text Rendering
The diffusion model has been proven a powerful generative model in recent years, yet remains a challenge in generating visual text. Several methods alleviated this issue by incorporating explicit text position and content as guidance on where and what text to render. However, these methods still suffer from several drawbacks, such as limited flexibility and automation, constrained capability of layout prediction, and restricted style diversity. In this paper, we present TextDiffuser-2, aiming to unleash the power of language models for text rendering. Firstly, we fine-tune a large language model for layout planning. The large language model is capable of automatically generating keywords for text rendering and also supports layout modification through chatting. Secondly, we utilize the language model within the diffusion model to encode the position and texts at the line level. Unlike previous methods that employed tight character-level guidance, this approach generates more diverse text images. We conduct extensive experiments and incorporate user studies involving human participants as well as GPT-4V, validating TextDiffuser-2's capacity to achieve a more rational text layout and generation with enhanced diversity. The code and model will be available at https://aka.ms/textdiffuser-2.
RAPHAEL: Text-to-Image Generation via Large Mixture of Diffusion Paths
Text-to-image generation has recently witnessed remarkable achievements. We introduce a text-conditional image diffusion model, termed RAPHAEL, to generate highly artistic images, which accurately portray the text prompts, encompassing multiple nouns, adjectives, and verbs. This is achieved by stacking tens of mixture-of-experts (MoEs) layers, i.e., space-MoE and time-MoE layers, enabling billions of diffusion paths (routes) from the network input to the output. Each path intuitively functions as a "painter" for depicting a particular textual concept onto a specified image region at a diffusion timestep. Comprehensive experiments reveal that RAPHAEL outperforms recent cutting-edge models, such as Stable Diffusion, ERNIE-ViLG 2.0, DeepFloyd, and DALL-E 2, in terms of both image quality and aesthetic appeal. Firstly, RAPHAEL exhibits superior performance in switching images across diverse styles, such as Japanese comics, realism, cyberpunk, and ink illustration. Secondly, a single model with three billion parameters, trained on 1,000 A100 GPUs for two months, achieves a state-of-the-art zero-shot FID score of 6.61 on the COCO dataset. Furthermore, RAPHAEL significantly surpasses its counterparts in human evaluation on the ViLG-300 benchmark. We believe that RAPHAEL holds the potential to propel the frontiers of image generation research in both academia and industry, paving the way for future breakthroughs in this rapidly evolving field. More details can be found on a project webpage: https://raphael-painter.github.io/.
LayoutLLM-T2I: Eliciting Layout Guidance from LLM for Text-to-Image Generation
In the text-to-image generation field, recent remarkable progress in Stable Diffusion makes it possible to generate rich kinds of novel photorealistic images. However, current models still face misalignment issues (e.g., problematic spatial relation understanding and numeration failure) in complex natural scenes, which impedes the high-faithfulness text-to-image generation. Although recent efforts have been made to improve controllability by giving fine-grained guidance (e.g., sketch and scribbles), this issue has not been fundamentally tackled since users have to provide such guidance information manually. In this work, we strive to synthesize high-fidelity images that are semantically aligned with a given textual prompt without any guidance. Toward this end, we propose a coarse-to-fine paradigm to achieve layout planning and image generation. Concretely, we first generate the coarse-grained layout conditioned on a given textual prompt via in-context learning based on Large Language Models. Afterward, we propose a fine-grained object-interaction diffusion method to synthesize high-faithfulness images conditioned on the prompt and the automatically generated layout. Extensive experiments demonstrate that our proposed method outperforms the state-of-the-art models in terms of layout and image generation. Our code and settings are available at https://layoutllm-t2i.github.io.
GlyphControl: Glyph Conditional Control for Visual Text Generation
Recently, there has been a growing interest in developing diffusion-based text-to-image generative models capable of generating coherent and well-formed visual text. In this paper, we propose a novel and efficient approach called GlyphControl to address this task. Unlike existing methods that rely on character-aware text encoders like ByT5 and require retraining of text-to-image models, our approach leverages additional glyph conditional information to enhance the performance of the off-the-shelf Stable-Diffusion model in generating accurate visual text. By incorporating glyph instructions, users can customize the content, location, and size of the generated text according to their specific requirements. To facilitate further research in visual text generation, we construct a training benchmark dataset called LAION-Glyph. We evaluate the effectiveness of our approach by measuring OCR-based metrics and CLIP scores of the generated visual text. Our empirical evaluations demonstrate that GlyphControl outperforms the recent DeepFloyd IF approach in terms of OCR accuracy and CLIP scores, highlighting the efficacy of our method.
MultiEdits: Simultaneous Multi-Aspect Editing with Text-to-Image Diffusion Models
Text-driven image synthesis has made significant advancements with the development of diffusion models, transforming how visual content is generated from text prompts. Despite these advances, text-driven image editing, a key area in computer graphics, faces unique challenges. A major challenge is making simultaneous edits across multiple objects or attributes. Applying these methods sequentially for multi-aspect edits increases computational demands and efficiency losses. In this paper, we address these challenges with significant contributions. Our main contribution is the development of MultiEdits, a method that seamlessly manages simultaneous edits across multiple attributes. In contrast to previous approaches, MultiEdits not only preserves the quality of single attribute edits but also significantly improves the performance of multitasking edits. This is achieved through an innovative attention distribution mechanism and a multi-branch design that operates across several processing heads. Additionally, we introduce the PIE-Bench++ dataset, an expansion of the original PIE-Bench dataset, to better support evaluating image-editing tasks involving multiple objects and attributes simultaneously. This dataset is a benchmark for evaluating text-driven image editing methods in multifaceted scenarios. Dataset and code are available at https://mingzhenhuang.com/projects/MultiEdits.html.
SemEval-2020 Task 10: Emphasis Selection for Written Text in Visual Media
In this paper, we present the main findings and compare the results of SemEval-2020 Task 10, Emphasis Selection for Written Text in Visual Media. The goal of this shared task is to design automatic methods for emphasis selection, i.e. choosing candidates for emphasis in textual content to enable automated design assistance in authoring. The main focus is on short text instances for social media, with a variety of examples, from social media posts to inspirational quotes. Participants were asked to model emphasis using plain text with no additional context from the user or other design considerations. SemEval-2020 Emphasis Selection shared task attracted 197 participants in the early phase and a total of 31 teams made submissions to this task. The highest-ranked submission achieved 0.823 Matchm score. The analysis of systems submitted to the task indicates that BERT and RoBERTa were the most common choice of pre-trained models used, and part of speech tag (POS) was the most useful feature. Full results can be found on the task's website.
The Chosen One: Consistent Characters in Text-to-Image Diffusion Models
Recent advances in text-to-image generation models have unlocked vast potential for visual creativity. However, these models struggle with generation of consistent characters, a crucial aspect for numerous real-world applications such as story visualization, game development asset design, advertising, and more. Current methods typically rely on multiple pre-existing images of the target character or involve labor-intensive manual processes. In this work, we propose a fully automated solution for consistent character generation, with the sole input being a text prompt. We introduce an iterative procedure that, at each stage, identifies a coherent set of images sharing a similar identity and extracts a more consistent identity from this set. Our quantitative analysis demonstrates that our method strikes a better balance between prompt alignment and identity consistency compared to the baseline methods, and these findings are reinforced by a user study. To conclude, we showcase several practical applications of our approach. Project page is available at https://omriavrahami.com/the-chosen-one
HWD: A Novel Evaluation Score for Styled Handwritten Text Generation
Styled Handwritten Text Generation (Styled HTG) is an important task in document analysis, aiming to generate text images with the handwriting of given reference images. In recent years, there has been significant progress in the development of deep learning models for tackling this task. Being able to measure the performance of HTG models via a meaningful and representative criterion is key for fostering the development of this research topic. However, despite the current adoption of scores for natural image generation evaluation, assessing the quality of generated handwriting remains challenging. In light of this, we devise the Handwriting Distance (HWD), tailored for HTG evaluation. In particular, it works in the feature space of a network specifically trained to extract handwriting style features from the variable-lenght input images and exploits a perceptual distance to compare the subtle geometric features of handwriting. Through extensive experimental evaluation on different word-level and line-level datasets of handwritten text images, we demonstrate the suitability of the proposed HWD as a score for Styled HTG. The pretrained model used as backbone will be released to ease the adoption of the score, aiming to provide a valuable tool for evaluating HTG models and thus contributing to advancing this important research area.
A Model for Translation of Text from Indian Languages to Bharti Braille Characters
People who are visually impaired face a lot of difficulties while studying. One of the major causes to this is lack of available text in Bharti Braille script. In this paper, we have suggested a scheme to convert text in major Indian languages into Bharti Braille. The system uses a hybrid approach where at first the text in Indian language is given to a rule based system and in case if there is any ambiguity then it is resolved by applying a LSTM based model. The developed model has also been tested and found to have produced near accurate results.
Captions Are Worth a Thousand Words: Enhancing Product Retrieval with Pretrained Image-to-Text Models
This paper explores the usage of multimodal image-to-text models to enhance text-based item retrieval. We propose utilizing pre-trained image captioning and tagging models, such as instructBLIP and CLIP, to generate text-based product descriptions which are combined with existing text descriptions. Our work is particularly impactful for smaller eCommerce businesses who are unable to maintain the high-quality text descriptions necessary to effectively perform item retrieval for search and recommendation use cases. We evaluate the searchability of ground-truth text, image-generated text, and combinations of both texts on several subsets of Amazon's publicly available ESCI dataset. The results demonstrate the dual capability of our proposed models to enhance the retrieval of existing text and generate highly-searchable standalone descriptions.
Prompt-Free Diffusion: Taking "Text" out of Text-to-Image Diffusion Models
Text-to-image (T2I) research has grown explosively in the past year, owing to the large-scale pre-trained diffusion models and many emerging personalization and editing approaches. Yet, one pain point persists: the text prompt engineering, and searching high-quality text prompts for customized results is more art than science. Moreover, as commonly argued: "an image is worth a thousand words" - the attempt to describe a desired image with texts often ends up being ambiguous and cannot comprehensively cover delicate visual details, hence necessitating more additional controls from the visual domain. In this paper, we take a bold step forward: taking "Text" out of a pre-trained T2I diffusion model, to reduce the burdensome prompt engineering efforts for users. Our proposed framework, Prompt-Free Diffusion, relies on only visual inputs to generate new images: it takes a reference image as "context", an optional image structural conditioning, and an initial noise, with absolutely no text prompt. The core architecture behind the scene is Semantic Context Encoder (SeeCoder), substituting the commonly used CLIP-based or LLM-based text encoder. The reusability of SeeCoder also makes it a convenient drop-in component: one can also pre-train a SeeCoder in one T2I model and reuse it for another. Through extensive experiments, Prompt-Free Diffusion is experimentally found to (i) outperform prior exemplar-based image synthesis approaches; (ii) perform on par with state-of-the-art T2I models using prompts following the best practice; and (iii) be naturally extensible to other downstream applications such as anime figure generation and virtual try-on, with promising quality. Our code and models are open-sourced at https://github.com/SHI-Labs/Prompt-Free-Diffusion.
Word-As-Image for Semantic Typography
A word-as-image is a semantic typography technique where a word illustration presents a visualization of the meaning of the word, while also preserving its readability. We present a method to create word-as-image illustrations automatically. This task is highly challenging as it requires semantic understanding of the word and a creative idea of where and how to depict these semantics in a visually pleasing and legible manner. We rely on the remarkable ability of recent large pretrained language-vision models to distill textual concepts visually. We target simple, concise, black-and-white designs that convey the semantics clearly. We deliberately do not change the color or texture of the letters and do not use embellishments. Our method optimizes the outline of each letter to convey the desired concept, guided by a pretrained Stable Diffusion model. We incorporate additional loss terms to ensure the legibility of the text and the preservation of the style of the font. We show high quality and engaging results on numerous examples and compare to alternative techniques.
DiLightNet: Fine-grained Lighting Control for Diffusion-based Image Generation
This paper presents a novel method for exerting fine-grained lighting control during text-driven diffusion-based image generation. While existing diffusion models already have the ability to generate images under any lighting condition, without additional guidance these models tend to correlate image content and lighting. Moreover, text prompts lack the necessary expressional power to describe detailed lighting setups. To provide the content creator with fine-grained control over the lighting during image generation, we augment the text-prompt with detailed lighting information in the form of radiance hints, i.e., visualizations of the scene geometry with a homogeneous canonical material under the target lighting. However, the scene geometry needed to produce the radiance hints is unknown. Our key observation is that we only need to guide the diffusion process, hence exact radiance hints are not necessary; we only need to point the diffusion model in the right direction. Based on this observation, we introduce a three stage method for controlling the lighting during image generation. In the first stage, we leverage a standard pretrained diffusion model to generate a provisional image under uncontrolled lighting. Next, in the second stage, we resynthesize and refine the foreground object in the generated image by passing the target lighting to a refined diffusion model, named DiLightNet, using radiance hints computed on a coarse shape of the foreground object inferred from the provisional image. To retain the texture details, we multiply the radiance hints with a neural encoding of the provisional synthesized image before passing it to DiLightNet. Finally, in the third stage, we resynthesize the background to be consistent with the lighting on the foreground object. We demonstrate and validate our lighting controlled diffusion model on a variety of text prompts and lighting conditions.
