- LibriMix: An Open-Source Dataset for Generalizable Speech Separation In recent years, wsj0-2mix has become the reference dataset for single-channel speech separation. Most deep learning-based speech separation models today are benchmarked on it. However, recent studies have shown important performance drops when models trained on wsj0-2mix are evaluated on other, similar datasets. To address this generalization issue, we created LibriMix, an open-source alternative to wsj0-2mix, and to its noisy extension, WHAM!. Based on LibriSpeech, LibriMix consists of two- or three-speaker mixtures combined with ambient noise samples from WHAM!. Using Conv-TasNet, we achieve competitive performance on all LibriMix versions. In order to fairly evaluate across datasets, we introduce a third test set based on VCTK for speech and WHAM! for noise. Our experiments show that the generalization error is smaller for models trained with LibriMix than with WHAM!, in both clean and noisy conditions. Aiming towards evaluation in more realistic, conversation-like scenarios, we also release a sparsely overlapping version of LibriMix's test set. 5 authors · May 22, 2020
- Conv-TasNet: Surpassing Ideal Time-Frequency Magnitude Masking for Speech Separation Single-channel, speaker-independent speech separation methods have recently seen great progress. However, the accuracy, latency, and computational cost of such methods remain insufficient. The majority of the previous methods have formulated the separation problem through the time-frequency representation of the mixed signal, which has several drawbacks, including the decoupling of the phase and magnitude of the signal, the suboptimality of time-frequency representation for speech separation, and the long latency in calculating the spectrograms. To address these shortcomings, we propose a fully-convolutional time-domain audio separation network (Conv-TasNet), a deep learning framework for end-to-end time-domain speech separation. Conv-TasNet uses a linear encoder to generate a representation of the speech waveform optimized for separating individual speakers. Speaker separation is achieved by applying a set of weighting functions (masks) to the encoder output. The modified encoder representations are then inverted back to the waveforms using a linear decoder. The masks are found using a temporal convolutional network (TCN) consisting of stacked 1-D dilated convolutional blocks, which allows the network to model the long-term dependencies of the speech signal while maintaining a small model size. The proposed Conv-TasNet system significantly outperforms previous time-frequency masking methods in separating two- and three-speaker mixtures. Additionally, Conv-TasNet surpasses several ideal time-frequency magnitude masks in two-speaker speech separation as evaluated by both objective distortion measures and subjective quality assessment by human listeners. Finally, Conv-TasNet has a significantly smaller model size and a shorter minimum latency, making it a suitable solution for both offline and real-time speech separation applications. 2 authors · Sep 19, 2018
- Multi-Decoder DPRNN: High Accuracy Source Counting and Separation We propose an end-to-end trainable approach to single-channel speech separation with unknown number of speakers. Our approach extends the MulCat source separation backbone with additional output heads: a count-head to infer the number of speakers, and decoder-heads for reconstructing the original signals. Beyond the model, we also propose a metric on how to evaluate source separation with variable number of speakers. Specifically, we cleared up the issue on how to evaluate the quality when the ground-truth hasmore or less speakers than the ones predicted by the model. We evaluate our approach on the WSJ0-mix datasets, with mixtures up to five speakers. We demonstrate that our approach outperforms state-of-the-art in counting the number of speakers and remains competitive in quality of reconstructed signals. 3 authors · Nov 24, 2020
- Property-Aware Multi-Speaker Data Simulation: A Probabilistic Modelling Technique for Synthetic Data Generation We introduce a sophisticated multi-speaker speech data simulator, specifically engineered to generate multi-speaker speech recordings. A notable feature of this simulator is its capacity to modulate the distribution of silence and overlap via the adjustment of statistical parameters. This capability offers a tailored training environment for developing neural models suited for speaker diarization and voice activity detection. The acquisition of substantial datasets for speaker diarization often presents a significant challenge, particularly in multi-speaker scenarios. Furthermore, the precise time stamp annotation of speech data is a critical factor for training both speaker diarization and voice activity detection. Our proposed multi-speaker simulator tackles these problems by generating large-scale audio mixtures that maintain statistical properties closely aligned with the input parameters. We demonstrate that the proposed multi-speaker simulator generates audio mixtures with statistical properties that closely align with the input parameters derived from real-world statistics. Additionally, we present the effectiveness of speaker diarization and voice activity detection models, which have been trained exclusively on the generated simulated datasets. 8 authors · Oct 18, 2023
1 Learning Factored Representations in a Deep Mixture of Experts Mixtures of Experts combine the outputs of several "expert" networks, each of which specializes in a different part of the input space. This is achieved by training a "gating" network that maps each input to a distribution over the experts. Such models show promise for building larger networks that are still cheap to compute at test time, and more parallelizable at training time. In this this work, we extend the Mixture of Experts to a stacked model, the Deep Mixture of Experts, with multiple sets of gating and experts. This exponentially increases the number of effective experts by associating each input with a combination of experts at each layer, yet maintains a modest model size. On a randomly translated version of the MNIST dataset, we find that the Deep Mixture of Experts automatically learns to develop location-dependent ("where") experts at the first layer, and class-specific ("what") experts at the second layer. In addition, we see that the different combinations are in use when the model is applied to a dataset of speech monophones. These demonstrate effective use of all expert combinations. 3 authors · Dec 16, 2013
- Single channel voice separation for unknown number of speakers under reverberant and noisy settings We present a unified network for voice separation of an unknown number of speakers. The proposed approach is composed of several separation heads optimized together with a speaker classification branch. The separation is carried out in the time domain, together with parameter sharing between all separation heads. The classification branch estimates the number of speakers while each head is specialized in separating a different number of speakers. We evaluate the proposed model under both clean and noisy reverberant set-tings. Results suggest that the proposed approach is superior to the baseline model by a significant margin. Additionally, we present a new noisy and reverberant dataset of up to five different speakers speaking simultaneously. 4 authors · Nov 4, 2020
2 Voice Separation with an Unknown Number of Multiple Speakers We present a new method for separating a mixed audio sequence, in which multiple voices speak simultaneously. The new method employs gated neural networks that are trained to separate the voices at multiple processing steps, while maintaining the speaker in each output channel fixed. A different model is trained for every number of possible speakers, and the model with the largest number of speakers is employed to select the actual number of speakers in a given sample. Our method greatly outperforms the current state of the art, which, as we show, is not competitive for more than two speakers. 3 authors · Feb 29, 2020
- PixIT: Joint Training of Speaker Diarization and Speech Separation from Real-world Multi-speaker Recordings A major drawback of supervised speech separation (SSep) systems is their reliance on synthetic data, leading to poor real-world generalization. Mixture invariant training (MixIT) was proposed as an unsupervised alternative that uses real recordings, yet struggles with overseparation and adapting to long-form audio. We introduce PixIT, a joint approach that combines permutation invariant training (PIT) for speaker diarization (SD) and MixIT for SSep. With a small extra requirement of needing SD labels, it solves the problem of overseparation and allows stitching local separated sources leveraging existing work on clustering-based neural SD. We measure the quality of the separated sources via applying automatic speech recognition (ASR) systems to them. PixIT boosts the performance of various ASR systems across two meeting corpora both in terms of the speaker-attributed and utterance-based word error rates while not requiring any fine-tuning. 5 authors · Mar 4, 2024
- ELF: Encoding Speaker-Specific Latent Speech Feature for Speech Synthesis In this work, we propose a novel method for modeling numerous speakers, which enables expressing the overall characteristics of speakers in detail like a trained multi-speaker model without additional training on the target speaker's dataset. Although various works with similar purposes have been actively studied, their performance has not yet reached that of trained multi-speaker models due to their fundamental limitations. To overcome previous limitations, we propose effective methods for feature learning and representing target speakers' speech characteristics by discretizing the features and conditioning them to a speech synthesis model. Our method obtained a significantly higher similarity mean opinion score (SMOS) in subjective similarity evaluation than seen speakers of a high-performance multi-speaker model, even with unseen speakers. The proposed method also outperforms a zero-shot method by significant margins. Furthermore, our method shows remarkable performance in generating new artificial speakers. In addition, we demonstrate that the encoded latent features are sufficiently informative to reconstruct an original speaker's speech completely. It implies that our method can be used as a general methodology to encode and reconstruct speakers' characteristics in various tasks. 8 authors · Nov 20, 2023
16 A Closer Look into Mixture-of-Experts in Large Language Models Mixture-of-experts (MoE) is gaining increasing attention due to its unique properties and remarkable performance, especially for language tasks. By sparsely activating a subset of parameters for each token, MoE architecture could increase the model size without sacrificing computational efficiency, achieving a better trade-off between performance and training costs. However, the underlying mechanism of MoE still lacks further exploration, and its modularization degree remains questionable. In this paper, we make an initial attempt to understand the inner workings of MoE-based large language models. Concretely, we comprehensively study the parametric and behavioral features of three recent MoE-based models and reveal some intriguing observations, including (1) Neurons act like fine-grained experts. (2) The router of MoE usually selects experts with larger output norms. (3) The expert diversity increases as the layer increases, while the last layer is an outlier. Based on the observations, we also provide suggestions for a broad spectrum of MoE practitioners, such as router design and expert allocation. We hope this work could shed light on future research on the MoE framework and other modular architectures. Code is available at https://github.com/kamanphoebe/Look-into-MoEs. 5 authors · Jun 26, 2024 2
- Weakly-supervised Audio Separation via Bi-modal Semantic Similarity Conditional sound separation in multi-source audio mixtures without having access to single source sound data during training is a long standing challenge. Existing mix-and-separate based methods suffer from significant performance drop with multi-source training mixtures due to the lack of supervision signal for single source separation cases during training. However, in the case of language-conditional audio separation, we do have access to corresponding text descriptions for each audio mixture in our training data, which can be seen as (rough) representations of the audio samples in the language modality. To this end, in this paper, we propose a generic bi-modal separation framework which can enhance the existing unsupervised frameworks to separate single-source signals in a target modality (i.e., audio) using the easily separable corresponding signals in the conditioning modality (i.e., language), without having access to single-source samples in the target modality during training. We empirically show that this is well within reach if we have access to a pretrained joint embedding model between the two modalities (i.e., CLAP). Furthermore, we propose to incorporate our framework into two fundamental scenarios to enhance separation performance. First, we show that our proposed methodology significantly improves the performance of purely unsupervised baselines by reducing the distribution shift between training and test samples. In particular, we show that our framework can achieve 71% boost in terms of Signal-to-Distortion Ratio (SDR) over the baseline, reaching 97.5% of the supervised learning performance. Second, we show that we can further improve the performance of the supervised learning itself by 17% if we augment it by our proposed weakly-supervised framework, that enables a powerful semi-supervised framework for audio separation. 4 authors · Apr 2, 2024
- PromptTTS++: Controlling Speaker Identity in Prompt-Based Text-to-Speech Using Natural Language Descriptions We propose PromptTTS++, a prompt-based text-to-speech (TTS) synthesis system that allows control over speaker identity using natural language descriptions. To control speaker identity within the prompt-based TTS framework, we introduce the concept of speaker prompt, which describes voice characteristics (e.g., gender-neutral, young, old, and muffled) designed to be approximately independent of speaking style. Since there is no large-scale dataset containing speaker prompts, we first construct a dataset based on the LibriTTS-R corpus with manually annotated speaker prompts. We then employ a diffusion-based acoustic model with mixture density networks to model diverse speaker factors in the training data. Unlike previous studies that rely on style prompts describing only a limited aspect of speaker individuality, such as pitch, speaking speed, and energy, our method utilizes an additional speaker prompt to effectively learn the mapping from natural language descriptions to the acoustic features of diverse speakers. Our subjective evaluation results show that the proposed method can better control speaker characteristics than the methods without the speaker prompt. Audio samples are available at https://reppy4620.github.io/demo.promptttspp/. 7 authors · Sep 15, 2023
26 MH-MoE:Multi-Head Mixture-of-Experts Multi-Head Mixture-of-Experts (MH-MoE) demonstrates superior performance by using the multi-head mechanism to collectively attend to information from various representation spaces within different experts. In this paper, we present a novel implementation of MH-MoE that maintains both FLOPs and parameter parity with sparse Mixture of Experts models. Experimental results on language models show that the new implementation yields quality improvements over both vanilla MoE and fine-grained MoE models. Additionally, our experiments demonstrate that MH-MoE is compatible with 1-bit Large Language Models (LLMs) such as BitNet. 4 authors · Nov 25, 2024 4
- LibriheavyMix: A 20,000-Hour Dataset for Single-Channel Reverberant Multi-Talker Speech Separation, ASR and Speaker Diarization The evolving speech processing landscape is increasingly focused on complex scenarios like meetings or cocktail parties with multiple simultaneous speakers and far-field conditions. Existing methodologies for addressing these challenges fall into two categories: multi-channel and single-channel solutions. Single-channel approaches, notable for their generality and convenience, do not require specific information about microphone arrays. This paper presents a large-scale far-field overlapping speech dataset, crafted to advance research in speech separation, recognition, and speaker diarization. This dataset is a critical resource for decoding ``Who said What and When'' in multi-talker, reverberant environments, a daunting challenge in the field. Additionally, we introduce a pipeline system encompassing speech separation, recognition, and diarization as a foundational benchmark. Evaluations on the WHAMR! dataset validate the broad applicability of the proposed data. 13 authors · Sep 1, 2024
- MedleyVox: An Evaluation Dataset for Multiple Singing Voices Separation Separation of multiple singing voices into each voice is a rarely studied area in music source separation research. The absence of a benchmark dataset has hindered its progress. In this paper, we present an evaluation dataset and provide baseline studies for multiple singing voices separation. First, we introduce MedleyVox, an evaluation dataset for multiple singing voices separation. We specify the problem definition in this dataset by categorizing it into i) unison, ii) duet, iii) main vs. rest, and iv) N-singing separation. Second, to overcome the absence of existing multi-singing datasets for a training purpose, we present a strategy for construction of multiple singing mixtures using various single-singing datasets. Third, we propose the improved super-resolution network (iSRNet), which greatly enhances initial estimates of separation networks. Jointly trained with the Conv-TasNet and the multi-singing mixture construction strategy, the proposed iSRNet achieved comparable performance to ideal time-frequency masks on duet and unison subsets of MedleyVox. Audio samples, the dataset, and codes are available on our website (https://github.com/jeonchangbin49/MedleyVox). 5 authors · Nov 14, 2022
- An Empirical Analysis on the Vulnerabilities of End-to-End Speech Segregation Models End-to-end learning models have demonstrated a remarkable capability in performing speech segregation. Despite their wide-scope of real-world applications, little is known about the mechanisms they employ to group and consequently segregate individual speakers. Knowing that harmonicity is a critical cue for these networks to group sources, in this work, we perform a thorough investigation on ConvTasnet and DPT-Net to analyze how they perform a harmonic analysis of the input mixture. We perform ablation studies where we apply low-pass, high-pass, and band-stop filters of varying pass-bands to empirically analyze the harmonics most critical for segregation. We also investigate how these networks decide which output channel to assign to an estimated source by introducing discontinuities in synthetic mixtures. We find that end-to-end networks are highly unstable, and perform poorly when confronted with deformations which are imperceptible to humans. Replacing the encoder in these networks with a spectrogram leads to lower overall performance, but much higher stability. This work helps us to understand what information these network rely on for speech segregation, and exposes two sources of generalization-errors. It also pinpoints the encoder as the part of the network responsible for these errors, allowing for a redesign with expert knowledge or transfer learning. 4 authors · Jun 19, 2022
- MSceneSpeech: A Multi-Scene Speech Dataset For Expressive Speech Synthesis We introduce an open source high-quality Mandarin TTS dataset MSceneSpeech (Multiple Scene Speech Dataset), which is intended to provide resources for expressive speech synthesis. MSceneSpeech comprises numerous audio recordings and texts performed and recorded according to daily life scenarios. Each scenario includes multiple speakers and a diverse range of prosodic styles, making it suitable for speech synthesis that entails multi-speaker style and prosody modeling. We have established a robust baseline, through the prompting mechanism, that can effectively synthesize speech characterized by both user-specific timbre and scene-specific prosody with arbitrary text input. The open source MSceneSpeech Dataset and audio samples of our baseline are available at https://speechai-demo.github.io/MSceneSpeech/. 9 authors · Jul 18, 2024
7 3D-Speaker: A Large-Scale Multi-Device, Multi-Distance, and Multi-Dialect Corpus for Speech Representation Disentanglement Disentangling uncorrelated information in speech utterances is a crucial research topic within speech community. Different speech-related tasks focus on extracting distinct speech representations while minimizing the affects of other uncorrelated information. We present a large-scale speech corpus to facilitate the research of speech representation disentanglement. 3D-Speaker contains over 10,000 speakers, each of whom are simultaneously recorded by multiple Devices, locating at different Distances, and some speakers are speaking multiple Dialects. The controlled combinations of multi-dimensional audio data yield a matrix of a diverse blend of speech representation entanglement, thereby motivating intriguing methods to untangle them. The multi-domain nature of 3D-Speaker also makes it a suitable resource to evaluate large universal speech models and experiment methods of out-of-domain learning and self-supervised learning. https://3dspeaker.github.io/ 5 authors · Jun 27, 2023
- OffMix-3L: A Novel Code-Mixed Dataset in Bangla-English-Hindi for Offensive Language Identification Code-mixing is a well-studied linguistic phenomenon when two or more languages are mixed in text or speech. Several works have been conducted on building datasets and performing downstream NLP tasks on code-mixed data. Although it is not uncommon to observe code-mixing of three or more languages, most available datasets in this domain contain code-mixed data from only two languages. In this paper, we introduce OffMix-3L, a novel offensive language identification dataset containing code-mixed data from three different languages. We experiment with several models on this dataset and observe that BanglishBERT outperforms other transformer-based models and GPT-3.5. 5 authors · Oct 27, 2023
- From Simulated Mixtures to Simulated Conversations as Training Data for End-to-End Neural Diarization End-to-end neural diarization (EEND) is nowadays one of the most prominent research topics in speaker diarization. EEND presents an attractive alternative to standard cascaded diarization systems since a single system is trained at once to deal with the whole diarization problem. Several EEND variants and approaches are being proposed, however, all these models require large amounts of annotated data for training but available annotated data are scarce. Thus, EEND works have used mostly simulated mixtures for training. However, simulated mixtures do not resemble real conversations in many aspects. In this work we present an alternative method for creating synthetic conversations that resemble real ones by using statistics about distributions of pauses and overlaps estimated on genuine conversations. Furthermore, we analyze the effect of the source of the statistics, different augmentations and amounts of data. We demonstrate that our approach performs substantially better than the original one, while reducing the dependence on the fine-tuning stage. Experiments are carried out on 2-speaker telephone conversations of Callhome and DIHARD 3. Together with this publication, we release our implementations of EEND and the method for creating simulated conversations. 4 authors · Apr 2, 2022
8 Mixture-of-Mamba: Enhancing Multi-Modal State-Space Models with Modality-Aware Sparsity State Space Models (SSMs) have emerged as efficient alternatives to Transformers for sequential modeling, but their inability to leverage modality-specific features limits their performance in multi-modal pretraining. Here, we propose Mixture-of-Mamba, a novel SSM architecture that introduces modality-aware sparsity through modality-specific parameterization of the Mamba block. Building on Mixture-of-Transformers (W. Liang et al. arXiv:2411.04996; 2024), we extend the benefits of modality-aware sparsity to SSMs while preserving their computational efficiency. We evaluate Mixture-of-Mamba across three multi-modal pretraining settings: Transfusion (interleaved text and continuous image tokens with diffusion loss), Chameleon (interleaved text and discrete image tokens), and an extended three-modality framework incorporating speech. Mixture-of-Mamba consistently reaches the same loss values at earlier training steps with significantly reduced computational costs. In the Transfusion setting, Mixture-of-Mamba achieves equivalent image loss using only 34.76% of the training FLOPs at the 1.4B scale. In the Chameleon setting, Mixture-of-Mamba reaches similar image loss with just 42.50% of the FLOPs at the 1.4B scale, and similar text loss with just 65.40% of the FLOPs. In the three-modality setting, MoM matches speech loss at 24.80% of the FLOPs at the 1.4B scale. Our ablation study highlights the synergistic effects of decoupling projection components, where joint decoupling yields greater gains than individual modifications. These results establish modality-aware sparsity as a versatile and effective design principle, extending its impact from Transformers to SSMs and setting new benchmarks in multi-modal pretraining. Our code can be accessed at https://github.com/Weixin-Liang/Mixture-of-Mamba 6 authors · Jan 27 1
158 Mixtral of Experts We introduce Mixtral 8x7B, a Sparse Mixture of Experts (SMoE) language model. Mixtral has the same architecture as Mistral 7B, with the difference that each layer is composed of 8 feedforward blocks (i.e. experts). For every token, at each layer, a router network selects two experts to process the current state and combine their outputs. Even though each token only sees two experts, the selected experts can be different at each timestep. As a result, each token has access to 47B parameters, but only uses 13B active parameters during inference. Mixtral was trained with a context size of 32k tokens and it outperforms or matches Llama 2 70B and GPT-3.5 across all evaluated benchmarks. In particular, Mixtral vastly outperforms Llama 2 70B on mathematics, code generation, and multilingual benchmarks. We also provide a model fine-tuned to follow instructions, Mixtral 8x7B - Instruct, that surpasses GPT-3.5 Turbo, Claude-2.1, Gemini Pro, and Llama 2 70B - chat model on human benchmarks. Both the base and instruct models are released under the Apache 2.0 license. 26 authors · Jan 8, 2024 5
- Danna-Sep: Unite to separate them all Deep learning-based music source separation has gained a lot of interest in the last decades. Most of the existing methods operate with either spectrograms or waveforms. Spectrogram based models learn suitable masks for separating magnitude spectrogram into different sources, and waveform-based models directly generate waveforms of individual sources. The two types of models have complementary strengths; the former is superior given harmonic sources such as vocals, while the latter demonstrates better results for percussion and bass instruments. In this work, we improved upon the state-of-the-art (SoTA) models and successfully combined the best of both worlds. The backbones of the proposed framework, dubbed Danna-Sep, are two spectrogram-based models including a modified X-UMX and U-Net, and an enhanced Demucs as the waveform-based model. Given an input of mixture, we linearly combined respective outputs from the three models to obtain the final result. We showed in the experiments that, despite its simplicity, Danna-Sep surpassed the SoTA models by a large margin in terms of Source-to-Distortion Ratio. 2 authors · Dec 7, 2021
13 Rethinking Mixture-of-Agents: Is Mixing Different Large Language Models Beneficial? Ensembling outputs from diverse sources is a straightforward yet effective approach to boost performance. Mixture-of-Agents (MoA) is one such popular ensemble method that aggregates outputs from multiple different Large Language Models (LLMs). This paper raises the question in the context of language models: is mixing different LLMs truly beneficial? We propose Self-MoA -- an ensemble method that aggregates outputs from only the single top-performing LLM. Our extensive experiments reveal that, surprisingly, Self-MoA outperforms standard MoA that mixes different LLMs in a large number of scenarios: Self-MoA achieves 6.6% improvement over MoA on the AlpacaEval 2.0 benchmark, and an average of 3.8% improvement across various benchmarks, including MMLU, CRUX, and MATH. Applying Self-MoA to one of the top-ranking models in AlpacaEval 2.0 directly achieves the new state-of-the-art performance on the leaderboard. To understand the effectiveness of Self-MoA, we systematically investigate the trade-off between diversity and quality of outputs under various MoA settings. We confirm that the MoA performance is rather sensitive to the quality, and mixing different LLMs often lowers the average quality of the models. To complement the study, we identify the scenarios where mixing different LLMs could be helpful. This paper further introduces a sequential version of Self-MoA, that is capable of aggregating a large number of LLM outputs on-the-fly over multiple rounds, and is as effective as aggregating all outputs at once. 4 authors · Feb 2 4
