Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeConv-TasNet: Surpassing Ideal Time-Frequency Magnitude Masking for Speech Separation
Single-channel, speaker-independent speech separation methods have recently seen great progress. However, the accuracy, latency, and computational cost of such methods remain insufficient. The majority of the previous methods have formulated the separation problem through the time-frequency representation of the mixed signal, which has several drawbacks, including the decoupling of the phase and magnitude of the signal, the suboptimality of time-frequency representation for speech separation, and the long latency in calculating the spectrograms. To address these shortcomings, we propose a fully-convolutional time-domain audio separation network (Conv-TasNet), a deep learning framework for end-to-end time-domain speech separation. Conv-TasNet uses a linear encoder to generate a representation of the speech waveform optimized for separating individual speakers. Speaker separation is achieved by applying a set of weighting functions (masks) to the encoder output. The modified encoder representations are then inverted back to the waveforms using a linear decoder. The masks are found using a temporal convolutional network (TCN) consisting of stacked 1-D dilated convolutional blocks, which allows the network to model the long-term dependencies of the speech signal while maintaining a small model size. The proposed Conv-TasNet system significantly outperforms previous time-frequency masking methods in separating two- and three-speaker mixtures. Additionally, Conv-TasNet surpasses several ideal time-frequency magnitude masks in two-speaker speech separation as evaluated by both objective distortion measures and subjective quality assessment by human listeners. Finally, Conv-TasNet has a significantly smaller model size and a shorter minimum latency, making it a suitable solution for both offline and real-time speech separation applications.
Multitrack Music Transcription with a Time-Frequency Perceiver
Multitrack music transcription aims to transcribe a music audio input into the musical notes of multiple instruments simultaneously. It is a very challenging task that typically requires a more complex model to achieve satisfactory result. In addition, prior works mostly focus on transcriptions of regular instruments, however, neglecting vocals, which are usually the most important signal source if present in a piece of music. In this paper, we propose a novel deep neural network architecture, Perceiver TF, to model the time-frequency representation of audio input for multitrack transcription. Perceiver TF augments the Perceiver architecture by introducing a hierarchical expansion with an additional Transformer layer to model temporal coherence. Accordingly, our model inherits the benefits of Perceiver that posses better scalability, allowing it to well handle transcriptions of many instruments in a single model. In experiments, we train a Perceiver TF to model 12 instrument classes as well as vocal in a multi-task learning manner. Our result demonstrates that the proposed system outperforms the state-of-the-art counterparts (e.g., MT3 and SpecTNT) on various public datasets.
Vocos: Closing the gap between time-domain and Fourier-based neural vocoders for high-quality audio synthesis
Recent advancements in neural vocoding are predominantly driven by Generative Adversarial Networks (GANs) operating in the time-domain. While effective, this approach neglects the inductive bias offered by time-frequency representations, resulting in reduntant and computionally-intensive upsampling operations. Fourier-based time-frequency representation is an appealing alternative, aligning more accurately with human auditory perception, and benefitting from well-established fast algorithms for its computation. Nevertheless, direct reconstruction of complex-valued spectrograms has been historically problematic, primarily due to phase recovery issues. This study seeks to close this gap by presenting Vocos, a new model that directly generates Fourier spectral coefficients. Vocos not only matches the state-of-the-art in audio quality, as demonstrated in our evaluations, but it also substantially improves computational efficiency, achieving an order of magnitude increase in speed compared to prevailing time-domain neural vocoding approaches. The source code and model weights have been open-sourced at https://github.com/charactr-platform/vocos.
Multi-Scale Sub-Band Constant-Q Transform Discriminator for High-Fidelity Vocoder
Generative Adversarial Network (GAN) based vocoders are superior in inference speed and synthesis quality when reconstructing an audible waveform from an acoustic representation. This study focuses on improving the discriminator to promote GAN-based vocoders. Most existing time-frequency-representation-based discriminators are rooted in Short-Time Fourier Transform (STFT), whose time-frequency resolution in a spectrogram is fixed, making it incompatible with signals like singing voices that require flexible attention for different frequency bands. Motivated by that, our study utilizes the Constant-Q Transform (CQT), which owns dynamic resolution among frequencies, contributing to a better modeling ability in pitch accuracy and harmonic tracking. Specifically, we propose a Multi-Scale Sub-Band CQT (MS-SB-CQT) Discriminator, which operates on the CQT spectrogram at multiple scales and performs sub-band processing according to different octaves. Experiments conducted on both speech and singing voices confirm the effectiveness of our proposed method. Moreover, we also verified that the CQT-based and the STFT-based discriminators could be complementary under joint training. Specifically, enhanced by the proposed MS-SB-CQT and the existing MS-STFT Discriminators, the MOS of HiFi-GAN can be boosted from 3.27 to 3.87 for seen singers and from 3.40 to 3.78 for unseen singers.
GW-YOLO: Multi-transient segmentation in LIGO using computer vision
Time series data and their time-frequency representation from gravitational-wave interferometers present multiple opportunities for the use of artificial intelligence methods associated with signal and image processing. Closely connected with this is the real-time aspect associated with gravitational-wave interferometers and the astrophysical observations they perform; the discovery potential of these instruments can be significantly enhanced when data processing can be achieved in O(1s) timescales. In this work, we introduce a novel signal and noise identification tool based on the YOLO (You Only Look Once) object detection framework. For its application into gravitational waves, we will refer to it as GW-YOLO. This tool can provide scene identification capabilities and essential information regarding whether an observed transient is any combination of noise and signal. Additionally, it supplies detailed time-frequency coordinates of the detected objects in the form of pixel masks, an essential property that can be used to understand and characterize astrophysical sources, as well as instrumental noise. The simultaneous identification of noise and signal, combined with precise pixel-level localization, represents a significant advancement in gravitational-wave data analysis. Our approach yields a 50\% detection efficiency for binary black hole signals at a signal-to-noise ratio (SNR) of 15 when such signals overlap with transient noise artifacts. When noise artifacts overlap with binary neutron star signals, our algorithm attains 50\% detection efficiency at an SNR of 30. This presents the first quantitative assessment of the ability to detect astrophysical events overlapping with realistic, instrument noise present in gravitational-wave interferometers.
Content Adaptive Front End For Audio Classification
We propose a learnable content adaptive front end for audio signal processing. Before the modern advent of deep learning, we used fixed representation non-learnable front-ends like spectrogram or mel-spectrogram with/without neural architectures. With convolutional architectures supporting various applications such as ASR and acoustic scene understanding, a shift to a learnable front ends occurred in which both the type of basis functions and the weight were learned from scratch and optimized for the particular task of interest. With the shift to transformer-based architectures with no convolutional blocks present, a linear layer projects small waveform patches onto a small latent dimension before feeding them to a transformer architecture. In this work, we propose a way of computing a content-adaptive learnable time-frequency representation. We pass each audio signal through a bank of convolutional filters, each giving a fixed-dimensional vector. It is akin to learning a bank of finite impulse-response filterbanks and passing the input signal through the optimum filter bank depending on the content of the input signal. A content-adaptive learnable time-frequency representation may be more broadly applicable, beyond the experiments in this paper.
MP-SENet: A Speech Enhancement Model with Parallel Denoising of Magnitude and Phase Spectra
This paper proposes MP-SENet, a novel Speech Enhancement Network which directly denoises Magnitude and Phase spectra in parallel. The proposed MP-SENet adopts a codec architecture in which the encoder and decoder are bridged by convolution-augmented transformers. The encoder aims to encode time-frequency representations from the input noisy magnitude and phase spectra. The decoder is composed of parallel magnitude mask decoder and phase decoder, directly recovering clean magnitude spectra and clean-wrapped phase spectra by incorporating learnable sigmoid activation and parallel phase estimation architecture, respectively. Multi-level losses defined on magnitude spectra, phase spectra, short-time complex spectra, and time-domain waveforms are used to train the MP-SENet model jointly. Experimental results show that our proposed MP-SENet achieves a PESQ of 3.50 on the public VoiceBank+DEMAND dataset and outperforms existing advanced speech enhancement methods.
Representing Speech Through Autoregressive Prediction of Cochlear Tokens
We introduce AuriStream, a biologically inspired model for encoding speech via a two-stage framework inspired by the human auditory processing hierarchy. The first stage transforms raw audio into a time-frequency representation based on the human cochlea, from which we extract discrete cochlear tokens. The second stage applies an autoregressive sequence model over the cochlear tokens. AuriStream learns meaningful phoneme and word representations, and state-of-the-art lexical semantics. AuriStream shows competitive performance on diverse downstream SUPERB speech tasks. Complementing AuriStream's strong representational capabilities, it generates continuations of audio which can be visualized in a spectrogram space and decoded back into audio, providing insights into the model's predictions. In summary, we present a two-stage framework for speech representation learning to advance the development of more human-like models that efficiently handle a range of speech-based tasks.
Chirp Localization via Fine-Tuned Transformer Model: A Proof-of-Concept Study
Spectrograms are pivotal in time-frequency signal analysis, widely used in audio processing and computational neuroscience. Chirp-like patterns in electroencephalogram (EEG) spectrograms (marked by linear or exponential frequency sweep) are key biomarkers for seizure dynamics, but automated tools for their detection, localization, and feature extraction are lacking. This study bridges this gap by fine-tuning a Vision Transformer (ViT) model on synthetic spectrograms, augmented with Low-Rank Adaptation (LoRA) to boost adaptability. We generated 100000 synthetic spectrograms with chirp parameters, creating the first large-scale benchmark for chirp localization. These spectrograms mimic neural chirps using linear or exponential frequency sweep, Gaussian noise, and smoothing. A ViT model, adapted for regression, predicted chirp parameters. LoRA fine-tuned the attention layers, enabling efficient updates to the pre-trained backbone. Training used MSE loss and the AdamW optimizer, with a learning rate scheduler and early stopping to curb overfitting. Only three features were targeted: Chirp Start Time (Onset Time), Chirp Start Frequency (Onset Frequency), and Chirp End Frequency (Offset Frequency). Performance was evaluated via Pearson correlation between predicted and actual labels. Results showed strong alignment: 0.9841 correlation for chirp start time, with stable inference times (137 to 140s) and minimal bias in error distributions. This approach offers a tool for chirp analysis in EEG time-frequency representation, filling a critical methodological void.
Towards Signal Processing In Large Language Models
This paper introduces the idea of applying signal processing inside a Large Language Model (LLM). With the recent explosion of generative AI, our work can help bridge two fields together, namely the field of signal processing and large language models. We draw parallels between classical Fourier-Transforms and Fourier Transform-like learnable time-frequency representations for every intermediate activation signal of an LLM. Once we decompose every activation signal across tokens into a time-frequency representation, we learn how to filter and reconstruct them, with all components learned from scratch, to predict the next token given the previous context. We show that for GPT-like architectures, our work achieves faster convergence and significantly increases performance by adding a minuscule number of extra parameters when trained for the same epochs. We hope this work paves the way for algorithms exploring signal processing inside the signals found in neural architectures like LLMs and beyond.
Automatic tagging using deep convolutional neural networks
We present a content-based automatic music tagging algorithm using fully convolutional neural networks (FCNs). We evaluate different architectures consisting of 2D convolutional layers and subsampling layers only. In the experiments, we measure the AUC-ROC scores of the architectures with different complexities and input types using the MagnaTagATune dataset, where a 4-layer architecture shows state-of-the-art performance with mel-spectrogram input. Furthermore, we evaluated the performances of the architectures with varying the number of layers on a larger dataset (Million Song Dataset), and found that deeper models outperformed the 4-layer architecture. The experiments show that mel-spectrogram is an effective time-frequency representation for automatic tagging and that more complex models benefit from more training data.
Explicit Estimation of Magnitude and Phase Spectra in Parallel for High-Quality Speech Enhancement
Phase information has a significant impact on speech perceptual quality and intelligibility. However, existing speech enhancement methods encounter limitations in explicit phase estimation due to the non-structural nature and wrapping characteristics of the phase, leading to a bottleneck in enhanced speech quality. To overcome the above issue, in this paper, we proposed MP-SENet, a novel Speech Enhancement Network that explicitly enhances Magnitude and Phase spectra in parallel. The proposed MP-SENet comprises a Transformer-embedded encoder-decoder architecture. The encoder aims to encode the input distorted magnitude and phase spectra into time-frequency representations, which are further fed into time-frequency Transformers for alternatively capturing time and frequency dependencies. The decoder comprises a magnitude mask decoder and a phase decoder, directly enhancing magnitude and wrapped phase spectra by incorporating a magnitude masking architecture and a phase parallel estimation architecture, respectively. Multi-level loss functions explicitly defined on the magnitude spectra, wrapped phase spectra, and short-time complex spectra are adopted to jointly train the MP-SENet model. A metric discriminator is further employed to compensate for the incomplete correlation between these losses and human auditory perception. Experimental results demonstrate that our proposed MP-SENet achieves state-of-the-art performance across multiple speech enhancement tasks, including speech denoising, dereverberation, and bandwidth extension. Compared to existing phase-aware speech enhancement methods, it further mitigates the compensation effect between the magnitude and phase by explicit phase estimation, elevating the perceptual quality of enhanced speech.
Adversarial Generation of Time-Frequency Features with application in audio synthesis
Time-frequency (TF) representations provide powerful and intuitive features for the analysis of time series such as audio. But still, generative modeling of audio in the TF domain is a subtle matter. Consequently, neural audio synthesis widely relies on directly modeling the waveform and previous attempts at unconditionally synthesizing audio from neurally generated invertible TF features still struggle to produce audio at satisfying quality. In this article, focusing on the short-time Fourier transform, we discuss the challenges that arise in audio synthesis based on generated invertible TF features and how to overcome them. We demonstrate the potential of deliberate generative TF modeling by training a generative adversarial network (GAN) on short-time Fourier features. We show that by applying our guidelines, our TF-based network was able to outperform a state-of-the-art GAN generating waveforms directly, despite the similar architecture in the two networks.
Domain Adaptation for Time Series Under Feature and Label Shifts
Unsupervised domain adaptation (UDA) enables the transfer of models trained on source domains to unlabeled target domains. However, transferring complex time series models presents challenges due to the dynamic temporal structure variations across domains. This leads to feature shifts in the time and frequency representations. Additionally, the label distributions of tasks in the source and target domains can differ significantly, posing difficulties in addressing label shifts and recognizing labels unique to the target domain. Effectively transferring complex time series models remains a formidable problem. We present Raincoat, the first model for both closed-set and universal domain adaptation on complex time series. Raincoat addresses feature and label shifts by considering both temporal and frequency features, aligning them across domains, and correcting for misalignments to facilitate the detection of private labels. Additionally, Raincoat improves transferability by identifying label shifts in target domains. Our experiments with 5 datasets and 13 state-of-the-art UDA methods demonstrate that Raincoat can improve transfer learning performance by up to 16.33% and can handle both closed-set and universal domain adaptation.