All You Need Is Boundary: Toward Arbitrary-Shaped Text Spotting
Recently, end-to-end text spotting that aims to detect and recognize text from cluttered images simultaneously has received particularly growing interest in computer vision. Different from the existing approaches that formulate text detection as bounding box extraction or instance segmentation, we localize a set of points on the boundary of each text instance. With the representation of such boundary points, we establish a simple yet effective scheme for end-to-end text spotting, which can read the text of arbitrary shapes. Experiments on three challenging datasets, including ICDAR2015, TotalText and COCO-Text demonstrate that the proposed method consistently surpasses the state-of-the-art in both scene text detection and end-to-end text recognition tasks.
Visual Instruction Inversion: Image Editing via Visual Prompting
Text-conditioned image editing has emerged as a powerful tool for editing images. However, in many situations, language can be ambiguous and ineffective in describing specific image edits. When faced with such challenges, visual prompts can be a more informative and intuitive way to convey ideas. We present a method for image editing via visual prompting. Given pairs of example that represent the "before" and "after" images of an edit, our goal is to learn a text-based editing direction that can be used to perform the same edit on new images. We leverage the rich, pretrained editing capabilities of text-to-image diffusion models by inverting visual prompts into editing instructions. Our results show that with just one example pair, we can achieve competitive results compared to state-of-the-art text-conditioned image editing frameworks.
GlyphDiffusion: Text Generation as Image Generation
Diffusion models have become a new generative paradigm for text generation. Considering the discrete categorical nature of text, in this paper, we propose GlyphDiffusion, a novel diffusion approach for text generation via text-guided image generation. Our key idea is to render the target text as a glyph image containing visual language content. In this way, conditional text generation can be cast as a glyph image generation task, and it is then natural to apply continuous diffusion models to discrete texts. Specially, we utilize a cascaded architecture (ie a base and a super-resolution diffusion model) to generate high-fidelity glyph images, conditioned on the input text. Furthermore, we design a text grounding module to transform and refine the visual language content from generated glyph images into the final texts. In experiments over four conditional text generation tasks and two classes of metrics (ie quality and diversity), GlyphDiffusion can achieve comparable or even better results than several baselines, including pretrained language models. Our model also makes significant improvements compared to the recent diffusion model.
Confidence-aware Non-repetitive Multimodal Transformers for TextCaps
When describing an image, reading text in the visual scene is crucial to understand the key information. Recent work explores the TextCaps task, i.e. image captioning with reading Optical Character Recognition (OCR) tokens, which requires models to read text and cover them in generated captions. Existing approaches fail to generate accurate descriptions because of their (1) poor reading ability; (2) inability to choose the crucial words among all extracted OCR tokens; (3) repetition of words in predicted captions. To this end, we propose a Confidence-aware Non-repetitive Multimodal Transformers (CNMT) to tackle the above challenges. Our CNMT consists of a reading, a reasoning and a generation modules, in which Reading Module employs better OCR systems to enhance text reading ability and a confidence embedding to select the most noteworthy tokens. To address the issue of word redundancy in captions, our Generation Module includes a repetition mask to avoid predicting repeated word in captions. Our model outperforms state-of-the-art models on TextCaps dataset, improving from 81.0 to 93.0 in CIDEr. Our source code is publicly available.
InkSight: Offline-to-Online Handwriting Conversion by Learning to Read and Write
Digital note-taking is gaining popularity, offering a durable, editable, and easily indexable way of storing notes in the vectorized form, known as digital ink. However, a substantial gap remains between this way of note-taking and traditional pen-and-paper note-taking, a practice still favored by a vast majority. Our work, InkSight, aims to bridge the gap by empowering physical note-takers to effortlessly convert their work (offline handwriting) to digital ink (online handwriting), a process we refer to as Derendering. Prior research on the topic has focused on the geometric properties of images, resulting in limited generalization beyond their training domains. Our approach combines reading and writing priors, allowing training a model in the absence of large amounts of paired samples, which are difficult to obtain. To our knowledge, this is the first work that effectively derenders handwritten text in arbitrary photos with diverse visual characteristics and backgrounds. Furthermore, it generalizes beyond its training domain into simple sketches. Our human evaluation reveals that 87% of the samples produced by our model on the challenging HierText dataset are considered as a valid tracing of the input image and 67% look like a pen trajectory traced by a human.
Prompt-to-Prompt Image Editing with Cross Attention Control
Recent large-scale text-driven synthesis models have attracted much attention thanks to their remarkable capabilities of generating highly diverse images that follow given text prompts. Such text-based synthesis methods are particularly appealing to humans who are used to verbally describe their intent. Therefore, it is only natural to extend the text-driven image synthesis to text-driven image editing. Editing is challenging for these generative models, since an innate property of an editing technique is to preserve most of the original image, while in the text-based models, even a small modification of the text prompt often leads to a completely different outcome. State-of-the-art methods mitigate this by requiring the users to provide a spatial mask to localize the edit, hence, ignoring the original structure and content within the masked region. In this paper, we pursue an intuitive prompt-to-prompt editing framework, where the edits are controlled by text only. To this end, we analyze a text-conditioned model in depth and observe that the cross-attention layers are the key to controlling the relation between the spatial layout of the image to each word in the prompt. With this observation, we present several applications which monitor the image synthesis by editing the textual prompt only. This includes localized editing by replacing a word, global editing by adding a specification, and even delicately controlling the extent to which a word is reflected in the image. We present our results over diverse images and prompts, demonstrating high-quality synthesis and fidelity to the edited prompts.
Priority-Centric Human Motion Generation in Discrete Latent Space
Text-to-motion generation is a formidable task, aiming to produce human motions that align with the input text while also adhering to human capabilities and physical laws. While there have been advancements in diffusion models, their application in discrete spaces remains underexplored. Current methods often overlook the varying significance of different motions, treating them uniformly. It is essential to recognize that not all motions hold the same relevance to a particular textual description. Some motions, being more salient and informative, should be given precedence during generation. In response, we introduce a Priority-Centric Motion Discrete Diffusion Model (M2DM), which utilizes a Transformer-based VQ-VAE to derive a concise, discrete motion representation, incorporating a global self-attention mechanism and a regularization term to counteract code collapse. We also present a motion discrete diffusion model that employs an innovative noise schedule, determined by the significance of each motion token within the entire motion sequence. This approach retains the most salient motions during the reverse diffusion process, leading to more semantically rich and varied motions. Additionally, we formulate two strategies to gauge the importance of motion tokens, drawing from both textual and visual indicators. Comprehensive experiments on the HumanML3D and KIT-ML datasets confirm that our model surpasses existing techniques in fidelity and diversity, particularly for intricate textual descriptions.
Brush Your Text: Synthesize Any Scene Text on Images via Diffusion Model
Recently, diffusion-based image generation methods are credited for their remarkable text-to-image generation capabilities, while still facing challenges in accurately generating multilingual scene text images. To tackle this problem, we propose Diff-Text, which is a training-free scene text generation framework for any language. Our model outputs a photo-realistic image given a text of any language along with a textual description of a scene. The model leverages rendered sketch images as priors, thus arousing the potential multilingual-generation ability of the pre-trained Stable Diffusion. Based on the observation from the influence of the cross-attention map on object placement in generated images, we propose a localized attention constraint into the cross-attention layer to address the unreasonable positioning problem of scene text. Additionally, we introduce contrastive image-level prompts to further refine the position of the textual region and achieve more accurate scene text generation. Experiments demonstrate that our method outperforms the existing method in both the accuracy of text recognition and the naturalness of foreground-background blending.
Text-to-image Diffusion Models in Generative AI: A Survey
This survey reviews text-to-image diffusion models in the context that diffusion models have emerged to be popular for a wide range of generative tasks. As a self-contained work, this survey starts with a brief introduction of how a basic diffusion model works for image synthesis, followed by how condition or guidance improves learning. Based on that, we present a review of state-of-the-art methods on text-conditioned image synthesis, i.e., text-to-image. We further summarize applications beyond text-to-image generation: text-guided creative generation and text-guided image editing. Beyond the progress made so far, we discuss existing challenges and promising future directions.
Text Spotting Transformers
In this paper, we present TExt Spotting TRansformers (TESTR), a generic end-to-end text spotting framework using Transformers for text detection and recognition in the wild. TESTR builds upon a single encoder and dual decoders for the joint text-box control point regression and character recognition. Other than most existing literature, our method is free from Region-of-Interest operations and heuristics-driven post-processing procedures; TESTR is particularly effective when dealing with curved text-boxes where special cares are needed for the adaptation of the traditional bounding-box representations. We show our canonical representation of control points suitable for text instances in both Bezier curve and polygon annotations. In addition, we design a bounding-box guided polygon detection (box-to-polygon) process. Experiments on curved and arbitrarily shaped datasets demonstrate state-of-the-art performances of the proposed TESTR algorithm.
DeepWriting: Making Digital Ink Editable via Deep Generative Modeling
Digital ink promises to combine the flexibility and aesthetics of handwriting and the ability to process, search and edit digital text. Character recognition converts handwritten text into a digital representation, albeit at the cost of losing personalized appearance due to the technical difficulties of separating the interwoven components of content and style. In this paper, we propose a novel generative neural network architecture that is capable of disentangling style from content and thus making digital ink editable. Our model can synthesize arbitrary text, while giving users control over the visual appearance (style). For example, allowing for style transfer without changing the content, editing of digital ink at the word level and other application scenarios such as spell-checking and correction of handwritten text. We furthermore contribute a new dataset of handwritten text with fine-grained annotations at the character level and report results from an initial user evaluation.
TextMastero: Mastering High-Quality Scene Text Editing in Diverse Languages and Styles
Scene text editing aims to modify texts on images while maintaining the style of newly generated text similar to the original. Given an image, a target area, and target text, the task produces an output image with the target text in the selected area, replacing the original. This task has been studied extensively, with initial success using Generative Adversarial Networks (GANs) to balance text fidelity and style similarity. However, GAN-based methods struggled with complex backgrounds or text styles. Recent works leverage diffusion models, showing improved results, yet still face challenges, especially with non-Latin languages like CJK characters (Chinese, Japanese, Korean) that have complex glyphs, often producing inaccurate or unrecognizable characters. To address these issues, we present TextMastero - a carefully designed multilingual scene text editing architecture based on latent diffusion models (LDMs). TextMastero introduces two key modules: a glyph conditioning module for fine-grained content control in generating accurate texts, and a latent guidance module for providing comprehensive style information to ensure similarity before and after editing. Both qualitative and quantitative experiments demonstrate that our method surpasses all known existing works in text fidelity and style similarity.
Generative Photomontage
Text-to-image models are powerful tools for image creation. However, the generation process is akin to a dice roll and makes it difficult to achieve a single image that captures everything a user wants. In this paper, we propose a framework for creating the desired image by compositing it from various parts of generated images, in essence forming a Generative Photomontage. Given a stack of images generated by ControlNet using the same input condition and different seeds, we let users select desired parts from the generated results using a brush stroke interface. We introduce a novel technique that takes in the user's brush strokes, segments the generated images using a graph-based optimization in diffusion feature space, and then composites the segmented regions via a new feature-space blending method. Our method faithfully preserves the user-selected regions while compositing them harmoniously. We demonstrate that our flexible framework can be used for many applications, including generating new appearance combinations, fixing incorrect shapes and artifacts, and improving prompt alignment. We show compelling results for each application and demonstrate that our method outperforms existing image blending methods and various baselines.
Character Region Awareness for Text Detection
Scene text detection methods based on neural networks have emerged recently and have shown promising results. Previous methods trained with rigid word-level bounding boxes exhibit limitations in representing the text region in an arbitrary shape. In this paper, we propose a new scene text detection method to effectively detect text area by exploring each character and affinity between characters. To overcome the lack of individual character level annotations, our proposed framework exploits both the given character-level annotations for synthetic images and the estimated character-level ground-truths for real images acquired by the learned interim model. In order to estimate affinity between characters, the network is trained with the newly proposed representation for affinity. Extensive experiments on six benchmarks, including the TotalText and CTW-1500 datasets which contain highly curved texts in natural images, demonstrate that our character-level text detection significantly outperforms the state-of-the-art detectors. According to the results, our proposed method guarantees high flexibility in detecting complicated scene text images, such as arbitrarily-oriented, curved, or deformed texts.
Generating Intermediate Representations for Compositional Text-To-Image Generation
Text-to-image diffusion models have demonstrated an impressive ability to produce high-quality outputs. However, they often struggle to accurately follow fine-grained spatial information in an input text. To this end, we propose a compositional approach for text-to-image generation based on two stages. In the first stage, we design a diffusion-based generative model to produce one or more aligned intermediate representations (such as depth or segmentation maps) conditioned on text. In the second stage, we map these representations, together with the text, to the final output image using a separate diffusion-based generative model. Our findings indicate that such compositional approach can improve image generation, resulting in a notable improvement in FID score and a comparable CLIP score, when compared to the standard non-compositional baseline.