- In defence of metric learning for speaker recognition The objective of this paper is 'open-set' speaker recognition of unseen speakers, where ideal embeddings should be able to condense information into a compact utterance-level representation that has small intra-speaker and large inter-speaker distance. A popular belief in speaker recognition is that networks trained with classification objectives outperform metric learning methods. In this paper, we present an extensive evaluation of most popular loss functions for speaker recognition on the VoxCeleb dataset. We demonstrate that the vanilla triplet loss shows competitive performance compared to classification-based losses, and those trained with our proposed metric learning objective outperform state-of-the-art methods. 10 authors · Mar 26, 2020
8 LIBMoE: A Library for comprehensive benchmarking Mixture of Experts in Large Language Models Mixture of Experts (MoEs) plays an important role in the development of more efficient and effective large language models (LLMs). Due to the enormous resource requirements, studying large scale MoE algorithms remain in-accessible to many researchers. This work develops LibMoE, a comprehensive and modular framework to streamline the research, training, and evaluation of MoE algorithms. Built upon three core principles: (i) modular design, (ii) efficient training; (iii) comprehensive evaluation, LibMoE brings MoE in LLMs more accessible to a wide range of researchers by standardizing the training and evaluation pipelines. Using LibMoE, we extensively benchmarked five state-of-the-art MoE algorithms over three different LLMs and 11 datasets under the zero-shot setting. The results show that despite the unique characteristics, all MoE algorithms perform roughly similar when averaged across a wide range of tasks. With the modular design and extensive evaluation, we believe LibMoE will be invaluable for researchers to make meaningful progress towards the next generation of MoE and LLMs. Project page: https://fsoft-aic.github.io/fsoft-LibMoE.github.io. 5 authors · Nov 1, 2024 2
- The CHiME-7 Challenge: System Description and Performance of NeMo Team's DASR System We present the NVIDIA NeMo team's multi-channel speech recognition system for the 7th CHiME Challenge Distant Automatic Speech Recognition (DASR) Task, focusing on the development of a multi-channel, multi-speaker speech recognition system tailored to transcribe speech from distributed microphones and microphone arrays. The system predominantly comprises of the following integral modules: the Speaker Diarization Module, Multi-channel Audio Front-End Processing Module, and the ASR Module. These components collectively establish a cascading system, meticulously processing multi-channel and multi-speaker audio input. Moreover, this paper highlights the comprehensive optimization process that significantly enhanced our system's performance. Our team's submission is largely based on NeMo toolkits and will be publicly available. 10 authors · Oct 18, 2023
- nnSpeech: Speaker-Guided Conditional Variational Autoencoder for Zero-shot Multi-speaker Text-to-Speech Multi-speaker text-to-speech (TTS) using a few adaption data is a challenge in practical applications. To address that, we propose a zero-shot multi-speaker TTS, named nnSpeech, that could synthesis a new speaker voice without fine-tuning and using only one adaption utterance. Compared with using a speaker representation module to extract the characteristics of new speakers, our method bases on a speaker-guided conditional variational autoencoder and can generate a variable Z, which contains both speaker characteristics and content information. The latent variable Z distribution is approximated by another variable conditioned on reference mel-spectrogram and phoneme. Experiments on the English corpus, Mandarin corpus, and cross-dataset proves that our model could generate natural and similar speech with only one adaption speech. 5 authors · Feb 22, 2022
- The Third DIHARD Diarization Challenge DIHARD III was the third in a series of speaker diarization challenges intended to improve the robustness of diarization systems to variability in recording equipment, noise conditions, and conversational domain. Speaker diarization was evaluated under two speech activity conditions (diarization from a reference speech activity vs. diarization from scratch) and 11 diverse domains. The domains span a range of recording conditions and interaction types, including read audio-books, meeting speech, clinical interviews, web videos, and, for the first time, conversational telephone speech. A total of 30 organizations (forming 21teams) from industry and academia submitted 499 valid system outputs. The evaluation results indicate that speaker diarization has improved markedly since DIHARD I, particularly for two-party interactions, but that for many domains (e.g., web video) the problem remains far from solved. 9 authors · Dec 2, 2020
1 Language-Routing Mixture of Experts for Multilingual and Code-Switching Speech Recognition Multilingual speech recognition for both monolingual and code-switching speech is a challenging task. Recently, based on the Mixture of Experts (MoE), many works have made good progress in multilingual and code-switching ASR, but present huge computational complexity with the increase of supported languages. In this work, we propose a computation-efficient network named Language-Routing Mixture of Experts (LR-MoE) for multilingual and code-switching ASR. LR-MoE extracts language-specific representations through the Mixture of Language Experts (MLE), which is guided to learn by a frame-wise language routing mechanism. The weight-shared frame-level language identification (LID) network is jointly trained as the shared pre-router of each MoE layer. Experiments show that the proposed method significantly improves multilingual and code-switching speech recognition performances over baseline with comparable computational efficiency. 4 authors · Jul 12, 2023
2 End-to-end speaker segmentation for overlap-aware resegmentation Speaker segmentation consists in partitioning a conversation between one or more speakers into speaker turns. Usually addressed as the late combination of three sub-tasks (voice activity detection, speaker change detection, and overlapped speech detection), we propose to train an end-to-end segmentation model that does it directly. Inspired by the original end-to-end neural speaker diarization approach (EEND), the task is modeled as a multi-label classification problem using permutation-invariant training. The main difference is that our model operates on short audio chunks (5 seconds) but at a much higher temporal resolution (every 16ms). Experiments on multiple speaker diarization datasets conclude that our model can be used with great success on both voice activity detection and overlapped speech detection. Our proposed model can also be used as a post-processing step, to detect and correctly assign overlapped speech regions. Relative diarization error rate improvement over the best considered baseline (VBx) reaches 17% on AMI, 13% on DIHARD 3, and 13% on VoxConverse. 2 authors · Apr 8, 2021
- Multi-scale Speaker Diarization with Dynamic Scale Weighting Speaker diarization systems are challenged by a trade-off between the temporal resolution and the fidelity of the speaker representation. By obtaining a superior temporal resolution with an enhanced accuracy, a multi-scale approach is a way to cope with such a trade-off. In this paper, we propose a more advanced multi-scale diarization system based on a multi-scale diarization decoder. There are two main contributions in this study that significantly improve the diarization performance. First, we use multi-scale clustering as an initialization to estimate the number of speakers and obtain the average speaker representation vector for each speaker and each scale. Next, we propose the use of 1-D convolutional neural networks that dynamically determine the importance of each scale at each time step. To handle a variable number of speakers and overlapping speech, the proposed system can estimate the number of existing speakers. Our proposed system achieves a state-of-art performance on the CALLHOME and AMI MixHeadset datasets, with 3.92% and 1.05% diarization error rates, respectively. 4 authors · Mar 29, 2022
- Listen, Chat, and Edit: Text-Guided Soundscape Modification for Enhanced Auditory Experience In daily life, we encounter a variety of sounds, both desirable and undesirable, with limited control over their presence and volume. Our work introduces "Listen, Chat, and Edit" (LCE), a novel multimodal sound mixture editor that modifies each sound source in a mixture based on user-provided text instructions. LCE distinguishes itself with a user-friendly chat interface and its unique ability to edit multiple sound sources simultaneously within a mixture, without needing to separate them. Users input open-vocabulary text prompts, which are interpreted by a large language model to create a semantic filter for editing the sound mixture. The system then decomposes the mixture into its components, applies the semantic filter, and reassembles it into the desired output. We developed a 160-hour dataset with over 100k mixtures, including speech and various audio sources, along with text prompts for diverse editing tasks like extraction, removal, and volume control. Our experiments demonstrate significant improvements in signal quality across all editing tasks and robust performance in zero-shot scenarios with varying numbers and types of sound sources. 4 authors · Feb 6, 2024
- Efficient Fine-tuning of Audio Spectrogram Transformers via Soft Mixture of Adapters Mixture of Experts (MoE) architectures have recently started burgeoning due to their ability to scale model's capacity while maintaining the computational cost affordable. Furthermore, they can be applied to both Transformers and State Space Models, the current state-of-the-art models in numerous fields. While MoE has been mostly investigated for the pre-training stage, its use in parameter-efficient transfer learning settings is under-explored. To narrow this gap, this paper attempts to demystify the use of MoE for parameter-efficient fine-tuning of Audio Spectrogram Transformers to audio and speech downstream tasks. Specifically, we propose Soft Mixture of Adapters (Soft-MoA). It exploits adapters as the experts and, leveraging the recent Soft MoE method, it relies on a soft assignment between the input tokens and experts to keep the computational time limited. Extensive experiments across 4 benchmarks demonstrate that Soft-MoA outperforms the single adapter method and performs on par with the dense MoA counterpart. We finally present ablation studies on key elements of Soft-MoA, showing for example that Soft-MoA achieves better scaling with more experts, as well as ensuring that all experts contribute to the computation of the output tokens, thus dispensing with the expert imbalance issue. 3 authors · Feb 1, 2024
1 VoxVietnam: a Large-Scale Multi-Genre Dataset for Vietnamese Speaker Recognition Recent research in speaker recognition aims to address vulnerabilities due to variations between enrolment and test utterances, particularly in the multi-genre phenomenon where the utterances are in different speech genres. Previous resources for Vietnamese speaker recognition are either limited in size or do not focus on genre diversity, leaving studies in multi-genre effects unexplored. This paper introduces VoxVietnam, the first multi-genre dataset for Vietnamese speaker recognition with over 187,000 utterances from 1,406 speakers and an automated pipeline to construct a dataset on a large scale from public sources. Our experiments show the challenges posed by the multi-genre phenomenon to models trained on a single-genre dataset, and demonstrate a significant increase in performance upon incorporating the VoxVietnam into the training process. Our experiments are conducted to study the challenges of the multi-genre phenomenon in speaker recognition and the performance gain when the proposed dataset is used for multi-genre training. 5 authors · Dec 31, 2024
- A Survey on Mixture of Experts Large language models (LLMs) have garnered unprecedented advancements across diverse fields, ranging from natural language processing to computer vision and beyond. The prowess of LLMs is underpinned by their substantial model size, extensive and diverse datasets, and the vast computational power harnessed during training, all of which contribute to the emergent abilities of LLMs (e.g., in-context learning) that are not present in small models. Within this context, the mixture of experts (MoE) has emerged as an effective method for substantially scaling up model capacity with minimal computation overhead, gaining significant attention from academia and industry. Despite its growing prevalence, there lacks a systematic and comprehensive review of the literature on MoE. This survey seeks to bridge that gap, serving as an essential resource for researchers delving into the intricacies of MoE. We first briefly introduce the structure of the MoE layer, followed by proposing a new taxonomy of MoE. Next, we overview the core designs for various MoE models including both algorithmic and systemic aspects, alongside collections of available open-source implementations, hyperparameter configurations and empirical evaluations. Furthermore, we delineate the multifaceted applications of MoE in practice, and outline some potential directions for future research. To facilitate ongoing updates and the sharing of cutting-edge developments in MoE research, we have established a resource repository accessible at https://github.com/withinmiaov/A-Survey-on-Mixture-of-Experts. 6 authors · Jun 26, 2024
- Identifying Personality Traits Using Overlap Dynamics in Multiparty Dialogue Research on human spoken language has shown that speech plays an important role in identifying speaker personality traits. In this work, we propose an approach for identifying speaker personality traits using overlap dynamics in multiparty spoken dialogues. We first define a set of novel features representing the overlap dynamics of each speaker. We then investigate the impact of speaker personality traits on these features using ANOVA tests. We find that features of overlap dynamics significantly vary for speakers with different levels of both Extraversion and Conscientiousness. Finally, we find that classifiers using only overlap dynamics features outperform random guessing in identifying Extraversion and Agreeableness, and that the improvements are statistically significant. 3 authors · Sep 2, 2019
- AISHELL-3: A Multi-speaker Mandarin TTS Corpus and the Baselines In this paper, we present AISHELL-3, a large-scale and high-fidelity multi-speaker Mandarin speech corpus which could be used to train multi-speaker Text-to-Speech (TTS) systems. The corpus contains roughly 85 hours of emotion-neutral recordings spoken by 218 native Chinese mandarin speakers. Their auxiliary attributes such as gender, age group and native accents are explicitly marked and provided in the corpus. Accordingly, transcripts in Chinese character-level and pinyin-level are provided along with the recordings. We present a baseline system that uses AISHELL-3 for multi-speaker Madarin speech synthesis. The multi-speaker speech synthesis system is an extension on Tacotron-2 where a speaker verification model and a corresponding loss regarding voice similarity are incorporated as the feedback constraint. We aim to use the presented corpus to build a robust synthesis model that is able to achieve zero-shot voice cloning. The system trained on this dataset also generalizes well on speakers that are never seen in the training process. Objective evaluation results from our experiments show that the proposed multi-speaker synthesis system achieves high voice similarity concerning both speaker embedding similarity and equal error rate measurement. The dataset, baseline system code and generated samples are available online. 5 authors · Oct 22, 2020
2 Triple-Encoders: Representations That Fire Together, Wire Together Search-based dialog models typically re-encode the dialog history at every turn, incurring high cost. Curved Contrastive Learning, a representation learning method that encodes relative distances between utterances into the embedding space via a bi-encoder, has recently shown promising results for dialog modeling at far superior efficiency. While high efficiency is achieved through independently encoding utterances, this ignores the importance of contextualization. To overcome this issue, this study introduces triple-encoders, which efficiently compute distributed utterance mixtures from these independently encoded utterances through a novel hebbian inspired co-occurrence learning objective without using any weights. Empirically, we find that triple-encoders lead to a substantial improvement over bi-encoders, and even to better zero-shot generalization than single-vector representation models without requiring re-encoding. Our code/model is publicly available. 5 authors · Feb 19, 2024
- Multi-Scale Accent Modeling with Disentangling for Multi-Speaker Multi-Accent TTS Synthesis Synthesizing speech across different accents while preserving the speaker identity is essential for various real-world customer applications. However, the individual and accurate modeling of accents and speakers in a text-to-speech (TTS) system is challenging due to the complexity of accent variations and the intrinsic entanglement between the accent and speaker identity. In this paper, we present a novel approach for multi-speaker multi-accent TTS synthesis, which aims to synthesize voices of multiple speakers, each with various accents. Our proposed approach employs a multi-scale accent modeling strategy to address accent variations at different levels. Specifically, we introduce both global (utterance level) and local (phoneme level) accent modeling, supervised by individual accent classifiers to capture the overall variation within accented utterances and fine-grained variations between phonemes, respectively. To control accents and speakers separately, speaker-independent accent modeling is necessary, which is achieved by adversarial training with speaker classifiers to disentangle speaker identity within the multi-scale accent modeling. Consequently, we obtain speaker-independent and accent-discriminative multi-scale embeddings as comprehensive accent features. Additionally, we propose a local accent prediction model that allows to generate accented speech directly from phoneme inputs. Extensive experiments are conducted on an accented English speech corpus. Both objective and subjective evaluations show the superiority of our proposed system compared to baselines systems. Detailed component analysis demonstrates the effectiveness of global and local accent modeling, and speaker disentanglement on multi-speaker multi-accent speech synthesis. 5 authors · Jun 16, 2024
1 Mixture of Tokens: Efficient LLMs through Cross-Example Aggregation Despite the promise of Mixture of Experts (MoE) models in increasing parameter counts of Transformer models while maintaining training and inference costs, their application carries notable drawbacks. The key strategy of these models is to, for each processed token, activate at most a few experts - subsets of an extensive feed-forward layer. But this approach is not without its challenges. The operation of matching experts and tokens is discrete, which makes MoE models prone to issues like training instability and uneven expert utilization. Existing techniques designed to address these concerns, such as auxiliary losses or balance-aware matching, result either in lower model performance or are more difficult to train. In response to these issues, we propose Mixture of Tokens, a fully-differentiable model that retains the benefits of MoE architectures while avoiding the aforementioned difficulties. Rather than routing tokens to experts, this approach mixes tokens from different examples prior to feeding them to experts, enabling the model to learn from all token-expert combinations. Importantly, this mixing can be disabled to avoid mixing of different sequences during inference. Crucially, this method is fully compatible with both masked and causal Large Language Model training and inference. 8 authors · Oct 24, 2023
- A Detailed Audio-Text Data Simulation Pipeline using Single-Event Sounds Recently, there has been an increasing focus on audio-text cross-modal learning. However, most of the existing audio-text datasets contain only simple descriptions of sound events. Compared with classification labels, the advantages of such descriptions are significantly limited. In this paper, we first analyze the detailed information that human descriptions of audio may contain beyond sound event labels. Based on the analysis, we propose an automatic pipeline for curating audio-text pairs with rich details. Leveraging the property that sounds can be mixed and concatenated in the time domain, we control details in four aspects: temporal relationship, loudness, speaker identity, and occurrence number, in simulating audio mixtures. Corresponding details are transformed into captions by large language models. Audio-text pairs with rich details in text descriptions are thereby obtained. We validate the effectiveness of our pipeline with a small amount of simulated data, demonstrating that the simulated data enables models to learn detailed audio captioning. 6 authors · Mar 7, 2024
- Transfer Learning from Speaker Verification to Multispeaker Text-To-Speech Synthesis We describe a neural network-based system for text-to-speech (TTS) synthesis that is able to generate speech audio in the voice of many different speakers, including those unseen during training. Our system consists of three independently trained components: (1) a speaker encoder network, trained on a speaker verification task using an independent dataset of noisy speech from thousands of speakers without transcripts, to generate a fixed-dimensional embedding vector from seconds of reference speech from a target speaker; (2) a sequence-to-sequence synthesis network based on Tacotron 2, which generates a mel spectrogram from text, conditioned on the speaker embedding; (3) an auto-regressive WaveNet-based vocoder that converts the mel spectrogram into a sequence of time domain waveform samples. We demonstrate that the proposed model is able to transfer the knowledge of speaker variability learned by the discriminatively-trained speaker encoder to the new task, and is able to synthesize natural speech from speakers that were not seen during training. We quantify the importance of training the speaker encoder on a large and diverse speaker set in order to obtain the best generalization performance. Finally, we show that randomly sampled speaker embeddings can be used to synthesize speech in the voice of novel speakers dissimilar from those used in training, indicating that the model has learned a high quality speaker representation. 11 authors · Jun 12, 2018
2 SpeechMoE: Scaling to Large Acoustic Models with Dynamic Routing Mixture of Experts Recently, Mixture of Experts (MoE) based Transformer has shown promising results in many domains. This is largely due to the following advantages of this architecture: firstly, MoE based Transformer can increase model capacity without computational cost increasing both at training and inference time. Besides, MoE based Transformer is a dynamic network which can adapt to the varying complexity of input instances in realworld applications. In this work, we explore the MoE based model for speech recognition, named SpeechMoE. To further control the sparsity of router activation and improve the diversity of gate values, we propose a sparsity L1 loss and a mean importance loss respectively. In addition, a new router architecture is used in SpeechMoE which can simultaneously utilize the information from a shared embedding network and the hierarchical representation of different MoE layers. Experimental results show that SpeechMoE can achieve lower character error rate (CER) with comparable computation cost than traditional static networks, providing 7.0%-23.0% relative CER improvements on four evaluation datasets. 4 authors · May 6, 2021
- Enhancing Low-Resource Language and Instruction Following Capabilities of Audio Language Models Audio language models can understand audio inputs and perform a range of audio-related tasks based on instructions, such as speech recognition and audio captioning, where the instructions are usually textual prompts. Audio language models are mostly initialized from pre-trained audio encoders and large language models (LLMs). Although these pre-trained components were developed to support multiple languages, audio-language models are trained predominantly on English data, which may limit their usability to only English instructions or English speech inputs. First, this paper examines the performance of existing audio language models in an underserved language using Thai as an example. This paper demonstrates that, despite being built on multilingual backbones, audio language models do not exhibit cross-lingual emergent abilities to low-resource languages. Second, this paper studies data mixture for developing audio language models that are optimized for a target language as well as English. In addition. this paper integrates audio comprehension and speech instruction-following capabilities into a single unified model. Our experiments provide insights into data mixture for enhancing instruction-following capabilities in both a low-resource language and English. Our model, Typhoon-Audio, outperforms existing open-source audio language models by a considerable margin, and it is comparable to state-of-the-art Gemini-1.5-Pro in both English and Thai languages. 5 authors · Sep 17, 2024
- SpeakerStew: Scaling to Many Languages with a Triaged Multilingual Text-Dependent and Text-Independent Speaker Verification System In this paper, we describe SpeakerStew - a hybrid system to perform speaker verification on 46 languages. Two core ideas were explored in this system: (1) Pooling training data of different languages together for multilingual generalization and reducing development cycles; (2) A novel triage mechanism between text-dependent and text-independent models to reduce runtime cost and expected latency. To the best of our knowledge, this is the first study of speaker verification systems at the scale of 46 languages. The problem is framed from the perspective of using a smart speaker device with interactions consisting of a wake-up keyword (text-dependent) followed by a speech query (text-independent). Experimental evidence suggests that training on multiple languages can generalize to unseen varieties while maintaining performance on seen varieties. We also found that it can reduce computational requirements for training models by an order of magnitude. Furthermore, during model inference on English data, we observe that leveraging a triage framework can reduce the number of calls to the more computationally expensive text-independent system by 73% (and reduce latency by 59%) while maintaining an EER no worse than the text-independent setup. 4 authors · Apr 5, 2021
- REAL-M: Towards Speech Separation on Real Mixtures In recent years, deep learning based source separation has achieved impressive results. Most studies, however, still evaluate separation models on synthetic datasets, while the performance of state-of-the-art techniques on in-the-wild speech data remains an open question. This paper contributes to fill this gap in two ways. First, we release the REAL-M dataset, a crowd-sourced corpus of real-life mixtures. Secondly, we address the problem of performance evaluation of real-life mixtures, where the ground truth is not available. We bypass this issue by carefully designing a blind Scale-Invariant Signal-to-Noise Ratio (SI-SNR) neural estimator. Through a user study, we show that our estimator reliably evaluates the separation performance on real mixtures. The performance predictions of the SI-SNR estimator indeed correlate well with human opinions. Moreover, we observe that the performance trends predicted by our estimator on the REAL-M dataset closely follow those achieved on synthetic benchmarks when evaluating popular speech separation models. 4 authors · Oct 20, 2021