XAI-based Comparison of Input Representations for Audio Event Classification
Deep neural networks are a promising tool for Audio Event Classification. In contrast to other data like natural images, there are many sensible and non-obvious representations for audio data, which could serve as input to these models. Due to their black-box nature, the effect of different input representations has so far mostly been investigated by measuring classification performance. In this work, we leverage eXplainable AI (XAI), to understand the underlying classification strategies of models trained on different input representations. Specifically, we compare two model architectures with regard to relevant input features used for Audio Event Detection: one directly processes the signal as the raw waveform, and the other takes in its time-frequency spectrogram representation. We show how relevance heatmaps obtained via "Siren"{Layer-wise Relevance Propagation} uncover representation-dependent decision strategies. With these insights, we can make a well-informed decision about the best input representation in terms of robustness and representativity and confirm that the model's classification strategies align with human requirements.
Seismic Signal Denoising and Decomposition Using Deep Neural Networks
Denoising and filtering are widely used in routine seismic-data-processing to improve the signal-to-noise ratio (SNR) of recorded signals and by doing so to improve subsequent analyses. In this paper we develop a new denoising/decomposition method, DeepDenoiser, based on a deep neural network. This network is able to learn simultaneously a sparse representation of data in the time-frequency domain and a non-linear function that maps this representation into masks that decompose input data into a signal of interest and noise (defined as any non-seismic signal). We show that DeepDenoiser achieves impressive denoising of seismic signals even when the signal and noise share a common frequency band. Our method properly handles a variety of colored noise and non-earthquake signals. DeepDenoiser can significantly improve the SNR with minimal changes in the waveform shape of interest, even in presence of high noise levels. We demonstrate the effect of our method on improving earthquake detection. There are clear applications of DeepDenoiser to seismic imaging, micro-seismic monitoring, and preprocessing of ambient noise data. We also note that potential applications of our approach are not limited to these applications or even to earthquake data, and that our approach can be adapted to diverse signals and applications in other settings.
Improving EEG-based Emotion Recognition by Fusing Time-frequency And Spatial Representations
Using deep learning methods to classify EEG signals can accurately identify people's emotions. However, existing studies have rarely considered the application of the information in another domain's representations to feature selection in the time-frequency domain. We propose a classification network of EEG signals based on the cross-domain feature fusion method, which makes the network more focused on the features most related to brain activities and thinking changes by using the multi-domain attention mechanism. In addition, we propose a two-step fusion method and apply these methods to the EEG emotion recognition network. Experimental results show that our proposed network, which combines multiple representations in the time-frequency domain and spatial domain, outperforms previous methods on public datasets and achieves state-of-the-art at present.
Comparing Time and Frequency Domain for Audio Event Recognition Using Deep Learning
Recognizing acoustic events is an intricate problem for a machine and an emerging field of research. Deep neural networks achieve convincing results and are currently the state-of-the-art approach for many tasks. One advantage is their implicit feature learning, opposite to an explicit feature extraction of the input signal. In this work, we analyzed whether more discriminative features can be learned from either the time-domain or the frequency-domain representation of the audio signal. For this purpose, we trained multiple deep networks with different architectures on the Freiburg-106 and ESC-10 datasets. Our results show that feature learning from the frequency domain is superior to the time domain. Moreover, additionally using convolution and pooling layers, to explore local structures of the audio signal, significantly improves the recognition performance and achieves state-of-the-art results.
FRCRN: Boosting Feature Representation using Frequency Recurrence for Monaural Speech Enhancement
Convolutional recurrent networks (CRN) integrating a convolutional encoder-decoder (CED) structure and a recurrent structure have achieved promising performance for monaural speech enhancement. However, feature representation across frequency context is highly constrained due to limited receptive fields in the convolutions of CED. In this paper, we propose a convolutional recurrent encoder-decoder (CRED) structure to boost feature representation along the frequency axis. The CRED applies frequency recurrence on 3D convolutional feature maps along the frequency axis following each convolution, therefore, it is capable of catching long-range frequency correlations and enhancing feature representations of speech inputs. The proposed frequency recurrence is realized efficiently using a feedforward sequential memory network (FSMN). Besides the CRED, we insert two stacked FSMN layers between the encoder and the decoder to model further temporal dynamics. We name the proposed framework as Frequency Recurrent CRN (FRCRN). We design FRCRN to predict complex Ideal Ratio Mask (cIRM) in complex-valued domain and optimize FRCRN using both time-frequency-domain and time-domain losses. Our proposed approach achieved state-of-the-art performance on wideband benchmark datasets and achieved 2nd place for the real-time fullband track in terms of Mean Opinion Score (MOS) and Word Accuracy (WAcc) in the ICASSP 2022 Deep Noise Suppression (DNS) challenge (https://github.com/alibabasglab/FRCRN).
Tokenizing Single-Channel EEG with Time-Frequency Motif Learning
Foundation models are reshaping EEG analysis, yet an important problem of EEG tokenization remains a challenge. This paper presents TFM-Tokenizer, a novel tokenization framework that learns a vocabulary of time-frequency motifs from single-channel EEG signals and encodes them into discrete tokens. We propose a dual-path architecture with time-frequency masking to capture robust motif representations, and it is model-agnostic, supporting both lightweight transformers and existing foundation models for downstream tasks. Our study demonstrates three key benefits: Accuracy: Experiments on four diverse EEG benchmarks demonstrate consistent performance gains across both single- and multi-dataset pretraining settings, achieving up to 17% improvement in Cohen's Kappa over strong baselines. Generalization: Moreover, as a plug-and-play component, it consistently boosts the performance of diverse foundation models, including BIOT and LaBraM. Scalability: By operating at the single-channel level rather than relying on the strict 10-20 EEG system, our method has the potential to be device-agnostic. Experiments on ear-EEG sleep staging, which differs from the pretraining data in signal format, channel configuration, recording device, and task, show that our tokenizer outperforms baselines by 14%. A comprehensive token analysis reveals strong class-discriminative, frequency-aware, and consistent structure, enabling improved representation quality and interpretability. Code is available at https://github.com/Jathurshan0330/TFM-Tokenizer.
From Pixels to Predictions: Spectrogram and Vision Transformer for Better Time Series Forecasting
Time series forecasting plays a crucial role in decision-making across various domains, but it presents significant challenges. Recent studies have explored image-driven approaches using computer vision models to address these challenges, often employing lineplots as the visual representation of time series data. In this paper, we propose a novel approach that uses time-frequency spectrograms as the visual representation of time series data. We introduce the use of a vision transformer for multimodal learning, showcasing the advantages of our approach across diverse datasets from different domains. To evaluate its effectiveness, we compare our method against statistical baselines (EMA and ARIMA), a state-of-the-art deep learning-based approach (DeepAR), other visual representations of time series data (lineplot images), and an ablation study on using only the time series as input. Our experiments demonstrate the benefits of utilizing spectrograms as a visual representation for time series data, along with the advantages of employing a vision transformer for simultaneous learning in both the time and frequency domains.
TERA: Self-Supervised Learning of Transformer Encoder Representation for Speech
We introduce a self-supervised speech pre-training method called TERA, which stands for Transformer Encoder Representations from Alteration. Recent approaches often learn by using a single auxiliary task like contrastive prediction, autoregressive prediction, or masked reconstruction. Unlike previous methods, we use alteration along three orthogonal axes to pre-train Transformer Encoders on a large amount of unlabeled speech. The model learns through the reconstruction of acoustic frames from their altered counterpart, where we use a stochastic policy to alter along various dimensions: time, frequency, and magnitude. TERA can be used for speech representations extraction or fine-tuning with downstream models. We evaluate TERA on several downstream tasks, including phoneme classification, keyword spotting, speaker recognition, and speech recognition. We present a large-scale comparison of various self-supervised models. TERA achieves strong performance in the comparison by improving upon surface features and outperforming previous models. In our experiments, we study the effect of applying different alteration techniques, pre-training on more data, and pre-training on various features. We analyze different model sizes and find that smaller models are strong representation learners than larger models, while larger models are more effective for downstream fine-tuning than smaller models. Furthermore, we show the proposed method is transferable to downstream datasets not used in pre-training.
SpectroStream: A Versatile Neural Codec for General Audio
We propose SpectroStream, a full-band multi-channel neural audio codec. Successor to the well-established SoundStream, SpectroStream extends its capability beyond 24 kHz monophonic audio and enables high-quality reconstruction of 48 kHz stereo music at bit rates of 4--16 kbps. This is accomplished with a new neural architecture that leverages audio representation in the time-frequency domain, which leads to better audio quality especially at higher sample rate. The model also uses a delayed-fusion strategy to handle multi-channel audio, which is crucial in balancing per-channel acoustic quality and cross-channel phase consistency.
NAAQA: A Neural Architecture for Acoustic Question Answering
The goal of the Acoustic Question Answering (AQA) task is to answer a free-form text question about the content of an acoustic scene. It was inspired by the Visual Question Answering (VQA) task. In this paper, based on the previously introduced CLEAR dataset, we propose a new benchmark for AQA, namely CLEAR2, that emphasizes the specific challenges of acoustic inputs. These include handling of variable duration scenes, and scenes built with elementary sounds that differ between training and test set. We also introduce NAAQA, a neural architecture that leverages specific properties of acoustic inputs. The use of 1D convolutions in time and frequency to process 2D spectro-temporal representations of acoustic content shows promising results and enables reductions in model complexity. We show that time coordinate maps augment temporal localization capabilities which enhance performance of the network by ~17 percentage points. On the other hand, frequency coordinate maps have little influence on this task. NAAQA achieves 79.5% of accuracy on the AQA task with ~4 times fewer parameters than the previously explored VQA model. We evaluate the perfomance of NAAQA on an independent data set reconstructed from DAQA. We also test the addition of a MALiMo module in our model on both CLEAR2 and DAQA. We provide a detailed analysis of the results for the different question types. We release the code to produce CLEAR2 as well as NAAQA to foster research in this newly emerging machine learning task.
Best Practices for 2-Body Pose Forecasting
The task of collaborative human pose forecasting stands for predicting the future poses of multiple interacting people, given those in previous frames. Predicting two people in interaction, instead of each separately, promises better performance, due to their body-body motion correlations. But the task has remained so far primarily unexplored. In this paper, we review the progress in human pose forecasting and provide an in-depth assessment of the single-person practices that perform best for 2-body collaborative motion forecasting. Our study confirms the positive impact of frequency input representations, space-time separable and fully-learnable interaction adjacencies for the encoding GCN and FC decoding. Other single-person practices do not transfer to 2-body, so the proposed best ones do not include hierarchical body modeling or attention-based interaction encoding. We further contribute a novel initialization procedure for the 2-body spatial interaction parameters of the encoder, which benefits performance and stability. Altogether, our proposed 2-body pose forecasting best practices yield a performance improvement of 21.9% over the state-of-the-art on the most recent ExPI dataset, whereby the novel initialization accounts for 3.5%. See our project page at https://www.pinlab.org/bestpractices2body
FD-LLM: Large Language Model for Fault Diagnosis of Machines
Large language models (LLMs) are effective at capturing complex, valuable conceptual representations from textual data for a wide range of real-world applications. However, in fields like Intelligent Fault Diagnosis (IFD), incorporating additional sensor data-such as vibration signals, temperature readings, and operational metrics-is essential but it is challenging to capture such sensor data information within traditional text corpora. This study introduces a novel IFD approach by effectively adapting LLMs to numerical data inputs for identifying various machine faults from time-series sensor data. We propose FD-LLM, an LLM framework specifically designed for fault diagnosis by formulating the training of the LLM as a multi-class classification problem. We explore two methods for encoding vibration signals: the first method uses a string-based tokenization technique to encode vibration signals into text representations, while the second extracts statistical features from both the time and frequency domains as statistical summaries of each signal. We assess the fault diagnosis capabilities of four open-sourced LLMs based on the FD-LLM framework, and evaluate the models' adaptability and generalizability under various operational conditions and machine components, namely for traditional fault diagnosis, cross-operational conditions, and cross-machine component settings. Our results show that LLMs such as Llama3 and Llama3-instruct demonstrate strong fault detection capabilities and significant adaptability across different operational conditions, outperforming state-of-the-art deep learning (DL) approaches in many cases.
Enhancing Representation Learning for Periodic Time Series with Floss: A Frequency Domain Regularization Approach
Time series analysis is a fundamental task in various application domains, and deep learning approaches have demonstrated remarkable performance in this area. However, many real-world time series data exhibit significant periodic or quasi-periodic dynamics that are often not adequately captured by existing deep learning-based solutions. This results in an incomplete representation of the underlying dynamic behaviors of interest. To address this gap, we propose an unsupervised method called Floss that automatically regularizes learned representations in the frequency domain. The Floss method first automatically detects major periodicities from the time series. It then employs periodic shift and spectral density similarity measures to learn meaningful representations with periodic consistency. In addition, Floss can be easily incorporated into both supervised, semi-supervised, and unsupervised learning frameworks. We conduct extensive experiments on common time series classification, forecasting, and anomaly detection tasks to demonstrate the effectiveness of Floss. We incorporate Floss into several representative deep learning solutions to justify our design choices and demonstrate that it is capable of automatically discovering periodic dynamics and improving state-of-the-art deep learning models.
Contextualized Sparse Representations for Real-Time Open-Domain Question Answering
Open-domain question answering can be formulated as a phrase retrieval problem, in which we can expect huge scalability and speed benefit but often suffer from low accuracy due to the limitation of existing phrase representation models. In this paper, we aim to improve the quality of each phrase embedding by augmenting it with a contextualized sparse representation (Sparc). Unlike previous sparse vectors that are term-frequency-based (e.g., tf-idf) or directly learned (only few thousand dimensions), we leverage rectified self-attention to indirectly learn sparse vectors in n-gram vocabulary space. By augmenting the previous phrase retrieval model (Seo et al., 2019) with Sparc, we show 4%+ improvement in CuratedTREC and SQuAD-Open. Our CuratedTREC score is even better than the best known retrieve & read model with at least 45x faster inference speed.
Latent Representation and Simulation of Markov Processes via Time-Lagged Information Bottleneck
Markov processes are widely used mathematical models for describing dynamic systems in various fields. However, accurately simulating large-scale systems at long time scales is computationally expensive due to the short time steps required for accurate integration. In this paper, we introduce an inference process that maps complex systems into a simplified representational space and models large jumps in time. To achieve this, we propose Time-lagged Information Bottleneck (T-IB), a principled objective rooted in information theory, which aims to capture relevant temporal features while discarding high-frequency information to simplify the simulation task and minimize the inference error. Our experiments demonstrate that T-IB learns information-optimal representations for accurately modeling the statistical properties and dynamics of the original process at a selected time lag, outperforming existing time-lagged dimensionality reduction methods.