Textoon: Generating Vivid 2D Cartoon Characters from Text Descriptions
The 2D cartoon style is a prominent art form in digital character creation, particularly popular among younger audiences. While advancements in digital human technology have spurred extensive research into photorealistic digital humans and 3D characters, interactive 2D cartoon characters have received comparatively less attention. Unlike 3D counterparts, which require sophisticated construction and resource-intensive rendering, Live2D, a widely-used format for 2D cartoon characters, offers a more efficient alternative, which allows to animate 2D characters in a manner that simulates 3D movement without the necessity of building a complete 3D model. Furthermore, Live2D employs lightweight HTML5 (H5) rendering, improving both accessibility and efficiency. In this technical report, we introduce Textoon, an innovative method for generating diverse 2D cartoon characters in the Live2D format based on text descriptions. The Textoon leverages cutting-edge language and vision models to comprehend textual intentions and generate 2D appearance, capable of creating a wide variety of stunning and interactive 2D characters within one minute. The project homepage is https://human3daigc.github.io/Textoon_webpage/.
Data Augmentation for Scene Text Recognition
Scene text recognition (STR) is a challenging task in computer vision due to the large number of possible text appearances in natural scenes. Most STR models rely on synthetic datasets for training since there are no sufficiently big and publicly available labelled real datasets. Since STR models are evaluated using real data, the mismatch between training and testing data distributions results into poor performance of models especially on challenging text that are affected by noise, artifacts, geometry, structure, etc. In this paper, we introduce STRAug which is made of 36 image augmentation functions designed for STR. Each function mimics certain text image properties that can be found in natural scenes, caused by camera sensors, or induced by signal processing operations but poorly represented in the training dataset. When applied to strong baseline models using RandAugment, STRAug significantly increases the overall absolute accuracy of STR models across regular and irregular test datasets by as much as 2.10% on Rosetta, 1.48% on R2AM, 1.30% on CRNN, 1.35% on RARE, 1.06% on TRBA and 0.89% on GCRNN. The diversity and simplicity of API provided by STRAug functions enable easy replication and validation of existing data augmentation methods for STR. STRAug is available at https://github.com/roatienza/straug.
AnyText2: Visual Text Generation and Editing With Customizable Attributes
As the text-to-image (T2I) domain progresses, generating text that seamlessly integrates with visual content has garnered significant attention. However, even with accurate text generation, the inability to control font and color can greatly limit certain applications, and this issue remains insufficiently addressed. This paper introduces AnyText2, a novel method that enables precise control over multilingual text attributes in natural scene image generation and editing. Our approach consists of two main components. First, we propose a WriteNet+AttnX architecture that injects text rendering capabilities into a pre-trained T2I model. Compared to its predecessor, AnyText, our new approach not only enhances image realism but also achieves a 19.8% increase in inference speed. Second, we explore techniques for extracting fonts and colors from scene images and develop a Text Embedding Module that encodes these text attributes separately as conditions. As an extension of AnyText, this method allows for customization of attributes for each line of text, leading to improvements of 3.3% and 9.3% in text accuracy for Chinese and English, respectively. Through comprehensive experiments, we demonstrate the state-of-the-art performance of our method. The code and model will be made open-source in https://github.com/tyxsspa/AnyText2.
TextAtlas5M: A Large-scale Dataset for Dense Text Image Generation
Text-conditioned image generation has gained significant attention in recent years and are processing increasingly longer and comprehensive text prompt. In everyday life, dense and intricate text appears in contexts like advertisements, infographics, and signage, where the integration of both text and visuals is essential for conveying complex information. However, despite these advances, the generation of images containing long-form text remains a persistent challenge, largely due to the limitations of existing datasets, which often focus on shorter and simpler text. To address this gap, we introduce TextAtlas5M, a novel dataset specifically designed to evaluate long-text rendering in text-conditioned image generation. Our dataset consists of 5 million long-text generated and collected images across diverse data types, enabling comprehensive evaluation of large-scale generative models on long-text image generation. We further curate 3000 human-improved test set TextAtlasEval across 3 data domains, establishing one of the most extensive benchmarks for text-conditioned generation. Evaluations suggest that the TextAtlasEval benchmarks present significant challenges even for the most advanced proprietary models (e.g. GPT4o with DallE-3), while their open-source counterparts show an even larger performance gap. These evidences position TextAtlas5M as a valuable dataset for training and evaluating future-generation text-conditioned image generation models.
Sketch2NeRF: Multi-view Sketch-guided Text-to-3D Generation
Recently, text-to-3D approaches have achieved high-fidelity 3D content generation using text description. However, the generated objects are stochastic and lack fine-grained control. Sketches provide a cheap approach to introduce such fine-grained control. Nevertheless, it is challenging to achieve flexible control from these sketches due to their abstraction and ambiguity. In this paper, we present a multi-view sketch-guided text-to-3D generation framework (namely, Sketch2NeRF) to add sketch control to 3D generation. Specifically, our method leverages pretrained 2D diffusion models (e.g., Stable Diffusion and ControlNet) to supervise the optimization of a 3D scene represented by a neural radiance field (NeRF). We propose a novel synchronized generation and reconstruction method to effectively optimize the NeRF. In the experiments, we collected two kinds of multi-view sketch datasets to evaluate the proposed method. We demonstrate that our method can synthesize 3D consistent contents with fine-grained sketch control while being high-fidelity to text prompts. Extensive results show that our method achieves state-of-the-art performance in terms of sketch similarity and text alignment.
IP-Adapter: Text Compatible Image Prompt Adapter for Text-to-Image Diffusion Models
Recent years have witnessed the strong power of large text-to-image diffusion models for the impressive generative capability to create high-fidelity images. However, it is very tricky to generate desired images using only text prompt as it often involves complex prompt engineering. An alternative to text prompt is image prompt, as the saying goes: "an image is worth a thousand words". Although existing methods of direct fine-tuning from pretrained models are effective, they require large computing resources and are not compatible with other base models, text prompt, and structural controls. In this paper, we present IP-Adapter, an effective and lightweight adapter to achieve image prompt capability for the pretrained text-to-image diffusion models. The key design of our IP-Adapter is decoupled cross-attention mechanism that separates cross-attention layers for text features and image features. Despite the simplicity of our method, an IP-Adapter with only 22M parameters can achieve comparable or even better performance to a fully fine-tuned image prompt model. As we freeze the pretrained diffusion model, the proposed IP-Adapter can be generalized not only to other custom models fine-tuned from the same base model, but also to controllable generation using existing controllable tools. With the benefit of the decoupled cross-attention strategy, the image prompt can also work well with the text prompt to achieve multimodal image generation. The project page is available at https://ip-adapter.github.io.
Diff-Font: Diffusion Model for Robust One-Shot Font Generation
Font generation is a difficult and time-consuming task, especially in those languages using ideograms that have complicated structures with a large number of characters, such as Chinese. To solve this problem, few-shot font generation and even one-shot font generation have attracted a lot of attention. However, most existing font generation methods may still suffer from (i) large cross-font gap challenge; (ii) subtle cross-font variation problem; and (iii) incorrect generation of complicated characters. In this paper, we propose a novel one-shot font generation method based on a diffusion model, named Diff-Font, which can be stably trained on large datasets. The proposed model aims to generate the entire font library by giving only one sample as the reference. Specifically, a large stroke-wise dataset is constructed, and a stroke-wise diffusion model is proposed to preserve the structure and the completion of each generated character. To our best knowledge, the proposed Diff-Font is the first work that developed diffusion models to handle the font generation task. The well-trained Diff-Font is not only robust to font gap and font variation, but also achieved promising performance on difficult character generation. Compared to previous font generation methods, our model reaches state-of-the-art performance both qualitatively and quantitatively.
GPT4Motion: Scripting Physical Motions in Text-to-Video Generation via Blender-Oriented GPT Planning
Recent advances in text-to-video generation have harnessed the power of diffusion models to create visually compelling content conditioned on text prompts. However, they usually encounter high computational costs and often struggle to produce videos with coherent physical motions. To tackle these issues, we propose GPT4Motion, a training-free framework that leverages the planning capability of large language models such as GPT, the physical simulation strength of Blender, and the excellent image generation ability of text-to-image diffusion models to enhance the quality of video synthesis. Specifically, GPT4Motion employs GPT-4 to generate a Blender script based on a user textual prompt, which commands Blender's built-in physics engine to craft fundamental scene components that encapsulate coherent physical motions across frames. Then these components are inputted into Stable Diffusion to generate a video aligned with the textual prompt. Experimental results on three basic physical motion scenarios, including rigid object drop and collision, cloth draping and swinging, and liquid flow, demonstrate that GPT4Motion can generate high-quality videos efficiently in maintaining motion coherency and entity consistency. GPT4Motion offers new insights in text-to-video research, enhancing its quality and broadening its horizon for future explorations.
StyleStudio: Text-Driven Style Transfer with Selective Control of Style Elements
Text-driven style transfer aims to merge the style of a reference image with content described by a text prompt. Recent advancements in text-to-image models have improved the nuance of style transformations, yet significant challenges remain, particularly with overfitting to reference styles, limiting stylistic control, and misaligning with textual content. In this paper, we propose three complementary strategies to address these issues. First, we introduce a cross-modal Adaptive Instance Normalization (AdaIN) mechanism for better integration of style and text features, enhancing alignment. Second, we develop a Style-based Classifier-Free Guidance (SCFG) approach that enables selective control over stylistic elements, reducing irrelevant influences. Finally, we incorporate a teacher model during early generation stages to stabilize spatial layouts and mitigate artifacts. Our extensive evaluations demonstrate significant improvements in style transfer quality and alignment with textual prompts. Furthermore, our approach can be integrated into existing style transfer frameworks without fine-tuning.
Vision-guided and Mask-enhanced Adaptive Denoising for Prompt-based Image Editing
Text-to-image diffusion models have demonstrated remarkable progress in synthesizing high-quality images from text prompts, which boosts researches on prompt-based image editing that edits a source image according to a target prompt. Despite their advances, existing methods still encounter three key issues: 1) limited capacity of the text prompt in guiding target image generation, 2) insufficient mining of word-to-patch and patch-to-patch relationships for grounding editing areas, and 3) unified editing strength for all regions during each denoising step. To address these issues, we present a Vision-guided and Mask-enhanced Adaptive Editing (ViMAEdit) method with three key novel designs. First, we propose to leverage image embeddings as explicit guidance to enhance the conventional textual prompt-based denoising process, where a CLIP-based target image embedding estimation strategy is introduced. Second, we devise a self-attention-guided iterative editing area grounding strategy, which iteratively exploits patch-to-patch relationships conveyed by self-attention maps to refine those word-to-patch relationships contained in cross-attention maps. Last, we present a spatially adaptive variance-guided sampling, which highlights sampling variances for critical image regions to promote the editing capability. Experimental results demonstrate the superior editing capacity of ViMAEdit over all existing methods.
Text-to-Image Synthesis for Any Artistic Styles: Advancements in Personalized Artistic Image Generation via Subdivision and Dual Binding
Recent advancements in text-to-image models, such as Stable Diffusion, have demonstrated their ability to synthesize visual images through natural language prompts. One approach of personalizing text-to-image models, exemplified by DreamBooth, fine-tunes the pre-trained model by binding unique text identifiers with a few images of a specific subject. Although existing fine-tuning methods have demonstrated competence in rendering images according to the styles of famous painters, it is still challenging to learn to produce images encapsulating distinct art styles due to abstract and broad visual perceptions of stylistic attributes such as lines, shapes, textures, and colors. In this paper, we introduce a new method, Single-StyleForge, for personalization. It fine-tunes pre-trained text-to-image diffusion models to generate diverse images in specified styles from text prompts. By using around 15-20 images of the target style, the approach establishes a foundational binding of a unique token identifier with a broad range of the target style. It also utilizes auxiliary images to strengthen this binding, resulting in offering specific guidance on representing elements such as persons in a target style-consistent manner. In addition, we present ways to improve the quality of style and text-image alignment through a method called Multi-StyleForge, which inherits the strategy used in StyleForge and learns tokens in multiple. Experimental evaluation conducted on six distinct artistic styles demonstrates substantial improvements in both the quality of generated images and the perceptual fidelity metrics, such as FID, KID, and CLIP scores.
Training-Free Sketch-Guided Diffusion with Latent Optimization
Based on recent advanced diffusion models, Text-to-image (T2I) generation models have demonstrated their capabilities in generating diverse and high-quality images. However, leveraging their potential for real-world content creation, particularly in providing users with precise control over the image generation result, poses a significant challenge. In this paper, we propose an innovative training-free pipeline that extends existing text-to-image generation models to incorporate a sketch as an additional condition. To generate new images with a layout and structure closely resembling the input sketch, we find that these core features of a sketch can be tracked with the cross-attention maps of diffusion models. We introduce latent optimization, a method that refines the noisy latent at each intermediate step of the generation process using cross-attention maps to ensure that the generated images closely adhere to the desired structure outlined in the reference sketch. Through latent optimization, our method enhances the fidelity and accuracy of image generation, offering users greater control and customization options in content creation.