- UniSpeech-SAT: Universal Speech Representation Learning with Speaker Aware Pre-Training Self-supervised learning (SSL) is a long-standing goal for speech processing, since it utilizes large-scale unlabeled data and avoids extensive human labeling. Recent years witness great successes in applying self-supervised learning in speech recognition, while limited exploration was attempted in applying SSL for modeling speaker characteristics. In this paper, we aim to improve the existing SSL framework for speaker representation learning. Two methods are introduced for enhancing the unsupervised speaker information extraction. First, we apply the multi-task learning to the current SSL framework, where we integrate the utterance-wise contrastive loss with the SSL objective function. Second, for better speaker discrimination, we propose an utterance mixing strategy for data augmentation, where additional overlapped utterances are created unsupervisely and incorporate during training. We integrate the proposed methods into the HuBERT framework. Experiment results on SUPERB benchmark show that the proposed system achieves state-of-the-art performance in universal representation learning, especially for speaker identification oriented tasks. An ablation study is performed verifying the efficacy of each proposed method. Finally, we scale up training dataset to 94 thousand hours public audio data and achieve further performance improvement in all SUPERB tasks. 11 authors · Oct 12, 2021
1 Large Language Model Can Transcribe Speech in Multi-Talker Scenarios with Versatile Instructions Recent advancements in large language models (LLMs) have revolutionized various domains, bringing significant progress and new opportunities. Despite progress in speech-related tasks, LLMs have not been sufficiently explored in multi-talker scenarios. In this work, we present a pioneering effort to investigate the capability of LLMs in transcribing speech in multi-talker environments, following versatile instructions related to multi-talker automatic speech recognition (ASR), target talker ASR, and ASR based on specific talker attributes such as sex, occurrence order, language, and keyword spoken. Our approach utilizes WavLM and Whisper encoder to extract multi-faceted speech representations that are sensitive to speaker characteristics and semantic context. These representations are then fed into an LLM fine-tuned using LoRA, enabling the capabilities for speech comprehension and transcription. Comprehensive experiments reveal the promising performance of our proposed system, MT-LLM, in cocktail party scenarios, highlighting the potential of LLM to handle speech-related tasks based on user instructions in such complex settings. 9 authors · Sep 13, 2024
13 Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity In deep learning, models typically reuse the same parameters for all inputs. Mixture of Experts (MoE) defies this and instead selects different parameters for each incoming example. The result is a sparsely-activated model -- with outrageous numbers of parameters -- but a constant computational cost. However, despite several notable successes of MoE, widespread adoption has been hindered by complexity, communication costs and training instability -- we address these with the Switch Transformer. We simplify the MoE routing algorithm and design intuitive improved models with reduced communication and computational costs. Our proposed training techniques help wrangle the instabilities and we show large sparse models may be trained, for the first time, with lower precision (bfloat16) formats. We design models based off T5-Base and T5-Large to obtain up to 7x increases in pre-training speed with the same computational resources. These improvements extend into multilingual settings where we measure gains over the mT5-Base version across all 101 languages. Finally, we advance the current scale of language models by pre-training up to trillion parameter models on the "Colossal Clean Crawled Corpus" and achieve a 4x speedup over the T5-XXL model. 3 authors · Jan 11, 2021
- BlendX: Complex Multi-Intent Detection with Blended Patterns Task-oriented dialogue (TOD) systems are commonly designed with the presumption that each utterance represents a single intent. However, this assumption may not accurately reflect real-world situations, where users frequently express multiple intents within a single utterance. While there is an emerging interest in multi-intent detection (MID), existing in-domain datasets such as MixATIS and MixSNIPS have limitations in their formulation. To address these issues, we present BlendX, a suite of refined datasets featuring more diverse patterns than their predecessors, elevating both its complexity and diversity. For dataset construction, we utilize both rule-based heuristics as well as a generative tool -- OpenAI's ChatGPT -- which is augmented with a similarity-driven strategy for utterance selection. To ensure the quality of the proposed datasets, we also introduce three novel metrics that assess the statistical properties of an utterance related to word count, conjunction use, and pronoun usage. Extensive experiments on BlendX reveal that state-of-the-art MID models struggle with the challenges posed by the new datasets, highlighting the need to reexamine the current state of the MID field. The dataset is available at https://github.com/HYU-NLP/BlendX. 5 authors · Mar 27, 2024
- Generative Spoken Language Modeling from Raw Audio We introduce Generative Spoken Language Modeling, the task of learning the acoustic and linguistic characteristics of a language from raw audio (no text, no labels), and a set of metrics to automatically evaluate the learned representations at acoustic and linguistic levels for both encoding and generation. We set up baseline systems consisting of a discrete speech encoder (returning pseudo-text units), a generative language model (trained on pseudo-text), and a speech decoder (generating a waveform from pseudo-text) all trained without supervision and validate the proposed metrics with human evaluation. Across 3 speech encoders (CPC, wav2vec 2.0, HuBERT), we find that the number of discrete units (50, 100, or 200) matters in a task-dependent and encoder-dependent way, and that some combinations approach text-based systems. 11 authors · Feb 1, 2021
- ParrotTTS: Text-to-Speech synthesis by exploiting self-supervised representations We present ParrotTTS, a modularized text-to-speech synthesis model leveraging disentangled self-supervised speech representations. It can train a multi-speaker variant effectively using transcripts from a single speaker. ParrotTTS adapts to a new language in low resource setup and generalizes to languages not seen while training the self-supervised backbone. Moreover, without training on bilingual or parallel examples, ParrotTTS can transfer voices across languages while preserving the speaker specific characteristics, e.g., synthesizing fluent Hindi speech using a French speaker's voice and accent. We present extensive results in monolingual and multi-lingual scenarios. ParrotTTS outperforms state-of-the-art multi-lingual TTS models using only a fraction of paired data as latter. 6 authors · Mar 1, 2023
- JaCappella Corpus: A Japanese a Cappella Vocal Ensemble Corpus We construct a corpus of Japanese a cappella vocal ensembles (jaCappella corpus) for vocal ensemble separation and synthesis. It consists of 35 copyright-cleared vocal ensemble songs and their audio recordings of individual voice parts. These songs were arranged from out-of-copyright Japanese children's songs and have six voice parts (lead vocal, soprano, alto, tenor, bass, and vocal percussion). They are divided into seven subsets, each of which features typical characteristics of a music genre such as jazz and enka. The variety in genre and voice part match vocal ensembles recently widespread in social media services such as YouTube, although the main targets of conventional vocal ensemble datasets are choral singing made up of soprano, alto, tenor, and bass. Experimental evaluation demonstrates that our corpus is a challenging resource for vocal ensemble separation. Our corpus is available on our project page (https://tomohikonakamura.github.io/jaCappella_corpus/). 5 authors · Nov 29, 2022
2 Mixtures of Deep Neural Experts for Automated Speech Scoring The paper copes with the task of automatic assessment of second language proficiency from the language learners' spoken responses to test prompts. The task has significant relevance to the field of computer assisted language learning. The approach presented in the paper relies on two separate modules: (1) an automatic speech recognition system that yields text transcripts of the spoken interactions involved, and (2) a multiple classifier system based on deep learners that ranks the transcripts into proficiency classes. Different deep neural network architectures (both feed-forward and recurrent) are specialized over diverse representations of the texts in terms of: a reference grammar, the outcome of probabilistic language models, several word embeddings, and two bag-of-word models. Combination of the individual classifiers is realized either via a probabilistic pseudo-joint model, or via a neural mixture of experts. Using the data of the third Spoken CALL Shared Task challenge, the highest values to date were obtained in terms of three popular evaluation metrics. 5 authors · Jun 23, 2021
- Unchosen Experts Can Contribute Too: Unleashing MoE Models' Power by Self-Contrast Mixture-of-Experts (MoE) has emerged as a prominent architecture for scaling model size while maintaining computational efficiency. In MoE, each token in the input sequence activates a different subset of experts determined by a routing mechanism. However, the unchosen experts in MoE models do not contribute to the output, potentially leading to underutilization of the model's capacity. In this work, we first conduct exploratory studies to demonstrate that increasing the number of activated experts does not necessarily improve and can even degrade the output quality. Then, we show that output distributions from an MoE model using different routing strategies substantially differ, indicating that different experts do not always act synergistically. Motivated by these findings, we propose Self-Contrast Mixture-of-Experts (SCMoE), a training-free strategy that utilizes unchosen experts in a self-contrast manner during inference. In SCMoE, the next-token probabilities are determined by contrasting the outputs from strong and weak activation using the same MoE model. Our method is conceptually simple and computationally lightweight, as it incurs minimal latency compared to greedy decoding. Experiments on several benchmarks (GSM8K, StrategyQA, MBPP and HumanEval) demonstrate that SCMoE can consistently enhance Mixtral 8x7B's reasoning capability across various domains. For example, it improves the accuracy on GSM8K from 61.79 to 66.94. Moreover, combining SCMoE with self-consistency yields additional gains, increasing major@20 accuracy from 75.59 to 78.31. 9 authors · May 23, 2024
60 Multi-Head Mixture-of-Experts Sparse Mixtures of Experts (SMoE) scales model capacity without significant increases in training and inference costs, but exhibits the following two issues: (1) Low expert activation, where only a small subset of experts are activated for optimization. (2) Lacking fine-grained analytical capabilities for multiple semantic concepts within individual tokens. We propose Multi-Head Mixture-of-Experts (MH-MoE), which employs a multi-head mechanism to split each token into multiple sub-tokens. These sub-tokens are then assigned to and processed by a diverse set of experts in parallel, and seamlessly reintegrated into the original token form. The multi-head mechanism enables the model to collectively attend to information from various representation spaces within different experts, while significantly enhances expert activation, thus deepens context understanding and alleviate overfitting. Moreover, our MH-MoE is straightforward to implement and decouples from other SMoE optimization methods, making it easy to integrate with other SMoE models for enhanced performance. Extensive experimental results across three tasks: English-focused language modeling, Multi-lingual language modeling and Masked multi-modality modeling tasks, demonstrate the effectiveness of MH-MoE. 4 authors · Apr 23, 2024 2
1 Nexus-O: An Omni-Perceptive And -Interactive Model for Language, Audio, And Vision Human beings perceive the real world through a spectrum of sensory modalities, encompassing auditory, visual, and linguistic faculties. The journey towards achieving Artificial General Intelligence (AGI) necessitates the development of models that can emulate these multifaceted perceptual capabilities and comprehensively understand these diversified data. To this end, we introduce Nexus-O, an industry-level omni-perceptive and -interactive model capable of efficiently processing Audio, Image, Video, and Text data in any combination and output audio/text in an end-to-end way. We systematically investigate Nexus-O by addressing three key research questions: First, how can models be efficiently designed and trained to achieve tri-modal alignment, understanding and reasoning capabilities across multiple modalities? Second, what approaches can be implemented to evaluate tri-modal model robustness, ensuring reliable performance and applicability in real-world scenarios? Third, what strategies can be employed to curate and obtain high-quality, real-life scenario speech datasets? For the first question, we design and pre-train Nexus-O based on the vision-language model, rather than the language model. By pre-training the model over high-quality synthetic audio data, our model is capable of tri-modal perception and interaction. For the second question, we introduce a new audio testbed, Nexus-O-audio, comprising diverse Automatic Speech Recognition (ASR) samples, spanning various real-world scenarios, such as corporate meetings and live stream. For the third question, we design the speech data synthesis pipeline to obtain high-quality speech training datasets, covering various real-world scenarios. Comprehensive experimentation and an in-depth analysis of tri-modal alignment over latent space demonstrate the advantages of our model on downstream tasks. 19 authors · Feb 26
- End-to-End Speaker Diarization for an Unknown Number of Speakers with Encoder-Decoder Based Attractors End-to-end speaker diarization for an unknown number of speakers is addressed in this paper. Recently proposed end-to-end speaker diarization outperformed conventional clustering-based speaker diarization, but it has one drawback: it is less flexible in terms of the number of speakers. This paper proposes a method for encoder-decoder based attractor calculation (EDA), which first generates a flexible number of attractors from a speech embedding sequence. Then, the generated multiple attractors are multiplied by the speech embedding sequence to produce the same number of speaker activities. The speech embedding sequence is extracted using the conventional self-attentive end-to-end neural speaker diarization (SA-EEND) network. In a two-speaker condition, our method achieved a 2.69 % diarization error rate (DER) on simulated mixtures and a 8.07 % DER on the two-speaker subset of CALLHOME, while vanilla SA-EEND attained 4.56 % and 9.54 %, respectively. In unknown numbers of speakers conditions, our method attained a 15.29 % DER on CALLHOME, while the x-vector-based clustering method achieved a 19.43 % DER. 5 authors · May 20, 2020
- A Framework for Synthetic Audio Conversations Generation using Large Language Models In this paper, we introduce ConversaSynth, a framework designed to generate synthetic conversation audio using large language models (LLMs) with multiple persona settings. The framework first creates diverse and coherent text-based dialogues across various topics, which are then converted into audio using text-to-speech (TTS) systems. Our experiments demonstrate that ConversaSynth effectively generates highquality synthetic audio datasets, which can significantly enhance the training and evaluation of models for audio tagging, audio classification, and multi-speaker speech recognition. The results indicate that the synthetic datasets generated by ConversaSynth exhibit substantial diversity and realism, making them suitable for developing robust, adaptable audio-based AI systems. 2 authors · Sep 2, 2024
2 Capacity-Aware Inference: Mitigating the Straggler Effect in Mixture of Experts The Mixture of Experts (MoE) is an effective architecture for scaling large language models by leveraging sparse expert activation, optimizing the trade-off between performance and efficiency. However, under expert parallelism, MoE suffers from inference inefficiencies due to imbalanced token-to-expert assignment, where some experts are overloaded while others remain underutilized. This imbalance leads to poor resource utilization and increased latency, as the most burdened expert dictates the overall delay, a phenomenon we define as the \textit{Straggler Effect}. To mitigate this, we propose Capacity-Aware Inference, including two key techniques: (1) \textit{Capacity-Aware Token Drop}, which discards overloaded tokens to regulate the maximum latency of MoE, and (2) \textit{Capacity-Aware Token Reroute}, which reallocates overflowed tokens to underutilized experts, balancing the token distribution. These techniques collectively optimize both high-load and low-load expert utilization, leading to a more efficient MoE inference pipeline. Extensive experiments demonstrate the effectiveness of our methods, showing significant improvements in inference efficiency, e.g., 0.2\% average performance increase and a 1.94times inference speedup on Mixtral-8times7B-Instruct. 4 authors · Mar 6 1
14 Stealing User Prompts from Mixture of Experts Mixture-of-Experts (MoE) models improve the efficiency and scalability of dense language models by routing each token to a small number of experts in each layer. In this paper, we show how an adversary that can arrange for their queries to appear in the same batch of examples as a victim's queries can exploit Expert-Choice-Routing to fully disclose a victim's prompt. We successfully demonstrate the effectiveness of this attack on a two-layer Mixtral model, exploiting the tie-handling behavior of the torch.topk CUDA implementation. Our results show that we can extract the entire prompt using O({VM}^2) queries (with vocabulary size V and prompt length M) or 100 queries on average per token in the setting we consider. This is the first attack to exploit architectural flaws for the purpose of extracting user prompts, introducing a new class of LLM vulnerabilities. 4 authors · Oct 30, 2024 2
27 Mega-TTS 2: Zero-Shot Text-to-Speech with Arbitrary Length Speech Prompts Zero-shot text-to-speech aims at synthesizing voices with unseen speech prompts. Previous large-scale multispeaker TTS models have successfully achieved this goal with an enrolled recording within 10 seconds. However, most of them are designed to utilize only short speech prompts. The limited information in short speech prompts significantly hinders the performance of fine-grained identity imitation. In this paper, we introduce Mega-TTS 2, a generic zero-shot multispeaker TTS model that is capable of synthesizing speech for unseen speakers with arbitrary-length prompts. Specifically, we 1) design a multi-reference timbre encoder to extract timbre information from multiple reference speeches; 2) and train a prosody language model with arbitrary-length speech prompts; With these designs, our model is suitable for prompts of different lengths, which extends the upper bound of speech quality for zero-shot text-to-speech. Besides arbitrary-length prompts, we introduce arbitrary-source prompts, which leverages the probabilities derived from multiple P-LLM outputs to produce expressive and controlled prosody. Furthermore, we propose a phoneme-level auto-regressive duration model to introduce in-context learning capabilities to duration modeling. Experiments demonstrate that our method could not only synthesize identity-preserving speech with a short prompt of an unseen speaker but also achieve improved performance with longer speech prompts. Audio samples can be found in https://mega-tts.github.io/mega2_demo/. 11 authors · Jul 14, 2023 10
- Distilling the Knowledge in a Neural Network A very simple way to improve the performance of almost any machine learning algorithm is to train many different models on the same data and then to average their predictions. Unfortunately, making predictions using a whole ensemble of models is cumbersome and may be too computationally expensive to allow deployment to a large number of users, especially if the individual models are large neural nets. Caruana and his collaborators have shown that it is possible to compress the knowledge in an ensemble into a single model which is much easier to deploy and we develop this approach further using a different compression technique. We achieve some surprising results on MNIST and we show that we can significantly improve the acoustic model of a heavily used commercial system by distilling the knowledge in an ensemble of models into a single model. We also introduce a new type of ensemble composed of one or more full models and many specialist models which learn to distinguish fine-grained classes that the full models confuse. Unlike a mixture of experts, these specialist models can be trained rapidly and in parallel. 3 authors · Mar 9, 2015
- Comparison of semi-supervised deep learning algorithms for audio classification In this article, we adapted five recent SSL methods to the task of audio classification. The first two methods, namely Deep Co-Training (DCT) and Mean Teacher (MT), involve two collaborative neural networks. The three other algorithms, called MixMatch (MM), ReMixMatch (RMM), and FixMatch (FM), are single-model methods that rely primarily on data augmentation strategies. Using the Wide-ResNet-28-2 architecture in all our experiments, 10% of labeled data and the remaining 90% as unlabeled data for training, we first compare the error rates of the five methods on three standard benchmark audio datasets: Environmental Sound Classification (ESC-10), UrbanSound8K (UBS8K), and Google Speech Commands (GSC). In all but one cases, MM, RMM, and FM outperformed MT and DCT significantly, MM and RMM being the best methods in most experiments. On UBS8K and GSC, MM achieved 18.02% and 3.25% error rate (ER), respectively, outperforming models trained with 100% of the available labeled data, which reached 23.29% and 4.94%, respectively. RMM achieved the best results on ESC-10 (12.00% ER), followed by FM which reached 13.33%. Second, we explored adding the mixup augmentation, used in MM and RMM, to DCT, MT, and FM. In almost all cases, mixup brought consistent gains. For instance, on GSC, FM reached 4.44% and 3.31% ER without and with mixup. Our PyTorch code will be made available upon paper acceptance at https:// github. com/ Labbe ti/ SSLH. 3 authors · Feb 16, 2021
- Toward Inference-optimal Mixture-of-Expert Large Language Models Mixture-of-Expert (MoE) based large language models (LLMs), such as the recent Mixtral and DeepSeek-MoE, have shown great promise in scaling model size without suffering from the quadratic growth of training cost of dense transformers. Like dense models, training MoEs requires answering the same question: given a training budget, what is the optimal allocation on the model size and number of tokens? We study the scaling law of MoE-based LLMs regarding the relations between the model performance, model size, dataset size, and the expert degree. Echoing previous research studying MoE in different contexts, we observe the diminishing return of increasing the number of experts, but this seems to suggest we should scale the number of experts until saturation, as the training cost would remain constant, which is problematic during inference time. We propose to amend the scaling law of MoE by introducing inference efficiency as another metric besides the validation loss. We find that MoEs with a few (4/8) experts are the most serving efficient solution under the same performance, but costs 2.5-3.5x more in training. On the other hand, training a (16/32) expert MoE much smaller (70-85%) than the loss-optimal solution, but with a larger training dataset is a promising setup under a training budget. 5 authors · Apr 3, 2024
- SC-GlowTTS: an Efficient Zero-Shot Multi-Speaker Text-To-Speech Model In this paper, we propose SC-GlowTTS: an efficient zero-shot multi-speaker text-to-speech model that improves similarity for speakers unseen during training. We propose a speaker-conditional architecture that explores a flow-based decoder that works in a zero-shot scenario. As text encoders, we explore a dilated residual convolutional-based encoder, gated convolutional-based encoder, and transformer-based encoder. Additionally, we have shown that adjusting a GAN-based vocoder for the spectrograms predicted by the TTS model on the training dataset can significantly improve the similarity and speech quality for new speakers. Our model converges using only 11 speakers, reaching state-of-the-art results for similarity with new speakers, as well as high speech quality. 9 authors · Apr 2, 2021
- Efficient Parallel Audio Generation using Group Masked Language Modeling We present a fast and high-quality codec language model for parallel audio generation. While SoundStorm, a state-of-the-art parallel audio generation model, accelerates inference speed compared to autoregressive models, it still suffers from slow inference due to iterative sampling. To resolve this problem, we propose Group-Masked Language Modeling~(G-MLM) and Group Iterative Parallel Decoding~(G-IPD) for efficient parallel audio generation. Both the training and sampling schemes enable the model to synthesize high-quality audio with a small number of iterations by effectively modeling the group-wise conditional dependencies. In addition, our model employs a cross-attention-based architecture to capture the speaker style of the prompt voice and improves computational efficiency. Experimental results demonstrate that our proposed model outperforms the baselines in prompt-based audio generation. 4 authors · Jan 2, 2024
- MADGF: Multi-Agent Data Generation Framework Automatic Speech Recognition (ASR) systems predominantly cater to monolingual inputs and struggle with the complexity introduced by mixed language audio. In this paper, we present a novel Multi-Agent Data Generation Framework (MADGF) to address this challenge. We finetune the open-source multilingual ASR model, Whisper, utilizing our generated Mixed Cantonese and English (MCE) audio dataset, Which achieved an impressive Mix Error Rate (MER) of 14.28%, 35.13% lower than the original model. Meanwhile, single language recognition ability is not affected, 12.6% Character Error Rate (CER) in Common voice zh-HK, 14.8% Word Error Rate (WER) in Common voice en. However, these metrics do not encompass all aspects critical to the ASR systems. Hence, we propose a novel evaluation metric called Fidelity to the Original Audio, Accuracy, and Latency (FAL). 2 authors · Oct 27, 2023
1 Unleashing the Potentials of Likelihood Composition for Multi-modal Language Models Model fusing has always been an important topic, especially in an era where large language models (LLM) and multi-modal language models (MLM) with different architectures, parameter sizes and training pipelines, are being created all the time. In this work, we propose a post-hoc framework, aiming at fusing heterogeneous models off-the-shell, which we call likelihood composition, and the basic idea is to compose multiple models' likelihood distribution when doing a multi-choice visual-question-answering task. Here the core concept, likelihood, is actually the log-probability of the candidate answer. In likelihood composition, we introduce some basic operations: debias, highlight, majority-vote and ensemble. By combining (composing) these basic elements, we get the mixed composition methods: mix-composition. Through conducting comprehensive experiments on 9 VQA datasets and 10 MLMs, we prove the effectiveness of mix-composition compared with simple ensemble or majority-vote methods. In this framework, people can propose new basic composition methods and combine them to get the new mixed composition methods. We hope our proposed likelihood composition can provide a new perspective of fusing heterogeneous models and inspire the exploration under this framework. 6 authors · Sep 30, 2024
- Late fusion ensembles for speech recognition on diverse input audio representations We explore diverse representations of speech audio, and their effect on a performance of late fusion ensemble of E-Branchformer models, applied to Automatic Speech Recognition (ASR) task. Although it is generally known that ensemble methods often improve the performance of the system even for speech recognition, it is very interesting to explore how ensembles of complex state-of-the-art models, such as medium-sized and large E-Branchformers, cope in this setting when their base models are trained on diverse representations of the input speech audio. The results are evaluated on four widely-used benchmark datasets: Librispeech, Aishell, Gigaspeech, TEDLIUMv2 and show that improvements of 1% - 14% can still be achieved over the state-of-the-art models trained using comparable techniques on these datasets. A noteworthy observation is that such ensemble offers improvements even with the use of language models, although the gap is closing. 2 authors · Dec 1, 2024