SplattingAvatar: Realistic Real-Time Human Avatars with Mesh-Embedded Gaussian Splatting
We present SplattingAvatar, a hybrid 3D representation of photorealistic human avatars with Gaussian Splatting embedded on a triangle mesh, which renders over 300 FPS on a modern GPU and 30 FPS on a mobile device. We disentangle the motion and appearance of a virtual human with explicit mesh geometry and implicit appearance modeling with Gaussian Splatting. The Gaussians are defined by barycentric coordinates and displacement on a triangle mesh as Phong surfaces. We extend lifted optimization to simultaneously optimize the parameters of the Gaussians while walking on the triangle mesh. SplattingAvatar is a hybrid representation of virtual humans where the mesh represents low-frequency motion and surface deformation, while the Gaussians take over the high-frequency geometry and detailed appearance. Unlike existing deformation methods that rely on an MLP-based linear blend skinning (LBS) field for motion, we control the rotation and translation of the Gaussians directly by mesh, which empowers its compatibility with various animation techniques, e.g., skeletal animation, blend shapes, and mesh editing. Trainable from monocular videos for both full-body and head avatars, SplattingAvatar shows state-of-the-art rendering quality across multiple datasets.
Masked Frequency Modeling for Self-Supervised Visual Pre-Training
We present Masked Frequency Modeling (MFM), a unified frequency-domain-based approach for self-supervised pre-training of visual models. Instead of randomly inserting mask tokens to the input embeddings in the spatial domain, in this paper, we shift the perspective to the frequency domain. Specifically, MFM first masks out a portion of frequency components of the input image and then predicts the missing frequencies on the frequency spectrum. Our key insight is that predicting masked components in the frequency domain is more ideal to reveal underlying image patterns rather than predicting masked patches in the spatial domain, due to the heavy spatial redundancy. Our findings suggest that with the right configuration of mask-and-predict strategy, both the structural information within high-frequency components and the low-level statistics among low-frequency counterparts are useful in learning good representations. For the first time, MFM demonstrates that, for both ViT and CNN, a simple non-Siamese framework can learn meaningful representations even using none of the following: (i) extra data, (ii) extra model, (iii) mask token. Experimental results on image classification and semantic segmentation, as well as several robustness benchmarks show the competitive performance and advanced robustness of MFM compared with recent masked image modeling approaches. Furthermore, we also comprehensively investigate the effectiveness of classical image restoration tasks for representation learning from a unified frequency perspective and reveal their intriguing relations with our MFM approach.
Improving Generative Inverse Design of Rectangular Patch Antennas with Test Time Optimization
We propose a two-stage deep learning framework for the inverse design of rectangular patch antennas. Our approach leverages generative modeling to learn a latent representation of antenna frequency response curves and conditions a subsequent generative model on these responses to produce feasible antenna geometries. We further demonstrate that leveraging search and optimization techniques at test-time improves the accuracy of the generated designs and enables consideration of auxiliary objectives such as manufacturability. Our approach generalizes naturally to different design criteria, and can be easily adapted to more complex geometric design spaces.
Audio Time-Scale Modification with Temporal Compressing Networks
We propose a novel approach for time-scale modification of audio signals. Unlike traditional methods that rely on the framing technique or the short-time Fourier transform to preserve the frequency during temporal stretching, our neural network model encodes the raw audio into a high-level latent representation, dubbed Neuralgram, where each vector represents 1024 audio sample points. Due to a sufficient compression ratio, we are able to apply arbitrary spatial interpolation of the Neuralgram to perform temporal stretching. Finally, a learned neural decoder synthesizes the time-scaled audio samples based on the stretched Neuralgram representation. Both the encoder and decoder are trained with latent regression losses and adversarial losses in order to obtain high-fidelity audio samples. Despite its simplicity, our method has comparable performance compared to the existing baselines and opens a new possibility in research into modern time-scale modification. Audio samples can be found at https://tsmnet-mmasia23.github.io
Bridging Past and Future: Distribution-Aware Alignment for Time Series Forecasting
Although contrastive and other representation-learning methods have long been explored in vision and NLP, their adoption in modern time series forecasters remains limited. We believe they hold strong promise for this domain. To unlock this potential, we explicitly align past and future representations, thereby bridging the distributional gap between input histories and future targets. To this end, we introduce TimeAlign, a lightweight, plug-and-play framework that establishes a new representation paradigm, distinct from contrastive learning, by aligning auxiliary features via a simple reconstruction task and feeding them back into any base forecaster. Extensive experiments across eight benchmarks verify its superior performance. Further studies indicate that the gains arise primarily from correcting frequency mismatches between historical inputs and future outputs. Additionally, we provide two theoretical justifications for how reconstruction improves forecasting generalization and how alignment increases the mutual information between learned representations and predicted targets. The code is available at https://github.com/TROUBADOUR000/TimeAlign.
Latent Wavelet Diffusion: Enabling 4K Image Synthesis for Free
High-resolution image synthesis remains a core challenge in generative modeling, particularly in balancing computational efficiency with the preservation of fine-grained visual detail. We present Latent Wavelet Diffusion (LWD), a lightweight framework that enables any latent diffusion model to scale to ultra-high-resolution image generation (2K to 4K) for free. LWD introduces three key components: (1) a scale-consistent variational autoencoder objective that enhances the spectral fidelity of latent representations; (2) wavelet energy maps that identify and localize detail-rich spatial regions within the latent space; and (3) a time-dependent masking strategy that focuses denoising supervision on high-frequency components during training. LWD requires no architectural modifications and incurs no additional computational overhead. Despite its simplicity, it consistently improves perceptual quality and reduces FID in ultra-high-resolution image synthesis, outperforming strong baseline models. These results highlight the effectiveness of frequency-aware, signal-driven supervision as a principled and efficient approach for high-resolution generative modeling.
Moirai-MoE: Empowering Time Series Foundation Models with Sparse Mixture of Experts
Time series foundation models have demonstrated impressive performance as zero-shot forecasters. However, achieving effectively unified training on time series remains an open challenge. Existing approaches introduce some level of model specialization to account for the highly heterogeneous nature of time series data. For instance, Moirai pursues unified training by employing multiple input/output projection layers, each tailored to handle time series at a specific frequency. Similarly, TimesFM maintains a frequency embedding dictionary for this purpose. We identify two major drawbacks to this human-imposed frequency-level model specialization: (1) Frequency is not a reliable indicator of the underlying patterns in time series. For example, time series with different frequencies can display similar patterns, while those with the same frequency may exhibit varied patterns. (2) Non-stationarity is an inherent property of real-world time series, leading to varied distributions even within a short context window of a single time series. Frequency-level specialization is too coarse-grained to capture this level of diversity. To address these limitations, this paper introduces Moirai-MoE, using a single input/output projection layer while delegating the modeling of diverse time series patterns to the sparse mixture of experts (MoE) within Transformers. With these designs, Moirai-MoE reduces reliance on human-defined heuristics and enables automatic token-level specialization. Extensive experiments on 39 datasets demonstrate the superiority of Moirai-MoE over existing foundation models in both in-distribution and zero-shot scenarios. Furthermore, this study conducts comprehensive model analyses to explore the inner workings of time series MoE foundation models and provides valuable insights for future research.
What do neural networks learn in image classification? A frequency shortcut perspective
Frequency analysis is useful for understanding the mechanisms of representation learning in neural networks (NNs). Most research in this area focuses on the learning dynamics of NNs for regression tasks, while little for classification. This study empirically investigates the latter and expands the understanding of frequency shortcuts. First, we perform experiments on synthetic datasets, designed to have a bias in different frequency bands. Our results demonstrate that NNs tend to find simple solutions for classification, and what they learn first during training depends on the most distinctive frequency characteristics, which can be either low- or high-frequencies. Second, we confirm this phenomenon on natural images. We propose a metric to measure class-wise frequency characteristics and a method to identify frequency shortcuts. The results show that frequency shortcuts can be texture-based or shape-based, depending on what best simplifies the objective. Third, we validate the transferability of frequency shortcuts on out-of-distribution (OOD) test sets. Our results suggest that frequency shortcuts can be transferred across datasets and cannot be fully avoided by larger model capacity and data augmentation. We recommend that future research should focus on effective training schemes mitigating frequency shortcut learning.
Multi-resolution Time-Series Transformer for Long-term Forecasting
The performance of transformers for time-series forecasting has improved significantly. Recent architectures learn complex temporal patterns by segmenting a time-series into patches and using the patches as tokens. The patch size controls the ability of transformers to learn the temporal patterns at different frequencies: shorter patches are effective for learning localized, high-frequency patterns, whereas mining long-term seasonalities and trends requires longer patches. Inspired by this observation, we propose a novel framework, Multi-resolution Time-Series Transformer (MTST), which consists of a multi-branch architecture for simultaneous modeling of diverse temporal patterns at different resolutions. In contrast to many existing time-series transformers, we employ relative positional encoding, which is better suited for extracting periodic components at different scales. Extensive experiments on several real-world datasets demonstrate the effectiveness of MTST in comparison to state-of-the-art forecasting techniques.
BEAT: Balanced Frequency Adaptive Tuning for Long-Term Time-Series Forecasting
Time-series forecasting is crucial for numerous real-world applications including weather prediction and financial market modeling. While temporal-domain methods remain prevalent, frequency-domain approaches can effectively capture multi-scale periodic patterns, reduce sequence dependencies, and naturally denoise signals. However, existing approaches typically train model components for all frequencies under a unified training objective, often leading to mismatched learning speeds: high-frequency components converge faster and risk overfitting, while low-frequency components underfit due to insufficient training time. To deal with this challenge, we propose BEAT (Balanced frEquency Adaptive Tuning), a novel framework that dynamically monitors the training status for each frequency and adaptively adjusts their gradient updates. By recognizing convergence, overfitting, or underfitting for each frequency, BEAT dynamically reallocates learning priorities, moderating gradients for rapid learners and increasing those for slower ones, alleviating the tension between competing objectives across frequencies and synchronizing the overall learning process. Extensive experiments on seven real-world datasets demonstrate that BEAT consistently outperforms state-of-the-art approaches.
PREF: Phasorial Embedding Fields for Compact Neural Representations
We present an efficient frequency-based neural representation termed PREF: a shallow MLP augmented with a phasor volume that covers significant border spectra than previous Fourier feature mapping or Positional Encoding. At the core is our compact 3D phasor volume where frequencies distribute uniformly along a 2D plane and dilate along a 1D axis. To this end, we develop a tailored and efficient Fourier transform that combines both Fast Fourier transform and local interpolation to accelerate na\"ive Fourier mapping. We also introduce a Parsvel regularizer that stables frequency-based learning. In these ways, Our PREF reduces the costly MLP in the frequency-based representation, thereby significantly closing the efficiency gap between it and other hybrid representations, and improving its interpretability. Comprehensive experiments demonstrate that our PREF is able to capture high-frequency details while remaining compact and robust, including 2D image generalization, 3D signed distance function regression and 5D neural radiance field reconstruction.
Conditional Generation of Periodic Signals with Fourier-Based Decoder
Periodic signals play an important role in daily lives. Although conventional sequential models have shown remarkable success in various fields, they still come short in modeling periodicity; they either collapse, diverge or ignore details. In this paper, we introduce a novel framework inspired by Fourier series to generate periodic signals. We first decompose the given signals into multiple sines and cosines and then conditionally generate periodic signals with the output components. We have shown our model efficacy on three tasks: reconstruction, imputation and conditional generation. Our model outperforms baselines in all tasks and shows more stable and refined results.
Towards Long-Context Time Series Foundation Models
Time series foundation models have shown impressive performance on a variety of tasks, across a wide range of domains, even in zero-shot settings. However, most of these models are designed to handle short univariate time series as an input. This limits their practical use, especially in domains such as healthcare with copious amounts of long and multivariate data with strong temporal and intra-variate dependencies. Our study bridges this gap by cataloging and systematically comparing various context expansion techniques from both language and time series domains, and introducing a novel compressive memory mechanism to allow encoder-only TSFMs to effectively model intra-variate dependencies. We demonstrate the benefits of our approach by imbuing MOMENT, a recent family of multi-task time series foundation models, with the multivariate context.
TSCMamba: Mamba Meets Multi-View Learning for Time Series Classification
Time series classification (TSC) on multivariate time series is a critical problem. We propose a novel multi-view approach integrating frequency-domain and time-domain features to provide complementary contexts for TSC. Our method fuses continuous wavelet transform spectral features with temporal convolutional or multilayer perceptron features. We leverage the Mamba state space model for efficient and scalable sequence modeling. We also introduce a novel tango scanning scheme to better model sequence relationships. Experiments on 10 standard benchmark datasets demonstrate our approach achieves an average 6.45% accuracy improvement over state-of-the-art TSC models.
SciTS: Scientific Time Series Understanding and Generation with LLMs
The scientific reasoning ability of large language models (LLMs) has recently attracted significant attention. Time series, as a fundamental modality in scientific data, presents unique challenges that are often overlooked in current multimodal LLMs, which either encode numerical sequences as text or convert them into images. Such approaches may be insufficient for comprehensive scientific time series understanding and generation. Existing unified time series models typically specialise in either forecasting or analysis, and their effectiveness on non-periodic, heterogeneous scientific signals remains unclear. To address these gaps, we introduce SciTS, a benchmark spanning 12 scientific domains and 43 tasks, with over 50k+ instances, both univariate and multivariate signals ranging from 10^0 to 10^7 in length and up to 10~MHz in frequency. We benchmark 17 models, including text-only LLMs, multimodal LLMs, and unified time series models, and find that general-purpose LLMs exhibit stronger generalisability than specialised time series models, while representing time series as text or images limits their performance due to excessively long sequences and loss of numerical precision, respectively. We then introduce TimeOmni, a framework that equips LLMs with the ability to understand and generate time series while remaining compatible with general-purpose LLM training. This work fills a gap in both dedicated benchmarks and modelling frameworks for scientific time series, paving the way for LLMs to understand and generate complex temporal scientific data.