Class-Aware Mask-Guided Feature Refinement for Scene Text Recognition
Scene text recognition is a rapidly developing field that faces numerous challenges due to the complexity and diversity of scene text, including complex backgrounds, diverse fonts, flexible arrangements, and accidental occlusions. In this paper, we propose a novel approach called Class-Aware Mask-guided feature refinement (CAM) to address these challenges. Our approach introduces canonical class-aware glyph masks generated from a standard font to effectively suppress background and text style noise, thereby enhancing feature discrimination. Additionally, we design a feature alignment and fusion module to incorporate the canonical mask guidance for further feature refinement for text recognition. By enhancing the alignment between the canonical mask feature and the text feature, the module ensures more effective fusion, ultimately leading to improved recognition performance. We first evaluate CAM on six standard text recognition benchmarks to demonstrate its effectiveness. Furthermore, CAM exhibits superiority over the state-of-the-art method by an average performance gain of 4.1% across six more challenging datasets, despite utilizing a smaller model size. Our study highlights the importance of incorporating canonical mask guidance and aligned feature refinement techniques for robust scene text recognition. The code is available at https://github.com/MelosY/CAM.
Discovering Failure Modes of Text-guided Diffusion Models via Adversarial Search
Text-guided diffusion models (TDMs) are widely applied but can fail unexpectedly. Common failures include: (i) natural-looking text prompts generating images with the wrong content, or (ii) different random samples of the latent variables that generate vastly different, and even unrelated, outputs despite being conditioned on the same text prompt. In this work, we aim to study and understand the failure modes of TDMs in more detail. To achieve this, we propose SAGE, the first adversarial search method on TDMs that systematically explores the discrete prompt space and the high-dimensional latent space, to automatically discover undesirable behaviors and failure cases in image generation. We use image classifiers as surrogate loss functions during searching, and employ human inspections to validate the identified failures. For the first time, our method enables efficient exploration of both the discrete and intricate human language space and the challenging latent space, overcoming the gradient vanishing problem. Then, we demonstrate the effectiveness of SAGE on five widely used generative models and reveal four typical failure modes: (1) We find a variety of natural text prompts that generate images failing to capture the semantics of input texts. We further discuss the underlying causes and potential solutions based on the results. (2) We find regions in the latent space that lead to distorted images independent of the text prompt, suggesting that parts of the latent space are not well-structured. (3) We also find latent samples that result in natural-looking images unrelated to the text prompt, implying a possible misalignment between the latent and prompt spaces. (4) By appending a single adversarial token embedding to any input prompts, we can generate a variety of specified target objects. Project page: https://sage-diffusion.github.io/
AMO Sampler: Enhancing Text Rendering with Overshooting
Achieving precise alignment between textual instructions and generated images in text-to-image generation is a significant challenge, particularly in rendering written text within images. Sate-of-the-art models like Stable Diffusion 3 (SD3), Flux, and AuraFlow still struggle with accurate text depiction, resulting in misspelled or inconsistent text. We introduce a training-free method with minimal computational overhead that significantly enhances text rendering quality. Specifically, we introduce an overshooting sampler for pretrained rectified flow (RF) models, by alternating between over-simulating the learned ordinary differential equation (ODE) and reintroducing noise. Compared to the Euler sampler, the overshooting sampler effectively introduces an extra Langevin dynamics term that can help correct the compounding error from successive Euler steps and therefore improve the text rendering. However, when the overshooting strength is high, we observe over-smoothing artifacts on the generated images. To address this issue, we propose an Attention Modulated Overshooting sampler (AMO), which adaptively controls the strength of overshooting for each image patch according to their attention score with the text content. AMO demonstrates a 32.3% and 35.9% improvement in text rendering accuracy on SD3 and Flux without compromising overall image quality or increasing inference cost.
eDiff-I: Text-to-Image Diffusion Models with an Ensemble of Expert Denoisers
Large-scale diffusion-based generative models have led to breakthroughs in text-conditioned high-resolution image synthesis. Starting from random noise, such text-to-image diffusion models gradually synthesize images in an iterative fashion while conditioning on text prompts. We find that their synthesis behavior qualitatively changes throughout this process: Early in sampling, generation strongly relies on the text prompt to generate text-aligned content, while later, the text conditioning is almost entirely ignored. This suggests that sharing model parameters throughout the entire generation process may not be ideal. Therefore, in contrast to existing works, we propose to train an ensemble of text-to-image diffusion models specialized for different synthesis stages. To maintain training efficiency, we initially train a single model, which is then split into specialized models that are trained for the specific stages of the iterative generation process. Our ensemble of diffusion models, called eDiff-I, results in improved text alignment while maintaining the same inference computation cost and preserving high visual quality, outperforming previous large-scale text-to-image diffusion models on the standard benchmark. In addition, we train our model to exploit a variety of embeddings for conditioning, including the T5 text, CLIP text, and CLIP image embeddings. We show that these different embeddings lead to different behaviors. Notably, the CLIP image embedding allows an intuitive way of transferring the style of a reference image to the target text-to-image output. Lastly, we show a technique that enables eDiff-I's "paint-with-words" capability. A user can select the word in the input text and paint it in a canvas to control the output, which is very handy for crafting the desired image in mind. The project page is available at https://deepimagination.cc/eDiff-I/
Get What You Want, Not What You Don't: Image Content Suppression for Text-to-Image Diffusion Models
The success of recent text-to-image diffusion models is largely due to their capacity to be guided by a complex text prompt, which enables users to precisely describe the desired content. However, these models struggle to effectively suppress the generation of undesired content, which is explicitly requested to be omitted from the generated image in the prompt. In this paper, we analyze how to manipulate the text embeddings and remove unwanted content from them. We introduce two contributions, which we refer to as soft-weighted regularization and inference-time text embedding optimization. The first regularizes the text embedding matrix and effectively suppresses the undesired content. The second method aims to further suppress the unwanted content generation of the prompt, and encourages the generation of desired content. We evaluate our method quantitatively and qualitatively on extensive experiments, validating its effectiveness. Furthermore, our method is generalizability to both the pixel-space diffusion models (i.e. DeepFloyd-IF) and the latent-space diffusion models (i.e. Stable Diffusion).
Padding Tone: A Mechanistic Analysis of Padding Tokens in T2I Models
Text-to-image (T2I) diffusion models rely on encoded prompts to guide the image generation process. Typically, these prompts are extended to a fixed length by adding padding tokens before text encoding. Despite being a default practice, the influence of padding tokens on the image generation process has not been investigated. In this work, we conduct the first in-depth analysis of the role padding tokens play in T2I models. We develop two causal techniques to analyze how information is encoded in the representation of tokens across different components of the T2I pipeline. Using these techniques, we investigate when and how padding tokens impact the image generation process. Our findings reveal three distinct scenarios: padding tokens may affect the model's output during text encoding, during the diffusion process, or be effectively ignored. Moreover, we identify key relationships between these scenarios and the model's architecture (cross or self-attention) and its training process (frozen or trained text encoder). These insights contribute to a deeper understanding of the mechanisms of padding tokens, potentially informing future model design and training practices in T2I systems.
Decoder-Only LLMs are Better Controllers for Diffusion Models
Groundbreaking advancements in text-to-image generation have recently been achieved with the emergence of diffusion models. These models exhibit a remarkable ability to generate highly artistic and intricately detailed images based on textual prompts. However, obtaining desired generation outcomes often necessitates repetitive trials of manipulating text prompts just like casting spells on a magic mirror, and the reason behind that is the limited capability of semantic understanding inherent in current image generation models. Specifically, existing diffusion models encode the text prompt input with a pre-trained encoder structure, which is usually trained on a limited number of image-caption pairs. The state-of-the-art large language models (LLMs) based on the decoder-only structure have shown a powerful semantic understanding capability as their architectures are more suitable for training on very large-scale unlabeled data. In this work, we propose to enhance text-to-image diffusion models by borrowing the strength of semantic understanding from large language models, and devise a simple yet effective adapter to allow the diffusion models to be compatible with the decoder-only structure. Meanwhile, we also provide a supporting theoretical analysis with various architectures (e.g., encoder-only, encoder-decoder, and decoder-only), and conduct extensive empirical evaluations to verify its effectiveness. The experimental results show that the enhanced models with our adapter module are superior to the stat-of-the-art models in terms of text-to-image generation quality and reliability.
ODM: A Text-Image Further Alignment Pre-training Approach for Scene Text Detection and Spotting
In recent years, text-image joint pre-training techniques have shown promising results in various tasks. However, in Optical Character Recognition (OCR) tasks, aligning text instances with their corresponding text regions in images poses a challenge, as it requires effective alignment between text and OCR-Text (referring to the text in images as OCR-Text to distinguish from the text in natural language) rather than a holistic understanding of the overall image content. In this paper, we propose a new pre-training method called OCR-Text Destylization Modeling (ODM) that transfers diverse styles of text found in images to a uniform style based on the text prompt. With ODM, we achieve better alignment between text and OCR-Text and enable pre-trained models to adapt to the complex and diverse styles of scene text detection and spotting tasks. Additionally, we have designed a new labeling generation method specifically for ODM and combined it with our proposed Text-Controller module to address the challenge of annotation costs in OCR tasks, allowing a larger amount of unlabeled data to participate in pre-training. Extensive experiments on multiple public datasets demonstrate that our method significantly improves performance and outperforms current pre-training methods in scene text detection and spotting tasks. Code is available at {https://github.com/PriNing/ODM}.
Correcting diacritics and typos with a ByT5 transformer model
Due to the fast pace of life and online communications and the prevalence of English and the QWERTY keyboard, people tend to forgo using diacritics, make typographical errors (typos) when typing in other languages. Restoring diacritics and correcting spelling is important for proper language use and the disambiguation of texts for both humans and downstream algorithms. However, both of these problems are typically addressed separately: the state-of-the-art diacritics restoration methods do not tolerate other typos, but classical spellcheckers also cannot deal adequately with all the diacritics missing. In this work, we tackle both problems at once by employing the newly-developed universal ByT5 byte-level seq2seq transformer model that requires no language-specific model structures. For a comparison, we perform diacritics restoration on benchmark datasets of 12 languages, with the addition of Lithuanian. The experimental investigation proves that our approach is able to achieve results (> 98%) comparable to the previous state-of-the-art, despite being trained less and on fewer data. Our approach is also able to restore diacritics in words not seen during training with > 76% accuracy. Our simultaneous diacritics restoration and typos correction approach reaches > 94% alpha-word accuracy on the 13 languages. It has no direct competitors and strongly outperforms classical spell-checking or dictionary-based approaches. We also demonstrate all the accuracies to further improve with more training. Taken together, this shows the great real-world application potential of our suggested methods to more data, languages, and error classes.
TCIG: Two-Stage Controlled Image Generation with Quality Enhancement through Diffusion
In recent years, significant progress has been made in the development of text-to-image generation models. However, these models still face limitations when it comes to achieving full controllability during the generation process. Often, specific training or the use of limited models is required, and even then, they have certain restrictions. To address these challenges, A two-stage method that effectively combines controllability and high quality in the generation of images is proposed. This approach leverages the expertise of pre-trained models to achieve precise control over the generated images, while also harnessing the power of diffusion models to achieve state-of-the-art quality. By separating controllability from high quality, This method achieves outstanding results. It is compatible with both latent and image space diffusion models, ensuring versatility and flexibility. Moreover, This approach consistently produces comparable outcomes to the current state-of-the-art methods in the field. Overall, This proposed method represents a significant advancement in text-to-image generation, enabling improved controllability without compromising on the quality of the generated images.
Long-CLIP: Unlocking the Long-Text Capability of CLIP
Contrastive Language-Image Pre-training (CLIP) has been the cornerstone for zero-shot classification, text-image retrieval, and text-image generation by aligning image and text modalities. Despite its widespread adoption, a significant limitation of CLIP lies in the inadequate length of text input. The length of the text token is restricted to 77, and an empirical study shows the actual effective length is even less than 20. This prevents CLIP from handling detailed descriptions, limiting its applications for image retrieval and text-to-image generation with extensive prerequisites. To this end, we propose Long-CLIP as a plug-and-play alternative to CLIP that supports long-text input, retains or even surpasses its zero-shot generalizability, and aligns the CLIP latent space, making it readily replace CLIP without any further adaptation in downstream frameworks. Nevertheless, achieving this goal is far from straightforward, as simplistic fine-tuning can result in a significant degradation of CLIP's performance. Moreover, substituting the text encoder with a language model supporting longer contexts necessitates pretraining with vast amounts of data, incurring significant expenses. Accordingly, Long-CLIP introduces an efficient fine-tuning solution on CLIP with two novel strategies designed to maintain the original capabilities, including (1) a knowledge-preserved stretching of positional embedding and (2) a primary component matching of CLIP features. With leveraging just one million extra long text-image pairs, Long-CLIP has shown the superiority to CLIP for about 20% in long caption text-image retrieval and 6% in traditional text-image retrieval tasks, e.g., COCO and Flickr30k. Furthermore, Long-CLIP offers enhanced capabilities for generating images from detailed text descriptions by replacing CLIP in a plug-and-play manner.
Rethinking HTG Evaluation: Bridging Generation and Recognition
The evaluation of generative models for natural image tasks has been extensively studied. Similar protocols and metrics are used in cases with unique particularities, such as Handwriting Generation, even if they might not be completely appropriate. In this work, we introduce three measures tailored for HTG evaluation, HTG_{HTR} , HTG_{style} , and HTG_{OOV} , and argue that they are more expedient to evaluate the quality of generated handwritten images. The metrics rely on the recognition error/accuracy of Handwriting Text Recognition and Writer Identification models and emphasize writing style, textual content, and diversity as the main aspects that adhere to the content of handwritten images. We conduct comprehensive experiments on the IAM handwriting database, showcasing that widely used metrics such as FID fail to properly quantify the diversity and the practical utility of generated handwriting samples. Our findings show that our metrics are richer in information and underscore the necessity of standardized evaluation protocols in HTG. The proposed metrics provide a more robust and informative protocol for assessing HTG quality, contributing to improved performance in HTR. Code for the evaluation protocol is available at: https://github.com/koninik/HTG_evaluation.