- Sound Demixing Challenge 2023 Music Demixing Track Technical Report: TFC-TDF-UNet v3 In this report, we present our award-winning solutions for the Music Demixing Track of Sound Demixing Challenge 2023. First, we propose TFC-TDF-UNet v3, a time-efficient music source separation model that achieves state-of-the-art results on the MUSDB benchmark. We then give full details regarding our solutions for each Leaderboard, including a loss masking approach for noise-robust training. Code for reproducing model training and final submissions is available at github.com/kuielab/sdx23. 3 authors · Jun 15, 2023
- SentMix-3L: A Bangla-English-Hindi Code-Mixed Dataset for Sentiment Analysis Code-mixing is a well-studied linguistic phenomenon when two or more languages are mixed in text or speech. Several datasets have been build with the goal of training computational models for code-mixing. Although it is very common to observe code-mixing with multiple languages, most datasets available contain code-mixed between only two languages. In this paper, we introduce SentMix-3L, a novel dataset for sentiment analysis containing code-mixed data between three languages Bangla, English, and Hindi. We carry out a comprehensive evaluation using SentMix-3L. We show that zero-shot prompting with GPT-3.5 outperforms all transformer-based models on SentMix-3L. 5 authors · Oct 27, 2023
- Benchmarks and leaderboards for sound demixing tasks Music demixing is the task of separating different tracks from the given single audio signal into components, such as drums, bass, and vocals from the rest of the accompaniment. Separation of sources is useful for a range of areas, including entertainment and hearing aids. In this paper, we introduce two new benchmarks for the sound source separation tasks and compare popular models for sound demixing, as well as their ensembles, on these benchmarks. For the models' assessments, we provide the leaderboard at https://mvsep.com/quality_checker/, giving a comparison for a range of models. The new benchmark datasets are available for download. We also develop a novel approach for audio separation, based on the ensembling of different models that are suited best for the particular stem. The proposed solution was evaluated in the context of the Music Demixing Challenge 2023 and achieved top results in different tracks of the challenge. The code and the approach are open-sourced on GitHub. 3 authors · May 12, 2023
- VoiceShop: A Unified Speech-to-Speech Framework for Identity-Preserving Zero-Shot Voice Editing We present VoiceShop, a novel speech-to-speech framework that can modify multiple attributes of speech, such as age, gender, accent, and speech style, in a single forward pass while preserving the input speaker's timbre. Previous works have been constrained to specialized models that can only edit these attributes individually and suffer from the following pitfalls: the magnitude of the conversion effect is weak, there is no zero-shot capability for out-of-distribution speakers, or the synthesized outputs exhibit undesirable timbre leakage. Our work proposes solutions for each of these issues in a simple modular framework based on a conditional diffusion backbone model with optional normalizing flow-based and sequence-to-sequence speaker attribute-editing modules, whose components can be combined or removed during inference to meet a wide array of tasks without additional model finetuning. Audio samples are available at https://voiceshopai.github.io. 9 authors · Apr 9, 2024
2 YourMT3+: Multi-instrument Music Transcription with Enhanced Transformer Architectures and Cross-dataset Stem Augmentation Multi-instrument music transcription aims to convert polyphonic music recordings into musical scores assigned to each instrument. This task is challenging for modeling as it requires simultaneously identifying multiple instruments and transcribing their pitch and precise timing, and the lack of fully annotated data adds to the training difficulties. This paper introduces YourMT3+, a suite of models for enhanced multi-instrument music transcription based on the recent language token decoding approach of MT3. We enhance its encoder by adopting a hierarchical attention transformer in the time-frequency domain and integrating a mixture of experts. To address data limitations, we introduce a new multi-channel decoding method for training with incomplete annotations and propose intra- and cross-stem augmentation for dataset mixing. Our experiments demonstrate direct vocal transcription capabilities, eliminating the need for voice separation pre-processors. Benchmarks across ten public datasets show our models' competitiveness with, or superiority to, existing transcription models. Further testing on pop music recordings highlights the limitations of current models. Fully reproducible code and datasets are available with demos at https://github.com/mimbres/YourMT3. 4 authors · Jul 5, 2024
- The importance of spatial and spectral information in multiple speaker tracking Multi-speaker localization and tracking using microphone array recording is of importance in a wide range of applications. One of the challenges with multi-speaker tracking is to associate direction estimates with the correct speaker. Most existing association approaches rely on spatial or spectral information alone, leading to performance degradation when one of these information channels is partially known or missing. This paper studies a joint probability data association (JPDA)-based method that facilitates association based on joint spatial-spectral information. This is achieved by integrating speaker time-frequency (TF) masks, estimated based on spectral information, in the association probabilities calculation. An experimental study that tested the proposed method on recordings from the LOCATA challenge demonstrates the enhanced performance obtained by using joint spatial-spectral information in the association. 3 authors · Oct 15, 2024
1 One Student Knows All Experts Know: From Sparse to Dense Human education system trains one student by multiple experts. Mixture-of-experts (MoE) is a powerful sparse architecture including multiple experts. However, sparse MoE model is easy to overfit, hard to deploy, and not hardware-friendly for practitioners. In this work, inspired by the human education model, we propose a novel task, knowledge integration, to obtain a dense student model (OneS) as knowledgeable as one sparse MoE. We investigate this task by proposing a general training framework including knowledge gathering and knowledge distillation. Specifically, to gather key knowledge from different pre-trained experts, we first investigate four different possible knowledge gathering methods, \ie summation, averaging, Top-K Knowledge Gathering (Top-KG), and Singular Value Decomposition Knowledge Gathering (SVD-KG) proposed in this paper. We then refine the dense student model by knowledge distillation to offset the noise from gathering. On ImageNet, our OneS preserves 61.7% benefits from MoE and achieves 78.4% top-1 accuracy ImageNet with only 15M parameters. On four natural language processing datasets, OneS obtains 88.2% MoE benefits and outperforms the best baseline by 51.7% using the same architecture and training data. In addition, compared with the MoE counterpart, OneS can achieve 3.7 times inference speedup due to less computation and hardware-friendly architecture. 5 authors · Jan 26, 2022
- Neural Voice Cloning with a Few Samples Voice cloning is a highly desired feature for personalized speech interfaces. Neural network based speech synthesis has been shown to generate high quality speech for a large number of speakers. In this paper, we introduce a neural voice cloning system that takes a few audio samples as input. We study two approaches: speaker adaptation and speaker encoding. Speaker adaptation is based on fine-tuning a multi-speaker generative model with a few cloning samples. Speaker encoding is based on training a separate model to directly infer a new speaker embedding from cloning audios and to be used with a multi-speaker generative model. In terms of naturalness of the speech and its similarity to original speaker, both approaches can achieve good performance, even with very few cloning audios. While speaker adaptation can achieve better naturalness and similarity, the cloning time or required memory for the speaker encoding approach is significantly less, making it favorable for low-resource deployment. 5 authors · Feb 14, 2018
- Towards Being Parameter-Efficient: A Stratified Sparsely Activated Transformer with Dynamic Capacity Mixture-of-experts (MoE) models that employ sparse activation have demonstrated effectiveness in significantly increasing the number of parameters while maintaining low computational requirements per token. However, recent studies have established that MoE models are inherently parameter-inefficient as the improvement in performance diminishes with an increasing number of experts. We hypothesize this parameter inefficiency is a result of all experts having equal capacity, which may not adequately meet the varying complexity requirements of different tokens or tasks. In light of this, we propose Stratified Mixture of Experts (SMoE) models, which feature a stratified structure and can assign dynamic capacity to different tokens. We demonstrate the effectiveness of SMoE on three multilingual machine translation benchmarks, containing 4, 15, and 94 language pairs, respectively. We show that SMoE outperforms multiple state-of-the-art MoE models with the same or fewer parameters. 5 authors · May 3, 2023
9 HMoE: Heterogeneous Mixture of Experts for Language Modeling Mixture of Experts (MoE) offers remarkable performance and computational efficiency by selectively activating subsets of model parameters. Traditionally, MoE models use homogeneous experts, each with identical capacity. However, varying complexity in input data necessitates experts with diverse capabilities, while homogeneous MoE hinders effective expert specialization and efficient parameter utilization. In this study, we propose a novel Heterogeneous Mixture of Experts (HMoE), where experts differ in size and thus possess diverse capacities. This heterogeneity allows for more specialized experts to handle varying token complexities more effectively. To address the imbalance in expert activation, we propose a novel training objective that encourages the frequent activation of smaller experts, enhancing computational efficiency and parameter utilization. Extensive experiments demonstrate that HMoE achieves lower loss with fewer activated parameters and outperforms conventional homogeneous MoE models on various pre-training evaluation benchmarks. Codes will be released upon acceptance. 12 authors · Aug 20, 2024
71 MoE-Mamba: Efficient Selective State Space Models with Mixture of Experts State Space Models (SSMs) have become serious contenders in the field of sequential modeling, challenging the dominance of Transformers. At the same time, Mixture of Experts (MoE) has significantly improved Transformer-based LLMs, including recent state-of-the-art open-source models. We propose that to unlock the potential of SSMs for scaling, they should be combined with MoE. We showcase this on Mamba, a recent SSM-based model that achieves remarkable, Transformer-like performance. Our model, MoE-Mamba, outperforms both Mamba and Transformer-MoE. In particular, MoE-Mamba reaches the same performance as Mamba in 2.2x less training steps while preserving the inference performance gains of Mamba against the Transformer. 5 authors · Jan 8, 2024 6
35 ChatAnything: Facetime Chat with LLM-Enhanced Personas In this technical report, we target generating anthropomorphized personas for LLM-based characters in an online manner, including visual appearance, personality and tones, with only text descriptions. To achieve this, we first leverage the in-context learning capability of LLMs for personality generation by carefully designing a set of system prompts. We then propose two novel concepts: the mixture of voices (MoV) and the mixture of diffusers (MoD) for diverse voice and appearance generation. For MoV, we utilize the text-to-speech (TTS) algorithms with a variety of pre-defined tones and select the most matching one based on the user-provided text description automatically. For MoD, we combine the recent popular text-to-image generation techniques and talking head algorithms to streamline the process of generating talking objects. We termed the whole framework as ChatAnything. With it, users could be able to animate anything with any personas that are anthropomorphic using just a few text inputs. However, we have observed that the anthropomorphic objects produced by current generative models are often undetectable by pre-trained face landmark detectors, leading to failure of the face motion generation, even if these faces possess human-like appearances because those images are nearly seen during the training (e.g., OOD samples). To address this issue, we incorporate pixel-level guidance to infuse human face landmarks during the image generation phase. To benchmark these metrics, we have built an evaluation dataset. Based on it, we verify that the detection rate of the face landmark is significantly increased from 57.0% to 92.5% thus allowing automatic face animation based on generated speech content. The code and more results can be found at https://chatanything.github.io/. 7 authors · Nov 12, 2023 3
- Remastering Divide and Remaster: A Cinematic Audio Source Separation Dataset with Multilingual Support Cinematic audio source separation (CASS) is a relatively new subtask of audio source separation, concerned with the separation of a mixture into the dialogue, music, and effects stems. To date, only one publicly available dataset exists for CASS, that is, the Divide and Remaster (DnR) dataset, which is currently at version 2. While DnR v2 has been an incredibly useful resource for CASS, several areas of improvement have been identified, particularly through its use in the 2023 Sound Demixing Challenge. In this work, we develop version 3 of the DnR dataset, addressing issues relating to vocal content in non-dialogue stems, loudness distributions, mastering process, and linguistic diversity. In particular, the dialogue stem of DnR v3 includes speech content from more than 30 languages from multiple families including but not limited to the Germanic, Romance, Indo-Aryan, Dravidian, Malayo-Polynesian, and Bantu families. Benchmark results using the Bandit model indicated that training on multilingual data yields significant generalizability to the model even in languages with low data availability. Even in languages with high data availability, the multilingual model often performs on par or better than dedicated models trained on monolingual CASS datasets. 3 authors · Jul 9, 2024
- Universal Speech Enhancement with Score-based Diffusion Removing background noise from speech audio has been the subject of considerable effort, especially in recent years due to the rise of virtual communication and amateur recordings. Yet background noise is not the only unpleasant disturbance that can prevent intelligibility: reverb, clipping, codec artifacts, problematic equalization, limited bandwidth, or inconsistent loudness are equally disturbing and ubiquitous. In this work, we propose to consider the task of speech enhancement as a holistic endeavor, and present a universal speech enhancement system that tackles 55 different distortions at the same time. Our approach consists of a generative model that employs score-based diffusion, together with a multi-resolution conditioning network that performs enhancement with mixture density networks. We show that this approach significantly outperforms the state of the art in a subjective test performed by expert listeners. We also show that it achieves competitive objective scores with just 4-8 diffusion steps, despite not considering any particular strategy for fast sampling. We hope that both our methodology and technical contributions encourage researchers and practitioners to adopt a universal approach to speech enhancement, possibly framing it as a generative task. 5 authors · Jun 7, 2022
- Noise-robust Speech Separation with Fast Generative Correction Speech separation, the task of isolating multiple speech sources from a mixed audio signal, remains challenging in noisy environments. In this paper, we propose a generative correction method to enhance the output of a discriminative separator. By leveraging a generative corrector based on a diffusion model, we refine the separation process for single-channel mixture speech by removing noises and perceptually unnatural distortions. Furthermore, we optimize the generative model using a predictive loss to streamline the diffusion model's reverse process into a single step and rectify any associated errors by the reverse process. Our method achieves state-of-the-art performance on the in-domain Libri2Mix noisy dataset, and out-of-domain WSJ with a variety of noises, improving SI-SNR by 22-35% relative to SepFormer, demonstrating robustness and strong generalization capabilities. 6 authors · Jun 11, 2024
- Looking to Listen at the Cocktail Party: A Speaker-Independent Audio-Visual Model for Speech Separation We present a joint audio-visual model for isolating a single speech signal from a mixture of sounds such as other speakers and background noise. Solving this task using only audio as input is extremely challenging and does not provide an association of the separated speech signals with speakers in the video. In this paper, we present a deep network-based model that incorporates both visual and auditory signals to solve this task. The visual features are used to "focus" the audio on desired speakers in a scene and to improve the speech separation quality. To train our joint audio-visual model, we introduce AVSpeech, a new dataset comprised of thousands of hours of video segments from the Web. We demonstrate the applicability of our method to classic speech separation tasks, as well as real-world scenarios involving heated interviews, noisy bars, and screaming children, only requiring the user to specify the face of the person in the video whose speech they want to isolate. Our method shows clear advantage over state-of-the-art audio-only speech separation in cases of mixed speech. In addition, our model, which is speaker-independent (trained once, applicable to any speaker), produces better results than recent audio-visual speech separation methods that are speaker-dependent (require training a separate model for each speaker of interest). 8 authors · Apr 10, 2018
36 NaturalSpeech 3: Zero-Shot Speech Synthesis with Factorized Codec and Diffusion Models While recent large-scale text-to-speech (TTS) models have achieved significant progress, they still fall short in speech quality, similarity, and prosody. Considering speech intricately encompasses various attributes (e.g., content, prosody, timbre, and acoustic details) that pose significant challenges for generation, a natural idea is to factorize speech into individual subspaces representing different attributes and generate them individually. Motivated by it, we propose NaturalSpeech 3, a TTS system with novel factorized diffusion models to generate natural speech in a zero-shot way. Specifically, 1) we design a neural codec with factorized vector quantization (FVQ) to disentangle speech waveform into subspaces of content, prosody, timbre, and acoustic details; 2) we propose a factorized diffusion model to generate attributes in each subspace following its corresponding prompt. With this factorization design, NaturalSpeech 3 can effectively and efficiently model the intricate speech with disentangled subspaces in a divide-and-conquer way. Experiments show that NaturalSpeech 3 outperforms the state-of-the-art TTS systems on quality, similarity, prosody, and intelligibility. Furthermore, we achieve better performance by scaling to 1B parameters and 200K hours of training data. 19 authors · Mar 5, 2024 3
- GASS: Generalizing Audio Source Separation with Large-scale Data Universal source separation targets at separating the audio sources of an arbitrary mix, removing the constraint to operate on a specific domain like speech or music. Yet, the potential of universal source separation is limited because most existing works focus on mixes with predominantly sound events, and small training datasets also limit its potential for supervised learning. Here, we study a single general audio source separation (GASS) model trained to separate speech, music, and sound events in a supervised fashion with a large-scale dataset. We assess GASS models on a diverse set of tasks. Our strong in-distribution results show the feasibility of GASS models, and the competitive out-of-distribution performance in sound event and speech separation shows its generalization abilities. Yet, it is challenging for GASS models to generalize for separating out-of-distribution cinematic and music content. We also fine-tune GASS models on each dataset and consistently outperform the ones without pre-training. All fine-tuned models (except the music separation one) obtain state-of-the-art results in their respective benchmarks. 4 authors · Sep 29, 2023
2 A Persona-Based Neural Conversation Model We present persona-based models for handling the issue of speaker consistency in neural response generation. A speaker model encodes personas in distributed embeddings that capture individual characteristics such as background information and speaking style. A dyadic speaker-addressee model captures properties of interactions between two interlocutors. Our models yield qualitative performance improvements in both perplexity and BLEU scores over baseline sequence-to-sequence models, with similar gains in speaker consistency as measured by human judges. 6 authors · Mar 19, 2016 2
- SMoA: Improving Multi-agent Large Language Models with Sparse Mixture-of-Agents While multi-agent systems have been shown to significantly enhance the performance of Large Language Models (LLMs) across various tasks and applications, the dense interaction between scaling agents potentially hampers their efficiency and diversity. To address these challenges, we draw inspiration from the sparse mixture-of-agents (SMoE) and propose a sparse mixture-of-agents (SMoA) framework to improve the efficiency and diversity of multi-agent LLMs. Unlike completely connected structures, SMoA introduces novel Response Selection and Early Stopping mechanisms to sparsify information flows among individual LLM agents, striking a balance between performance and efficiency. Additionally, inspired by the expert diversity principle in SMoE frameworks for workload balance between experts, we assign distinct role descriptions to each LLM agent, fostering diverse and divergent thinking. Extensive experiments on reasoning, alignment, and fairness benchmarks demonstrate that SMoA achieves performance comparable to traditional mixture-of-agents approaches but with significantly lower computational costs. Further analysis reveals that SMoA is more stable, has a greater capacity to scale, and offers considerable potential through hyper-parameter optimization. Code and data will be available at: https://github.com/David-Li0406/SMoA. 7 authors · Nov 5, 2024
- MMDenseLSTM: An efficient combination of convolutional and recurrent neural networks for audio source separation Deep neural networks have become an indispensable technique for audio source separation (ASS). It was recently reported that a variant of CNN architecture called MMDenseNet was successfully employed to solve the ASS problem of estimating source amplitudes, and state-of-the-art results were obtained for DSD100 dataset. To further enhance MMDenseNet, here we propose a novel architecture that integrates long short-term memory (LSTM) in multiple scales with skip connections to efficiently model long-term structures within an audio context. The experimental results show that the proposed method outperforms MMDenseNet, LSTM and a blend of the two networks. The number of parameters and processing time of the proposed model are significantly less than those for simple blending. Furthermore, the proposed method yields better results than those obtained using ideal binary masks for a singing voice separation task. 3 authors · May 7, 2018
- MoE-Pruner: Pruning Mixture-of-Experts Large Language Model using the Hints from Its Router Mixture-of-Experts (MoE) architectures face challenges such as high memory consumption and redundancy in experts. Pruning MoE can reduce network weights while maintaining model performance. Motivated by the recent observation of emergent large magnitude features in Large Language Models (LLM) and MoE routing policy, we propose MoE-Pruner, a method that prunes weights with the smallest magnitudes multiplied by the corresponding input activations and router weights, on each output neuron. Our pruning method is one-shot, requiring no retraining or weight updates. We evaluate our method on Mixtral-8x7B and Mixtral-8x22B across multiple language benchmarks. Experimental results show that our pruning method significantly outperforms state-of-the-art LLM pruning methods. Furthermore, our pruned MoE models can benefit from a pretrained teacher model through expert-wise knowledge distillation, improving performance post-pruning. Experimental results demonstrate that the Mixtral-8x7B model with 50% sparsity maintains 99% of the performance of the original model after the expert-wise knowledge distillation. 9 authors · Oct 15, 2024
1 MaskMoE: Boosting Token-Level Learning via Routing Mask in Mixture-of-Experts Scaling the size of a model enhances its capabilities but significantly increases computation complexity. Mixture-of-Experts models (MoE) address the issue by allowing model size to scale up without substantially increasing training or inference costs. Despite their promising results, MoE models encounter several challenges. Primarily, for dynamic routing methods, the dispersion of training tokens across multiple experts can lead to underfitting, particularly for infrequent tokens. Additionally, while fixed routing methods can mitigate that issue, they compromise on the diversity of representations. In this paper, we propose MaskMoE, a method designed to enhance token-level learning by employing a routing masking technique within the Mixture-of-Experts model. MaskMoE is capable of maintaining representation diversity while achieving more comprehensive training. Experimental results demonstrate that our method outperforms previous dominant Mixture-of-Experts models in terms of both perplexity (PPL) and downstream task performance. 11 authors · Jul 13, 2024
- NaturalSpeech 2: Latent Diffusion Models are Natural and Zero-Shot Speech and Singing Synthesizers Scaling text-to-speech (TTS) to large-scale, multi-speaker, and in-the-wild datasets is important to capture the diversity in human speech such as speaker identities, prosodies, and styles (e.g., singing). Current large TTS systems usually quantize speech into discrete tokens and use language models to generate these tokens one by one, which suffer from unstable prosody, word skipping/repeating issue, and poor voice quality. In this paper, we develop NaturalSpeech 2, a TTS system that leverages a neural audio codec with residual vector quantizers to get the quantized latent vectors and uses a diffusion model to generate these latent vectors conditioned on text input. To enhance the zero-shot capability that is important to achieve diverse speech synthesis, we design a speech prompting mechanism to facilitate in-context learning in the diffusion model and the duration/pitch predictor. We scale NaturalSpeech 2 to large-scale datasets with 44K hours of speech and singing data and evaluate its voice quality on unseen speakers. NaturalSpeech 2 outperforms previous TTS systems by a large margin in terms of prosody/timbre similarity, robustness, and voice quality in a zero-shot setting, and performs novel zero-shot singing synthesis with only a speech prompt. Audio samples are available at https://speechresearch.github.io/naturalspeech2. 9 authors · Apr 18, 2023 2
2 SpeechMoE2: Mixture-of-Experts Model with Improved Routing Mixture-of-experts based acoustic models with dynamic routing mechanisms have proved promising results for speech recognition. The design principle of router architecture is important for the large model capacity and high computational efficiency. Our previous work SpeechMoE only uses local grapheme embedding to help routers to make route decisions. To further improve speech recognition performance against varying domains and accents, we propose a new router architecture which integrates additional global domain and accent embedding into router input to promote adaptability. Experimental results show that the proposed SpeechMoE2 can achieve lower character error rate (CER) with comparable parameters than SpeechMoE on both multi-domain and multi-accent task. Primarily, the proposed method provides up to 1.6% - 4.8% relative CER improvement for the multidomain task and 1.9% - 17.7% relative CER improvement for the multi-accent task respectively. Besides, increasing the number of experts also achieves consistent performance improvement and keeps the computational cost constant. 4 authors · Nov 23, 2021