PeriodWave: Multi-Period Flow Matching for High-Fidelity Waveform Generation
Recently, universal waveform generation tasks have been investigated conditioned on various out-of-distribution scenarios. Although GAN-based methods have shown their strength in fast waveform generation, they are vulnerable to train-inference mismatch scenarios such as two-stage text-to-speech. Meanwhile, diffusion-based models have shown their powerful generative performance in other domains; however, they stay out of the limelight due to slow inference speed in waveform generation tasks. Above all, there is no generator architecture that can explicitly disentangle the natural periodic features of high-resolution waveform signals. In this paper, we propose PeriodWave, a novel universal waveform generation model. First, we introduce a period-aware flow matching estimator that can capture the periodic features of the waveform signal when estimating the vector fields. Additionally, we utilize a multi-period estimator that avoids overlaps to capture different periodic features of waveform signals. Although increasing the number of periods can improve the performance significantly, this requires more computational costs. To reduce this issue, we also propose a single period-conditional universal estimator that can feed-forward parallel by period-wise batch inference. Additionally, we utilize discrete wavelet transform to losslessly disentangle the frequency information of waveform signals for high-frequency modeling, and introduce FreeU to reduce the high-frequency noise for waveform generation. The experimental results demonstrated that our model outperforms the previous models both in Mel-spectrogram reconstruction and text-to-speech tasks. All source code will be available at https://github.com/sh-lee-prml/PeriodWave.
nnAudio: An on-the-fly GPU Audio to Spectrogram Conversion Toolbox Using 1D Convolution Neural Networks
Converting time domain waveforms to frequency domain spectrograms is typically considered to be a prepossessing step done before model training. This approach, however, has several drawbacks. First, it takes a lot of hard disk space to store different frequency domain representations. This is especially true during the model development and tuning process, when exploring various types of spectrograms for optimal performance. Second, if another dataset is used, one must process all the audio clips again before the network can be retrained. In this paper, we integrate the time domain to frequency domain conversion as part of the model structure, and propose a neural network based toolbox, nnAudio, which leverages 1D convolutional neural networks to perform time domain to frequency domain conversion during feed-forward. It allows on-the-fly spectrogram generation without the need to store any spectrograms on the disk. This approach also allows back-propagation on the waveforms-to-spectrograms transformation layer, which implies that this transformation process can be made trainable, and hence further optimized by gradient descent. nnAudio reduces the waveforms-to-spectrograms conversion time for 1,770 waveforms (from the MAPS dataset) from 10.64 seconds with librosa to only 0.001 seconds for Short-Time Fourier Transform (STFT), 18.3 seconds to 0.015 seconds for Mel spectrogram, 103.4 seconds to 0.258 for constant-Q transform (CQT), when using GPU on our DGX work station with CPU: Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz Tesla v100 32Gb GPUs. (Only 1 GPU is being used for all the experiments.) We also further optimize the existing CQT algorithm, so that the CQT spectrogram can be obtained without aliasing in a much faster computation time (from 0.258 seconds to only 0.001 seconds).
Understanding Audio Features via Trainable Basis Functions
In this paper we explore the possibility of maximizing the information represented in spectrograms by making the spectrogram basis functions trainable. We experiment with two different tasks, namely keyword spotting (KWS) and automatic speech recognition (ASR). For most neural network models, the architecture and hyperparameters are typically fine-tuned and optimized in experiments. Input features, however, are often treated as fixed. In the case of audio, signals can be mainly expressed in two main ways: raw waveforms (time-domain) or spectrograms (time-frequency-domain). In addition, different spectrogram types are often used and tailored to fit different applications. In our experiments, we allow for this tailoring directly as part of the network. Our experimental results show that using trainable basis functions can boost the accuracy of Keyword Spotting (KWS) by 14.2 percentage points, and lower the Phone Error Rate (PER) by 9.5 percentage points. Although models using trainable basis functions become less effective as the model complexity increases, the trained filter shapes could still provide us with insights on which frequency bins are important for that specific task. From our experiments, we can conclude that trainable basis functions are a useful tool to boost the performance when the model complexity is limited.
TimesNet: Temporal 2D-Variation Modeling for General Time Series Analysis
Time series analysis is of immense importance in extensive applications, such as weather forecasting, anomaly detection, and action recognition. This paper focuses on temporal variation modeling, which is the common key problem of extensive analysis tasks. Previous methods attempt to accomplish this directly from the 1D time series, which is extremely challenging due to the intricate temporal patterns. Based on the observation of multi-periodicity in time series, we ravel out the complex temporal variations into the multiple intraperiod- and interperiod-variations. To tackle the limitations of 1D time series in representation capability, we extend the analysis of temporal variations into the 2D space by transforming the 1D time series into a set of 2D tensors based on multiple periods. This transformation can embed the intraperiod- and interperiod-variations into the columns and rows of the 2D tensors respectively, making the 2D-variations to be easily modeled by 2D kernels. Technically, we propose the TimesNet with TimesBlock as a task-general backbone for time series analysis. TimesBlock can discover the multi-periodicity adaptively and extract the complex temporal variations from transformed 2D tensors by a parameter-efficient inception block. Our proposed TimesNet achieves consistent state-of-the-art in five mainstream time series analysis tasks, including short- and long-term forecasting, imputation, classification, and anomaly detection. Code is available at this repository: https://github.com/thuml/TimesNet.
TS2Vec: Towards Universal Representation of Time Series
This paper presents TS2Vec, a universal framework for learning representations of time series in an arbitrary semantic level. Unlike existing methods, TS2Vec performs contrastive learning in a hierarchical way over augmented context views, which enables a robust contextual representation for each timestamp. Furthermore, to obtain the representation of an arbitrary sub-sequence in the time series, we can apply a simple aggregation over the representations of corresponding timestamps. We conduct extensive experiments on time series classification tasks to evaluate the quality of time series representations. As a result, TS2Vec achieves significant improvement over existing SOTAs of unsupervised time series representation on 125 UCR datasets and 29 UEA datasets. The learned timestamp-level representations also achieve superior results in time series forecasting and anomaly detection tasks. A linear regression trained on top of the learned representations outperforms previous SOTAs of time series forecasting. Furthermore, we present a simple way to apply the learned representations for unsupervised anomaly detection, which establishes SOTA results in the literature. The source code is publicly available at https://github.com/yuezhihan/ts2vec.
TiVy: Time Series Visual Summary for Scalable Visualization
Visualizing multiple time series presents fundamental tradeoffs between scalability and visual clarity. Time series capture the behavior of many large-scale real-world processes, from stock market trends to urban activities. Users often gain insights by visualizing them as line charts, juxtaposing or superposing multiple time series to compare them and identify trends and patterns. However, existing representations struggle with scalability: when covering long time spans, leading to visual clutter from too many small multiples or overlapping lines. We propose TiVy, a new algorithm that summarizes time series using sequential patterns. It transforms the series into a set of symbolic sequences based on subsequence visual similarity using Dynamic Time Warping (DTW), then constructs a disjoint grouping of similar subsequences based on the frequent sequential patterns. The grouping result, a visual summary of time series, provides uncluttered superposition with fewer small multiples. Unlike common clustering techniques, TiVy extracts similar subsequences (of varying lengths) aligned in time. We also present an interactive time series visualization that renders large-scale time series in real-time. Our experimental evaluation shows that our algorithm (1) extracts clear and accurate patterns when visualizing time series data, (2) achieves a significant speed-up (1000X) compared to a straightforward DTW clustering. We also demonstrate the efficiency of our approach to explore hidden structures in massive time series data in two usage scenarios.
NuTime: Numerically Multi-Scaled Embedding for Large-Scale Time Series Pretraining
Recent research on time-series self-supervised models shows great promise in learning semantic representations. However, it has been limited to small-scale datasets, e.g., thousands of temporal sequences. In this work, we make key technical contributions that are tailored to the numerical properties of time-series data and allow the model to scale to large datasets, e.g., millions of temporal sequences. We adopt the Transformer architecture by first partitioning the input into non-overlapping windows. Each window is then characterized by its normalized shape and two scalar values denoting the mean and standard deviation within each window. To embed scalar values that may possess arbitrary numerical scales to high-dimensional vectors, we propose a numerically multi-scaled embedding module enumerating all possible scales for the scalar values. The model undergoes pretraining using the proposed numerically multi-scaled embedding with a simple contrastive objective on a large-scale dataset containing over a million sequences. We study its transfer performance on a number of univariate and multivariate classification benchmarks. Our method exhibits remarkable improvement against previous representation learning approaches and establishes the new state of the art, even compared with domain-specific non-learning-based methods.
TEMPO: Prompt-based Generative Pre-trained Transformer for Time Series Forecasting
The past decade has witnessed significant advances in time series modeling with deep learning. While achieving state-of-the-art results, the best-performing architectures vary highly across applications and domains. Meanwhile, for natural language processing, the Generative Pre-trained Transformer (GPT) has demonstrated impressive performance via training one general-purpose model across various textual datasets. It is intriguing to explore whether GPT-type architectures can be effective for time series, capturing the intrinsic dynamic attributes and leading to significant accuracy improvements. In this paper, we propose a novel framework, TEMPO, that can effectively learn time series representations. We focus on utilizing two essential inductive biases of the time series task for pre-trained models: (i) decomposition of the complex interaction between trend, seasonal and residual components; and (ii) introducing the selection-based prompts to facilitate distribution adaptation in non-stationary time series. TEMPO expands the capability for dynamically modeling real-world temporal phenomena from data within diverse domains. Our experiments demonstrate the superior performance of TEMPO over state-of-the-art methods on a number of time series benchmark datasets. This performance gain is observed not only in standard supervised learning settings but also in scenarios involving previously unseen datasets as well as in scenarios with multi-modal inputs. This compelling finding highlights TEMPO's potential to constitute a foundational model-building framework.
Harnessing Vision Models for Time Series Analysis: A Survey
Time series analysis has witnessed the inspiring development from traditional autoregressive models, deep learning models, to recent Transformers and Large Language Models (LLMs). Efforts in leveraging vision models for time series analysis have also been made along the way but are less visible to the community due to the predominant research on sequence modeling in this domain. However, the discrepancy between continuous time series and the discrete token space of LLMs, and the challenges in explicitly modeling the correlations of variates in multivariate time series have shifted some research attentions to the equally successful Large Vision Models (LVMs) and Vision Language Models (VLMs). To fill the blank in the existing literature, this survey discusses the advantages of vision models over LLMs in time series analysis. It provides a comprehensive and in-depth overview of the existing methods, with dual views of detailed taxonomy that answer the key research questions including how to encode time series as images and how to model the imaged time series for various tasks. Additionally, we address the challenges in the pre- and post-processing steps involved in this framework and outline future directions to further advance time series analysis with vision models.
TimeDRL: Disentangled Representation Learning for Multivariate Time-Series
Multivariate time-series data in numerous real-world applications (e.g., healthcare and industry) are informative but challenging due to the lack of labels and high dimensionality. Recent studies in self-supervised learning have shown their potential in learning rich representations without relying on labels, yet they fall short in learning disentangled embeddings and addressing issues of inductive bias (e.g., transformation-invariance). To tackle these challenges, we propose TimeDRL, a generic multivariate time-series representation learning framework with disentangled dual-level embeddings. TimeDRL is characterized by three novel features: (i) disentangled derivation of timestamp-level and instance-level embeddings from patched time-series data using a [CLS] token strategy; (ii) utilization of timestamp-predictive and instance-contrastive tasks for disentangled representation learning, with the former optimizing timestamp-level embeddings with predictive loss, and the latter optimizing instance-level embeddings with contrastive loss; and (iii) avoidance of augmentation methods to eliminate inductive biases, such as transformation-invariance from cropping and masking. Comprehensive experiments on 6 time-series forecasting datasets and 5 time-series classification datasets have shown that TimeDRL consistently surpasses existing representation learning approaches, achieving an average improvement of forecasting by 58.02% in MSE and classification by 1.48% in accuracy. Furthermore, extensive ablation studies confirmed the relative contribution of each component in TimeDRL's architecture, and semi-supervised learning evaluations demonstrated its effectiveness in real-world scenarios, even with limited labeled data. The code is available at https://github.com/blacksnail789521/TimeDRL.
MambAttention: Mamba with Multi-Head Attention for Generalizable Single-Channel Speech Enhancement
With the advent of new sequence models like Mamba and xLSTM, several studies have shown that these models match or outperform state-of-the-art models in single-channel speech enhancement, automatic speech recognition, and self-supervised audio representation learning. However, prior research has demonstrated that sequence models like LSTM and Mamba tend to overfit to the training set. To address this issue, previous works have shown that adding self-attention to LSTMs substantially improves generalization performance for single-channel speech enhancement. Nevertheless, neither the concept of hybrid Mamba and time-frequency attention models nor their generalization performance have been explored for speech enhancement. In this paper, we propose a novel hybrid architecture, MambAttention, which combines Mamba and shared time- and frequency-multi-head attention modules for generalizable single-channel speech enhancement. To train our model, we introduce VoiceBank+Demand Extended (VB-DemandEx), a dataset inspired by VoiceBank+Demand but with more challenging noise types and lower signal-to-noise ratios. Trained on VB-DemandEx, our proposed MambAttention model significantly outperforms existing state-of-the-art LSTM-, xLSTM-, Mamba-, and Conformer-based systems of similar complexity across all reported metrics on two out-of-domain datasets: DNS 2020 and EARS-WHAM_v2, while matching their performance on the in-domain dataset VB-DemandEx. Ablation studies highlight the role of weight sharing between the time- and frequency-multi-head attention modules for generalization performance. Finally, we explore integrating the shared time- and frequency-multi-head attention modules with LSTM and xLSTM, which yields a notable performance improvement on the out-of-domain datasets. However, our MambAttention model remains superior on both out-of-domain datasets across all reported evaluation metrics.
Frequency-Specific Neural Response and Cross-Correlation Analysis of Envelope Following Responses to Native Speech and Music Using Multichannel EEG Signals: A Case Study
Although native speech and music envelope following responses (EFRs) play a crucial role in auditory processing and cognition, their frequency profile, such as the dominating frequency and spectral coherence, is largely unknown. We have assumed that the auditory pathway - which transmits envelope components of speech and music to the scalp through time-varying neurophysiological processes - is a linear time-varying system, with the envelope and the multi-channel EEG responses as excitation and response, respectively. This paper investigates the transfer function of this system through two analytical techniques - time-averaged spectral responses and cross-spectral density - in the frequency domain at four different positions of the human scalp. Our findings suggest that alpha (8-11 Hz), lower gamma (53-56 Hz), and higher gamma (78-81 Hz) bands are the peak responses of the system. These frequently appearing dominant frequency responses may be the key components of familiar speech perception, maintaining attention, binding acoustic features, and memory processing. The cross-spectral density, which reflects the spatial neural coherence of the human brain, shows that 10-13 Hz, 27-29 Hz, and 62-64 Hz are common for all channel pairs. As neural coherences are frequently observed in these frequencies among native participants, we suggest that these distributed neural processes are also dominant in native speech and music perception.
The impact of Audio input representations on neural network based music transcription
This paper thoroughly analyses the effect of different input representations on polyphonic multi-instrument music transcription. We use our own GPU based spectrogram extraction tool, nnAudio, to investigate the influence of using a linear-frequency spectrogram, log-frequency spectrogram, Mel spectrogram, and constant-Q transform (CQT). Our results show that a 8.33% increase in transcription accuracy and a 9.39% reduction in error can be obtained by choosing the appropriate input representation (log-frequency spectrogram with STFT window length 4,096 and 2,048 frequency bins in the spectrogram) without changing the neural network design (single layer fully connected). Our experiments also show that Mel spectrogram is a compact representation for which we can reduce the number of frequency bins to only 512 while still keeping a relatively high music transcription accuracy.