BN-HTRd: A Benchmark Dataset for Document Level Offline Bangla Handwritten Text Recognition (HTR) and Line Segmentation
We introduce a new dataset for offline Handwritten Text Recognition (HTR) from images of Bangla scripts comprising words, lines, and document-level annotations. The BN-HTRd dataset is based on the BBC Bangla News corpus, meant to act as ground truth texts. These texts were subsequently used to generate the annotations that were filled out by people with their handwriting. Our dataset includes 788 images of handwritten pages produced by approximately 150 different writers. It can be adopted as a basis for various handwriting classification tasks such as end-to-end document recognition, word-spotting, word or line segmentation, and so on. We also propose a scheme to segment Bangla handwritten document images into corresponding lines in an unsupervised manner. Our line segmentation approach takes care of the variability involved in different writing styles, accurately segmenting complex handwritten text lines of curvilinear nature. Along with a bunch of pre-processing and morphological operations, both Hough line and circle transforms were employed to distinguish different linear components. In order to arrange those components into their corresponding lines, we followed an unsupervised clustering approach. The average success rate of our segmentation technique is 81.57% in terms of FM metrics (similar to F-measure) with a mean Average Precision (mAP) of 0.547.
From Intentions to Techniques: A Comprehensive Taxonomy and Challenges in Text Watermarking for Large Language Models
With the rapid growth of Large Language Models (LLMs), safeguarding textual content against unauthorized use is crucial. Text watermarking offers a vital solution, protecting both - LLM-generated and plain text sources. This paper presents a unified overview of different perspectives behind designing watermarking techniques, through a comprehensive survey of the research literature. Our work has two key advantages, (1) we analyze research based on the specific intentions behind different watermarking techniques, evaluation datasets used, watermarking addition, and removal methods to construct a cohesive taxonomy. (2) We highlight the gaps and open challenges in text watermarking to promote research in protecting text authorship. This extensive coverage and detailed analysis sets our work apart, offering valuable insights into the evolving landscape of text watermarking in language models.
Understanding and Mitigating Compositional Issues in Text-to-Image Generative Models
Recent text-to-image diffusion-based generative models have the stunning ability to generate highly detailed and photo-realistic images and achieve state-of-the-art low FID scores on challenging image generation benchmarks. However, one of the primary failure modes of these text-to-image generative models is in composing attributes, objects, and their associated relationships accurately into an image. In our paper, we investigate this compositionality-based failure mode and highlight that imperfect text conditioning with CLIP text-encoder is one of the primary reasons behind the inability of these models to generate high-fidelity compositional scenes. In particular, we show that (i) there exists an optimal text-embedding space that can generate highly coherent compositional scenes which shows that the output space of the CLIP text-encoder is sub-optimal, and (ii) we observe that the final token embeddings in CLIP are erroneous as they often include attention contributions from unrelated tokens in compositional prompts. Our main finding shows that the best compositional improvements can be achieved (without harming the model's FID scores) by fine-tuning {\it only} a simple linear projection on CLIP's representation space in Stable-Diffusion variants using a small set of compositional image-text pairs. This result demonstrates that the sub-optimality of the CLIP's output space is a major error source. We also show that re-weighting the erroneous attention contributions in CLIP can also lead to improved compositional performances, however these improvements are often less significant than those achieved by solely learning a linear projection head, highlighting erroneous attentions to be only a minor error source.
TPS++: Attention-Enhanced Thin-Plate Spline for Scene Text Recognition
Text irregularities pose significant challenges to scene text recognizers. Thin-Plate Spline (TPS)-based rectification is widely regarded as an effective means to deal with them. Currently, the calculation of TPS transformation parameters purely depends on the quality of regressed text borders. It ignores the text content and often leads to unsatisfactory rectified results for severely distorted text. In this work, we introduce TPS++, an attention-enhanced TPS transformation that incorporates the attention mechanism to text rectification for the first time. TPS++ formulates the parameter calculation as a joint process of foreground control point regression and content-based attention score estimation, which is computed by a dedicated designed gated-attention block. TPS++ builds a more flexible content-aware rectifier, generating a natural text correction that is easier to read by the subsequent recognizer. Moreover, TPS++ shares the feature backbone with the recognizer in part and implements the rectification at feature-level rather than image-level, incurring only a small overhead in terms of parameters and inference time. Experiments on public benchmarks show that TPS++ consistently improves the recognition and achieves state-of-the-art accuracy. Meanwhile, it generalizes well on different backbones and recognizers. Code is at https://github.com/simplify23/TPS_PP.
Handwritten Text Generation from Visual Archetypes
Generating synthetic images of handwritten text in a writer-specific style is a challenging task, especially in the case of unseen styles and new words, and even more when these latter contain characters that are rarely encountered during training. While emulating a writer's style has been recently addressed by generative models, the generalization towards rare characters has been disregarded. In this work, we devise a Transformer-based model for Few-Shot styled handwritten text generation and focus on obtaining a robust and informative representation of both the text and the style. In particular, we propose a novel representation of the textual content as a sequence of dense vectors obtained from images of symbols written as standard GNU Unifont glyphs, which can be considered their visual archetypes. This strategy is more suitable for generating characters that, despite having been seen rarely during training, possibly share visual details with the frequently observed ones. As for the style, we obtain a robust representation of unseen writers' calligraphy by exploiting specific pre-training on a large synthetic dataset. Quantitative and qualitative results demonstrate the effectiveness of our proposal in generating words in unseen styles and with rare characters more faithfully than existing approaches relying on independent one-hot encodings of the characters.
Handwritten and Printed Text Segmentation: A Signature Case Study
While analyzing scanned documents, handwritten text can overlap with printed text. This overlap causes difficulties during the optical character recognition (OCR) and digitization process of documents, and subsequently, hurts downstream NLP tasks. Prior research either focuses solely on the binary classification of handwritten text or performs a three-class segmentation of the document, i.e., recognition of handwritten, printed, and background pixels. This approach results in the assignment of overlapping handwritten and printed pixels to only one of the classes, and thus, they are not accounted for in the other class. Thus, in this research, we develop novel approaches to address the challenges of handwritten and printed text segmentation. Our objective is to recover text from different classes in their entirety, especially enhancing the segmentation performance on overlapping sections. To support this task, we introduce a new dataset, SignaTR6K, collected from real legal documents, as well as a new model architecture for the handwritten and printed text segmentation task. Our best configuration outperforms prior work on two different datasets by 17.9% and 7.3% on IoU scores. The SignaTR6K dataset is accessible for download via the following link: https://forms.office.com/r/2a5RDg7cAY.
Towards Emotion-Based Synthetic Consciousness: Using LLMs to Estimate Emotion Probability Vectors
This paper shows how LLMs (Large Language Models) may be used to estimate a summary of the emotional state associated with piece of text. The summary of emotional state is a dictionary of words used to describe emotion together with the probability of the word appearing after a prompt comprising the original text and an emotion eliciting tail. Through emotion analysis of Amazon product reviews we demonstrate emotion descriptors can be mapped into a PCA type space. It was hoped that text descriptions of actions to improve a current text described state could also be elicited through a tail prompt. Experiment seemed to indicate that this is not straightforward to make work. This failure put our hoped for selection of action via choosing the best predict ed outcome via comparing emotional responses out of reach for the moment.
LoCo: Locally Constrained Training-Free Layout-to-Image Synthesis
Recent text-to-image diffusion models have reached an unprecedented level in generating high-quality images. However, their exclusive reliance on textual prompts often falls short in accurately conveying fine-grained spatial compositions. In this paper, we propose LoCo, a training-free approach for layout-to-image synthesis that excels in producing high-quality images aligned with both textual prompts and spatial layouts. Our method introduces a Localized Attention Constraint to refine cross-attention for individual objects, ensuring their precise placement in designated regions. We further propose a Padding Token Constraint to leverage the semantic information embedded in previously neglected padding tokens, thereby preventing the undesired fusion of synthesized objects. LoCo seamlessly integrates into existing text-to-image and layout-to-image models, significantly amplifying their performance and effectively addressing semantic failures observed in prior methods. Through extensive experiments, we showcase the superiority of our approach, surpassing existing state-of-the-art training-free layout-to-image methods both qualitatively and quantitatively across multiple benchmarks.
TextCoT: Zoom In for Enhanced Multimodal Text-Rich Image Understanding
The advent of Large Multimodal Models (LMMs) has sparked a surge in research aimed at harnessing their remarkable reasoning abilities. However, for understanding text-rich images, challenges persist in fully leveraging the potential of LMMs, and existing methods struggle with effectively processing high-resolution images. In this work, we propose TextCoT, a novel Chain-of-Thought framework for text-rich image understanding. TextCoT utilizes the captioning ability of LMMs to grasp the global context of the image and the grounding capability to examine local textual regions. This allows for the extraction of both global and local visual information, facilitating more accurate question-answering. Technically, TextCoT consists of three stages, including image overview, coarse localization, and fine-grained observation. The image overview stage provides a comprehensive understanding of the global scene information, and the coarse localization stage approximates the image area containing the answer based on the question asked. Then, integrating the obtained global image descriptions, the final stage further examines specific regions to provide accurate answers. Our method is free of extra training, offering immediate plug-and-play functionality. Extensive experiments are conducted on a series of text-rich image question-answering benchmark datasets based on several advanced LMMs, and the results demonstrate the effectiveness and strong generalization ability of our method. Code is available at https://github.com/bzluan/TextCoT.
LIP: Lightweight Intelligent Preprocessor for meaningful text-to-speech
Existing Text-to-Speech (TTS) systems need to read messages from the email which may have Personal Identifiable Information (PII) to text messages that can have a streak of emojis and punctuation. 92% of the world's online population use emoji with more than 10 billion emojis sent everyday. Lack of preprocessor leads to messages being read as-is including punctuation and infographics like emoticons. This problem worsens if there is a continuous sequence of punctuation/emojis that are quite common in real-world communications like messaging, Social Networking Site (SNS) interactions, etc. In this work, we aim to introduce a lightweight intelligent preprocessor (LIP) that can enhance the readability of a message before being passed downstream to existing TTS systems. We propose multiple sub-modules including: expanding contraction, censoring swear words, and masking of PII, as part of our preprocessor to enhance the readability of text. With a memory footprint of only 3.55 MB and inference time of 4 ms for up to 50-character text, our solution is suitable for real-time deployment. This work being the first of its kind, we try to benchmark with an open independent survey, the result of which shows 76.5% preference towards LIP enabled TTS engine as compared to standard TTS.
Data Generation for Post-OCR correction of Cyrillic handwriting
This paper introduces a novel approach to post-Optical Character Recognition Correction (POC) for handwritten Cyrillic text, addressing a significant gap in current research methodologies. This gap is due to the lack of large text corporas that provide OCR errors for further training of language-based POC models, which are demanding in terms of corpora size. Our study primarily focuses on the development and application of a synthetic handwriting generation engine based on B\'ezier curves. Such an engine generates highly realistic handwritten text in any amounts, which we utilize to create a substantial dataset by transforming Russian text corpora sourced from the internet. We apply a Handwritten Text Recognition (HTR) model to this dataset to identify OCR errors, forming the basis for our POC model training. The correction model is trained on a 90-symbol input context, utilizing a pre-trained T5 architecture with a seq2seq correction task. We evaluate our approach on HWR200 and School_notebooks_RU datasets as they provide significant challenges in the HTR domain. Furthermore, POC can be used to highlight errors for teachers, evaluating student performance. This can be done simply by comparing sentences before and after correction, displaying differences in text. Our primary contribution lies in the innovative use of B\'ezier curves for Cyrillic text generation and subsequent error correction using a specialized POC model. We validate our approach by presenting Word Accuracy Rate (WAR) and Character Accuracy Rate (CAR) results, both with and without post-OCR correction, using real open corporas of handwritten Cyrillic text. These results, coupled with our methodology, are designed to be reproducible, paving the way for further advancements in the field of OCR and handwritten text analysis. Paper contributions can be found in https://github.com/dbrainio/CyrillicHandwritingPOC
Bridging Text and Image for Artist Style Transfer via Contrastive Learning
Image style transfer has attracted widespread attention in the past few years. Despite its remarkable results, it requires additional style images available as references, making it less flexible and inconvenient. Using text is the most natural way to describe the style. More importantly, text can describe implicit abstract styles, like styles of specific artists or art movements. In this paper, we propose a Contrastive Learning for Artistic Style Transfer (CLAST) that leverages advanced image-text encoders to control arbitrary style transfer. We introduce a supervised contrastive training strategy to effectively extract style descriptions from the image-text model (i.e., CLIP), which aligns stylization with the text description. To this end, we also propose a novel and efficient adaLN based state space models that explore style-content fusion. Finally, we achieve a text-driven image style transfer. Extensive experiments demonstrate that our approach outperforms the state-of-the-art methods in artistic style transfer. More importantly, it does not require online fine-tuning and can render a 512x512 image in 0.03s.