14 Scaling Laws for Fine-Grained Mixture of Experts Mixture of Experts (MoE) models have emerged as a primary solution for reducing the computational cost of Large Language Models. In this work, we analyze their scaling properties, incorporating an expanded range of variables. Specifically, we introduce a new hyperparameter, granularity, whose adjustment enables precise control over the size of the experts. Building on this, we establish scaling laws for fine-grained MoE, taking into account the number of training tokens, model size, and granularity. Leveraging these laws, we derive the optimal training configuration for a given computational budget. Our findings not only show that MoE models consistently outperform dense Transformers but also highlight that the efficiency gap between dense and MoE models widens as we scale up the model size and training budget. Furthermore, we demonstrate that the common practice of setting the size of experts in MoE to mirror the feed-forward layer is not optimal at almost any computational budget. 12 authors · Feb 12, 2024 1
- Advancing Multi-Party Dialogue Systems with Speaker-ware Contrastive Learning Dialogue response generation has made significant progress, but most research has focused on dyadic dialogue. In contrast, multi-party dialogues involve more participants, each potentially discussing different topics, making the task more complex. Current methods often rely on graph neural networks to model dialogue context, which helps capture the structural dynamics of multi-party conversations. However, these methods are heavily dependent on intricate graph structures and dataset annotations, and they often overlook the distinct speaking styles of participants. To address these challenges, we propose CMR, a Contrastive learning-based Multi-party dialogue Response generation model. CMR uses self-supervised contrastive learning to better distinguish "who says what." Additionally, by comparing speakers within the same conversation, the model captures differences in speaking styles and thematic transitions. To the best of our knowledge, this is the first approach to apply contrastive learning in multi-party dialogue generation. Experimental results show that CMR significantly outperforms state-of-the-art models in multi-party dialogue response tasks. 5 authors · Jan 20
- NIST SRE CTS Superset: A large-scale dataset for telephony speaker recognition This document provides a brief description of the National Institute of Standards and Technology (NIST) speaker recognition evaluation (SRE) conversational telephone speech (CTS) Superset. The CTS Superset has been created in an attempt to provide the research community with a large-scale dataset along with uniform metadata that can be used to effectively train and develop telephony (narrowband) speaker recognition systems. It contains a large number of telephony speech segments from more than 6800 speakers with speech durations distributed uniformly in the [10s, 60s] range. The segments have been extracted from the source corpora used to compile prior SRE datasets (SRE1996-2012), including the Greybeard corpus as well as the Switchboard and Mixer series collected by the Linguistic Data Consortium (LDC). In addition to the brief description, we also report speaker recognition results on the NIST 2020 CTS Speaker Recognition Challenge, obtained using a system trained with the CTS Superset. The results will serve as a reference baseline for the challenge. 1 authors · Aug 16, 2021
32 Layerwise Recurrent Router for Mixture-of-Experts The scaling of large language models (LLMs) has revolutionized their capabilities in various tasks, yet this growth must be matched with efficient computational strategies. The Mixture-of-Experts (MoE) architecture stands out for its ability to scale model size without significantly increasing training costs. Despite their advantages, current MoE models often display parameter inefficiency. For instance, a pre-trained MoE-based LLM with 52 billion parameters might perform comparably to a standard model with 6.7 billion parameters. Being a crucial part of MoE, current routers in different layers independently assign tokens without leveraging historical routing information, potentially leading to suboptimal token-expert combinations and the parameter inefficiency problem. To alleviate this issue, we introduce the Layerwise Recurrent Router for Mixture-of-Experts (RMoE). RMoE leverages a Gated Recurrent Unit (GRU) to establish dependencies between routing decisions across consecutive layers. Such layerwise recurrence can be efficiently parallelly computed for input tokens and introduces negotiable costs. Our extensive empirical evaluations demonstrate that RMoE-based language models consistently outperform a spectrum of baseline models. Furthermore, RMoE integrates a novel computation stage orthogonal to existing methods, allowing seamless compatibility with other MoE architectures. Our analyses attribute RMoE's gains to its effective cross-layer information sharing, which also improves expert selection and diversity. Our code is at https://github.com/qiuzh20/RMoE 7 authors · Aug 13, 2024 2
15 Data Mixing Made Efficient: A Bivariate Scaling Law for Language Model Pretraining Large language models exhibit exceptional generalization capabilities, primarily attributed to the utilization of diversely sourced data. However, conventional practices in integrating this diverse data heavily rely on heuristic schemes, lacking theoretical guidance. This research tackles these limitations by investigating strategies based on low-cost proxies for data mixtures, with the aim of streamlining data curation to enhance training efficiency. Specifically, we propose a unified scaling law, termed BiMix, which accurately models the bivariate scaling behaviors of both data quantity and mixing proportions. We conduct systematic experiments and provide empirical evidence for the predictive power and fundamental principles of BiMix. Notably, our findings reveal that entropy-driven training-free data mixtures can achieve comparable or even better performance than more resource-intensive methods. We hope that our quantitative insights can shed light on further judicious research and development in cost-effective language modeling. 5 authors · May 23, 2024
6 CoMoSpeech: One-Step Speech and Singing Voice Synthesis via Consistency Model Denoising diffusion probabilistic models (DDPMs) have shown promising performance for speech synthesis. However, a large number of iterative steps are required to achieve high sample quality, which restricts the inference speed. Maintaining sample quality while increasing sampling speed has become a challenging task. In this paper, we propose a "Co"nsistency "Mo"del-based "Speech" synthesis method, CoMoSpeech, which achieve speech synthesis through a single diffusion sampling step while achieving high audio quality. The consistency constraint is applied to distill a consistency model from a well-designed diffusion-based teacher model, which ultimately yields superior performances in the distilled CoMoSpeech. Our experiments show that by generating audio recordings by a single sampling step, the CoMoSpeech achieves an inference speed more than 150 times faster than real-time on a single NVIDIA A100 GPU, which is comparable to FastSpeech2, making diffusion-sampling based speech synthesis truly practical. Meanwhile, objective and subjective evaluations on text-to-speech and singing voice synthesis show that the proposed teacher models yield the best audio quality, and the one-step sampling based CoMoSpeech achieves the best inference speed with better or comparable audio quality to other conventional multi-step diffusion model baselines. Audio samples are available at https://comospeech.github.io/. 6 authors · May 11, 2023
- Effective Use of Variational Embedding Capacity in Expressive End-to-End Speech Synthesis Recent work has explored sequence-to-sequence latent variable models for expressive speech synthesis (supporting control and transfer of prosody and style), but has not presented a coherent framework for understanding the trade-offs between the competing methods. In this paper, we propose embedding capacity (the amount of information the embedding contains about the data) as a unified method of analyzing the behavior of latent variable models of speech, comparing existing heuristic (non-variational) methods to variational methods that are able to explicitly constrain capacity using an upper bound on representational mutual information. In our proposed model (Capacitron), we show that by adding conditional dependencies to the variational posterior such that it matches the form of the true posterior, the same model can be used for high-precision prosody transfer, text-agnostic style transfer, and generation of natural-sounding prior samples. For multi-speaker models, Capacitron is able to preserve target speaker identity during inter-speaker prosody transfer and when drawing samples from the latent prior. Lastly, we introduce a method for decomposing embedding capacity hierarchically across two sets of latents, allowing a portion of the latent variability to be specified and the remaining variability sampled from a learned prior. Audio examples are available on the web. 7 authors · Jun 8, 2019
13 BAM! Just Like That: Simple and Efficient Parameter Upcycling for Mixture of Experts The Mixture of Experts (MoE) framework has become a popular architecture for large language models due to its superior performance over dense models. However, training MoEs from scratch in a large-scale regime is prohibitively expensive. Existing methods mitigate this by pre-training multiple dense expert models independently and using them to initialize an MoE. This is done by using experts' feed-forward network (FFN) to initialize the MoE's experts while merging other parameters. However, this method limits the reuse of dense model parameters to only the FFN layers, thereby constraining the advantages when "upcycling" these models into MoEs. We propose BAM (Branch-Attend-Mix), a simple yet effective method that addresses this shortcoming. BAM makes full use of specialized dense models by not only using their FFN to initialize the MoE layers but also leveraging experts' attention parameters fully by initializing them into a soft-variant of Mixture of Attention (MoA) layers. We explore two methods for upcycling attention parameters: 1) initializing separate attention experts from dense models including all attention parameters for the best model performance; and 2) sharing key and value parameters across all experts to facilitate for better inference efficiency. To further improve efficiency, we adopt a parallel attention transformer architecture to MoEs, which allows the attention experts and FFN experts to be computed concurrently. Our experiments on seed models ranging from 590 million to 2 billion parameters demonstrate that BAM surpasses baselines in both perplexity and downstream task performance, within the same computational and data constraints. 11 authors · Aug 15, 2024 3
1 Speechformer: Reducing Information Loss in Direct Speech Translation Transformer-based models have gained increasing popularity achieving state-of-the-art performance in many research fields including speech translation. However, Transformer's quadratic complexity with respect to the input sequence length prevents its adoption as is with audio signals, which are typically represented by long sequences. Current solutions resort to an initial sub-optimal compression based on a fixed sampling of raw audio features. Therefore, potentially useful linguistic information is not accessible to higher-level layers in the architecture. To solve this issue, we propose Speechformer, an architecture that, thanks to reduced memory usage in the attention layers, avoids the initial lossy compression and aggregates information only at a higher level according to more informed linguistic criteria. Experiments on three language pairs (en->de/es/nl) show the efficacy of our solution, with gains of up to 0.8 BLEU on the standard MuST-C corpus and of up to 4.0 BLEU in a low resource scenario. 4 authors · Sep 9, 2021
1 Sparse Mixers: Combining MoE and Mixing to build a more efficient BERT We combine the capacity of sparsely gated Mixture-of-Experts (MoE) with the speed and stability of linear, mixing transformations to design the Sparse Mixer encoder model. Sparse Mixer slightly outperforms (<1%) BERT on GLUE and SuperGLUE, but more importantly trains 65% faster and runs inference 61% faster. We also present a faster variant, prosaically named Fast Sparse Mixer, that marginally underperforms BERT on SuperGLUE, but trains and runs nearly twice as fast. We justify the design of these two models by carefully ablating through various mixing mechanisms, MoE configurations and hyperparameters. Sparse Mixer overcomes many of the latency and stability concerns of MoE models and offers the prospect of serving sparse student models, without resorting to distilling them to dense variants. 2 authors · May 24, 2022
1 DiffV2S: Diffusion-based Video-to-Speech Synthesis with Vision-guided Speaker Embedding Recent research has demonstrated impressive results in video-to-speech synthesis which involves reconstructing speech solely from visual input. However, previous works have struggled to accurately synthesize speech due to a lack of sufficient guidance for the model to infer the correct content with the appropriate sound. To resolve the issue, they have adopted an extra speaker embedding as a speaking style guidance from a reference auditory information. Nevertheless, it is not always possible to obtain the audio information from the corresponding video input, especially during the inference time. In this paper, we present a novel vision-guided speaker embedding extractor using a self-supervised pre-trained model and prompt tuning technique. In doing so, the rich speaker embedding information can be produced solely from input visual information, and the extra audio information is not necessary during the inference time. Using the extracted vision-guided speaker embedding representations, we further develop a diffusion-based video-to-speech synthesis model, so called DiffV2S, conditioned on those speaker embeddings and the visual representation extracted from the input video. The proposed DiffV2S not only maintains phoneme details contained in the input video frames, but also creates a highly intelligible mel-spectrogram in which the speaker identities of the multiple speakers are all preserved. Our experimental results show that DiffV2S achieves the state-of-the-art performance compared to the previous video-to-speech synthesis technique. 3 authors · Aug 15, 2023
9 Toward Joint Language Modeling for Speech Units and Text Speech and text are two major forms of human language. The research community has been focusing on mapping speech to text or vice versa for many years. However, in the field of language modeling, very little effort has been made to model them jointly. In light of this, we explore joint language modeling for speech units and text. Specifically, we compare different speech tokenizers to transform continuous speech signals into discrete units and use different methods to construct mixed speech-text data. We introduce automatic metrics to evaluate how well the joint LM mixes speech and text. We also fine-tune the LM on downstream spoken language understanding (SLU) tasks with different modalities (speech or text) and test its performance to assess the model's learning of shared representations. Our results show that by mixing speech units and text with our proposed mixing techniques, the joint LM improves over a speech-only baseline on SLU tasks and shows zero-shot cross-modal transferability. 8 authors · Oct 12, 2023 1
- Label-Efficient Self-Supervised Speaker Verification With Information Maximization and Contrastive Learning State-of-the-art speaker verification systems are inherently dependent on some kind of human supervision as they are trained on massive amounts of labeled data. However, manually annotating utterances is slow, expensive and not scalable to the amount of data available today. In this study, we explore self-supervised learning for speaker verification by learning representations directly from raw audio. The objective is to produce robust speaker embeddings that have small intra-speaker and large inter-speaker variance. Our approach is based on recent information maximization learning frameworks and an intensive data augmentation pre-processing step. We evaluate the ability of these methods to work without contrastive samples before showing that they achieve better performance when combined with a contrastive loss. Furthermore, we conduct experiments to show that our method reaches competitive results compared to existing techniques and can get better performances compared to a supervised baseline when fine-tuned with a small portion of labeled data. 2 authors · Jul 12, 2022
8 MulliVC: Multi-lingual Voice Conversion With Cycle Consistency Voice conversion aims to modify the source speaker's voice to resemble the target speaker while preserving the original speech content. Despite notable advancements in voice conversion these days, multi-lingual voice conversion (including both monolingual and cross-lingual scenarios) has yet to be extensively studied. It faces two main challenges: 1) the considerable variability in prosody and articulation habits across languages; and 2) the rarity of paired multi-lingual datasets from the same speaker. In this paper, we propose MulliVC, a novel voice conversion system that only converts timbre and keeps original content and source language prosody without multi-lingual paired data. Specifically, each training step of MulliVC contains three substeps: In step one the model is trained with monolingual speech data; then, steps two and three take inspiration from back translation, construct a cyclical process to disentangle the timbre and other information (content, prosody, and other language-related information) in the absence of multi-lingual data from the same speaker. Both objective and subjective results indicate that MulliVC significantly surpasses other methods in both monolingual and cross-lingual contexts, demonstrating the system's efficacy and the viability of the three-step approach with cycle consistency. Audio samples can be found on our demo page (mullivc.github.io). 9 authors · Aug 8, 2024 2
- MixSpeech: Cross-Modality Self-Learning with Audio-Visual Stream Mixup for Visual Speech Translation and Recognition Multi-media communications facilitate global interaction among people. However, despite researchers exploring cross-lingual translation techniques such as machine translation and audio speech translation to overcome language barriers, there is still a shortage of cross-lingual studies on visual speech. This lack of research is mainly due to the absence of datasets containing visual speech and translated text pairs. In this paper, we present AVMuST-TED, the first dataset for Audio-Visual Multilingual Speech Translation, derived from TED talks. Nonetheless, visual speech is not as distinguishable as audio speech, making it difficult to develop a mapping from source speech phonemes to the target language text. To address this issue, we propose MixSpeech, a cross-modality self-learning framework that utilizes audio speech to regularize the training of visual speech tasks. To further minimize the cross-modality gap and its impact on knowledge transfer, we suggest adopting mixed speech, which is created by interpolating audio and visual streams, along with a curriculum learning strategy to adjust the mixing ratio as needed. MixSpeech enhances speech translation in noisy environments, improving BLEU scores for four languages on AVMuST-TED by +1.4 to +4.2. Moreover, it achieves state-of-the-art performance in lip reading on CMLR (11.1\%), LRS2 (25.5\%), and LRS3 (28.0\%). 10 authors · Mar 9, 2023
5 Jakiro: Boosting Speculative Decoding with Decoupled Multi-Head via MoE Speculative decoding (SD) accelerates large language model inference by using a smaller draft model to predict multiple tokens, which are then verified in parallel by the larger target model. However, the limited capacity of the draft model often necessitates tree-based sampling to improve prediction accuracy, where multiple candidates are generated at each step. We identify a key limitation in this approach: the candidates at the same step are derived from the same representation, limiting diversity and reducing overall effectiveness. To address this, we propose Jakiro, leveraging Mixture of Experts (MoE), where independent experts generate diverse predictions, effectively decoupling correlations among candidates. Furthermore, we introduce a hybrid inference strategy, combining autoregressive decoding for initial tokens with parallel decoding for subsequent stages, and enhance the latter with contrastive mechanism in features to improve accuracy. Our method significantly boosts prediction accuracy and achieves higher inference speedups. Extensive experiments across diverse models validate the effectiveness and robustness of our approach, establishing a new SOTA in speculative decoding. Our codes are available at https://github.com/haiduo/Jakiro. 10 authors · Feb 10 2
2 StyleTTS-ZS: Efficient High-Quality Zero-Shot Text-to-Speech Synthesis with Distilled Time-Varying Style Diffusion The rapid development of large-scale text-to-speech (TTS) models has led to significant advancements in modeling diverse speaker prosody and voices. However, these models often face issues such as slow inference speeds, reliance on complex pre-trained neural codec representations, and difficulties in achieving naturalness and high similarity to reference speakers. To address these challenges, this work introduces StyleTTS-ZS, an efficient zero-shot TTS model that leverages distilled time-varying style diffusion to capture diverse speaker identities and prosodies. We propose a novel approach that represents human speech using input text and fixed-length time-varying discrete style codes to capture diverse prosodic variations, trained adversarially with multi-modal discriminators. A diffusion model is then built to sample this time-varying style code for efficient latent diffusion. Using classifier-free guidance, StyleTTS-ZS achieves high similarity to the reference speaker in the style diffusion process. Furthermore, to expedite sampling, the style diffusion model is distilled with perceptual loss using only 10k samples, maintaining speech quality and similarity while reducing inference speed by 90%. Our model surpasses previous state-of-the-art large-scale zero-shot TTS models in both naturalness and similarity, offering a 10-20 faster sampling speed, making it an attractive alternative for efficient large-scale zero-shot TTS systems. The audio demo, code and models are available at https://styletts-zs.github.io/. 4 authors · Sep 16, 2024
- Multi-Source Diffusion Models for Simultaneous Music Generation and Separation In this work, we define a diffusion-based generative model capable of both music synthesis and source separation by learning the score of the joint probability density of sources sharing a context. Alongside the classic total inference tasks (i.e., generating a mixture, separating the sources), we also introduce and experiment on the partial generation task of source imputation, where we generate a subset of the sources given the others (e.g., play a piano track that goes well with the drums). Additionally, we introduce a novel inference method for the separation task based on Dirac likelihood functions. We train our model on Slakh2100, a standard dataset for musical source separation, provide qualitative results in the generation settings, and showcase competitive quantitative results in the source separation setting. Our method is the first example of a single model that can handle both generation and separation tasks, thus representing a step toward general audio models. 6 authors · Feb 4, 2023
- SSL-TTS: Leveraging Self-Supervised Embeddings and kNN Retrieval for Zero-Shot Multi-speaker TTS While recent zero-shot multispeaker text-to-speech (TTS) models achieve impressive results, they typically rely on extensive transcribed speech datasets from numerous speakers and intricate training pipelines. Meanwhile, self-supervised learning (SSL) speech features have emerged as effective intermediate representations for TTS. It was also observed that SSL features from different speakers that are linearly close share phonetic information while maintaining individual speaker identity, which enables straight-forward and robust voice cloning. In this study, we introduce SSL-TTS, a lightweight and efficient zero-shot TTS framework trained on transcribed speech from a single speaker. SSL-TTS leverages SSL features and retrieval methods for simple and robust zero-shot multi-speaker synthesis. Objective and subjective evaluations show that our approach achieves performance comparable to state-of-the-art models that require significantly larger training datasets. The low training data requirements mean that SSL-TTS is well suited for the development of multi-speaker TTS systems for low-resource domains and languages. We also introduce an interpolation parameter which enables fine control over the output speech by blending voices. Demo samples are available at https://idiap.github.io/ssl-tts 4 authors · Aug 20, 2024
- A Comparative Study of Self-supervised Speech Representation Based Voice Conversion We present a large-scale comparative study of self-supervised speech representation (S3R)-based voice conversion (VC). In the context of recognition-synthesis VC, S3Rs are attractive owing to their potential to replace expensive supervised representations such as phonetic posteriorgrams (PPGs), which are commonly adopted by state-of-the-art VC systems. Using S3PRL-VC, an open-source VC software we previously developed, we provide a series of in-depth objective and subjective analyses under three VC settings: intra-/cross-lingual any-to-one (A2O) and any-to-any (A2A) VC, using the voice conversion challenge 2020 (VCC2020) dataset. We investigated S3R-based VC in various aspects, including model type, multilinguality, and supervision. We also studied the effect of a post-discretization process with k-means clustering and showed how it improves in the A2A setting. Finally, the comparison with state-of-the-art VC systems demonstrates the competitiveness of S3R-based VC and also sheds light on the possible improving directions. 4 authors · Jul 9, 2022
1 LLaMA-MoE: Building Mixture-of-Experts from LLaMA with Continual Pre-training Mixture-of-Experts (MoE) has gained increasing popularity as a promising framework for scaling up large language models (LLMs). However, training MoE from scratch in a large-scale setting still suffers from data-hungry and instability problems. Motivated by this limit, we investigate building MoE models from existing dense large language models. Specifically, based on the well-known LLaMA-2 7B model, we obtain an MoE model by: (1) Expert Construction, which partitions the parameters of original Feed-Forward Networks (FFNs) into multiple experts; (2) Continual Pre-training, which further trains the transformed MoE model and additional gate networks. In this paper, we comprehensively explore different methods for expert construction and various data sampling strategies for continual pre-training. After these stages, our LLaMA-MoE models could maintain language abilities and route the input tokens to specific experts with part of the parameters activated. Empirically, by training 200B tokens, LLaMA-MoE-3.5B models significantly outperform dense models that contain similar activation parameters. The source codes and models are available at https://github.com/pjlab-sys4nlp/llama-moe . 7 authors · Jun 24, 2024
- Universal speaker recognition encoders for different speech segments duration Creating universal speaker encoders which are robust for different acoustic and speech duration conditions is a big challenge today. According to our observations systems trained on short speech segments are optimal for short phrase speaker verification and systems trained on long segments are superior for long segments verification. A system trained simultaneously on pooled short and long speech segments does not give optimal verification results and usually degrades both for short and long segments. This paper addresses the problem of creating universal speaker encoders for different speech segments duration. We describe our simple recipe for training universal speaker encoder for any type of selected neural network architecture. According to our evaluation results of wav2vec-TDNN based systems obtained for NIST SRE and VoxCeleb1 benchmarks the proposed universal encoder provides speaker verification improvements in case of different enrollment and test speech segment duration. The key feature of the proposed encoder is that it has the same inference time as the selected neural network architecture. 3 authors · Oct 28, 2022