DC is all you need: describing ReLU from a signal processing standpoint
Non-linear activation functions are crucial in Convolutional Neural Networks. However, until now they have not been well described in the frequency domain. In this work, we study the spectral behavior of ReLU, a popular activation function. We use the ReLU's Taylor expansion to derive its frequency domain behavior. We demonstrate that ReLU introduces higher frequency oscillations in the signal and a constant DC component. Furthermore, we investigate the importance of this DC component, where we demonstrate that it helps the model extract meaningful features related to the input frequency content. We accompany our theoretical derivations with experiments and real-world examples. First, we numerically validate our frequency response model. Then we observe ReLU's spectral behavior on two example models and a real-world one. Finally, we experimentally investigate the role of the DC component introduced by ReLU in the CNN's representations. Our results indicate that the DC helps to converge to a weight configuration that is close to the initial random weights.
FreGrad: Lightweight and Fast Frequency-aware Diffusion Vocoder
The goal of this paper is to generate realistic audio with a lightweight and fast diffusion-based vocoder, named FreGrad. Our framework consists of the following three key components: (1) We employ discrete wavelet transform that decomposes a complicated waveform into sub-band wavelets, which helps FreGrad to operate on a simple and concise feature space, (2) We design a frequency-aware dilated convolution that elevates frequency awareness, resulting in generating speech with accurate frequency information, and (3) We introduce a bag of tricks that boosts the generation quality of the proposed model. In our experiments, FreGrad achieves 3.7 times faster training time and 2.2 times faster inference speed compared to our baseline while reducing the model size by 0.6 times (only 1.78M parameters) without sacrificing the output quality. Audio samples are available at: https://mm.kaist.ac.kr/projects/FreGrad.
TimeMIL: Advancing Multivariate Time Series Classification via a Time-aware Multiple Instance Learning
Deep neural networks, including transformers and convolutional neural networks, have significantly improved multivariate time series classification (MTSC). However, these methods often rely on supervised learning, which does not fully account for the sparsity and locality of patterns in time series data (e.g., diseases-related anomalous points in ECG). To address this challenge, we formally reformulate MTSC as a weakly supervised problem, introducing a novel multiple-instance learning (MIL) framework for better localization of patterns of interest and modeling time dependencies within time series. Our novel approach, TimeMIL, formulates the temporal correlation and ordering within a time-aware MIL pooling, leveraging a tokenized transformer with a specialized learnable wavelet positional token. The proposed method surpassed 26 recent state-of-the-art methods, underscoring the effectiveness of the weakly supervised TimeMIL in MTSC. The code will be available at https://github.com/xiwenc1/TimeMIL.
Sound Event Detection in Multichannel Audio Using Spatial and Harmonic Features
In this paper, we propose the use of spatial and harmonic features in combination with long short term memory (LSTM) recurrent neural network (RNN) for automatic sound event detection (SED) task. Real life sound recordings typically have many overlapping sound events, making it hard to recognize with just mono channel audio. Human listeners have been successfully recognizing the mixture of overlapping sound events using pitch cues and exploiting the stereo (multichannel) audio signal available at their ears to spatially localize these events. Traditionally SED systems have only been using mono channel audio, motivated by the human listener we propose to extend them to use multichannel audio. The proposed SED system is compared against the state of the art mono channel method on the development subset of TUT sound events detection 2016 database. The usage of spatial and harmonic features are shown to improve the performance of SED.
FITS: Modeling Time Series with 10k Parameters
In this paper, we introduce FITS, a lightweight yet powerful model for time series analysis. Unlike existing models that directly process raw time-domain data, FITS operates on the principle that time series can be manipulated through interpolation in the complex frequency domain. By discarding high-frequency components with negligible impact on time series data, FITS achieves performance comparable to state-of-the-art models for time series forecasting and anomaly detection tasks, while having a remarkably compact size of only approximately 10k parameters. Such a lightweight model can be easily trained and deployed in edge devices, creating opportunities for various applications. The code is available in: https://github.com/VEWOXIC/FITS
Implicit Neural Representations with Periodic Activation Functions
Implicitly defined, continuous, differentiable signal representations parameterized by neural networks have emerged as a powerful paradigm, offering many possible benefits over conventional representations. However, current network architectures for such implicit neural representations are incapable of modeling signals with fine detail, and fail to represent a signal's spatial and temporal derivatives, despite the fact that these are essential to many physical signals defined implicitly as the solution to partial differential equations. We propose to leverage periodic activation functions for implicit neural representations and demonstrate that these networks, dubbed sinusoidal representation networks or Sirens, are ideally suited for representing complex natural signals and their derivatives. We analyze Siren activation statistics to propose a principled initialization scheme and demonstrate the representation of images, wavefields, video, sound, and their derivatives. Further, we show how Sirens can be leveraged to solve challenging boundary value problems, such as particular Eikonal equations (yielding signed distance functions), the Poisson equation, and the Helmholtz and wave equations. Lastly, we combine Sirens with hypernetworks to learn priors over the space of Siren functions.
EEGDM: EEG Representation Learning via Generative Diffusion Model
While electroencephalogram (EEG) has been a crucial tool for monitoring the brain and diagnosing neurological disorders (e.g., epilepsy), learning meaningful representations from raw EEG signals remains challenging due to limited annotations and high signal variability. Recently, EEG foundation models (FMs) have shown promising potential by adopting transformer architectures and self-supervised pre-training methods from large language models (e.g., masked prediction) to learn representations from diverse EEG data, followed by fine-tuning on specific EEG tasks. Nonetheless, these large models often incurred high computational costs during both training and inference, with only marginal performance improvements as model size increases. In this work, we proposed EEG representation learning framework building upon Generative Diffusion Model (EEGDM). Specifically, we developed structured state-space model for diffusion pretraining (SSMDP) to better capture the temporal dynamics of EEG signals and trained the architecture using a Denoising Diffusion Probabilistic Model. The resulting latent EEG representations were then used for downstream classification tasks via our proposed latent fusion transformer (LFT). To evaluate our method, we used the multi-event Temple University EEG Event Corpus and compared EEGDM with current state-of-the-art approaches, including EEG FMs. Empirical results showed that our method outperformed existing methods while being approximately 19x more lightweight. These findings suggested that EEGDM offered a promising alternative to current FMs. Our code is available at: https://github.com/jhpuah/EEGDM.
FISHER: A Foundation Model for Multi-Modal Industrial Signal Comprehensive Representation
With the rapid deployment of SCADA systems, how to effectively analyze industrial signals and detect abnormal states is an urgent need for the industry. Due to the significant heterogeneity of these signals, which we summarize as the M5 problem, previous works only focus on small sub-problems and employ specialized models, failing to utilize the synergies between modalities and the powerful scaling law. However, we argue that the M5 signals can be modeled in a unified manner due to the intrinsic similarity. As a result, we propose FISHER, a Foundation model for multi-modal Industrial Signal compreHEnsive Representation. To support arbitrary sampling rates, FISHER considers the increment of sampling rate as the concatenation of sub-band information. Specifically, FISHER takes the STFT sub-band as the modeling unit and adopts a teacher student SSL framework for pre-training. We also develop the RMIS benchmark, which evaluates the representations of M5 industrial signals on multiple health management tasks. Compared with top SSL models, FISHER showcases versatile and outstanding capabilities with a general performance gain up to 5.03%, along with much more efficient scaling curves. We also investigate the scaling law on downstream tasks and derive potential avenues for future works. FISHER is now open-sourced on https://github.com/jianganbai/FISHER
Benchmarking Time-localized Explanations for Audio Classification Models
Most modern approaches for audio processing are opaque, in the sense that they do not provide an explanation for their decisions. For this reason, various methods have been proposed to explain the outputs generated by these models. Good explanations can result in interesting insights about the data or the model, as well as increase trust in the system. Unfortunately, evaluating the quality of explanations is far from trivial since, for most tasks, there is no clear ground truth explanation to use as reference. In this work, we propose a benchmark for time-localized explanations for audio classification models that uses time annotations of target events as a proxy for ground truth explanations. We use this benchmark to systematically optimize and compare various approaches for model-agnostic post-hoc explanation, obtaining, in some cases, close to perfect explanations. Finally, we illustrate the utility of the explanations for uncovering spurious correlations.
Mantis: Lightweight Calibrated Foundation Model for User-Friendly Time Series Classification
In recent years, there has been increasing interest in developing foundation models for time series data that can generalize across diverse downstream tasks. While numerous forecasting-oriented foundation models have been introduced, there is a notable scarcity of models tailored for time series classification. To address this gap, we present Mantis, a new open-source foundation model for time series classification based on the Vision Transformer (ViT) architecture that has been pre-trained using a contrastive learning approach. Our experimental results show that Mantis outperforms existing foundation models both when the backbone is frozen and when fine-tuned, while achieving the lowest calibration error. In addition, we propose several adapters to handle the multivariate setting, reducing memory requirements and modeling channel interdependence.
Implicit Neural Representations and the Algebra of Complex Wavelets
Implicit neural representations (INRs) have arisen as useful methods for representing signals on Euclidean domains. By parameterizing an image as a multilayer perceptron (MLP) on Euclidean space, INRs effectively represent signals in a way that couples spatial and spectral features of the signal that is not obvious in the usual discrete representation, paving the way for continuous signal processing and machine learning approaches that were not previously possible. Although INRs using sinusoidal activation functions have been studied in terms of Fourier theory, recent works have shown the advantage of using wavelets instead of sinusoids as activation functions, due to their ability to simultaneously localize in both frequency and space. In this work, we approach such INRs and demonstrate how they resolve high-frequency features of signals from coarse approximations done in the first layer of the MLP. This leads to multiple prescriptions for the design of INR architectures, including the use of complex wavelets, decoupling of low and band-pass approximations, and initialization schemes based on the singularities of the desired signal.
Kairos: Towards Adaptive and Generalizable Time Series Foundation Models
Time series foundation models (TSFMs) have emerged as a powerful paradigm for time series analysis, driven by large-scale pretraining on diverse data corpora. However, time series inherently exhibit heterogeneous information density over time, influenced by system states and signal complexity, presenting significant modeling challenges especially in a zero-shot scenario. Current TSFMs rely on non-adaptive processing pipelines that fail to capture this dynamic nature. For example, common tokenization strategies such as fixed-size patching enforce rigid observational granularity, limiting their ability to adapt to varying information densities. Similarly, conventional positional encodings impose a uniform temporal scale, making it difficult to model diverse periodicities and trends across series. To overcome these limitations, we propose Kairos, a flexible TSFM framework that integrates a dynamic patching tokenizer and an instance-adaptive positional embedding. Kairos adaptively selects tokenization granularity and tailors positional encodings to the unique characteristics of each time series instance. Trained on a large-scale Predictability-Stratified Time Series (PreSTS) corpus comprising over 300 billion time points and adopting a multi-patch prediction strategy in the inference stage, Kairos achieves superior performance with much fewer parameters on two common zero-shot benchmarks, GIFT-Eval and the Time-Series-Library benchmark, consistently outperforming established methods across diverse tasks. The project page is at https://foundation-model-research.github.io/Kairos .
Harmonics to the Rescue: Why Voiced Speech is Not a Wss Process
Speech processing algorithms often rely on statistical knowledge of the underlying process. Despite many years of research, however, the debate on the most appropriate statistical model for speech still continues. Speech is commonly modeled as a wide-sense stationary (WSS) process. However, the use of the WSS model for spectrally correlated processes is fundamentally wrong, as WSS implies spectral uncorrelation. In this paper, we demonstrate that voiced speech can be more accurately represented as a cyclostationary (CS) process. By employing the CS rather than the WSS model for processes that are inherently correlated across frequency, it is possible to improve the estimation of cross-power spectral densities (PSDs), source separation, and beamforming. We illustrate how the correlation between harmonic frequencies of CS processes can enhance system identification, and validate our findings using both simulated and real speech data.
Effectively Modeling Time Series with Simple Discrete State Spaces
Time series modeling is a well-established problem, which often requires that methods (1) expressively represent complicated dependencies, (2) forecast long horizons, and (3) efficiently train over long sequences. State-space models (SSMs) are classical models for time series, and prior works combine SSMs with deep learning layers for efficient sequence modeling. However, we find fundamental limitations with these prior approaches, proving their SSM representations cannot express autoregressive time series processes. We thus introduce SpaceTime, a new state-space time series architecture that improves all three criteria. For expressivity, we propose a new SSM parameterization based on the companion matrix -- a canonical representation for discrete-time processes -- which enables SpaceTime's SSM layers to learn desirable autoregressive processes. For long horizon forecasting, we introduce a "closed-loop" variation of the companion SSM, which enables SpaceTime to predict many future time-steps by generating its own layer-wise inputs. For efficient training and inference, we introduce an algorithm that reduces the memory and compute of a forward pass with the companion matrix. With sequence length ell and state-space size d, we go from O(d ell) na\"ively to O(d + ell). In experiments, our contributions lead to state-of-the-art results on extensive and diverse benchmarks, with best or second-best AUROC on 6 / 7 ECG and speech time series classification, and best MSE on 14 / 16 Informer forecasting tasks. Furthermore, we find SpaceTime (1) fits AR(p) processes that prior deep SSMs fail on, (2) forecasts notably more accurately on longer horizons than prior state-of-the-art, and (3) speeds up training on real-world ETTh1 data by 73% and 80% relative wall-clock time over Transformers and LSTMs.
Parametric Augmentation for Time Series Contrastive Learning
Modern techniques like contrastive learning have been effectively used in many areas, including computer vision, natural language processing, and graph-structured data. Creating positive examples that assist the model in learning robust and discriminative representations is a crucial stage in contrastive learning approaches. Usually, preset human intuition directs the selection of relevant data augmentations. Due to patterns that are easily recognized by humans, this rule of thumb works well in the vision and language domains. However, it is impractical to visually inspect the temporal structures in time series. The diversity of time series augmentations at both the dataset and instance levels makes it difficult to choose meaningful augmentations on the fly. In this study, we address this gap by analyzing time series data augmentation using information theory and summarizing the most commonly adopted augmentations in a unified format. We then propose a contrastive learning framework with parametric augmentation, AutoTCL, which can be adaptively employed to support time series representation learning. The proposed approach is encoder-agnostic, allowing it to be seamlessly integrated with different backbone encoders. Experiments on univariate forecasting tasks demonstrate the highly competitive results of our method, with an average 6.5\% reduction in MSE and 4.7\% in MAE over the leading baselines. In classification tasks, AutoTCL achieves a 1.2% increase in average accuracy.