Guide3D: Create 3D Avatars from Text and Image Guidance
Recently, text-to-image generation has exhibited remarkable advancements, with the ability to produce visually impressive results. In contrast, text-to-3D generation has not yet reached a comparable level of quality. Existing methods primarily rely on text-guided score distillation sampling (SDS), and they encounter difficulties in transferring 2D attributes of the generated images to 3D content. In this work, we aim to develop an effective 3D generative model capable of synthesizing high-resolution textured meshes by leveraging both textual and image information. To this end, we introduce Guide3D, a zero-shot text-and-image-guided generative model for 3D avatar generation based on diffusion models. Our model involves (1) generating sparse-view images of a text-consistent character using diffusion models, and (2) jointly optimizing multi-resolution differentiable marching tetrahedral grids with pixel-aligned image features. We further propose a similarity-aware feature fusion strategy for efficiently integrating features from different views. Moreover, we introduce two novel training objectives as an alternative to calculating SDS, significantly enhancing the optimization process. We thoroughly evaluate the performance and components of our framework, which outperforms the current state-of-the-art in producing topologically and structurally correct geometry and high-resolution textures. Guide3D enables the direct transfer of 2D-generated images to the 3D space. Our code will be made publicly available.
How to Choose Pretrained Handwriting Recognition Models for Single Writer Fine-Tuning
Recent advancements in Deep Learning-based Handwritten Text Recognition (HTR) have led to models with remarkable performance on both modern and historical manuscripts in large benchmark datasets. Nonetheless, those models struggle to obtain the same performance when applied to manuscripts with peculiar characteristics, such as language, paper support, ink, and author handwriting. This issue is very relevant for valuable but small collections of documents preserved in historical archives, for which obtaining sufficient annotated training data is costly or, in some cases, unfeasible. To overcome this challenge, a possible solution is to pretrain HTR models on large datasets and then fine-tune them on small single-author collections. In this paper, we take into account large, real benchmark datasets and synthetic ones obtained with a styled Handwritten Text Generation model. Through extensive experimental analysis, also considering the amount of fine-tuning lines, we give a quantitative indication of the most relevant characteristics of such data for obtaining an HTR model able to effectively transcribe manuscripts in small collections with as little as five real fine-tuning lines.
Increasing Textual Context Size Boosts Medical Image-Text Matching
This short technical report demonstrates a simple technique that yields state of the art results in medical image-text matching tasks. We analyze the use of OpenAI's CLIP, a general image-text matching model, and observe that CLIP's limited textual input size has negative impact on downstream performance in the medical domain where encoding longer textual contexts is often required. We thus train and release ClipMD, which is trained with a simple sliding window technique to encode textual captions. ClipMD was tested on two medical image-text datasets and compared with other image-text matching models. The results show that ClipMD outperforms other models on both datasets by a large margin. We make our code and pretrained model publicly available.
One-Shot Diffusion Mimicker for Handwritten Text Generation
Existing handwritten text generation methods often require more than ten handwriting samples as style references. However, in practical applications, users tend to prefer a handwriting generation model that operates with just a single reference sample for its convenience and efficiency. This approach, known as "one-shot generation", significantly simplifies the process but poses a significant challenge due to the difficulty of accurately capturing a writer's style from a single sample, especially when extracting fine details from the characters' edges amidst sparse foreground and undesired background noise. To address this problem, we propose a One-shot Diffusion Mimicker (One-DM) to generate handwritten text that can mimic any calligraphic style with only one reference sample. Inspired by the fact that high-frequency information of the individual sample often contains distinct style patterns (e.g., character slant and letter joining), we develop a novel style-enhanced module to improve the style extraction by incorporating high-frequency components from a single sample. We then fuse the style features with the text content as a merged condition for guiding the diffusion model to produce high-quality handwritten text images. Extensive experiments demonstrate that our method can successfully generate handwriting scripts with just one sample reference in multiple languages, even outperforming previous methods using over ten samples. Our source code is available at https://github.com/dailenson/One-DM.
ScholaWrite: A Dataset of End-to-End Scholarly Writing Process
Writing is a cognitively demanding task involving continuous decision-making, heavy use of working memory, and frequent switching between multiple activities. Scholarly writing is particularly complex as it requires authors to coordinate many pieces of multiform knowledge. To fully understand writers' cognitive thought process, one should fully decode the end-to-end writing data (from individual ideas to final manuscript) and understand their complex cognitive mechanisms in scholarly writing. We introduce ScholaWrite dataset, the first-of-its-kind keystroke logs of an end-to-end scholarly writing process for complete manuscripts, with thorough annotations of cognitive writing intentions behind each keystroke. Our dataset includes LaTeX-based keystroke data from five preprints with nearly 62K total text changes and annotations across 4 months of paper writing. ScholaWrite shows promising usability and applications (e.g., iterative self-writing) for the future development of AI writing assistants for academic research, which necessitate complex methods beyond LLM prompting. Our experiments clearly demonstrated the importance of collection of end-to-end writing data, rather than the final manuscript, for the development of future writing assistants to support the cognitive thinking process of scientists. Our de-identified dataset, demo, and code repository are available on our project page.
PromptDresser: Improving the Quality and Controllability of Virtual Try-On via Generative Textual Prompt and Prompt-aware Mask
Recent virtual try-on approaches have advanced by fine-tuning the pre-trained text-to-image diffusion models to leverage their powerful generative ability. However, the use of text prompts in virtual try-on is still underexplored. This paper tackles a text-editable virtual try-on task that changes the clothing item based on the provided clothing image while editing the wearing style (e.g., tucking style, fit) according to the text descriptions. In the text-editable virtual try-on, three key aspects exist: (i) designing rich text descriptions for paired person-clothing data to train the model, (ii) addressing the conflicts where textual information of the existing person's clothing interferes the generation of the new clothing, and (iii) adaptively adjust the inpainting mask aligned with the text descriptions, ensuring proper editing areas while preserving the original person's appearance irrelevant to the new clothing. To address these aspects, we propose PromptDresser, a text-editable virtual try-on model that leverages large multimodal model (LMM) assistance to enable high-quality and versatile manipulation based on generative text prompts. Our approach utilizes LMMs via in-context learning to generate detailed text descriptions for person and clothing images independently, including pose details and editing attributes using minimal human cost. Moreover, to ensure the editing areas, we adjust the inpainting mask depending on the text prompts adaptively. We found that our approach, utilizing detailed text prompts, not only enhances text editability but also effectively conveys clothing details that are difficult to capture through images alone, thereby enhancing image quality. Our code is available at https://github.com/rlawjdghek/PromptDresser.
ORACLE: Leveraging Mutual Information for Consistent Character Generation with LoRAs in Diffusion Models
Text-to-image diffusion models have recently taken center stage as pivotal tools in promoting visual creativity across an array of domains such as comic book artistry, children's literature, game development, and web design. These models harness the power of artificial intelligence to convert textual descriptions into vivid images, thereby enabling artists and creators to bring their imaginative concepts to life with unprecedented ease. However, one of the significant hurdles that persist is the challenge of maintaining consistency in character generation across diverse contexts. Variations in textual prompts, even if minor, can yield vastly different visual outputs, posing a considerable problem in projects that require a uniform representation of characters throughout. In this paper, we introduce a novel framework designed to produce consistent character representations from a single text prompt across diverse settings. Through both quantitative and qualitative analyses, we demonstrate that our framework outperforms existing methods in generating characters with consistent visual identities, underscoring its potential to transform creative industries. By addressing the critical challenge of character consistency, we not only enhance the practical utility of these models but also broaden the horizons for artistic and creative expression.
Localizing Object-level Shape Variations with Text-to-Image Diffusion Models
Text-to-image models give rise to workflows which often begin with an exploration step, where users sift through a large collection of generated images. The global nature of the text-to-image generation process prevents users from narrowing their exploration to a particular object in the image. In this paper, we present a technique to generate a collection of images that depicts variations in the shape of a specific object, enabling an object-level shape exploration process. Creating plausible variations is challenging as it requires control over the shape of the generated object while respecting its semantics. A particular challenge when generating object variations is accurately localizing the manipulation applied over the object's shape. We introduce a prompt-mixing technique that switches between prompts along the denoising process to attain a variety of shape choices. To localize the image-space operation, we present two techniques that use the self-attention layers in conjunction with the cross-attention layers. Moreover, we show that these localization techniques are general and effective beyond the scope of generating object variations. Extensive results and comparisons demonstrate the effectiveness of our method in generating object variations, and the competence of our localization techniques.
General OCR Theory: Towards OCR-2.0 via a Unified End-to-end Model
Traditional OCR systems (OCR-1.0) are increasingly unable to meet people's usage due to the growing demand for intelligent processing of man-made optical characters. In this paper, we collectively refer to all artificial optical signals (e.g., plain texts, math/molecular formulas, tables, charts, sheet music, and even geometric shapes) as "characters" and propose the General OCR Theory along with an excellent model, namely GOT, to promote the arrival of OCR-2.0. The GOT, with 580M parameters, is a unified, elegant, and end-to-end model, consisting of a high-compression encoder and a long-contexts decoder. As an OCR-2.0 model, GOT can handle all the above "characters" under various OCR tasks. On the input side, the model supports commonly used scene- and document-style images in slice and whole-page styles. On the output side, GOT can generate plain or formatted results (markdown/tikz/smiles/kern) via an easy prompt. Besides, the model enjoys interactive OCR features, i.e., region-level recognition guided by coordinates or colors. Furthermore, we also adapt dynamic resolution and multi-page OCR technologies to GOT for better practicality. In experiments, we provide sufficient results to prove the superiority of our model.
Textual Prompt Guided Image Restoration
Image restoration has always been a cutting-edge topic in the academic and industrial fields of computer vision. Since degradation signals are often random and diverse, "all-in-one" models that can do blind image restoration have been concerned in recent years. Early works require training specialized headers and tails to handle each degradation of concern, which are manually cumbersome. Recent works focus on learning visual prompts from data distribution to identify degradation type. However, the prompts employed in most of models are non-text, lacking sufficient emphasis on the importance of human-in-the-loop. In this paper, an effective textual prompt guided image restoration model has been proposed. In this model, task-specific BERT is fine-tuned to accurately understand user's instructions and generating textual prompt guidance. Depth-wise multi-head transposed attentions and gated convolution modules are designed to bridge the gap between textual prompts and visual features. The proposed model has innovatively introduced semantic prompts into low-level visual domain. It highlights the potential to provide a natural, precise, and controllable way to perform image restoration tasks. Extensive experiments have been done on public denoising, dehazing and deraining datasets. The experiment results demonstrate that, compared with popular state-of-the-art methods, the proposed model can obtain much more superior performance, achieving accurate recognition and removal of degradation without increasing model's complexity. Related source codes and data will be publicly available on github site https://github.com/MoTong-AI-studio/TextPromptIR.
Spelling Correction with Denoising Transformer
We present a novel method of performing spelling correction on short input strings, such as search queries or individual words. At its core lies a procedure for generating artificial typos which closely follow the error patterns manifested by humans. This procedure is used to train the production spelling correction model based on a transformer architecture. This model is currently served in the HubSpot product search. We show that our approach to typo generation is superior to the widespread practice of adding noise, which ignores human patterns. We also demonstrate how our approach may be extended to resource-scarce settings and train spelling correction models for Arabic, Greek, Russian, and Setswana languages, without using any labeled data.
PatentMatch: A Dataset for Matching Patent Claims & Prior Art
Patent examiners need to solve a complex information retrieval task when they assess the novelty and inventive step of claims made in a patent application. Given a claim, they search for prior art, which comprises all relevant publicly available information. This time-consuming task requires a deep understanding of the respective technical domain and the patent-domain-specific language. For these reasons, we address the computer-assisted search for prior art by creating a training dataset for supervised machine learning called PatentMatch. It contains pairs of claims from patent applications and semantically corresponding text passages of different degrees from cited patent documents. Each pair has been labeled by technically-skilled patent examiners from the European Patent Office. Accordingly, the label indicates the degree of semantic correspondence (matching), i.e., whether the text passage is prejudicial to the novelty of the claimed invention or not. Preliminary experiments using a baseline system show that PatentMatch can indeed be used for training a binary text pair classifier on this challenging information retrieval task. The dataset is available online: https://hpi.de/naumann/s/patentmatch.
AltCanvas: A Tile-Based Image Editor with Generative AI for Blind or Visually Impaired People
People with visual impairments often struggle to create content that relies heavily on visual elements, particularly when conveying spatial and structural information. Existing accessible drawing tools, which construct images line by line, are suitable for simple tasks like math but not for more expressive artwork. On the other hand, emerging generative AI-based text-to-image tools can produce expressive illustrations from descriptions in natural language, but they lack precise control over image composition and properties. To address this gap, our work integrates generative AI with a constructive approach that provides users with enhanced control and editing capabilities. Our system, AltCanvas, features a tile-based interface enabling users to construct visual scenes incrementally, with each tile representing an object within the scene. Users can add, edit, move, and arrange objects while receiving speech and audio feedback. Once completed, the scene can be rendered as a color illustration or as a vector for tactile graphic generation. Involving 14 blind or low-vision users in design and evaluation, we found that participants effectively used the AltCanvas workflow to create illustrations.