- DiCoW: Diarization-Conditioned Whisper for Target Speaker Automatic Speech Recognition Speaker-attributed automatic speech recognition (ASR) in multi-speaker environments remains a significant challenge, particularly when systems conditioned on speaker embeddings fail to generalize to unseen speakers. In this work, we propose Diarization-Conditioned Whisper (DiCoW), a novel approach to target-speaker ASR that leverages speaker diarization outputs as conditioning information. DiCoW extends the pre-trained Whisper model by integrating diarization labels directly, eliminating reliance on speaker embeddings and reducing the need for extensive speaker-specific training data. Our method introduces frame-level diarization-dependent transformations (FDDT) and query-key biasing (QKb) techniques to refine the model's focus on target speakers while effectively handling overlapping speech. By leveraging diarization outputs as conditioning signals, DiCoW simplifies the workflow for multi-speaker ASR, improves generalization to unseen speakers and enables more reliable transcription in real-world multi-speaker recordings. Additionally, we explore the integration of a connectionist temporal classification (CTC) head to Whisper and demonstrate its ability to improve transcription efficiency through hybrid decoding. Notably, we show that our approach is not limited to Whisper; it also provides similar benefits when applied to the Branchformer model. We validate DiCoW on real-world datasets, including AMI and NOTSOFAR-1 from CHiME-8 challenge, as well as synthetic benchmarks such as Libri2Mix and LibriCSS, enabling direct comparisons with previous methods. Results demonstrate that DiCoW enhances the model's target-speaker ASR capabilities while maintaining Whisper's accuracy and robustness on single-speaker data. 10 authors · Dec 30, 2024
- ZMM-TTS: Zero-shot Multilingual and Multispeaker Speech Synthesis Conditioned on Self-supervised Discrete Speech Representations Neural text-to-speech (TTS) has achieved human-like synthetic speech for single-speaker, single-language synthesis. Multilingual TTS systems are limited to resource-rich languages due to the lack of large paired text and studio-quality audio data. In most cases, TTS systems are built using a single speaker's voice. However, there is growing interest in developing systems that can synthesize voices for new speakers using only a few seconds of their speech. This paper presents ZMM-TTS, a multilingual and multispeaker framework utilizing quantized latent speech representations from a large-scale, pre-trained, self-supervised model. Our paper is the first to incorporate the representations from text-based and speech-based self-supervised learning models into multilingual speech synthesis tasks. We conducted comprehensive subjective and objective evaluations through a series of experiments. Our model has been proven effective in terms of speech naturalness and similarity for both seen and unseen speakers in six high-resource languages. We also tested the efficiency of our method on two hypothetical low-resource languages. The results are promising, indicating that our proposed approach can synthesize audio that is intelligible and has a high degree of similarity to the target speaker's voice, even without any training data for the new, unseen language. 8 authors · Dec 21, 2023
- AudioGen: Textually Guided Audio Generation We tackle the problem of generating audio samples conditioned on descriptive text captions. In this work, we propose AaudioGen, an auto-regressive generative model that generates audio samples conditioned on text inputs. AudioGen operates on a learnt discrete audio representation. The task of text-to-audio generation poses multiple challenges. Due to the way audio travels through a medium, differentiating ``objects'' can be a difficult task (e.g., separating multiple people simultaneously speaking). This is further complicated by real-world recording conditions (e.g., background noise, reverberation, etc.). Scarce text annotations impose another constraint, limiting the ability to scale models. Finally, modeling high-fidelity audio requires encoding audio at high sampling rate, leading to extremely long sequences. To alleviate the aforementioned challenges we propose an augmentation technique that mixes different audio samples, driving the model to internally learn to separate multiple sources. We curated 10 datasets containing different types of audio and text annotations to handle the scarcity of text-audio data points. For faster inference, we explore the use of multi-stream modeling, allowing the use of shorter sequences while maintaining a similar bitrate and perceptual quality. We apply classifier-free guidance to improve adherence to text. Comparing to the evaluated baselines, AudioGen outperforms over both objective and subjective metrics. Finally, we explore the ability of the proposed method to generate audio continuation conditionally and unconditionally. Samples: https://felixkreuk.github.io/audiogen 9 authors · Sep 30, 2022
- Style Description based Text-to-Speech with Conditional Prosodic Layer Normalization based Diffusion GAN In this paper, we present a Diffusion GAN based approach (Prosodic Diff-TTS) to generate the corresponding high-fidelity speech based on the style description and content text as an input to generate speech samples within only 4 denoising steps. It leverages the novel conditional prosodic layer normalization to incorporate the style embeddings into the multi head attention based phoneme encoder and mel spectrogram decoder based generator architecture to generate the speech. The style embedding is generated by fine tuning the pretrained BERT model on auxiliary tasks such as pitch, speaking speed, emotion,gender classifications. We demonstrate the efficacy of our proposed architecture on multi-speaker LibriTTS and PromptSpeech datasets, using multiple quantitative metrics that measure generated accuracy and MOS. 3 authors · Oct 27, 2023
1 Speak, Read and Prompt: High-Fidelity Text-to-Speech with Minimal Supervision We introduce SPEAR-TTS, a multi-speaker text-to-speech (TTS) system that can be trained with minimal supervision. By combining two types of discrete speech representations, we cast TTS as a composition of two sequence-to-sequence tasks: from text to high-level semantic tokens (akin to "reading") and from semantic tokens to low-level acoustic tokens ("speaking"). Decoupling these two tasks enables training of the "speaking" module using abundant audio-only data, and unlocks the highly efficient combination of pretraining and backtranslation to reduce the need for parallel data when training the "reading" component. To control the speaker identity, we adopt example prompting, which allows SPEAR-TTS to generalize to unseen speakers using only a short sample of 3 seconds, without any explicit speaker representation or speaker-id labels. Our experiments demonstrate that SPEAR-TTS achieves a character error rate that is competitive with state-of-the-art methods using only 15 minutes of parallel data, while matching ground-truth speech in terms of naturalness and acoustic quality, as measured in subjective tests. 9 authors · Feb 7, 2023
- WaveNet: A Generative Model for Raw Audio This paper introduces WaveNet, a deep neural network for generating raw audio waveforms. The model is fully probabilistic and autoregressive, with the predictive distribution for each audio sample conditioned on all previous ones; nonetheless we show that it can be efficiently trained on data with tens of thousands of samples per second of audio. When applied to text-to-speech, it yields state-of-the-art performance, with human listeners rating it as significantly more natural sounding than the best parametric and concatenative systems for both English and Mandarin. A single WaveNet can capture the characteristics of many different speakers with equal fidelity, and can switch between them by conditioning on the speaker identity. When trained to model music, we find that it generates novel and often highly realistic musical fragments. We also show that it can be employed as a discriminative model, returning promising results for phoneme recognition. 9 authors · Sep 12, 2016
- USAT: A Universal Speaker-Adaptive Text-to-Speech Approach Conventional text-to-speech (TTS) research has predominantly focused on enhancing the quality of synthesized speech for speakers in the training dataset. The challenge of synthesizing lifelike speech for unseen, out-of-dataset speakers, especially those with limited reference data, remains a significant and unresolved problem. While zero-shot or few-shot speaker-adaptive TTS approaches have been explored, they have many limitations. Zero-shot approaches tend to suffer from insufficient generalization performance to reproduce the voice of speakers with heavy accents. While few-shot methods can reproduce highly varying accents, they bring a significant storage burden and the risk of overfitting and catastrophic forgetting. In addition, prior approaches only provide either zero-shot or few-shot adaptation, constraining their utility across varied real-world scenarios with different demands. Besides, most current evaluations of speaker-adaptive TTS are conducted only on datasets of native speakers, inadvertently neglecting a vast portion of non-native speakers with diverse accents. Our proposed framework unifies both zero-shot and few-shot speaker adaptation strategies, which we term as "instant" and "fine-grained" adaptations based on their merits. To alleviate the insufficient generalization performance observed in zero-shot speaker adaptation, we designed two innovative discriminators and introduced a memory mechanism for the speech decoder. To prevent catastrophic forgetting and reduce storage implications for few-shot speaker adaptation, we designed two adapters and a unique adaptation procedure. 3 authors · Apr 28, 2024
- Diffusion-Based Voice Conversion with Fast Maximum Likelihood Sampling Scheme Voice conversion is a common speech synthesis task which can be solved in different ways depending on a particular real-world scenario. The most challenging one often referred to as one-shot many-to-many voice conversion consists in copying the target voice from only one reference utterance in the most general case when both source and target speakers do not belong to the training dataset. We present a scalable high-quality solution based on diffusion probabilistic modeling and demonstrate its superior quality compared to state-of-the-art one-shot voice conversion approaches. Moreover, focusing on real-time applications, we investigate general principles which can make diffusion models faster while keeping synthesis quality at a high level. As a result, we develop a novel Stochastic Differential Equations solver suitable for various diffusion model types and generative tasks as shown through empirical studies and justify it by theoretical analysis. 6 authors · Sep 28, 2021
- Scalable and Efficient MoE Training for Multitask Multilingual Models The Mixture of Experts (MoE) models are an emerging class of sparsely activated deep learning models that have sublinear compute costs with respect to their parameters. In contrast with dense models, the sparse architecture of MoE offers opportunities for drastically growing model size with significant accuracy gain while consuming much lower compute budget. However, supporting large scale MoE training also has its own set of system and modeling challenges. To overcome the challenges and embrace the opportunities of MoE, we first develop a system capable of scaling MoE models efficiently to trillions of parameters. It combines multi-dimensional parallelism and heterogeneous memory technologies harmoniously with MoE to empower 8x larger models on the same hardware compared with existing work. Besides boosting system efficiency, we also present new training methods to improve MoE sample efficiency and leverage expert pruning strategy to improve inference time efficiency. By combining the efficient system and training methods, we are able to significantly scale up large multitask multilingual models for language generation which results in a great improvement in model accuracy. A model trained with 10 billion parameters on 50 languages can achieve state-of-the-art performance in Machine Translation (MT) and multilingual natural language generation tasks. The system support of efficient MoE training has been implemented and open-sourced with the DeepSpeed library. 9 authors · Sep 21, 2021
- SALT: Distinguishable Speaker Anonymization Through Latent Space Transformation Speaker anonymization aims to conceal a speaker's identity without degrading speech quality and intelligibility. Most speaker anonymization systems disentangle the speaker representation from the original speech and achieve anonymization by averaging or modifying the speaker representation. However, the anonymized speech is subject to reduction in pseudo speaker distinctiveness, speech quality and intelligibility for out-of-distribution speaker. To solve this issue, we propose SALT, a Speaker Anonymization system based on Latent space Transformation. Specifically, we extract latent features by a self-supervised feature extractor and randomly sample multiple speakers and their weights, and then interpolate the latent vectors to achieve speaker anonymization. Meanwhile, we explore the extrapolation method to further extend the diversity of pseudo speakers. Experiments on Voice Privacy Challenge dataset show our system achieves a state-of-the-art distinctiveness metric while preserving speech quality and intelligibility. Our code and demo is availible at https://github.com/BakerBunker/SALT . 6 authors · Oct 8, 2023
- Towards achieving robust universal neural vocoding This paper explores the potential universality of neural vocoders. We train a WaveRNN-based vocoder on 74 speakers coming from 17 languages. This vocoder is shown to be capable of generating speech of consistently good quality (98% relative mean MUSHRA when compared to natural speech) regardless of whether the input spectrogram comes from a speaker or style seen during training or from an out-of-domain scenario when the recording conditions are studio-quality. When the recordings show significant changes in quality, or when moving towards non-speech vocalizations or singing, the vocoder still significantly outperforms speaker-dependent vocoders, but operates at a lower average relative MUSHRA of 75%. These results are shown to be consistent across languages, regardless of them being seen during training (e.g. English or Japanese) or unseen (e.g. Wolof, Swahili, Ahmaric). 8 authors · Nov 15, 2018
1 Harmonicity Plays a Critical Role in DNN Based Versus in Biologically-Inspired Monaural Speech Segregation Systems Recent advancements in deep learning have led to drastic improvements in speech segregation models. Despite their success and growing applicability, few efforts have been made to analyze the underlying principles that these networks learn to perform segregation. Here we analyze the role of harmonicity on two state-of-the-art Deep Neural Networks (DNN)-based models- Conv-TasNet and DPT-Net. We evaluate their performance with mixtures of natural speech versus slightly manipulated inharmonic speech, where harmonics are slightly frequency jittered. We find that performance deteriorates significantly if one source is even slightly harmonically jittered, e.g., an imperceptible 3% harmonic jitter degrades performance of Conv-TasNet from 15.4 dB to 0.70 dB. Training the model on inharmonic speech does not remedy this sensitivity, instead resulting in worse performance on natural speech mixtures, making inharmonicity a powerful adversarial factor in DNN models. Furthermore, additional analyses reveal that DNN algorithms deviate markedly from biologically inspired algorithms that rely primarily on timing cues and not harmonicity to segregate speech. 4 authors · Mar 8, 2022
1 MoEC: Mixture of Expert Clusters Sparsely Mixture of Experts (MoE) has received great interest due to its promising scaling capability with affordable computational overhead. MoE converts dense layers into sparse experts, and utilizes a gated routing network to make experts conditionally activated. However, as the number of experts grows, MoE with outrageous parameters suffers from overfitting and sparse data allocation. Such problems are especially severe on tasks with limited data, thus hindering the progress for MoE models to improve performance by scaling up. In this work, we propose Mixture of Expert Clusters - a general approach to enable expert layers to learn more diverse and appropriate knowledge by imposing variance-based constraints on the routing stage. We further propose a cluster-level expert dropout strategy specifically designed for the expert cluster structure. Our experiments reveal that MoEC could improve performance on machine translation and natural language understanding tasks, and raise the performance upper bound for scaling up experts under limited data. We also verify that MoEC plays a positive role in mitigating overfitting and sparse data allocation. 4 authors · Jul 19, 2022
- Intuition-aware Mixture-of-Rank-1-Experts for Parameter Efficient Finetuning Large Language Models (LLMs) have demonstrated significant potential in performing multiple tasks in multimedia applications, ranging from content generation to interactive entertainment, and artistic creation. However, the diversity of downstream tasks in multitask scenarios presents substantial adaptation challenges for LLMs. While traditional methods often succumb to knowledge confusion on their monolithic dense models, Mixture-of-Experts (MoE) has been emerged as a promising solution with its sparse architecture for effective task decoupling. Inspired by the principles of human cognitive neuroscience, we design a novel framework Intuition-MoR1E that leverages the inherent semantic clustering of instances to mimic the human brain to deal with multitask, offering implicit guidance to router for optimized feature allocation. Moreover, we introduce cutting-edge Rank-1 Experts formulation designed to manage a spectrum of intuitions, demonstrating enhanced parameter efficiency and effectiveness in multitask LLM finetuning. Extensive experiments demonstrate that Intuition-MoR1E achieves superior efficiency and 2.15\% overall accuracy improvement across 14 public datasets against other state-of-the-art baselines. 7 authors · Apr 13, 2024
7 Facing the Music: Tackling Singing Voice Separation in Cinematic Audio Source Separation Cinematic audio source separation (CASS) is a fairly new subtask of audio source separation. A typical setup of CASS is a three-stem problem, with the aim of separating the mixture into the dialogue stem (DX), music stem (MX), and effects stem (FX). In practice, however, several edge cases exist as some sound sources do not fit neatly in either of these three stems, necessitating the use of additional auxiliary stems in production. One very common edge case is the singing voice in film audio, which may belong in either the DX or MX, depending heavily on the cinematic context. In this work, we demonstrate a very straightforward extension of the dedicated-decoder Bandit and query-based single-decoder Banquet models to a four-stem problem, treating non-musical dialogue, instrumental music, singing voice, and effects as separate stems. Interestingly, the query-based Banquet model outperformed the dedicated-decoder Bandit model. We hypothesized that this is due to a better feature alignment at the bottleneck as enforced by the band-agnostic FiLM layer. Dataset and model implementation will be made available at https://github.com/kwatcharasupat/source-separation-landing. 3 authors · Aug 7, 2024 2
1 SMILE: Scaling Mixture-of-Experts with Efficient Bi-level Routing The mixture of Expert (MoE) parallelism is a recent advancement that scales up the model size with constant computational cost. MoE selects different sets of parameters (i.e., experts) for each incoming token, resulting in a sparsely-activated model. Despite several successful applications of MoE, its training efficiency degrades significantly as the number of experts increases. The routing stage in MoE relies on the efficiency of the All2All communication collective, which suffers from network congestion and has poor scalability. To mitigate these issues, we introduce SMILE, which exploits heterogeneous network bandwidth and splits a single-step routing into bi-level routing. Our experimental results show that the proposed method obtains a 2.5x speedup over Switch Transformer in terms of pretraining throughput on the Colossal Clean Crawled Corpus without losing any convergence speed. 7 authors · Dec 9, 2022
- A Contrastive Learning Approach to Mitigate Bias in Speech Models Speech models may be affected by performance imbalance in different population subgroups, raising concerns about fair treatment across these groups. Prior attempts to mitigate unfairness either focus on user-defined subgroups, potentially overlooking other affected subgroups, or do not explicitly improve the internal representation at the subgroup level. This paper proposes the first adoption of contrastive learning to mitigate speech model bias in underperforming subgroups. We employ a three-level learning technique that guides the model in focusing on different scopes for the contrastive loss, i.e., task, subgroup, and the errors within subgroups. The experiments on two spoken language understanding datasets and two languages demonstrate that our approach improves internal subgroup representations, thus reducing model bias and enhancing performance. 4 authors · Jun 20, 2024
- Decoupling Magnitude and Phase Estimation with Deep ResUNet for Music Source Separation Deep neural network based methods have been successfully applied to music source separation. They typically learn a mapping from a mixture spectrogram to a set of source spectrograms, all with magnitudes only. This approach has several limitations: 1) its incorrect phase reconstruction degrades the performance, 2) it limits the magnitude of masks between 0 and 1 while we observe that 22% of time-frequency bins have ideal ratio mask values of over~1 in a popular dataset, MUSDB18, 3) its potential on very deep architectures is under-explored. Our proposed system is designed to overcome these. First, we propose to estimate phases by estimating complex ideal ratio masks (cIRMs) where we decouple the estimation of cIRMs into magnitude and phase estimations. Second, we extend the separation method to effectively allow the magnitude of the mask to be larger than 1. Finally, we propose a residual UNet architecture with up to 143 layers. Our proposed system achieves a state-of-the-art MSS result on the MUSDB18 dataset, especially, a SDR of 8.98~dB on vocals, outperforming the previous best performance of 7.24~dB. The source code is available at: https://github.com/bytedance/music_source_separation 5 authors · Sep 11, 2021
2 MoLE : Mixture of Language Experts for Multi-Lingual Automatic Speech Recognition Multi-lingual speech recognition aims to distinguish linguistic expressions in different languages and integrate acoustic processing simultaneously. In contrast, current multi-lingual speech recognition research follows a language-aware paradigm, mainly targeted to improve recognition performance rather than discriminate language characteristics. In this paper, we present a multi-lingual speech recognition network named Mixture-of-Language-Expert(MoLE), which digests speech in a variety of languages. Specifically, MoLE analyzes linguistic expression from input speech in arbitrary languages, activating a language-specific expert with a lightweight language tokenizer. The tokenizer not only activates experts, but also estimates the reliability of the activation. Based on the reliability, the activated expert and the language-agnostic expert are aggregated to represent language-conditioned embedding for efficient speech recognition. Our proposed model is evaluated in 5 languages scenario, and the experimental results show that our structure is advantageous on multi-lingual recognition, especially for speech in low-resource language. 2 authors · Feb 27, 2023
49 Blending Is All You Need: Cheaper, Better Alternative to Trillion-Parameters LLM In conversational AI research, there's a noticeable trend towards developing models with a larger number of parameters, exemplified by models like ChatGPT. While these expansive models tend to generate increasingly better chat responses, they demand significant computational resources and memory. This study explores a pertinent question: Can a combination of smaller models collaboratively achieve comparable or enhanced performance relative to a singular large model? We introduce an approach termed "blending", a straightforward yet effective method of integrating multiple chat AIs. Our empirical evidence suggests that when specific smaller models are synergistically blended, they can potentially outperform or match the capabilities of much larger counterparts. For instance, integrating just three models of moderate size (6B/13B paramaeters) can rival or even surpass the performance metrics of a substantially larger model like ChatGPT (175B+ paramaters). This hypothesis is rigorously tested using A/B testing methodologies with a large user base on the Chai research platform over a span of thirty days. The findings underscore the potential of the "blending" strategy as a viable approach for enhancing chat AI efficacy without a corresponding surge in computational demands. 5 authors · Jan 4, 2024
1 CartesianMoE: Boosting Knowledge Sharing among Experts via Cartesian Product Routing in Mixture-of-Experts Large language models (LLM) have been attracting much attention from the community recently, due to their remarkable performance in all kinds of downstream tasks. According to the well-known scaling law, scaling up a dense LLM enhances its capabilities, but also significantly increases the computational complexity. Mixture-of-Experts (MoE) models address that by allowing the model size to grow without substantially raising training or inference costs. Yet MoE models face challenges regarding knowledge sharing among experts, making their performance somehow sensitive to routing accuracy. To tackle that, previous works introduced shared experts and combined their outputs with those of the top K routed experts in an ``addition'' manner. In this paper, inspired by collective matrix factorization to learn shared knowledge among data, we propose CartesianMoE, which implements more effective knowledge sharing among experts in more like a ``multiplication'' manner. Extensive experimental results indicate that CartesianMoE outperforms previous MoE models for building LLMs, in terms of both perplexity and downstream task performance. And we also find that CartesianMoE achieves better expert routing robustness. 9 authors · Oct 21, 2024
- Multi-Party Chat: Conversational Agents in Group Settings with Humans and Models Current dialogue research primarily studies pairwise (two-party) conversations, and does not address the everyday setting where more than two speakers converse together. In this work, we both collect and evaluate multi-party conversations to study this more general case. We use the LIGHT environment to construct grounded conversations, where each participant has an assigned character to role-play. We thus evaluate the ability of language models to act as one or more characters in such conversations. Models require two skills that pairwise-trained models appear to lack: (1) being able to decide when to talk; (2) producing coherent utterances grounded on multiple characters. We compare models trained on our new dataset to existing pairwise-trained dialogue models, as well as large language models with few-shot prompting. We find that our new dataset, MultiLIGHT, which we will publicly release, can help bring significant improvements in the group setting. 6 authors · Apr 26, 2023
- Hi-Fi Multi-Speaker English TTS Dataset This paper introduces a new multi-speaker English dataset for training text-to-speech models. The dataset is based on LibriVox audiobooks and Project Gutenberg texts, both in the public domain. The new dataset contains about 292 hours of speech from 10 speakers with at least 17 hours per speaker sampled at 44.1 kHz. To select speech samples with high quality, we considered audio recordings with a signal bandwidth of at least 13 kHz and a signal-to-noise ratio (SNR) of at least 32 dB. The dataset is publicly released at http://www.openslr.org/109/ . 4 authors · Apr 3, 2021
- VoiceFilter-Lite: Streaming Targeted Voice Separation for On-Device Speech Recognition We introduce VoiceFilter-Lite, a single-channel source separation model that runs on the device to preserve only the speech signals from a target user, as part of a streaming speech recognition system. Delivering such a model presents numerous challenges: It should improve the performance when the input signal consists of overlapped speech, and must not hurt the speech recognition performance under all other acoustic conditions. Besides, this model must be tiny, fast, and perform inference in a streaming fashion, in order to have minimal impact on CPU, memory, battery and latency. We propose novel techniques to meet these multi-faceted requirements, including using a new asymmetric loss, and adopting adaptive runtime suppression strength. We also show that such a model can be quantized as a 8-bit integer model and run in realtime. 11 authors · Sep 9, 2020