Geographic Location Encoding with Spherical Harmonics and Sinusoidal Representation Networks
Learning feature representations of geographical space is vital for any machine learning model that integrates geolocated data, spanning application domains such as remote sensing, ecology, or epidemiology. Recent work mostly embeds coordinates using sine and cosine projections based on Double Fourier Sphere (DFS) features -- these embeddings assume a rectangular data domain even on global data, which can lead to artifacts, especially at the poles. At the same time, relatively little attention has been paid to the exact design of the neural network architectures these functional embeddings are combined with. This work proposes a novel location encoder for globally distributed geographic data that combines spherical harmonic basis functions, natively defined on spherical surfaces, with sinusoidal representation networks (SirenNets) that can be interpreted as learned Double Fourier Sphere embedding. We systematically evaluate the cross-product of positional embeddings and neural network architectures across various classification and regression benchmarks and synthetic evaluation datasets. In contrast to previous approaches that require the combination of both positional encoding and neural networks to learn meaningful representations, we show that both spherical harmonics and sinusoidal representation networks are competitive on their own but set state-of-the-art performances across tasks when combined. We provide source code at www.github.com/marccoru/locationencoder
CoLLAP: Contrastive Long-form Language-Audio Pretraining with Musical Temporal Structure Augmentation
Modeling temporal characteristics plays a significant role in the representation learning of audio waveform. We propose Contrastive Long-form Language-Audio Pretraining (CoLLAP) to significantly extend the perception window for both the input audio (up to 5 minutes) and the language descriptions (exceeding 250 words), while enabling contrastive learning across modalities and temporal dynamics. Leveraging recent Music-LLMs to generate long-form music captions for full-length songs, augmented with musical temporal structures, we collect 51.3K audio-text pairs derived from the large-scale AudioSet training dataset, where the average audio length reaches 288 seconds. We propose a novel contrastive learning architecture that fuses language representations with structured audio representations by segmenting each song into clips and extracting their embeddings. With an attention mechanism, we capture multimodal temporal correlations, allowing the model to automatically weigh and enhance the final fusion score for improved contrastive alignment. Finally, we develop two variants of the CoLLAP model with different types of backbone language models. Through comprehensive experiments on multiple long-form music-text retrieval datasets, we demonstrate consistent performance improvement in retrieval accuracy compared with baselines. We also show the pretrained CoLLAP models can be transferred to various music information retrieval tasks, with heterogeneous long-form multimodal contexts.
A-JEPA: Joint-Embedding Predictive Architecture Can Listen
This paper presents that the masked-modeling principle driving the success of large foundational vision models can be effectively applied to audio by making predictions in a latent space. We introduce Audio-based Joint-Embedding Predictive Architecture (A-JEPA), a simple extension method for self-supervised learning from the audio spectrum. Following the design of I-JEPA, our A-JEPA encodes visible audio spectrogram patches with a curriculum masking strategy via context encoder, and predicts the representations of regions sampled at well-designed locations. The target representations of those regions are extracted by the exponential moving average of context encoder, i.e., target encoder, on the whole spectrogram. We find it beneficial to transfer random block masking into time-frequency aware masking in a curriculum manner, considering the complexity of highly correlated in local time and frequency in audio spectrograms. To enhance contextual semantic understanding and robustness, we fine-tune the encoder with a regularized masking on target datasets, instead of input dropping or zero. Empirically, when built with Vision Transformers structure, we find A-JEPA to be highly scalable and sets new state-of-the-art performance on multiple audio and speech classification tasks, outperforming other recent models that use externally supervised pre-training.
A Detailed Audio-Text Data Simulation Pipeline using Single-Event Sounds
Recently, there has been an increasing focus on audio-text cross-modal learning. However, most of the existing audio-text datasets contain only simple descriptions of sound events. Compared with classification labels, the advantages of such descriptions are significantly limited. In this paper, we first analyze the detailed information that human descriptions of audio may contain beyond sound event labels. Based on the analysis, we propose an automatic pipeline for curating audio-text pairs with rich details. Leveraging the property that sounds can be mixed and concatenated in the time domain, we control details in four aspects: temporal relationship, loudness, speaker identity, and occurrence number, in simulating audio mixtures. Corresponding details are transformed into captions by large language models. Audio-text pairs with rich details in text descriptions are thereby obtained. We validate the effectiveness of our pipeline with a small amount of simulated data, demonstrating that the simulated data enables models to learn detailed audio captioning.
Time Series Representations for Classification Lie Hidden in Pretrained Vision Transformers
Time series classification is a fundamental task in healthcare and industry, yet the development of time series foundation models (TSFMs) remains limited by the scarcity of publicly available time series datasets. In this work, we propose Time Vision Transformer (TiViT), a framework that converts time series into images to leverage the representational power of frozen Vision Transformers (ViTs) pretrained on large-scale image datasets. First, we theoretically motivate our approach by analyzing the 2D patching of ViTs for time series, showing that it can increase the number of label-relevant tokens and reduce the sample complexity. Second, we empirically demonstrate that TiViT achieves state-of-the-art performance on standard time series classification benchmarks by utilizing the hidden representations of large OpenCLIP models. We explore the structure of TiViT representations and find that intermediate layers with high intrinsic dimension are the most effective for time series classification. Finally, we assess the alignment between TiViT and TSFM representation spaces and identify a strong complementarity, with further performance gains achieved by combining their features. Our findings reveal a new direction for reusing vision representations in a non-visual domain. Code is available at https://github.com/ExplainableML/TiViT.
TF-Mamba: A Time-Frequency Network for Sound Source Localization
Sound source localization (SSL) determines the position of sound sources using multi-channel audio data. It is commonly used to improve speech enhancement and separation. Extracting spatial features is crucial for SSL, especially in challenging acoustic environments. Recently, a novel structure referred to as Mamba demonstrated notable performance across various sequence-based modalities. This study introduces the Mamba for SSL tasks. We consider the Mamba-based model to analyze spatial features from speech signals by fusing both time and frequency features, and we develop an SSL system called TF-Mamba. This system integrates time and frequency fusion, with Bidirectional Mamba managing both time-wise and frequency-wise processing. We conduct the experiments on the simulated and real datasets. Experiments show that TF-Mamba significantly outperforms other advanced methods. The code will be publicly released in due course.
SimPSI: A Simple Strategy to Preserve Spectral Information in Time Series Data Augmentation
Data augmentation is a crucial component in training neural networks to overcome the limitation imposed by data size, and several techniques have been studied for time series. Although these techniques are effective in certain tasks, they have yet to be generalized to time series benchmarks. We find that current data augmentation techniques ruin the core information contained within the frequency domain. To address this issue, we propose a simple strategy to preserve spectral information (SimPSI) in time series data augmentation. SimPSI preserves the spectral information by mixing the original and augmented input spectrum weighted by a preservation map, which indicates the importance score of each frequency. Specifically, our experimental contributions are to build three distinct preservation maps: magnitude spectrum, saliency map, and spectrum-preservative map. We apply SimPSI to various time series data augmentations and evaluate its effectiveness across a wide range of time series benchmarks. Our experimental results support that SimPSI considerably enhances the performance of time series data augmentations by preserving core spectral information. The source code used in the paper is available at https://github.com/Hyun-Ryu/simpsi.
ECHO: Frequency-aware Hierarchical Encoding for Variable-length Signal
Pre-trained foundation models have demonstrated remarkable success in vision and language, yet their potential for general machine signal modeling-covering acoustic, vibration, and other industrial sensor data-remains under-explored. Existing approach using sub-band-based encoders has achieved competitive results but are limited by fixed input lengths, and the absence of explicit frequency positional encoding. In this work, we propose a novel foundation model that integrates an advanced band-split architecture with relative frequency positional embeddings, enabling precise spectral localization across arbitrary sampling configurations. The model supports inputs of arbitrary length without padding or segmentation, producing a concise embedding that retains both temporal and spectral fidelity. We evaluate our method on SIREN (https://github.com/yucongzh/SIREN), a newly introduced large-scale benchmark for machine signal encoding that unifies multiple datasets, including all DCASE task 2 challenges (2020-2025) and widely-used industrial signal corpora. Experimental results demonstrate consistent state-of-the-art performance in anomaly detection and fault identification, confirming the effectiveness and generalization capability of the proposed model. We open-sourced ECHO on https://github.com/yucongzh/ECHO.
TimesBERT: A BERT-Style Foundation Model for Time Series Understanding
Time series analysis is crucial in diverse scenarios. Beyond forecasting, considerable real-world tasks are categorized into classification, imputation, and anomaly detection, underscoring different capabilities termed time series understanding in this paper. While GPT-style models have been positioned as foundation models for time series forecasting, the BERT-style architecture, which has made significant advances in natural language understanding, has not been fully unlocked for time series understanding, possibly attributed to the undesirable dropout of essential elements of BERT. In this paper, inspired by the shared multi-granularity structure between multivariate time series and multisentence documents, we design TimesBERT to learn generic representations of time series including temporal patterns and variate-centric characteristics. In addition to a natural adaptation of masked modeling, we propose a parallel task of functional token prediction to embody vital multi-granularity structures. Our model is pre-trained on 260 billion time points across diverse domains. Leveraging multi-granularity representations, TimesBERT achieves state-of-the-art performance across four typical downstream understanding tasks, outperforming task-specific models and language pre-trained backbones, positioning it as a versatile foundation model for time series understanding.
Pattern Discovery in Time Series with Byte Pair Encoding
The growing popularity of wearable sensors has generated large quantities of temporal physiological and activity data. Ability to analyze this data offers new opportunities for real-time health monitoring and forecasting. However, temporal physiological data presents many analytic challenges: the data is noisy, contains many missing values, and each series has a different length. Most methods proposed for time series analysis and classification do not handle datasets with these characteristics nor do they offer interpretability and explainability, a critical requirement in the health domain. We propose an unsupervised method for learning representations of time series based on common patterns identified within them. The patterns are, interpretable, variable in length, and extracted using Byte Pair Encoding compression technique. In this way the method can capture both long-term and short-term dependencies present in the data. We show that this method applies to both univariate and multivariate time series and beats state-of-the-art approaches on a real world dataset collected from wearable sensors.
TSPulse: Dual Space Tiny Pre-Trained Models for Rapid Time-Series Analysis
The rise of time-series pre-trained models has advanced temporal representation learning, but current state-of-the-art models are often large-scale, requiring substantial compute. We introduce TSPulse, ultra-compact time-series pre-trained models with only 1M parameters, specialized to perform strongly across classification, anomaly detection, imputation, and retrieval tasks. TSPulse introduces innovations at both the architecture and task levels. At the architecture level, it employs a dual-space masked reconstruction, learning from both time and frequency domains to capture complementary signals. This is further enhanced by a dual-embedding disentanglement, generating both detailed embeddings for fine-grained analysis and high-level semantic embeddings for broader task understanding. Notably, TSPulse's semantic embeddings are robust to shifts in time, magnitude, and noise, which is important for robust retrieval. At the task level, TSPulse incorporates TSLens, a fine-tuning component enabling task-specific feature attention. It also introduces a multi-head triangulation technique that correlates deviations from multiple prediction heads, enhancing anomaly detection by fusing complementary model outputs. Additionally, a hybrid mask pretraining is proposed to improves zero-shot imputation by reducing pre-training bias. These architecture and task innovations collectively contribute to TSPulse's significant performance gains: 5-16% on the UEA classification benchmarks, +20% on the TSB-AD anomaly detection leaderboard, +50% in zero-shot imputation, and +25% in time-series retrieval. Remarkably, these results are achieved with just 1M parameters, making TSPulse 10-100X smaller than existing pre-trained models. Its efficiency enables GPU-free inference and rapid pre-training, setting a new standard for efficient time-series pre-trained models. Models will be open-sourced soon.
TimeFound: A Foundation Model for Time Series Forecasting
We present TimeFound, an encoder-decoder transformer-based time series foundation model for out-of-the-box zero-shot forecasting. To handle time series data from various domains, TimeFound employs a multi-resolution patching strategy to capture complex temporal patterns at multiple scales. We pre-train our model with two sizes (200M and 710M parameters) on a large time-series corpus comprising both real-world and synthetic datasets. Over a collection of unseen datasets across diverse domains and forecasting horizons, our empirical evaluations suggest that TimeFound can achieve superior or competitive zero-shot forecasting performance, compared to state-of-the-art time series foundation models.
WavSpA: Wavelet Space Attention for Boosting Transformers' Long Sequence Learning Ability
Transformer and its variants are fundamental neural architectures in deep learning. Recent works show that learning attention in the Fourier space can improve the long sequence learning capability of Transformers. We argue that wavelet transform shall be a better choice because it captures both position and frequency information with linear time complexity. Therefore, in this paper, we systematically study the synergy between wavelet transform and Transformers. We propose Wavelet Space Attention (WavSpA) that facilitates attention learning in a learnable wavelet coefficient space which replaces the attention in Transformers by (1) applying forward wavelet transform to project the input sequences to multi-resolution bases, (2) conducting attention learning in the wavelet coefficient space, and (3) reconstructing the representation in input space via backward wavelet transform. Extensive experiments on the Long Range Arena demonstrate that learning attention in the wavelet space using either fixed or adaptive wavelets can consistently improve Transformer's performance and also significantly outperform learning in Fourier space. We further show our method can enhance Transformer's reasoning extrapolation capability over distance on the LEGO chain-of-reasoning task.
VSFormer: Value and Shape-Aware Transformer with Prior-Enhanced Self-Attention for Multivariate Time Series Classification
Multivariate time series classification is a crucial task in data mining, attracting growing research interest due to its broad applications. While many existing methods focus on discovering discriminative patterns in time series, real-world data does not always present such patterns, and sometimes raw numerical values can also serve as discriminative features. Additionally, the recent success of Transformer models has inspired many studies. However, when applying to time series classification, the self-attention mechanisms in Transformer models could introduce classification-irrelevant features, thereby compromising accuracy. To address these challenges, we propose a novel method, VSFormer, that incorporates both discriminative patterns (shape) and numerical information (value). In addition, we extract class-specific prior information derived from supervised information to enrich the positional encoding and provide classification-oriented self-attention learning, thereby enhancing its effectiveness. Extensive experiments on all 30 UEA archived datasets demonstrate the superior performance of our method compared to SOTA models. Through ablation studies, we demonstrate the effectiveness of the improved encoding layer and the proposed self-attention mechanism. Finally, We provide a case study on a real-world time series dataset without discriminative patterns to interpret our model.
Acoustic To Articulatory Speech Inversion Using Multi-Resolution Spectro-Temporal Representations Of Speech Signals
Multi-resolution spectro-temporal features of a speech signal represent how the brain perceives sounds by tuning cortical cells to different spectral and temporal modulations. These features produce a higher dimensional representation of the speech signals. The purpose of this paper is to evaluate how well the auditory cortex representation of speech signals contribute to estimate articulatory features of those corresponding signals. Since obtaining articulatory features from acoustic features of speech signals has been a challenging topic of interest for different speech communities, we investigate the possibility of using this multi-resolution representation of speech signals as acoustic features. We used U. of Wisconsin X-ray Microbeam (XRMB) database of clean speech signals to train a feed-forward deep neural network (DNN) to estimate articulatory trajectories of six tract variables. The optimal set of multi-resolution spectro-temporal features to train the model were chosen using appropriate scale and rate vector parameters to obtain the best performing model. Experiments achieved a correlation of 0.675 with ground-truth tract variables. We compared the performance of this speech inversion system with prior experiments conducted using Mel Frequency Cepstral Coefficients (MFCCs).