TinyStyler: Efficient Few-Shot Text Style Transfer with Authorship Embeddings
The goal of text style transfer is to transform the style of texts while preserving their original meaning, often with only a few examples of the target style. Existing style transfer methods generally rely on the few-shot capabilities of large language models or on complex controllable text generation approaches that are inefficient and underperform on fluency metrics. We introduce TinyStyler, a lightweight but effective approach, which leverages a small language model (800M params) and pre-trained authorship embeddings to perform efficient, few-shot text style transfer. We evaluate on the challenging task of authorship style transfer and find TinyStyler outperforms strong approaches such as GPT-4. We also evaluate TinyStyler's ability to perform text attribute style transfer (formal leftrightarrow informal) with automatic and human evaluations and find that the approach outperforms recent controllable text generation methods. Our model has been made publicly available at https://huggingface.co/tinystyler/tinystyler .
X-Mesh: Towards Fast and Accurate Text-driven 3D Stylization via Dynamic Textual Guidance
Text-driven 3D stylization is a complex and crucial task in the fields of computer vision (CV) and computer graphics (CG), aimed at transforming a bare mesh to fit a target text. Prior methods adopt text-independent multilayer perceptrons (MLPs) to predict the attributes of the target mesh with the supervision of CLIP loss. However, such text-independent architecture lacks textual guidance during predicting attributes, thus leading to unsatisfactory stylization and slow convergence. To address these limitations, we present X-Mesh, an innovative text-driven 3D stylization framework that incorporates a novel Text-guided Dynamic Attention Module (TDAM). The TDAM dynamically integrates the guidance of the target text by utilizing text-relevant spatial and channel-wise attentions during vertex feature extraction, resulting in more accurate attribute prediction and faster convergence speed. Furthermore, existing works lack standard benchmarks and automated metrics for evaluation, often relying on subjective and non-reproducible user studies to assess the quality of stylized 3D assets. To overcome this limitation, we introduce a new standard text-mesh benchmark, namely MIT-30, and two automated metrics, which will enable future research to achieve fair and objective comparisons. Our extensive qualitative and quantitative experiments demonstrate that X-Mesh outperforms previous state-of-the-art methods.
Text-Driven Image Editing via Learnable Regions
Language has emerged as a natural interface for image editing. In this paper, we introduce a method for region-based image editing driven by textual prompts, without the need for user-provided masks or sketches. Specifically, our approach leverages an existing pretrained text-to-image model and introduces a bounding box generator to find the edit regions that are aligned with the textual prompts. We show that this simple approach enables flexible editing that is compatible with current image generation models, and is able to handle complex prompts featuring multiple objects, complex sentences or long paragraphs. We conduct an extensive user study to compare our method against state-of-the-art methods. Experiments demonstrate the competitive performance of our method in manipulating images with high fidelity and realism that align with the language descriptions provided. Our project webpage: https://yuanze-lin.me/LearnableRegions_page.
Promptor: A Conversational and Autonomous Prompt Generation Agent for Intelligent Text Entry Techniques
Text entry is an essential task in our day-to-day digital interactions. Numerous intelligent features have been developed to streamline this process, making text entry more effective, efficient, and fluid. These improvements include sentence prediction and user personalization. However, as deep learning-based language models become the norm for these advanced features, the necessity for data collection and model fine-tuning increases. These challenges can be mitigated by harnessing the in-context learning capability of large language models such as GPT-3.5. This unique feature allows the language model to acquire new skills through prompts, eliminating the need for data collection and fine-tuning. Consequently, large language models can learn various text prediction techniques. We initially showed that, for a sentence prediction task, merely prompting GPT-3.5 surpassed a GPT-2 backed system and is comparable with a fine-tuned GPT-3.5 model, with the latter two methods requiring costly data collection, fine-tuning and post-processing. However, the task of prompting large language models to specialize in specific text prediction tasks can be challenging, particularly for designers without expertise in prompt engineering. To address this, we introduce Promptor, a conversational prompt generation agent designed to engage proactively with designers. Promptor can automatically generate complex prompts tailored to meet specific needs, thus offering a solution to this challenge. We conducted a user study involving 24 participants creating prompts for three intelligent text entry tasks, half of the participants used Promptor while the other half designed prompts themselves. The results show that Promptor-designed prompts result in a 35% increase in similarity and 22% in coherence over those by designers.
Speakerly: A Voice-based Writing Assistant for Text Composition
We present Speakerly, a new real-time voice-based writing assistance system that helps users with text composition across various use cases such as emails, instant messages, and notes. The user can interact with the system through instructions or dictation, and the system generates a well-formatted and coherent document. We describe the system architecture and detail how we address the various challenges while building and deploying such a system at scale. More specifically, our system uses a combination of small, task-specific models as well as pre-trained language models for fast and effective text composition while supporting a variety of input modes for better usability.
SVGCraft: Beyond Single Object Text-to-SVG Synthesis with Comprehensive Canvas Layout
Generating VectorArt from text prompts is a challenging vision task, requiring diverse yet realistic depictions of the seen as well as unseen entities. However, existing research has been mostly limited to the generation of single objects, rather than comprehensive scenes comprising multiple elements. In response, this work introduces SVGCraft, a novel end-to-end framework for the creation of vector graphics depicting entire scenes from textual descriptions. Utilizing a pre-trained LLM for layout generation from text prompts, this framework introduces a technique for producing masked latents in specified bounding boxes for accurate object placement. It introduces a fusion mechanism for integrating attention maps and employs a diffusion U-Net for coherent composition, speeding up the drawing process. The resulting SVG is optimized using a pre-trained encoder and LPIPS loss with opacity modulation to maximize similarity. Additionally, this work explores the potential of primitive shapes in facilitating canvas completion in constrained environments. Through both qualitative and quantitative assessments, SVGCraft is demonstrated to surpass prior works in abstraction, recognizability, and detail, as evidenced by its performance metrics (CLIP-T: 0.4563, Cosine Similarity: 0.6342, Confusion: 0.66, Aesthetic: 6.7832). The code will be available at https://github.com/ayanban011/SVGCraft.
Large-Scale Text-to-Image Model with Inpainting is a Zero-Shot Subject-Driven Image Generator
Subject-driven text-to-image generation aims to produce images of a new subject within a desired context by accurately capturing both the visual characteristics of the subject and the semantic content of a text prompt. Traditional methods rely on time- and resource-intensive fine-tuning for subject alignment, while recent zero-shot approaches leverage on-the-fly image prompting, often sacrificing subject alignment. In this paper, we introduce Diptych Prompting, a novel zero-shot approach that reinterprets as an inpainting task with precise subject alignment by leveraging the emergent property of diptych generation in large-scale text-to-image models. Diptych Prompting arranges an incomplete diptych with the reference image in the left panel, and performs text-conditioned inpainting on the right panel. We further prevent unwanted content leakage by removing the background in the reference image and improve fine-grained details in the generated subject by enhancing attention weights between the panels during inpainting. Experimental results confirm that our approach significantly outperforms zero-shot image prompting methods, resulting in images that are visually preferred by users. Additionally, our method supports not only subject-driven generation but also stylized image generation and subject-driven image editing, demonstrating versatility across diverse image generation applications. Project page: https://diptychprompting.github.io/
Story-to-Motion: Synthesizing Infinite and Controllable Character Animation from Long Text
Generating natural human motion from a story has the potential to transform the landscape of animation, gaming, and film industries. A new and challenging task, Story-to-Motion, arises when characters are required to move to various locations and perform specific motions based on a long text description. This task demands a fusion of low-level control (trajectories) and high-level control (motion semantics). Previous works in character control and text-to-motion have addressed related aspects, yet a comprehensive solution remains elusive: character control methods do not handle text description, whereas text-to-motion methods lack position constraints and often produce unstable motions. In light of these limitations, we propose a novel system that generates controllable, infinitely long motions and trajectories aligned with the input text. (1) We leverage contemporary Large Language Models to act as a text-driven motion scheduler to extract a series of (text, position, duration) pairs from long text. (2) We develop a text-driven motion retrieval scheme that incorporates motion matching with motion semantic and trajectory constraints. (3) We design a progressive mask transformer that addresses common artifacts in the transition motion such as unnatural pose and foot sliding. Beyond its pioneering role as the first comprehensive solution for Story-to-Motion, our system undergoes evaluation across three distinct sub-tasks: trajectory following, temporal action composition, and motion blending, where it outperforms previous state-of-the-art motion synthesis methods across the board. Homepage: https://story2motion.github.io/.
Free-Bloom: Zero-Shot Text-to-Video Generator with LLM Director and LDM Animator
Text-to-video is a rapidly growing research area that aims to generate a semantic, identical, and temporal coherence sequence of frames that accurately align with the input text prompt. This study focuses on zero-shot text-to-video generation considering the data- and cost-efficient. To generate a semantic-coherent video, exhibiting a rich portrayal of temporal semantics such as the whole process of flower blooming rather than a set of "moving images", we propose a novel Free-Bloom pipeline that harnesses large language models (LLMs) as the director to generate a semantic-coherence prompt sequence, while pre-trained latent diffusion models (LDMs) as the animator to generate the high fidelity frames. Furthermore, to ensure temporal and identical coherence while maintaining semantic coherence, we propose a series of annotative modifications to adapting LDMs in the reverse process, including joint noise sampling, step-aware attention shift, and dual-path interpolation. Without any video data and training requirements, Free-Bloom generates vivid and high-quality videos, awe-inspiring in generating complex scenes with semantic meaningful frame sequences. In addition, Free-Bloom is naturally compatible with LDMs-based extensions.
Vision Transformer for Fast and Efficient Scene Text Recognition
Scene text recognition (STR) enables computers to read text in natural scenes such as object labels, road signs and instructions. STR helps machines perform informed decisions such as what object to pick, which direction to go, and what is the next step of action. In the body of work on STR, the focus has always been on recognition accuracy. There is little emphasis placed on speed and computational efficiency which are equally important especially for energy-constrained mobile machines. In this paper we propose ViTSTR, an STR with a simple single stage model architecture built on a compute and parameter efficient vision transformer (ViT). On a comparable strong baseline method such as TRBA with accuracy of 84.3%, our small ViTSTR achieves a competitive accuracy of 82.6% (84.2% with data augmentation) at 2.4x speed up, using only 43.4% of the number of parameters and 42.2% FLOPS. The tiny version of ViTSTR achieves 80.3% accuracy (82.1% with data augmentation), at 2.5x the speed, requiring only 10.9% of the number of parameters and 11.9% FLOPS. With data augmentation, our base ViTSTR outperforms TRBA at 85.2% accuracy (83.7% without augmentation) at 2.3x the speed but requires 73.2% more parameters and 61.5% more FLOPS. In terms of trade-offs, nearly all ViTSTR configurations are at or near the frontiers to maximize accuracy, speed and computational efficiency all at the same time.
Tell Your Model Where to Attend: Post-hoc Attention Steering for LLMs
In human-written articles, we often leverage the subtleties of text style, such as bold and italics, to guide the attention of readers. These textual emphases are vital for the readers to grasp the conveyed information. When interacting with large language models (LLMs), we have a similar need - steering the model to pay closer attention to user-specified information, e.g., an instruction. Existing methods, however, are constrained to process plain text and do not support such a mechanism. This motivates us to introduce PASTA - Post-hoc Attention STeering Approach, a method that allows LLMs to read text with user-specified emphasis marks. To this end, PASTA identifies a small subset of attention heads and applies precise attention reweighting on them, directing the model attention to user-specified parts. Like prompting, PASTA is applied at inference time and does not require changing any model parameters. Experiments demonstrate that PASTA can substantially enhance an LLM's ability to follow user instructions or integrate new knowledge from user inputs, leading to a significant performance improvement on a variety of tasks, e.g., an average accuracy improvement of 22% for LLAMA-7B. Our code is publicly available at https://github.com/QingruZhang/PASTA .
CoMat: Aligning Text-to-Image Diffusion Model with Image-to-Text Concept Matching
Diffusion models have demonstrated great success in the field of text-to-image generation. However, alleviating the misalignment between the text prompts and images is still challenging. The root reason behind the misalignment has not been extensively investigated. We observe that the misalignment is caused by inadequate token attention activation. We further attribute this phenomenon to the diffusion model's insufficient condition utilization, which is caused by its training paradigm. To address the issue, we propose CoMat, an end-to-end diffusion model fine-tuning strategy with an image-to-text concept matching mechanism. We leverage an image captioning model to measure image-to-text alignment and guide the diffusion model to revisit ignored tokens. A novel attribute concentration module is also proposed to address the attribute binding problem. Without any image or human preference data, we use only 20K text prompts to fine-tune SDXL to obtain CoMat-SDXL. Extensive experiments show that CoMat-SDXL significantly outperforms the baseline model SDXL in two text-to-image alignment benchmarks and achieves start-of-the-art performance.
PEER: A Collaborative Language Model
Textual content is often the output of a collaborative writing process: We start with an initial draft, ask for suggestions, and repeatedly make changes. Agnostic of this process, today's language models are trained to generate only the final result. As a consequence, they lack several abilities crucial for collaborative writing: They are unable to update existing texts, difficult to control and incapable of verbally planning or explaining their actions. To address these shortcomings, we introduce PEER, a collaborative language model that is trained to imitate the entire writing process itself: PEER can write drafts, add suggestions, propose edits and provide explanations for its actions. Crucially, we train multiple instances of PEER able to infill various parts of the writing process, enabling the use of self-training techniques for increasing the quality, amount and diversity of training data. This unlocks PEER's full potential by making it applicable in domains for which no edit histories are available and improving its ability to follow instructions, to write useful comments, and to explain its actions. We show that PEER achieves strong performance across various domains and editing tasks.