- EAD-VC: Enhancing Speech Auto-Disentanglement for Voice Conversion with IFUB Estimator and Joint Text-Guided Consistent Learning Using unsupervised learning to disentangle speech into content, rhythm, pitch, and timbre for voice conversion has become a hot research topic. Existing works generally take into account disentangling speech components through human-crafted bottleneck features which can not achieve sufficient information disentangling, while pitch and rhythm may still be mixed together. There is a risk of information overlap in the disentangling process which results in less speech naturalness. To overcome such limits, we propose a two-stage model to disentangle speech representations in a self-supervised manner without a human-crafted bottleneck design, which uses the Mutual Information (MI) with the designed upper bound estimator (IFUB) to separate overlapping information between speech components. Moreover, we design a Joint Text-Guided Consistent (TGC) module to guide the extraction of speech content and eliminate timbre leakage issues. Experiments show that our model can achieve a better performance than the baseline, regarding disentanglement effectiveness, speech naturalness, and similarity. Audio samples can be found at https://largeaudiomodel.com/eadvc. 6 authors · Apr 29, 2024
- Learning Speaker Representation with Semi-supervised Learning approach for Speaker Profiling Speaker profiling, which aims to estimate speaker characteristics such as age and height, has a wide range of applications inforensics, recommendation systems, etc. In this work, we propose a semisupervised learning approach to mitigate the issue of low training data for speaker profiling. This is done by utilizing external corpus with speaker information to train a better representation which can help to improve the speaker profiling systems. Specifically, besides the standard supervised learning path, the proposed framework has two more paths: (1) an unsupervised speaker representation learning path that helps to capture the speaker information; (2) a consistency training path that helps to improve the robustness of the system by enforcing it to produce similar predictions for utterances of the same speaker.The proposed approach is evaluated on the TIMIT and NISP datasets for age, height, and gender estimation, while the Librispeech is used as the unsupervised external corpus. Trained both on single-task and multi-task settings, our approach was able to achieve state-of-the-art results on age estimation on the TIMIT Test dataset with Root Mean Square Error(RMSE) of6.8 and 7.4 years and Mean Absolute Error(MAE) of 4.8 and5.0 years for male and female speakers respectively. 3 authors · Oct 24, 2021
3 CompeteSMoE -- Effective Training of Sparse Mixture of Experts via Competition Sparse mixture of experts (SMoE) offers an appealing solution to scale up the model complexity beyond the mean of increasing the network's depth or width. However, effective training of SMoE has proven to be challenging due to the representation collapse issue, which causes parameter redundancy and limited representation potentials. In this work, we propose a competition mechanism to address this fundamental challenge of representation collapse. By routing inputs only to experts with the highest neural response, we show that, under mild assumptions, competition enjoys the same convergence rate as the optimal estimator. We further propose CompeteSMoE, an effective and efficient algorithm to train large language models by deploying a simple router that predicts the competition outcomes. Consequently, CompeteSMoE enjoys strong performance gains from the competition routing policy while having low computation overheads. Our extensive empirical evaluations on two transformer architectures and a wide range of tasks demonstrate the efficacy, robustness, and scalability of CompeteSMoE compared to state-of-the-art SMoE strategies. 11 authors · Feb 4, 2024
51 DeepSeekMoE: Towards Ultimate Expert Specialization in Mixture-of-Experts Language Models In the era of large language models, Mixture-of-Experts (MoE) is a promising architecture for managing computational costs when scaling up model parameters. However, conventional MoE architectures like GShard, which activate the top-K out of N experts, face challenges in ensuring expert specialization, i.e. each expert acquires non-overlapping and focused knowledge. In response, we propose the DeepSeekMoE architecture towards ultimate expert specialization. It involves two principal strategies: (1) finely segmenting the experts into mN ones and activating mK from them, allowing for a more flexible combination of activated experts; (2) isolating K_s experts as shared ones, aiming at capturing common knowledge and mitigating redundancy in routed experts. Starting from a modest scale with 2B parameters, we demonstrate that DeepSeekMoE 2B achieves comparable performance with GShard 2.9B, which has 1.5 times the expert parameters and computation. In addition, DeepSeekMoE 2B nearly approaches the performance of its dense counterpart with the same number of total parameters, which set the upper bound of MoE models. Subsequently, we scale up DeepSeekMoE to 16B parameters and show that it achieves comparable performance with LLaMA2 7B, with only about 40% of computations. Further, our preliminary efforts to scale up DeepSeekMoE to 145B parameters consistently validate its substantial advantages over the GShard architecture, and show its performance comparable with DeepSeek 67B, using only 28.5% (maybe even 18.2%) of computations. 17 authors · Jan 11, 2024 2
3 AudioSlots: A slot-centric generative model for audio separation In a range of recent works, object-centric architectures have been shown to be suitable for unsupervised scene decomposition in the vision domain. Inspired by these methods we present AudioSlots, a slot-centric generative model for blind source separation in the audio domain. AudioSlots is built using permutation-equivariant encoder and decoder networks. The encoder network based on the Transformer architecture learns to map a mixed audio spectrogram to an unordered set of independent source embeddings. The spatial broadcast decoder network learns to generate the source spectrograms from the source embeddings. We train the model in an end-to-end manner using a permutation invariant loss function. Our results on Libri2Mix speech separation constitute a proof of concept that this approach shows promise. We discuss the results and limitations of our approach in detail, and further outline potential ways to overcome the limitations and directions for future work. 5 authors · May 9, 2023
1 NanoVoice: Efficient Speaker-Adaptive Text-to-Speech for Multiple Speakers We present NanoVoice, a personalized text-to-speech model that efficiently constructs voice adapters for multiple speakers simultaneously. NanoVoice introduces a batch-wise speaker adaptation technique capable of fine-tuning multiple references in parallel, significantly reducing training time. Beyond building separate adapters for each speaker, we also propose a parameter sharing technique that reduces the number of parameters used for speaker adaptation. By incorporating a novel trainable scale matrix, NanoVoice mitigates potential performance degradation during parameter sharing. NanoVoice achieves performance comparable to the baselines, while training 4 times faster and using 45 percent fewer parameters for speaker adaptation with 40 reference voices. Extensive ablation studies and analysis further validate the efficiency of our model. 6 authors · Sep 24, 2024
8 Mixed-Session Conversation with Egocentric Memory Recently introduced dialogue systems have demonstrated high usability. However, they still fall short of reflecting real-world conversation scenarios. Current dialogue systems exhibit an inability to replicate the dynamic, continuous, long-term interactions involving multiple partners. This shortfall arises because there have been limited efforts to account for both aspects of real-world dialogues: deeply layered interactions over the long-term dialogue and widely expanded conversation networks involving multiple participants. As the effort to incorporate these aspects combined, we introduce Mixed-Session Conversation, a dialogue system designed to construct conversations with various partners in a multi-session dialogue setup. We propose a new dataset called MiSC to implement this system. The dialogue episodes of MiSC consist of 6 consecutive sessions, with four speakers (one main speaker and three partners) appearing in each episode. Also, we propose a new dialogue model with a novel memory management mechanism, called Egocentric Memory Enhanced Mixed-Session Conversation Agent (EMMA). EMMA collects and retains memories from the main speaker's perspective during conversations with partners, enabling seamless continuity in subsequent interactions. Extensive human evaluations validate that the dialogues in MiSC demonstrate a seamless conversational flow, even when conversation partners change in each session. EMMA trained with MiSC is also evaluated to maintain high memorability without contradiction throughout the entire conversation. 3 authors · Oct 3, 2024 2
11 Approximating Two-Layer Feedforward Networks for Efficient Transformers How to reduce compute and memory requirements of neural networks (NNs) without sacrificing performance? Many recent works use sparse Mixtures of Experts (MoEs) to build resource-efficient large language models (LMs). Here we introduce several novel perspectives on MoEs, presenting a general framework that unifies various methods to approximate two-layer NNs (e.g., feedforward blocks of Transformers), including product-key memories (PKMs). Leveraging insights from this framework, we propose methods to improve both MoEs and PKMs. Unlike prior work that compares MoEs with dense baselines under the compute-equal condition, our evaluation condition is parameter-equal, which is crucial to properly evaluate LMs. We show that our MoEs are competitive with the dense Transformer-XL on both the WikiText-103 and enwiki8 datasets at two different scales, while being much more resource efficient. This demonstrates that MoEs are relevant not only to extremely large LMs but also to any-scale resource-efficient LMs. Our code is public. 3 authors · Oct 16, 2023 3
- Sortformer: Seamless Integration of Speaker Diarization and ASR by Bridging Timestamps and Tokens We propose Sortformer, a novel neural model for speaker diarization, trained with unconventional objectives compared to existing end-to-end diarization models. The permutation problem in speaker diarization has long been regarded as a critical challenge. Most prior end-to-end diarization systems employ permutation invariant loss (PIL), which optimizes for the permutation that yields the lowest error. In contrast, we introduce Sort Loss, which enables a diarization model to autonomously resolve permutation, with or without PIL. We demonstrate that combining Sort Loss and PIL achieves performance competitive with state-of-the-art end-to-end diarization models trained exclusively with PIL. Crucially, we present a streamlined multispeaker ASR architecture that leverages Sortformer as a speaker supervision model, embedding speaker label estimation within the ASR encoder state using a sinusoidal kernel function. This approach resolves the speaker permutation problem through sorted objectives, effectively bridging speaker-label timestamps and speaker tokens. In our experiments, we show that the proposed multispeaker ASR architecture, enhanced with speaker supervision, improves performance via adapter techniques. Code and trained models will be made publicly available via the NVIDIA NeMo framework 9 authors · Sep 10, 2024
- ASR data augmentation using cross-lingual multi-speaker TTS and cross-lingual voice conversion We explore cross-lingual multi-speaker speech synthesis and cross-lingual voice conversion applied to data augmentation for automatic speech recognition (ASR) systems. Through extensive experiments, we show that our approach permits the application of speech synthesis and voice conversion to improve ASR systems on a target language using only one target-language speaker during model training. We managed to close the gap between ASR models trained with synthesized versus human speech compared to other works that use many speakers. Finally, we show that it is possible to obtain promising ASR training results with our data augmentation method using only a single real speaker in a target language. 7 authors · Mar 29, 2022
2 LocMoE: A Low-overhead MoE for Large Language Model Training The Mixtures-of-Experts (MoE) model is a widespread distributed and integrated learning method for large language models (LLM), which is favored due to its ability to sparsify and expand models efficiently. However, the performance of MoE is limited by load imbalance and high latency of All-To-All communication, along with relatively redundant computation owing to large expert capacity. Load imbalance may result from existing routing policies that consistently tend to select certain experts. The frequent inter-node communication in the All-To-All procedure also significantly prolongs the training time. To alleviate the above performance problems, we propose a novel routing strategy that combines load balance and locality by converting partial inter-node communication to that of intra-node. Notably, we elucidate that there is a minimum threshold for expert capacity, calculated through the maximal angular deviation between the gating weights of the experts and the assigned tokens. We port these modifications on the PanGu-Sigma model based on the MindSpore framework with multi-level routing and conduct experiments on Ascend clusters. The experiment results demonstrate that the proposed LocMoE reduces training time per epoch by 12.68% to 22.24% compared to classical routers, such as hash router and switch router, without impacting the model accuracy. 9 authors · Jan 24, 2024
- Lifting the Curse of Capacity Gap in Distilling Language Models Pretrained language models (LMs) have shown compelling performance on various downstream tasks, but unfortunately they require a tremendous amount of inference compute. Knowledge distillation finds a path to compress LMs to small ones with a teacher-student paradigm. However, when the capacity gap between the teacher and the student is large, a curse of capacity gap appears, invoking a deficiency in distilling LMs. While a few studies have been carried out to fill the gap, the curse is not yet well tackled. In this paper, we aim at lifting the curse of capacity gap via enlarging the capacity of the student without notably increasing the inference compute. Largely motivated by sparse activation regime of mixture of experts (MoE), we propose a mixture of minimal experts (MiniMoE), which imposes extra parameters to the student but introduces almost no additional inference compute. Experimental results on GLUE and CoNLL demonstrate the curse of capacity gap is lifted by the magic of MiniMoE to a large extent. MiniMoE also achieves the state-of-the-art performance at small FLOPs compared with a range of competitive baselines. With a compression rate as much as sim50times, MiniMoE preserves sim95\% GLUE score of the teacher. 7 authors · May 20, 2023
- Advancing Multi-talker ASR Performance with Large Language Models Recognizing overlapping speech from multiple speakers in conversational scenarios is one of the most challenging problem for automatic speech recognition (ASR). Serialized output training (SOT) is a classic method to address multi-talker ASR, with the idea of concatenating transcriptions from multiple speakers according to the emission times of their speech for training. However, SOT-style transcriptions, derived from concatenating multiple related utterances in a conversation, depend significantly on modeling long contexts. Therefore, compared to traditional methods that primarily emphasize encoder performance in attention-based encoder-decoder (AED) architectures, a novel approach utilizing large language models (LLMs) that leverages the capabilities of pre-trained decoders may be better suited for such complex and challenging scenarios. In this paper, we propose an LLM-based SOT approach for multi-talker ASR, leveraging pre-trained speech encoder and LLM, fine-tuning them on multi-talker dataset using appropriate strategies. Experimental results demonstrate that our approach surpasses traditional AED-based methods on the simulated dataset LibriMix and achieves state-of-the-art performance on the evaluation set of the real-world dataset AMI, outperforming the AED model trained with 1000 times more supervised data in previous works. 9 authors · Aug 30, 2024
- Speech Recognition Challenge in the Wild: Arabic MGB-3 This paper describes the Arabic MGB-3 Challenge - Arabic Speech Recognition in the Wild. Unlike last year's Arabic MGB-2 Challenge, for which the recognition task was based on more than 1,200 hours broadcast TV news recordings from Aljazeera Arabic TV programs, MGB-3 emphasises dialectal Arabic using a multi-genre collection of Egyptian YouTube videos. Seven genres were used for the data collection: comedy, cooking, family/kids, fashion, drama, sports, and science (TEDx). A total of 16 hours of videos, split evenly across the different genres, were divided into adaptation, development and evaluation data sets. The Arabic MGB-Challenge comprised two tasks: A) Speech transcription, evaluated on the MGB-3 test set, along with the 10 hour MGB-2 test set to report progress on the MGB-2 evaluation; B) Arabic dialect identification, introduced this year in order to distinguish between four major Arabic dialects - Egyptian, Levantine, North African, Gulf, as well as Modern Standard Arabic. Two hours of audio per dialect were released for development and a further two hours were used for evaluation. For dialect identification, both lexical features and i-vector bottleneck features were shared with participants in addition to the raw audio recordings. Overall, thirteen teams submitted ten systems to the challenge. We outline the approaches adopted in each system, and summarise the evaluation results. 3 authors · Sep 21, 2017
1 WavChat: A Survey of Spoken Dialogue Models Recent advancements in spoken dialogue models, exemplified by systems like GPT-4o, have captured significant attention in the speech domain. Compared to traditional three-tier cascaded spoken dialogue models that comprise speech recognition (ASR), large language models (LLMs), and text-to-speech (TTS), modern spoken dialogue models exhibit greater intelligence. These advanced spoken dialogue models not only comprehend audio, music, and other speech-related features, but also capture stylistic and timbral characteristics in speech. Moreover, they generate high-quality, multi-turn speech responses with low latency, enabling real-time interaction through simultaneous listening and speaking capability. Despite the progress in spoken dialogue systems, there is a lack of comprehensive surveys that systematically organize and analyze these systems and the underlying technologies. To address this, we have first compiled existing spoken dialogue systems in the chronological order and categorized them into the cascaded and end-to-end paradigms. We then provide an in-depth overview of the core technologies in spoken dialogue models, covering aspects such as speech representation, training paradigm, streaming, duplex, and interaction capabilities. Each section discusses the limitations of these technologies and outlines considerations for future research. Additionally, we present a thorough review of relevant datasets, evaluation metrics, and benchmarks from the perspectives of training and evaluating spoken dialogue systems. We hope this survey will contribute to advancing both academic research and industrial applications in the field of spoken dialogue systems. The related material is available at https://github.com/jishengpeng/WavChat. 19 authors · Nov 14, 2024
- DiPCo -- Dinner Party Corpus We present a speech data corpus that simulates a "dinner party" scenario taking place in an everyday home environment. The corpus was created by recording multiple groups of four Amazon employee volunteers having a natural conversation in English around a dining table. The participants were recorded by a single-channel close-talk microphone and by five far-field 7-microphone array devices positioned at different locations in the recording room. The dataset contains the audio recordings and human labeled transcripts of a total of 10 sessions with a duration between 15 and 45 minutes. The corpus was created to advance in the field of noise robust and distant speech processing and is intended to serve as a public research and benchmarking data set. 10 authors · Sep 30, 2019
- Advances in integration of end-to-end neural and clustering-based diarization for real conversational speech Recently, we proposed a novel speaker diarization method called End-to-End-Neural-Diarization-vector clustering (EEND-vector clustering) that integrates clustering-based and end-to-end neural network-based diarization approaches into one framework. The proposed method combines advantages of both frameworks, i.e. high diarization performance and handling of overlapped speech based on EEND, and robust handling of long recordings with an arbitrary number of speakers based on clustering-based approaches. However, the method was only evaluated so far on simulated 2-speaker meeting-like data. This paper is to (1) report recent advances we made to this framework, including newly introduced robust constrained clustering algorithms, and (2) experimentally show that the method can now significantly outperform competitive diarization methods such as Encoder-Decoder Attractor (EDA)-EEND, on CALLHOME data which comprises real conversational speech data including overlapped speech and an arbitrary number of speakers. By further analyzing the experimental results, this paper also discusses pros and cons of the proposed method and reveals potential for further improvement. A set of the code to reproduce the results is available at https://github.com/nttcslab-sp/EEND-vector-clustering. 3 authors · May 19, 2021
- WavMark: Watermarking for Audio Generation Recent breakthroughs in zero-shot voice synthesis have enabled imitating a speaker's voice using just a few seconds of recording while maintaining a high level of realism. Alongside its potential benefits, this powerful technology introduces notable risks, including voice fraud and speaker impersonation. Unlike the conventional approach of solely relying on passive methods for detecting synthetic data, watermarking presents a proactive and robust defence mechanism against these looming risks. This paper introduces an innovative audio watermarking framework that encodes up to 32 bits of watermark within a mere 1-second audio snippet. The watermark is imperceptible to human senses and exhibits strong resilience against various attacks. It can serve as an effective identifier for synthesized voices and holds potential for broader applications in audio copyright protection. Moreover, this framework boasts high flexibility, allowing for the combination of multiple watermark segments to achieve heightened robustness and expanded capacity. Utilizing 10 to 20-second audio as the host, our approach demonstrates an average Bit Error Rate (BER) of 0.48\% across ten common attacks, a remarkable reduction of over 2800\% in BER compared to the state-of-the-art watermarking tool. See https://aka.ms/wavmark for demos of our work. 6 authors · Aug 24, 2023
- MSA-ASR: Efficient Multilingual Speaker Attribution with frozen ASR Models Speaker-attributed automatic speech recognition (SA-ASR) aims to transcribe speech while assigning transcripts to the corresponding speakers accurately. Existing methods often rely on complex modular systems or require extensive fine-tuning of joint modules, limiting their adaptability and general efficiency. This paper introduces a novel approach, leveraging a frozen multilingual ASR model to incorporate speaker attribution into the transcriptions, using only standard monolingual ASR datasets. Our method involves training a speaker module to predict speaker embeddings based on weak labels without requiring additional ASR model modifications. Despite being trained exclusively with non-overlapping monolingual data, our approach effectively extracts speaker attributes across diverse multilingual datasets, including those with overlapping speech. Experimental results demonstrate competitive performance compared to strong baselines, highlighting the model's robustness and potential for practical applications. 2 authors · Nov 27, 2024
- Heterogeneous Encoders Scaling In The Transformer For Neural Machine Translation Although the Transformer is currently the best-performing architecture in the homogeneous configuration (self-attention only) in Neural Machine Translation, many State-of-the-Art models in Natural Language Processing are made of a combination of different Deep Learning approaches. However, these models often focus on combining a couple of techniques only and it is unclear why some methods are chosen over others. In this work, we investigate the effectiveness of integrating an increasing number of heterogeneous methods. Based on a simple combination strategy and performance-driven synergy criteria, we designed the Multi-Encoder Transformer, which consists of up to five diverse encoders. Results showcased that our approach can improve the quality of the translation across a variety of languages and dataset sizes and it is particularly effective in low-resource languages where we observed a maximum increase of 7.16 BLEU compared to the single-encoder model. 4 authors · Dec 25, 2023
- ECAPA2: A Hybrid Neural Network Architecture and Training Strategy for Robust Speaker Embeddings In this paper, we present ECAPA2, a novel hybrid neural network architecture and training strategy to produce robust speaker embeddings. Most speaker verification models are based on either the 1D- or 2D-convolutional operation, often manifested as Time Delay Neural Networks or ResNets, respectively. Hybrid models are relatively unexplored without an intuitive explanation what constitutes best practices in regard to its architectural choices. We motivate the proposed ECAPA2 model in this paper with an analysis of current speaker verification architectures. In addition, we propose a training strategy which makes the speaker embeddings more robust against overlapping speech and short utterance lengths. The presented ECAPA2 architecture and training strategy attains state-of-the-art performance on the VoxCeleb1 test sets with significantly less parameters than current models. Finally, we make a pre-trained model publicly available to promote research on downstream tasks. 2 authors · Jan 16, 2024
2 Parameter-Efficient Mixture-of-Experts Architecture for Pre-trained Language Models Recently, Mixture-of-Experts (short as MoE) architecture has achieved remarkable success in increasing the model capacity of large-scale language models. However, MoE requires incorporating significantly more parameters than the base model being extended. In this paper, we propose building a parameter-efficient MoE architecture by sharing information among experts. We adopt the matrix product operator (MPO, a tensor decomposition from quantum many-body physics) to reconstruct the parameter matrix in the expert layer and increase model capacity for pre-trained language models by sharing parameters of the central tensor (containing the core information) among different experts while enabling the specificity through the auxiliary tensors (complementing the central tensor) of different experts. To address the unbalanced optimization issue, we further design the gradient mask strategy for the MPO-based MoE architecture. Extensive experiments based on T5 and GPT-2 show improved performance and efficiency of the pre-trained language model (27.2x reduction in total parameters for the superior model performance, compared with the Switch Transformers). Our code is publicly available at https://github.com/RUCAIBox/MPOE. 5 authors · Mar 2, 2022
2 YourTTS: Towards Zero-Shot Multi-Speaker TTS and Zero-Shot Voice Conversion for everyone YourTTS brings the power of a multilingual approach to the task of zero-shot multi-speaker TTS. Our method builds upon the VITS model and adds several novel modifications for zero-shot multi-speaker and multilingual training. We achieved state-of-the-art (SOTA) results in zero-shot multi-speaker TTS and results comparable to SOTA in zero-shot voice conversion on the VCTK dataset. Additionally, our approach achieves promising results in a target language with a single-speaker dataset, opening possibilities for zero-shot multi-speaker TTS and zero-shot voice conversion systems in low-resource languages. Finally, it is possible to fine-tune the YourTTS model with less than 1 minute of speech and achieve state-of-the-art results in voice similarity and with reasonable quality. This is important to allow synthesis for speakers with a very different voice or recording characteristics from those seen during training. 6 authors · Dec 4, 2021
1 Jukebox: A Generative Model for Music We introduce Jukebox, a model that generates music with singing in the raw audio domain. We tackle the long context of raw audio using a multi-scale VQ-VAE to compress it to discrete codes, and modeling those using autoregressive Transformers. We show that the combined model at scale can generate high-fidelity and diverse songs with coherence up to multiple minutes. We can condition on artist and genre to steer the musical and vocal style, and on unaligned lyrics to make the singing more controllable. We are releasing thousands of non cherry-picked samples at https://jukebox.openai.com, along with model weights and code at https://github.com/openai/jukebox 6 authors · Apr 30, 2020