Chimera: Effectively Modeling Multivariate Time Series with 2-Dimensional State Space Models
Modeling multivariate time series is a well-established problem with a wide range of applications from healthcare to financial markets. Traditional State Space Models (SSMs) are classical approaches for univariate time series modeling due to their simplicity and expressive power to represent linear dependencies. They, however, have fundamentally limited expressive power to capture non-linear dependencies, are slow in practice, and fail to model the inter-variate information flow. Despite recent attempts to improve the expressive power of SSMs by using deep structured SSMs, the existing methods are either limited to univariate time series, fail to model complex patterns (e.g., seasonal patterns), fail to dynamically model the dependencies of variate and time dimensions, and/or are input-independent. We present Chimera that uses two input-dependent 2-D SSM heads with different discretization processes to learn long-term progression and seasonal patterns. To improve the efficiency of complex 2D recurrence, we present a fast training using a new 2-dimensional parallel selective scan. We further present and discuss 2-dimensional Mamba and Mamba-2 as the spacial cases of our 2D SSM. Our experimental evaluation shows the superior performance of Chimera on extensive and diverse benchmarks, including ECG and speech time series classification, long-term and short-term time series forecasting, and time series anomaly detection.
FNetAR: Mixing Tokens with Autoregressive Fourier Transforms
In this note we examine the autoregressive generalization of the FNet algorithm, in which self-attention layers from the standard Transformer architecture are substituted with a trivial sparse-uniformsampling procedure based on Fourier transforms. Using the Wikitext-103 benchmark, we demonstratethat FNetAR retains state-of-the-art performance (25.8 ppl) on the task of causal language modelingcompared to a Transformer-XL baseline (24.2 ppl) with only half the number self-attention layers,thus providing further evidence for the superfluity of deep neural networks with heavily compoundedattention mechanisms. The autoregressive Fourier transform could likely be used for parameterreduction on most Transformer-based time-series prediction models.
Do Music Generation Models Encode Music Theory?
Music foundation models possess impressive music generation capabilities. When people compose music, they may infuse their understanding of music into their work, by using notes and intervals to craft melodies, chords to build progressions, and tempo to create a rhythmic feel. To what extent is this true of music generation models? More specifically, are fundamental Western music theory concepts observable within the "inner workings" of these models? Recent work proposed leveraging latent audio representations from music generation models towards music information retrieval tasks (e.g. genre classification, emotion recognition), which suggests that high-level musical characteristics are encoded within these models. However, probing individual music theory concepts (e.g. tempo, pitch class, chord quality) remains under-explored. Thus, we introduce SynTheory, a synthetic MIDI and audio music theory dataset, consisting of tempos, time signatures, notes, intervals, scales, chords, and chord progressions concepts. We then propose a framework to probe for these music theory concepts in music foundation models (Jukebox and MusicGen) and assess how strongly they encode these concepts within their internal representations. Our findings suggest that music theory concepts are discernible within foundation models and that the degree to which they are detectable varies by model size and layer.
Learning Disentangled Representations for Time Series
Time-series representation learning is a fundamental task for time-series analysis. While significant progress has been made to achieve accurate representations for downstream applications, the learned representations often lack interpretability and do not expose semantic meanings. Different from previous efforts on the entangled feature space, we aim to extract the semantic-rich temporal correlations in the latent interpretable factorized representation of the data. Motivated by the success of disentangled representation learning in computer vision, we study the possibility of learning semantic-rich time-series representations, which remains unexplored due to three main challenges: 1) sequential data structure introduces complex temporal correlations and makes the latent representations hard to interpret, 2) sequential models suffer from KL vanishing problem, and 3) interpretable semantic concepts for time-series often rely on multiple factors instead of individuals. To bridge the gap, we propose Disentangle Time Series (DTS), a novel disentanglement enhancement framework for sequential data. Specifically, to generate hierarchical semantic concepts as the interpretable and disentangled representation of time-series, DTS introduces multi-level disentanglement strategies by covering both individual latent factors and group semantic segments. We further theoretically show how to alleviate the KL vanishing problem: DTS introduces a mutual information maximization term, while preserving a heavier penalty on the total correlation and the dimension-wise KL to keep the disentanglement property. Experimental results on various real-world benchmark datasets demonstrate that the representations learned by DTS achieve superior performance in downstream applications, with high interpretability of semantic concepts.
AERO: Audio Super Resolution in the Spectral Domain
We present AERO, a audio super-resolution model that processes speech and music signals in the spectral domain. AERO is based on an encoder-decoder architecture with U-Net like skip connections. We optimize the model using both time and frequency domain loss functions. Specifically, we consider a set of reconstruction losses together with perceptual ones in the form of adversarial and feature discriminator loss functions. To better handle phase information the proposed method operates over the complex-valued spectrogram using two separate channels. Unlike prior work which mainly considers low and high frequency concatenation for audio super-resolution, the proposed method directly predicts the full frequency range. We demonstrate high performance across a wide range of sample rates considering both speech and music. AERO outperforms the evaluated baselines considering Log-Spectral Distance, ViSQOL, and the subjective MUSHRA test. Audio samples and code are available at https://pages.cs.huji.ac.il/adiyoss-lab/aero
Wave-U-Net: A Multi-Scale Neural Network for End-to-End Audio Source Separation
Models for audio source separation usually operate on the magnitude spectrum, which ignores phase information and makes separation performance dependant on hyper-parameters for the spectral front-end. Therefore, we investigate end-to-end source separation in the time-domain, which allows modelling phase information and avoids fixed spectral transformations. Due to high sampling rates for audio, employing a long temporal input context on the sample level is difficult, but required for high quality separation results because of long-range temporal correlations. In this context, we propose the Wave-U-Net, an adaptation of the U-Net to the one-dimensional time domain, which repeatedly resamples feature maps to compute and combine features at different time scales. We introduce further architectural improvements, including an output layer that enforces source additivity, an upsampling technique and a context-aware prediction framework to reduce output artifacts. Experiments for singing voice separation indicate that our architecture yields a performance comparable to a state-of-the-art spectrogram-based U-Net architecture, given the same data. Finally, we reveal a problem with outliers in the currently used SDR evaluation metrics and suggest reporting rank-based statistics to alleviate this problem.
Revisiting Backdoor Attacks on Time Series Classification in the Frequency Domain
Time series classification (TSC) is a cornerstone of modern web applications, powering tasks such as financial data analysis, network traffic monitoring, and user behavior analysis. In recent years, deep neural networks (DNNs) have greatly enhanced the performance of TSC models in these critical domains. However, DNNs are vulnerable to backdoor attacks, where attackers can covertly implant triggers into models to induce malicious outcomes. Existing backdoor attacks targeting DNN-based TSC models remain elementary. In particular, early methods borrow trigger designs from computer vision, which are ineffective for time series data. More recent approaches utilize generative models for trigger generation, but at the cost of significant computational complexity. In this work, we analyze the limitations of existing attacks and introduce an enhanced method, FreqBack. Drawing inspiration from the fact that DNN models inherently capture frequency domain features in time series data, we identify that improper perturbations in the frequency domain are the root cause of ineffective attacks. To address this, we propose to generate triggers both effectively and efficiently, guided by frequency analysis. FreqBack exhibits substantial performance across five models and eight datasets, achieving an impressive attack success rate of over 90%, while maintaining less than a 3% drop in model accuracy on clean data.
Foundation Models for Time Series: A Survey
Transformer-based foundation models have emerged as a dominant paradigm in time series analysis, offering unprecedented capabilities in tasks such as forecasting, anomaly detection, classification, trend analysis and many more time series analytical tasks. This survey provides a comprehensive overview of the current state of the art pre-trained foundation models, introducing a novel taxonomy to categorize them across several dimensions. Specifically, we classify models by their architecture design, distinguishing between those leveraging patch-based representations and those operating directly on raw sequences. The taxonomy further includes whether the models provide probabilistic or deterministic predictions, and whether they are designed to work with univariate time series or can handle multivariate time series out of the box. Additionally, the taxonomy encompasses model scale and complexity, highlighting differences between lightweight architectures and large-scale foundation models. A unique aspect of this survey is its categorization by the type of objective function employed during training phase. By synthesizing these perspectives, this survey serves as a resource for researchers and practitioners, providing insights into current trends and identifying promising directions for future research in transformer-based time series modeling.
Learning to Embed Time Series Patches Independently
Masked time series modeling has recently gained much attention as a self-supervised representation learning strategy for time series. Inspired by masked image modeling in computer vision, recent works first patchify and partially mask out time series, and then train Transformers to capture the dependencies between patches by predicting masked patches from unmasked patches. However, we argue that capturing such patch dependencies might not be an optimal strategy for time series representation learning; rather, learning to embed patches independently results in better time series representations. Specifically, we propose to use 1) the simple patch reconstruction task, which autoencode each patch without looking at other patches, and 2) the simple patch-wise MLP that embeds each patch independently. In addition, we introduce complementary contrastive learning to hierarchically capture adjacent time series information efficiently. Our proposed method improves time series forecasting and classification performance compared to state-of-the-art Transformer-based models, while it is more efficient in terms of the number of parameters and training/inference time. Code is available at this repository: https://github.com/seunghan96/pits.
MOMENT: A Family of Open Time-series Foundation Models
We introduce MOMENT, a family of open-source foundation models for general-purpose time-series analysis. Pre-training large models on time-series data is challenging due to (1) the absence of a large and cohesive public time-series repository, and (2) diverse time-series characteristics which make multi-dataset training onerous. Additionally, (3) experimental benchmarks to evaluate these models, especially in scenarios with limited resources, time, and supervision, are still in their nascent stages. To address these challenges, we compile a large and diverse collection of public time-series, called the Time-series Pile, and systematically tackle time-series-specific challenges to unlock large-scale multi-dataset pre-training. Finally, we build on recent work to design a benchmark to evaluate time-series foundation models on diverse tasks and datasets in limited supervision settings. Experiments on this benchmark demonstrate the effectiveness of our pre-trained models with minimal data and task-specific fine-tuning. Finally, we present several interesting empirical observations about large pre-trained time-series models. Our code is available anonymously at anonymous.4open.science/r/BETT-773F/.
Encoding Time-Series Explanations through Self-Supervised Model Behavior Consistency
Interpreting time series models is uniquely challenging because it requires identifying both the location of time series signals that drive model predictions and their matching to an interpretable temporal pattern. While explainers from other modalities can be applied to time series, their inductive biases do not transfer well to the inherently challenging interpretation of time series. We present TimeX, a time series consistency model for training explainers. TimeX trains an interpretable surrogate to mimic the behavior of a pretrained time series model. It addresses the issue of model faithfulness by introducing model behavior consistency, a novel formulation that preserves relations in the latent space induced by the pretrained model with relations in the latent space induced by TimeX. TimeX provides discrete attribution maps and, unlike existing interpretability methods, it learns a latent space of explanations that can be used in various ways, such as to provide landmarks to visually aggregate similar explanations and easily recognize temporal patterns. We evaluate TimeX on eight synthetic and real-world datasets and compare its performance against state-of-the-art interpretability methods. We also conduct case studies using physiological time series. Quantitative evaluations demonstrate that TimeX achieves the highest or second-highest performance in every metric compared to baselines across all datasets. Through case studies, we show that the novel components of TimeX show potential for training faithful, interpretable models that capture the behavior of pretrained time series models.
Deep Learning Models for Arrhythmia Classification Using Stacked Time-frequency Scalogram Images from ECG Signals
Electrocardiograms (ECGs), a medical monitoring technology recording cardiac activity, are widely used for diagnosing cardiac arrhythmia. The diagnosis is based on the analysis of the deformation of the signal shapes due to irregular heart rates associated with heart diseases. Due to the infeasibility of manual examination of large volumes of ECG data, this paper aims to propose an automated AI based system for ECG-based arrhythmia classification. To this front, a deep learning based solution has been proposed for ECG-based arrhythmia classification. Twelve lead electrocardiograms (ECG) of length 10 sec from 45, 152 individuals from Shaoxing People's Hospital (SPH) dataset from PhysioNet with four different types of arrhythmias were used. The sampling frequency utilized was 500 Hz. Median filtering was used to preprocess the ECG signals. For every 1 sec of ECG signal, the time-frequency (TF) scalogram was estimated and stacked row wise to obtain a single image from 12 channels, resulting in 10 stacked TF scalograms for each ECG signal. These stacked TF scalograms are fed to the pretrained convolutional neural network (CNN), 1D CNN, and 1D CNN-LSTM (Long short-term memory) models, for arrhythmia classification. The fine-tuned CNN models obtained the best test accuracy of about 98% followed by 95% test accuracy by basic CNN-LSTM in arrhythmia classification.
iSTFTNet: Fast and Lightweight Mel-Spectrogram Vocoder Incorporating Inverse Short-Time Fourier Transform
In recent text-to-speech synthesis and voice conversion systems, a mel-spectrogram is commonly applied as an intermediate representation, and the necessity for a mel-spectrogram vocoder is increasing. A mel-spectrogram vocoder must solve three inverse problems: recovery of the original-scale magnitude spectrogram, phase reconstruction, and frequency-to-time conversion. A typical convolutional mel-spectrogram vocoder solves these problems jointly and implicitly using a convolutional neural network, including temporal upsampling layers, when directly calculating a raw waveform. Such an approach allows skipping redundant processes during waveform synthesis (e.g., the direct reconstruction of high-dimensional original-scale spectrograms). By contrast, the approach solves all problems in a black box and cannot effectively employ the time-frequency structures existing in a mel-spectrogram. We thus propose iSTFTNet, which replaces some output-side layers of the mel-spectrogram vocoder with the inverse short-time Fourier transform (iSTFT) after sufficiently reducing the frequency dimension using upsampling layers, reducing the computational cost from black-box modeling and avoiding redundant estimations of high-dimensional spectrograms. During our experiments, we applied our ideas to three HiFi-GAN variants and made the models faster and more lightweight with a reasonable speech quality. Audio samples are available at https://www.kecl.ntt.co.jp/people/kaneko.takuhiro/projects/istftnet/.
Frame Flexible Network
Existing video recognition algorithms always conduct different training pipelines for inputs with different frame numbers, which requires repetitive training operations and multiplying storage costs. If we evaluate the model using other frames which are not used in training, we observe the performance will drop significantly (see Fig.1), which is summarized as Temporal Frequency Deviation phenomenon. To fix this issue, we propose a general framework, named Frame Flexible Network (FFN), which not only enables the model to be evaluated at different frames to adjust its computation, but also reduces the memory costs of storing multiple models significantly. Concretely, FFN integrates several sets of training sequences, involves Multi-Frequency Alignment (MFAL) to learn temporal frequency invariant representations, and leverages Multi-Frequency Adaptation (MFAD) to further strengthen the representation abilities. Comprehensive empirical validations using various architectures and popular benchmarks solidly demonstrate the effectiveness and generalization of FFN (e.g., 7.08/5.15/2.17% performance gain at Frame 4/8/16 on Something-Something V1 dataset over Uniformer). Code is available at https://github.com/BeSpontaneous/FFN.