Total-Text: A Comprehensive Dataset for Scene Text Detection and Recognition
Text in curve orientation, despite being one of the common text orientations in real world environment, has close to zero existence in well received scene text datasets such as ICDAR2013 and MSRA-TD500. The main motivation of Total-Text is to fill this gap and facilitate a new research direction for the scene text community. On top of the conventional horizontal and multi-oriented texts, it features curved-oriented text. Total-Text is highly diversified in orientations, more than half of its images have a combination of more than two orientations. Recently, a new breed of solutions that casted text detection as a segmentation problem has demonstrated their effectiveness against multi-oriented text. In order to evaluate its robustness against curved text, we fine-tuned DeconvNet and benchmark it on Total-Text. Total-Text with its annotation is available at https://github.com/cs-chan/Total-Text-Dataset
Learning the Visualness of Text Using Large Vision-Language Models
Visual text evokes an image in a person's mind, while non-visual text fails to do so. A method to automatically detect visualness in text will unlock the ability to augment text with relevant images, as neural text-to-image generation and retrieval models operate on the implicit assumption that the input text is visual in nature. We curate a dataset of 3,620 English sentences and their visualness scores provided by multiple human annotators. Additionally, we use documents that contain text and visual assets to create a distantly supervised corpus of document text and associated images. We also propose a fine-tuning strategy that adapts large vision-language models like CLIP that assume a one-to-one correspondence between text and image to the task of scoring text visualness from text input alone. Our strategy involves modifying the model's contrastive learning objective to map text identified as non-visual to a common NULL image while matching visual text to their corresponding images in the document. We evaluate the proposed approach on its ability to (i) classify visual and non-visual text accurately, and (ii) attend over words that are identified as visual in psycholinguistic studies. Empirical evaluation indicates that our approach performs better than several heuristics and baseline models for the proposed task. Furthermore, to highlight the importance of modeling the visualness of text, we conduct qualitative analyses of text-to-image generation systems like DALL-E.
Siamese based Neural Network for Offline Writer Identification on word level data
Handwriting recognition is one of the desirable attributes of document comprehension and analysis. It is concerned with the documents writing style and characteristics that distinguish the authors. The diversity of text images, notably in images with varying handwriting, makes the process of learning good features difficult in cases where little data is available. In this paper, we propose a novel scheme to identify the author of a document based on the input word image. Our method is text independent and does not impose any constraint on the size of the input image under examination. To begin with, we detect crucial components in handwriting and extract regions surrounding them using Scale Invariant Feature Transform (SIFT). These patches are designed to capture individual writing features (including allographs, characters, or combinations of characters) that are likely to be unique for an individual writer. These features are then passed through a deep Convolutional Neural Network (CNN) in which the weights are learned by applying the concept of Similarity learning using Siamese network. Siamese network enhances the discrimination power of CNN by mapping similarity between different pairs of input image. Features learned at different scales of the extracted SIFT key-points are encoded using Sparse PCA, each components of the Sparse PCA is assigned a saliency score signifying its level of significance in discriminating different writers effectively. Finally, the weighted Sparse PCA corresponding to each SIFT key-points is combined to arrive at a final classification score for each writer. The proposed algorithm was evaluated on two publicly available databases (namely IAM and CVL) and is able to achieve promising result, when compared with other deep learning based algorithm.
Diffree: Text-Guided Shape Free Object Inpainting with Diffusion Model
This paper addresses an important problem of object addition for images with only text guidance. It is challenging because the new object must be integrated seamlessly into the image with consistent visual context, such as lighting, texture, and spatial location. While existing text-guided image inpainting methods can add objects, they either fail to preserve the background consistency or involve cumbersome human intervention in specifying bounding boxes or user-scribbled masks. To tackle this challenge, we introduce Diffree, a Text-to-Image (T2I) model that facilitates text-guided object addition with only text control. To this end, we curate OABench, an exquisite synthetic dataset by removing objects with advanced image inpainting techniques. OABench comprises 74K real-world tuples of an original image, an inpainted image with the object removed, an object mask, and object descriptions. Trained on OABench using the Stable Diffusion model with an additional mask prediction module, Diffree uniquely predicts the position of the new object and achieves object addition with guidance from only text. Extensive experiments demonstrate that Diffree excels in adding new objects with a high success rate while maintaining background consistency, spatial appropriateness, and object relevance and quality.
Visual-Text Cross Alignment: Refining the Similarity Score in Vision-Language Models
It has recently been discovered that using a pre-trained vision-language model (VLM), e.g., CLIP, to align a whole query image with several finer text descriptions generated by a large language model can significantly enhance zero-shot performance. However, in this paper, we empirically find that the finer descriptions tend to align more effectively with local areas of the query image rather than the whole image, and then we theoretically validate this finding. Thus, we present a method called weighted visual-text cross alignment (WCA). This method begins with a localized visual prompting technique, designed to identify local visual areas within the query image. The local visual areas are then cross-aligned with the finer descriptions by creating a similarity matrix using the pre-trained VLM. To determine how well a query image aligns with each category, we develop a score function based on the weighted similarities in this matrix. Extensive experiments demonstrate that our method significantly improves zero-shot performance across various datasets, achieving results that are even comparable to few-shot learning methods.
Governance of the AI, by the AI, and for the AI
Over the past half century, there have been several false dawns during which the "arrival" of world-changing artificial intelligence (AI) has been heralded. Tempting fate, the authors believe the age of AI has, indeed, finally arrived. Powerful image generators, such as DALL-E2 and Midjourney have suddenly allowed anyone with access the ability easily to create rich and complex art. In a similar vein, text generators, such as GPT3.5 (including ChatGPT) and BLOOM, allow users to compose detailed written descriptions of many topics of interest. And, it is even possible now for a person without extensive expertise in writing software to use AI to generate code capable of myriad applications. While AI will continue to evolve and improve, probably at a rapid rate, the current state of AI is already ushering in profound changes to many different sectors of society. Every new technology challenges the ability of humanity to govern it wisely. However, governance is usually viewed as both possible and necessary due to the disruption new technology often poses to social structures, industries, the environment, and other important human concerns. In this article, we offer an analysis of a range of interactions between AI and governance, with the hope that wise decisions may be made that maximize benefits and minimize costs. The article addresses two main aspects of this relationship: the governance of AI by humanity, and the governance of humanity by AI. The approach we have taken is itself informed by AI, as this article was written collaboratively by the authors and ChatGPT.
Reading the unreadable: Creating a dataset of 19th century English newspapers using image-to-text language models
Oscar Wilde said, "The difference between literature and journalism is that journalism is unreadable, and literature is not read." Unfortunately, The digitally archived journalism of Oscar Wilde's 19th century often has no or poor quality Optical Character Recognition (OCR), reducing the accessibility of these archives and making them unreadable both figuratively and literally. This paper helps address the issue by performing OCR on "The Nineteenth Century Serials Edition" (NCSE), an 84k-page collection of 19th-century English newspapers and periodicals, using Pixtral 12B, a pre-trained image-to-text language model. The OCR capability of Pixtral was compared to 4 other OCR approaches, achieving a median character error rate of 1%, 5x lower than the next best model. The resulting NCSE v2.0 dataset features improved article identification, high-quality OCR, and text classified into four types and seventeen topics. The dataset contains 1.4 million entries, and 321 million words. Example use cases demonstrate analysis of topic similarity, readability, and event tracking. NCSE v2.0 is freely available to encourage historical and sociological research. As a result, 21st-century readers can now share Oscar Wilde's disappointment with 19th-century journalistic standards, reading the unreadable from the comfort of their own computers.
Attend-and-Excite: Attention-Based Semantic Guidance for Text-to-Image Diffusion Models
Recent text-to-image generative models have demonstrated an unparalleled ability to generate diverse and creative imagery guided by a target text prompt. While revolutionary, current state-of-the-art diffusion models may still fail in generating images that fully convey the semantics in the given text prompt. We analyze the publicly available Stable Diffusion model and assess the existence of catastrophic neglect, where the model fails to generate one or more of the subjects from the input prompt. Moreover, we find that in some cases the model also fails to correctly bind attributes (e.g., colors) to their corresponding subjects. To help mitigate these failure cases, we introduce the concept of Generative Semantic Nursing (GSN), where we seek to intervene in the generative process on the fly during inference time to improve the faithfulness of the generated images. Using an attention-based formulation of GSN, dubbed Attend-and-Excite, we guide the model to refine the cross-attention units to attend to all subject tokens in the text prompt and strengthen - or excite - their activations, encouraging the model to generate all subjects described in the text prompt. We compare our approach to alternative approaches and demonstrate that it conveys the desired concepts more faithfully across a range of text prompts.
Text Detection & Recognition in the Wild for Robot Localization
Signage is everywhere and a robot should be able to take advantage of signs to help it localize (including Visual Place Recognition (VPR)) and map. Robust text detection & recognition in the wild is challenging due to such factors as pose, irregular text, illumination, and occlusion. We propose an end-to-end scene text spotting model that simultaneously outputs the text string and bounding boxes. This model is more suitable for VPR. Our central contribution is introducing utilizing an end-to-end scene text spotting framework to adequately capture the irregular and occluded text regions in different challenging places. To evaluate our proposed architecture's performance for VPR, we conducted several experiments on the challenging Self-Collected Text Place (SCTP) benchmark dataset. The initial experimental results show that the proposed method outperforms the SOTA methods in terms of precision and recall when tested on this benchmark.
VATr++: Choose Your Words Wisely for Handwritten Text Generation
Styled Handwritten Text Generation (HTG) has received significant attention in recent years, propelled by the success of learning-based solutions employing GANs, Transformers, and, preliminarily, Diffusion Models. Despite this surge in interest, there remains a critical yet understudied aspect - the impact of the input, both visual and textual, on the HTG model training and its subsequent influence on performance. This study delves deeper into a cutting-edge Styled-HTG approach, proposing strategies for input preparation and training regularization that allow the model to achieve better performance and generalize better. These aspects are validated through extensive analysis on several different settings and datasets. Moreover, in this work, we go beyond performance optimization and address a significant hurdle in HTG research - the lack of a standardized evaluation protocol. In particular, we propose a standardization of the evaluation protocol for HTG and conduct a comprehensive benchmarking of existing approaches. By doing so, we aim to establish a foundation for fair and meaningful comparisons between HTG strategies, fostering progress in the field.
Textual Decomposition Then Sub-motion-space Scattering for Open-Vocabulary Motion Generation
Text-to-motion generation is a crucial task in computer vision, which generates the target 3D motion by the given text. The existing annotated datasets are limited in scale, resulting in most existing methods overfitting to the small datasets and unable to generalize to the motions of the open domain. Some methods attempt to solve the open-vocabulary motion generation problem by aligning to the CLIP space or using the Pretrain-then-Finetuning paradigm. However, the current annotated dataset's limited scale only allows them to achieve mapping from sub-text-space to sub-motion-space, instead of mapping between full-text-space and full-motion-space (full mapping), which is the key to attaining open-vocabulary motion generation. To this end, this paper proposes to leverage the atomic motion (simple body part motions over a short time period) as an intermediate representation, and leverage two orderly coupled steps, i.e., Textual Decomposition and Sub-motion-space Scattering, to address the full mapping problem. For Textual Decomposition, we design a fine-grained description conversion algorithm, and combine it with the generalization ability of a large language model to convert any given motion text into atomic texts. Sub-motion-space Scattering learns the compositional process from atomic motions to the target motions, to make the learned sub-motion-space scattered to form the full-motion-space. For a given motion of the open domain, it transforms the extrapolation into interpolation and thereby significantly improves generalization. Our network, DSO-Net, combines textual decomposition and sub-motion-space scattering to solve the open-vocabulary motion generation. Extensive experiments demonstrate that our DSO-Net achieves significant improvements over the state-of-the-art methods on open-vocabulary motion generation. Code is available at https://vankouf.github.io/DSONet/.
Compose and Conquer: Diffusion-Based 3D Depth Aware Composable Image Synthesis
Addressing the limitations of text as a source of accurate layout representation in text-conditional diffusion models, many works incorporate additional signals to condition certain attributes within a generated image. Although successful, previous works do not account for the specific localization of said attributes extended into the three dimensional plane. In this context, we present a conditional diffusion model that integrates control over three-dimensional object placement with disentangled representations of global stylistic semantics from multiple exemplar images. Specifically, we first introduce depth disentanglement training to leverage the relative depth of objects as an estimator, allowing the model to identify the absolute positions of unseen objects through the use of synthetic image triplets. We also introduce soft guidance, a method for imposing global semantics onto targeted regions without the use of any additional localization cues. Our integrated framework, Compose and Conquer (CnC), unifies these techniques to localize multiple conditions in a disentangled manner. We demonstrate that our approach allows perception of objects at varying depths while offering a versatile framework for composing localized objects with different global semantics. Code: https://github.com/tomtom1103/compose-and-conquer/