- Improved Long-Form Speech Recognition by Jointly Modeling the Primary and Non-primary Speakers ASR models often suffer from a long-form deletion problem where the model predicts sequential blanks instead of words when transcribing a lengthy audio (in the order of minutes or hours). From the perspective of a user or downstream system consuming the ASR results, this behavior can be perceived as the model "being stuck", and potentially make the product hard to use. One of the culprits for long-form deletion is training-test data mismatch, which can happen even when the model is trained on diverse and large-scale data collected from multiple application domains. In this work, we introduce a novel technique to simultaneously model different groups of speakers in the audio along with the standard transcript tokens. Speakers are grouped as primary and non-primary, which connects the application domains and significantly alleviates the long-form deletion problem. This improved model neither needs any additional training data nor incurs additional training or inference cost. 6 authors · Dec 18, 2023
9 Friends-MMC: A Dataset for Multi-modal Multi-party Conversation Understanding Multi-modal multi-party conversation (MMC) is a less studied yet important topic of research due to that it well fits real-world scenarios and thus potentially has more widely-used applications. Compared with the traditional multi-modal conversations, MMC requires stronger character-centered understanding abilities as there are many interlocutors appearing in both the visual and textual context. To facilitate the study of this problem, we present Friends-MMC in this paper, an MMC dataset that contains 24,000+ unique utterances paired with video context. To explore the character-centered understanding of the dialogue, we also annotate the speaker of each utterance, the names and bounding bboxes of faces that appear in the video. Based on this Friends-MMC dataset, we further study two fundamental MMC tasks: conversation speaker identification and conversation response prediction, both of which have the multi-party nature with the video or image as visual context. For conversation speaker identification, we demonstrate the inefficiencies of existing methods such as pre-trained models, and propose a simple yet effective baseline method that leverages an optimization solver to utilize the context of two modalities to achieve better performance. For conversation response prediction, we fine-tune generative dialogue models on Friend-MMC, and analyze the benefits of speaker information. The code and dataset is publicly available at https://github.com/yellow-binary-tree/Friends-MMC and thus we call for more attention on modeling speaker information when understanding conversations. 6 authors · Dec 23, 2024 2
- Improve few-shot voice cloning using multi-modal learning Recently, few-shot voice cloning has achieved a significant improvement. However, most models for few-shot voice cloning are single-modal, and multi-modal few-shot voice cloning has been understudied. In this paper, we propose to use multi-modal learning to improve the few-shot voice cloning performance. Inspired by the recent works on unsupervised speech representation, the proposed multi-modal system is built by extending Tacotron2 with an unsupervised speech representation module. We evaluate our proposed system in two few-shot voice cloning scenarios, namely few-shot text-to-speech(TTS) and voice conversion(VC). Experimental results demonstrate that the proposed multi-modal learning can significantly improve the few-shot voice cloning performance over their counterpart single-modal systems. 2 authors · Mar 17, 2022
2 DeepSpeed-MoE: Advancing Mixture-of-Experts Inference and Training to Power Next-Generation AI Scale As the training of giant dense models hits the boundary on the availability and capability of the hardware resources today, Mixture-of-Experts (MoE) models become one of the most promising model architectures due to their significant training cost reduction compared to a quality-equivalent dense model. Its training cost saving is demonstrated from encoder-decoder models (prior works) to a 5x saving for auto-aggressive language models (this work along with parallel explorations). However, due to the much larger model size and unique architecture, how to provide fast MoE model inference remains challenging and unsolved, limiting its practical usage. To tackle this, we present DeepSpeed-MoE, an end-to-end MoE training and inference solution as part of the DeepSpeed library, including novel MoE architecture designs and model compression techniques that reduce MoE model size by up to 3.7x, and a highly optimized inference system that provides 7.3x better latency and cost compared to existing MoE inference solutions. DeepSpeed-MoE offers an unprecedented scale and efficiency to serve massive MoE models with up to 4.5x faster and 9x cheaper inference compared to quality-equivalent dense models. We hope our innovations and systems help open a promising path to new directions in the large model landscape, a shift from dense to sparse MoE models, where training and deploying higher-quality models with fewer resources becomes more widely possible. 8 authors · Jan 14, 2022
- An enhanced Conv-TasNet model for speech separation using a speaker distance-based loss function This work addresses the problem of speech separation in the Spanish Language using pre-trained deep learning models. As with many speech processing tasks, large databases in other languages different from English are scarce. Therefore this work explores different training strategies using the Conv-TasNet model as a benchmark. A scale-invariant signal distortion ratio (SI-SDR) metric value of 9.9 dB was achieved for the best training strategy. Then, experimentally, we identified an inverse relationship between the speakers' similarity and the model's performance, so an improved ConvTasNet architecture was proposed. The enhanced Conv-TasNet model uses pre-trained speech embeddings to add a between-speakers cosine similarity term in the cost function, yielding an SI-SDR of 10.6 dB. Lastly, final experiments regarding real-time deployment show some drawbacks in the speakers' channel synchronization due to the need to process small speech segments where only one of the speakers appears. 2 authors · May 26, 2022
- MUSAN: A Music, Speech, and Noise Corpus This report introduces a new corpus of music, speech, and noise. This dataset is suitable for training models for voice activity detection (VAD) and music/speech discrimination. Our corpus is released under a flexible Creative Commons license. The dataset consists of music from several genres, speech from twelve languages, and a wide assortment of technical and non-technical noises. We demonstrate use of this corpus for music/speech discrimination on Broadcast news and VAD for speaker identification. 3 authors · Oct 28, 2015
5 Mixture of A Million Experts The feedforward (FFW) layers in standard transformer architectures incur a linear increase in computational costs and activation memory as the hidden layer width grows. Sparse mixture-of-experts (MoE) architectures have emerged as a viable approach to address this issue by decoupling model size from computational cost. The recent discovery of the fine-grained MoE scaling law shows that higher granularity leads to better performance. However, existing MoE models are limited to a small number of experts due to computational and optimization challenges. This paper introduces PEER (parameter efficient expert retrieval), a novel layer design that utilizes the product key technique for sparse retrieval from a vast pool of tiny experts (over a million). Experiments on language modeling tasks demonstrate that PEER layers outperform dense FFWs and coarse-grained MoEs in terms of performance-compute trade-off. By enabling efficient utilization of a massive number of experts, PEER unlocks the potential for further scaling of transformer models while maintaining computational efficiency. 1 authors · Jul 4, 2024
- One-shot Voice Conversion by Separating Speaker and Content Representations with Instance Normalization Recently, voice conversion (VC) without parallel data has been successfully adapted to multi-target scenario in which a single model is trained to convert the input voice to many different speakers. However, such model suffers from the limitation that it can only convert the voice to the speakers in the training data, which narrows down the applicable scenario of VC. In this paper, we proposed a novel one-shot VC approach which is able to perform VC by only an example utterance from source and target speaker respectively, and the source and target speaker do not even need to be seen during training. This is achieved by disentangling speaker and content representations with instance normalization (IN). Objective and subjective evaluation shows that our model is able to generate the voice similar to target speaker. In addition to the performance measurement, we also demonstrate that this model is able to learn meaningful speaker representations without any supervision. 3 authors · Apr 10, 2019
11 Parameters vs FLOPs: Scaling Laws for Optimal Sparsity for Mixture-of-Experts Language Models Scaling the capacity of language models has consistently proven to be a reliable approach for improving performance and unlocking new capabilities. Capacity can be primarily defined by two dimensions: the number of model parameters and the compute per example. While scaling typically involves increasing both, the precise interplay between these factors and their combined contribution to overall capacity remains not fully understood. We explore this relationship in the context of sparse Mixture-of-Experts (MoEs), which allow scaling the number of parameters without proportionally increasing the FLOPs per example. We investigate how varying the sparsity level, i.e., the fraction of inactive parameters, impacts model's performance during pretraining and downstream few-shot evaluation. We find that under different constraints (e.g., parameter size and total training compute), there is an optimal level of sparsity that improves both training efficiency and model performance. These results provide a better understanding of the impact of sparsity in scaling laws for MoEs and complement existing works in this area, offering insights for designing more efficient architectures. 6 authors · Jan 21 2
- Upcycling Instruction Tuning from Dense to Mixture-of-Experts via Parameter Merging Mixture-of-Experts (MoE) shines brightly in large language models (LLMs) and demonstrates outstanding performance in plentiful natural language processing tasks. However, existing methods transforming LLMs from dense to MoE face significant data requirements and typically rely on large-scale post-training. In this paper, we propose Upcycling Instruction Tuning (UpIT), a data-efficient approach for tuning a dense pre-trained model into a MoE instruction model. Specifically, we first point out that intermediate checkpoints during instruction tuning of the dense model are naturally suitable for specialized experts, and then propose an expert expansion stage to flexibly achieve models with flexible numbers of experts, where genetic algorithm and parameter merging are introduced to ensure sufficient diversity of new extended experts. To ensure that each specialized expert in the MoE model works as expected, we select a small amount of seed data that each expert excels to pre-optimize the router. Extensive experiments with various data scales and upcycling settings demonstrate the outstanding performance and data efficiency of UpIT, as well as stable improvement in expert or data scaling. Further analysis reveals the importance of ensuring expert diversity in upcycling. 6 authors · Oct 2, 2024
- Each Rank Could be an Expert: Single-Ranked Mixture of Experts LoRA for Multi-Task Learning Low-Rank Adaptation (LoRA) is widely used for adapting large language models (LLMs) to specific domains due to its efficiency and modularity. Meanwhile, vanilla LoRA struggles with task conflicts in multi-task scenarios. Recent works adopt Mixture of Experts (MoE) by treating each LoRA module as an expert, thereby mitigating task interference through multiple specialized LoRA modules. While effective, these methods often isolate knowledge within individual tasks, failing to fully exploit the shared knowledge across related tasks. In this paper, we establish a connection between single LoRA and multi-LoRA MoE, integrating them into a unified framework. We demonstrate that the dynamic routing of multiple LoRAs is functionally equivalent to rank partitioning and block-level activation within a single LoRA. We further empirically demonstrate that finer-grained LoRA partitioning, within the same total and activated parameter constraints, leads to better performance gains across heterogeneous tasks. Building on these findings, we propose Single-ranked Mixture of Experts LoRA (SMoRA), which embeds MoE into LoRA by treating each rank as an independent expert. With a dynamic rank-wise activation mechanism, SMoRA promotes finer-grained knowledge sharing while mitigating task conflicts. Experiments demonstrate that SMoRA activates fewer parameters yet achieves better performance in multi-task scenarios. 10 authors · Jan 25
- Voice Disorder Analysis: a Transformer-based Approach Voice disorders are pathologies significantly affecting patient quality of life. However, non-invasive automated diagnosis of these pathologies is still under-explored, due to both a shortage of pathological voice data, and diversity of the recording types used for the diagnosis. This paper proposes a novel solution that adopts transformers directly working on raw voice signals and addresses data shortage through synthetic data generation and data augmentation. Further, we consider many recording types at the same time, such as sentence reading and sustained vowel emission, by employing a Mixture of Expert ensemble to align the predictions on different data types. The experimental results, obtained on both public and private datasets, show the effectiveness of our solution in the disorder detection and classification tasks and largely improve over existing approaches. 7 authors · Jun 20, 2024
- Leveraging Content-based Features from Multiple Acoustic Models for Singing Voice Conversion Singing voice conversion (SVC) is a technique to enable an arbitrary singer to sing an arbitrary song. To achieve that, it is important to obtain speaker-agnostic representations from source audio, which is a challenging task. A common solution is to extract content-based features (e.g., PPGs) from a pretrained acoustic model. However, the choices for acoustic models are vast and varied. It is yet to be explored what characteristics of content features from different acoustic models are, and whether integrating multiple content features can help each other. Motivated by that, this study investigates three distinct content features, sourcing from WeNet, Whisper, and ContentVec, respectively. We explore their complementary roles in intelligibility, prosody, and conversion similarity for SVC. By integrating the multiple content features with a diffusion-based SVC model, our SVC system achieves superior conversion performance on both objective and subjective evaluation in comparison to a single source of content features. Our demo page and code can be available https://www.zhangxueyao.com/data/MultipleContentsSVC/index.html. 7 authors · Oct 17, 2023
- AISHELL-4: An Open Source Dataset for Speech Enhancement, Separation, Recognition and Speaker Diarization in Conference Scenario In this paper, we present AISHELL-4, a sizable real-recorded Mandarin speech dataset collected by 8-channel circular microphone array for speech processing in conference scenario. The dataset consists of 211 recorded meeting sessions, each containing 4 to 8 speakers, with a total length of 120 hours. This dataset aims to bridge the advanced research on multi-speaker processing and the practical application scenario in three aspects. With real recorded meetings, AISHELL-4 provides realistic acoustics and rich natural speech characteristics in conversation such as short pause, speech overlap, quick speaker turn, noise, etc. Meanwhile, accurate transcription and speaker voice activity are provided for each meeting in AISHELL-4. This allows the researchers to explore different aspects in meeting processing, ranging from individual tasks such as speech front-end processing, speech recognition and speaker diarization, to multi-modality modeling and joint optimization of relevant tasks. Given most open source dataset for multi-speaker tasks are in English, AISHELL-4 is the only Mandarin dataset for conversation speech, providing additional value for data diversity in speech community. We also release a PyTorch-based training and evaluation framework as baseline system to promote reproducible research in this field. 13 authors · Apr 8, 2021
- Enhancing Speaker Diarization with Large Language Models: A Contextual Beam Search Approach Large language models (LLMs) have shown great promise for capturing contextual information in natural language processing tasks. We propose a novel approach to speaker diarization that incorporates the prowess of LLMs to exploit contextual cues in human dialogues. Our method builds upon an acoustic-based speaker diarization system by adding lexical information from an LLM in the inference stage. We model the multi-modal decoding process probabilistically and perform joint acoustic and lexical beam search to incorporate cues from both modalities: audio and text. Our experiments demonstrate that infusing lexical knowledge from the LLM into an acoustics-only diarization system improves overall speaker-attributed word error rate (SA-WER). The experimental results show that LLMs can provide complementary information to acoustic models for the speaker diarization task via proposed beam search decoding approach showing up to 39.8% relative delta-SA-WER improvement from the baseline system. Thus, we substantiate that the proposed technique is able to exploit contextual information that is inaccessible to acoustics-only systems which is represented by speaker embeddings. In addition, these findings point to the potential of using LLMs to improve speaker diarization and other speech processing tasks by capturing semantic and contextual cues. 4 authors · Sep 11, 2023
- A Stem-Agnostic Single-Decoder System for Music Source Separation Beyond Four Stems Despite significant recent progress across multiple subtasks of audio source separation, few music source separation systems support separation beyond the four-stem vocals, drums, bass, and other (VDBO) setup. Of the very few current systems that support source separation beyond this setup, most continue to rely on an inflexible decoder setup that can only support a fixed pre-defined set of stems. Increasing stem support in these inflexible systems correspondingly requires increasing computational complexity, rendering extensions of these systems computationally infeasible for long-tail instruments. In this work, we propose Banquet, a system that allows source separation of multiple stems using just one decoder. A bandsplit source separation model is extended to work in a query-based setup in tandem with a music instrument recognition PaSST model. On the MoisesDB dataset, Banquet, at only 24.9 M trainable parameters, approached the performance level of the significantly more complex 6-stem Hybrid Transformer Demucs on VDBO stems and outperformed it on guitar and piano. The query-based setup allows for the separation of narrow instrument classes such as clean acoustic guitars, and can be successfully applied to the extraction of less common stems such as reeds and organs. Implementation is available at https://github.com/kwatcharasupat/query-bandit. 2 authors · Jun 26, 2024
1 Parameter-Efficient Conformers via Sharing Sparsely-Gated Experts for End-to-End Speech Recognition While transformers and their variant conformers show promising performance in speech recognition, the parameterized property leads to much memory cost during training and inference. Some works use cross-layer weight-sharing to reduce the parameters of the model. However, the inevitable loss of capacity harms the model performance. To address this issue, this paper proposes a parameter-efficient conformer via sharing sparsely-gated experts. Specifically, we use sparsely-gated mixture-of-experts (MoE) to extend the capacity of a conformer block without increasing computation. Then, the parameters of the grouped conformer blocks are shared so that the number of parameters is reduced. Next, to ensure the shared blocks with the flexibility of adapting representations at different levels, we design the MoE routers and normalization individually. Moreover, we use knowledge distillation to further improve the performance. Experimental results show that the proposed model achieves competitive performance with 1/3 of the parameters of the encoder, compared with the full-parameter model. 8 authors · Sep 17, 2022
4 Whisper-GPT: A Hybrid Representation Audio Large Language Model We propose WHISPER-GPT: A generative large language model (LLM) for speech and music that allows us to work with continuous audio representations and discrete tokens simultaneously as part of a single architecture. There has been a huge surge in generative audio, speech, and music models that utilize discrete audio tokens derived from neural compression algorithms, e.g. ENCODEC. However, one of the major drawbacks of this approach is handling the context length. It blows up for high-fidelity generative architecture if one has to account for all the audio contents at various frequencies for the next token prediction. By combining continuous audio representation like the spectrogram and discrete acoustic tokens, we retain the best of both worlds: Have all the information needed from the audio at a specific time instance in a single token, yet allow LLM to predict the future token to allow for sampling and other benefits discrete space provides. We show how our architecture improves the perplexity and negative log-likelihood scores for the next token prediction compared to a token-based LLM for speech and music. 1 authors · Dec 16, 2024 2
- Rethinking LLM Language Adaptation: A Case Study on Chinese Mixtral Mixtral, a representative sparse mixture of experts (SMoE) language model, has received significant attention due to its unique model design and superior performance. Based on Mixtral-8x7B-v0.1, in this paper, we propose Chinese-Mixtral and Chinese-Mixtral-Instruct with improved Chinese language abilities by adopting further pre-training and instruction fine-tuning. Experimental results show that our Chinese-Mixtral and Chinese-Mixtral-Instruct successfully improve Chinese understanding and generation performance while retaining the original English abilities. Then, we discuss several key questions when performing language adaptation on large language models, including the necessity of extending the language-specific vocabulary and the choice of the initialization model (foundation model v.s. instruction model), by providing empirical results and analysis. We also present the visualizations of each expert to examine their importance on downstream tasks. Our resources are publicly available through https://github.com/ymcui/Chinese-Mixtral. 2 authors · Mar 4, 2024
- Meta-Voice: Fast few-shot style transfer for expressive voice cloning using meta learning The task of few-shot style transfer for voice cloning in text-to-speech (TTS) synthesis aims at transferring speaking styles of an arbitrary source speaker to a target speaker's voice using very limited amount of neutral data. This is a very challenging task since the learning algorithm needs to deal with few-shot voice cloning and speaker-prosody disentanglement at the same time. Accelerating the adaptation process for a new target speaker is of importance in real-world applications, but even more challenging. In this paper, we approach to the hard fast few-shot style transfer for voice cloning task using meta learning. We investigate the model-agnostic meta-learning (MAML) algorithm and meta-transfer a pre-trained multi-speaker and multi-prosody base TTS model to be highly sensitive for adaptation with few samples. Domain adversarial training mechanism and orthogonal constraint are adopted to disentangle speaker and prosody representations for effective cross-speaker style transfer. Experimental results show that the proposed approach is able to conduct fast voice cloning using only 5 samples (around 12 second speech data) from a target speaker, with only 100 adaptation steps. Audio samples are available online. 3 authors · Nov 13, 2021
- Zero-Shot vs. Few-Shot Multi-Speaker TTS Using Pre-trained Czech SpeechT5 Model In this paper, we experimented with the SpeechT5 model pre-trained on large-scale datasets. We pre-trained the foundation model from scratch and fine-tuned it on a large-scale robust multi-speaker text-to-speech (TTS) task. We tested the model capabilities in a zero- and few-shot scenario. Based on two listening tests, we evaluated the synthetic audio quality and the similarity of how synthetic voices resemble real voices. Our results showed that the SpeechT5 model can generate a synthetic voice for any speaker using only one minute of the target speaker's data. We successfully demonstrated the high quality and similarity of our synthetic voices on publicly known Czech politicians and celebrities. 4 authors · Jul 24, 2024
2 FastMoE: A Fast Mixture-of-Expert Training System Mixture-of-Expert (MoE) presents a strong potential in enlarging the size of language model to trillions of parameters. However, training trillion-scale MoE requires algorithm and system co-design for a well-tuned high performance distributed training system. Unfortunately, the only existing platform that meets the requirements strongly depends on Google's hardware (TPU) and software (Mesh Tensorflow) stack, and is not open and available to the public, especially GPU and PyTorch communities. In this paper, we present FastMoE, a distributed MoE training system based on PyTorch with common accelerators. The system provides a hierarchical interface for both flexible model design and easy adaption to different applications, such as Transformer-XL and Megatron-LM. Different from direct implementation of MoE models using PyTorch, the training speed is highly optimized in FastMoE by sophisticated high-performance acceleration skills. The system supports placing different experts on multiple GPUs across multiple nodes, enabling enlarging the number of experts linearly against the number of GPUs. The source of FastMoE is available at https://github.com/laekov/fastmoe under Apache-2 license. 6 authors · Mar 24, 2021
- S3PRL-VC: Open-source Voice Conversion Framework with Self-supervised Speech Representations This paper introduces S3PRL-VC, an open-source voice conversion (VC) framework based on the S3PRL toolkit. In the context of recognition-synthesis VC, self-supervised speech representation (S3R) is valuable in its potential to replace the expensive supervised representation adopted by state-of-the-art VC systems. Moreover, we claim that VC is a good probing task for S3R analysis. In this work, we provide a series of in-depth analyses by benchmarking on the two tasks in VCC2020, namely intra-/cross-lingual any-to-one (A2O) VC, as well as an any-to-any (A2A) setting. We also provide comparisons between not only different S3Rs but also top systems in VCC2020 with supervised representations. Systematic objective and subjective evaluation were conducted, and we show that S3R is comparable with VCC2020 top systems in the A2O setting in terms of similarity, and achieves state-of-the-art in S3R-based A2A VC. We believe the extensive analysis, as well as the toolkit itself, contribute to not only the S3R community but also the VC community. The codebase is now open-sourced. 6 authors · Oct 12, 2021
- Real-time Low-latency Music Source Separation using Hybrid Spectrogram-TasNet There have been significant advances in deep learning for music demixing in recent years. However, there has been little attention given to how these neural networks can be adapted for real-time low-latency applications, which could be helpful for hearing aids, remixing audio streams and live shows. In this paper, we investigate the various challenges involved in adapting current demixing models in the literature for this use case. Subsequently, inspired by the Hybrid Demucs architecture, we propose the Hybrid Spectrogram Time-domain Audio Separation Network HS-TasNet, which utilises the advantages of spectral and waveform domains. For a latency of 23 ms, the HS-TasNet obtains an overall signal-to-distortion ratio (SDR) of 4.65 on the MusDB test set, and increases to 5.55 with additional training data. These results demonstrate the potential of efficient demixing for real-time low-latency music applications. 4 authors · Feb 27, 2024