Learned complex masks for multi-instrument source separation
Music source separation in the time-frequency domain is commonly achieved by applying a soft or binary mask to the magnitude component of (complex) spectrograms. The phase component is usually not estimated, but instead copied from the mixture and applied to the magnitudes of the estimated isolated sources. While this method has several practical advantages, it imposes an upper bound on the performance of the system, where the estimated isolated sources inherently exhibit audible "phase artifacts". In this paper we address these shortcomings by directly estimating masks in the complex domain, extending recent work from the speech enhancement literature. The method is particularly well suited for multi-instrument musical source separation since residual phase artifacts are more pronounced for spectrally overlapping instrument sources, a common scenario in music. We show that complex masks result in better separation than masks that operate solely on the magnitude component.
NeuRBF: A Neural Fields Representation with Adaptive Radial Basis Functions
We present a novel type of neural fields that uses general radial bases for signal representation. State-of-the-art neural fields typically rely on grid-based representations for storing local neural features and N-dimensional linear kernels for interpolating features at continuous query points. The spatial positions of their neural features are fixed on grid nodes and cannot well adapt to target signals. Our method instead builds upon general radial bases with flexible kernel position and shape, which have higher spatial adaptivity and can more closely fit target signals. To further improve the channel-wise capacity of radial basis functions, we propose to compose them with multi-frequency sinusoid functions. This technique extends a radial basis to multiple Fourier radial bases of different frequency bands without requiring extra parameters, facilitating the representation of details. Moreover, by marrying adaptive radial bases with grid-based ones, our hybrid combination inherits both adaptivity and interpolation smoothness. We carefully designed weighting schemes to let radial bases adapt to different types of signals effectively. Our experiments on 2D image and 3D signed distance field representation demonstrate the higher accuracy and compactness of our method than prior arts. When applied to neural radiance field reconstruction, our method achieves state-of-the-art rendering quality, with small model size and comparable training speed.
FcaNet: Frequency Channel Attention Networks
Attention mechanism, especially channel attention, has gained great success in the computer vision field. Many works focus on how to design efficient channel attention mechanisms while ignoring a fundamental problem, i.e., channel attention mechanism uses scalar to represent channel, which is difficult due to massive information loss. In this work, we start from a different view and regard the channel representation problem as a compression process using frequency analysis. Based on the frequency analysis, we mathematically prove that the conventional global average pooling is a special case of the feature decomposition in the frequency domain. With the proof, we naturally generalize the compression of the channel attention mechanism in the frequency domain and propose our method with multi-spectral channel attention, termed as FcaNet. FcaNet is simple but effective. We can change a few lines of code in the calculation to implement our method within existing channel attention methods. Moreover, the proposed method achieves state-of-the-art results compared with other channel attention methods on image classification, object detection, and instance segmentation tasks. Our method could consistently outperform the baseline SENet, with the same number of parameters and the same computational cost. Our code and models will are publicly available at https://github.com/cfzd/FcaNet.
Deep Time Series Models: A Comprehensive Survey and Benchmark
Time series, characterized by a sequence of data points organized in a discrete-time order, are ubiquitous in real-world scenarios. Unlike other data modalities, time series present unique challenges due to their intricate and dynamic nature, including the entanglement of nonlinear patterns and time-variant trends. Analyzing such data is of great significance in practical applications and has been extensively studied for centuries. Recent years have witnessed remarkable breakthroughs in the time series community, with techniques shifting from traditional statistical methods to contemporary deep learning models. In this paper, we delve into the design of deep time series models across various analysis tasks and review the existing literature from two perspectives: basic modules and model architectures. Further, we develop and release Time Series Library (TSLib) as a fair benchmark of deep time series models for diverse analysis tasks. TSLib implements 30 prominent models, covers 30 datasets from different domains, and supports five prevalent analysis tasks. Based on TSLib, we thoroughly evaluate 13 advanced deep time series models across diverse tasks. Empirical results indicate that models with specific structures are well-suited for distinct analytical tasks, providing insights for research and adoption of deep time series models. Code and datasets are available at https://github.com/thuml/Time-Series-Library.
Quadratic Time-Frequency Analysis of Vibration Signals for Diagnosing Bearing Faults
Diagnosis of bearing faults is paramount to reducing maintenance costs and operational breakdowns. Bearing faults are primary contributors to machine vibrations, and analyzing their signal morphology offers insights into their health status. Unfortunately, existing approaches are optimized for controlled environments, neglecting realistic conditions such as time-varying rotational speeds and the vibration's non-stationary nature. This paper presents a fusion of time-frequency analysis and deep learning techniques to diagnose bearing faults under time-varying speeds and varying noise levels. First, we formulate the bearing fault-induced vibrations and discuss the link between their non-stationarity and the bearing's inherent and operational parameters. We also elucidate quadratic time-frequency distributions and validate their effectiveness in resolving distinctive dynamic patterns associated with different bearing faults. Based on this, we design a time-frequency convolutional neural network (TF-CNN) to diagnose various faults in rolling-element bearings. Our experimental findings undeniably demonstrate the superior performance of TF-CNN in comparison to recently developed techniques. They also assert its versatility in capturing fault-relevant non-stationary features that couple with speed changes and show its exceptional resilience to noise, consistently surpassing competing methods across various signal-to-noise ratios and performance metrics. Altogether, the TF-CNN achieves substantial accuracy improvements up to 15%, in severe noise conditions.
Voice2Series: Reprogramming Acoustic Models for Time Series Classification
Learning to classify time series with limited data is a practical yet challenging problem. Current methods are primarily based on hand-designed feature extraction rules or domain-specific data augmentation. Motivated by the advances in deep speech processing models and the fact that voice data are univariate temporal signals, in this paper, we propose Voice2Series (V2S), a novel end-to-end approach that reprograms acoustic models for time series classification, through input transformation learning and output label mapping. Leveraging the representation learning power of a large-scale pre-trained speech processing model, on 30 different time series tasks we show that V2S performs competitive results on 19 time series classification tasks. We further provide a theoretical justification of V2S by proving its population risk is upper bounded by the source risk and a Wasserstein distance accounting for feature alignment via reprogramming. Our results offer new and effective means to time series classification.
Rethinking Positional Encoding
It is well noted that coordinate based MLPs benefit -- in terms of preserving high-frequency information -- through the encoding of coordinate positions as an array of Fourier features. Hitherto, the rationale for the effectiveness of these positional encodings has been solely studied through a Fourier lens. In this paper, we strive to broaden this understanding by showing that alternative non-Fourier embedding functions can indeed be used for positional encoding. Moreover, we show that their performance is entirely determined by a trade-off between the stable rank of the embedded matrix and the distance preservation between embedded coordinates. We further establish that the now ubiquitous Fourier feature mapping of position is a special case that fulfills these conditions. Consequently, we present a more general theory to analyze positional encoding in terms of shifted basis functions. To this end, we develop the necessary theoretical formulae and empirically verify that our theoretical claims hold in practice. Codes available at https://github.com/osiriszjq/Rethinking-positional-encoding.
Language-based Audio Moment Retrieval
In this paper, we propose and design a new task called audio moment retrieval (AMR). Unlike conventional language-based audio retrieval tasks that search for short audio clips from an audio database, AMR aims to predict relevant moments in untrimmed long audio based on a text query. Given the lack of prior work in AMR, we first build a dedicated dataset, Clotho-Moment, consisting of large-scale simulated audio recordings with moment annotations. We then propose a DETR-based model, named Audio Moment DETR (AM-DETR), as a fundamental framework for AMR tasks. This model captures temporal dependencies within audio features, inspired by similar video moment retrieval tasks, thus surpassing conventional clip-level audio retrieval methods. Additionally, we provide manually annotated datasets to properly measure the effectiveness and robustness of our methods on real data. Experimental results show that AM-DETR, trained with Clotho-Moment, outperforms a baseline model that applies a clip-level audio retrieval method with a sliding window on all metrics, particularly improving [email protected] by 9.00 points. Our datasets and code are publicly available in https://h-munakata.github.io/Language-based-Audio-Moment-Retrieval.
High-Fidelity Speech Synthesis with Minimal Supervision: All Using Diffusion Models
Text-to-speech (TTS) methods have shown promising results in voice cloning, but they require a large number of labeled text-speech pairs. Minimally-supervised speech synthesis decouples TTS by combining two types of discrete speech representations(semantic \& acoustic) and using two sequence-to-sequence tasks to enable training with minimal supervision. However, existing methods suffer from information redundancy and dimension explosion in semantic representation, and high-frequency waveform distortion in discrete acoustic representation. Autoregressive frameworks exhibit typical instability and uncontrollability issues. And non-autoregressive frameworks suffer from prosodic averaging caused by duration prediction models. To address these issues, we propose a minimally-supervised high-fidelity speech synthesis method, where all modules are constructed based on the diffusion models. The non-autoregressive framework enhances controllability, and the duration diffusion model enables diversified prosodic expression. Contrastive Token-Acoustic Pretraining (CTAP) is used as an intermediate semantic representation to solve the problems of information redundancy and dimension explosion in existing semantic coding methods. Mel-spectrogram is used as the acoustic representation. Both semantic and acoustic representations are predicted by continuous variable regression tasks to solve the problem of high-frequency fine-grained waveform distortion. Experimental results show that our proposed method outperforms the baseline method. We provide audio samples on our website.
Benchmarking Generative Latent Variable Models for Speech
Stochastic latent variable models (LVMs) achieve state-of-the-art performance on natural image generation but are still inferior to deterministic models on speech. In this paper, we develop a speech benchmark of popular temporal LVMs and compare them against state-of-the-art deterministic models. We report the likelihood, which is a much used metric in the image domain, but rarely, or incomparably, reported for speech models. To assess the quality of the learned representations, we also compare their usefulness for phoneme recognition. Finally, we adapt the Clockwork VAE, a state-of-the-art temporal LVM for video generation, to the speech domain. Despite being autoregressive only in latent space, we find that the Clockwork VAE can outperform previous LVMs and reduce the gap to deterministic models by using a hierarchy of latent variables.
THEMIS: Unlocking Pretrained Knowledge with Foundation Model Embeddings for Anomaly Detection in Time Series
Time series anomaly detection forms a very crucial area in several domains but poses substantial challenges. Due to time series data possessing seasonality, trends, noise, and evolving patterns (concept drift), it becomes very difficult to set a general notion of what constitutes normal behavior. Anomalies themselves could be varied, ranging from a single outlier to contextual or collective anomalies, and are normally very rare; hence, the dataset is largely imbalanced. Additional layers of complexities arise due to the problems of increased dimensionality of modern time series, real-time detection criteria, setting up appropriate detection thresholds, and arriving at results that are interpretable. To embrace these multifaceted challenges, very strong, flexible, and interpretable approaches are required. This paper presents THEMIS, a new framework for time series anomaly detection that exploits pretrained knowledge from foundation models. THEMIS extracts embeddings from the encoder of the Chronos time series foundation model and applies outlier detection techniques like Local Outlier Factor and Spectral Decomposition on the self-similarity matrix, to spot anomalies in the data. Our experiments show that this modular method achieves SOTA results on the MSL dataset and performs quite competitively on the SMAP and SWAT^* datasets. Notably, THEMIS exceeds models trained specifically for anomaly detection, presenting hyperparameter robustness and interpretability by default. This paper advocates for pretrained representations from foundation models for performing efficient and adaptable anomaly detection for time series data.
SDSC:A Structure-Aware Metric for Semantic Signal Representation Learning
We propose the Signal Dice Similarity Coefficient (SDSC), a structure-aware metric function for time series self-supervised representation learning. Most Self-Supervised Learning (SSL) methods for signals commonly adopt distance-based objectives such as mean squared error (MSE), which are sensitive to amplitude, invariant to waveform polarity, and unbounded in scale. These properties hinder semantic alignment and reduce interpretability. SDSC addresses this by quantifying structural agreement between temporal signals based on the intersection of signed amplitudes, derived from the Dice Similarity Coefficient (DSC).Although SDSC is defined as a structure-aware metric, it can be used as a loss by subtracting from 1 and applying a differentiable approximation of the Heaviside function for gradient-based optimization. A hybrid loss formulation is also proposed to combine SDSC with MSE, improving stability and preserving amplitude where necessary. Experiments on forecasting and classification benchmarks demonstrate that SDSC-based pre-training achieves comparable or improved performance over MSE, particularly in in-domain and low-resource scenarios. The results suggest that structural fidelity in signal representations enhances the semantic representation quality, supporting the consideration of structure-aware metrics as viable alternatives to conventional distance-based methods.
Time-MMD: Multi-Domain Multimodal Dataset for Time Series Analysis
Time series data are ubiquitous across a wide range of real-world domains. While real-world time series analysis (TSA) requires human experts to integrate numerical series data with multimodal domain-specific knowledge, most existing TSA models rely solely on numerical data, overlooking the significance of information beyond numerical series. This oversight is due to the untapped potential of textual series data and the absence of a comprehensive, high-quality multimodal dataset. To overcome this obstacle, we introduce Time-MMD, the first multi-domain, multimodal time series dataset covering 9 primary data domains. Time-MMD ensures fine-grained modality alignment, eliminates data contamination, and provides high usability. Additionally, we develop MM-TSFlib, the first multimodal time-series forecasting (TSF) library, seamlessly pipelining multimodal TSF evaluations based on Time-MMD for in-depth analyses. Extensive experiments conducted on Time-MMD through MM-TSFlib demonstrate significant performance enhancements by extending unimodal TSF to multimodality, evidenced by over 15% mean squared error reduction in general, and up to 40% in domains with rich textual data. More importantly, our datasets and library revolutionize broader applications, impacts, research topics to advance TSA. The dataset and library are available at https://github.com/AdityaLab/Time-MMD and https://github.com/AdityaLab/MM-TSFlib.
The importance of spatial and spectral information in multiple speaker tracking
Multi-speaker localization and tracking using microphone array recording is of importance in a wide range of applications. One of the challenges with multi-speaker tracking is to associate direction estimates with the correct speaker. Most existing association approaches rely on spatial or spectral information alone, leading to performance degradation when one of these information channels is partially known or missing. This paper studies a joint probability data association (JPDA)-based method that facilitates association based on joint spatial-spectral information. This is achieved by integrating speaker time-frequency (TF) masks, estimated based on spectral information, in the association probabilities calculation. An experimental study that tested the proposed method on recordings from the LOCATA challenge demonstrates the enhanced performance obtained by using joint spatial-spectral information in the association.
A Transformer-based Framework for Multivariate Time Series Representation Learning
In this work we propose for the first time a transformer-based framework for unsupervised representation learning of multivariate time series. Pre-trained models can be potentially used for downstream tasks such as regression and classification, forecasting and missing value imputation. By evaluating our models on several benchmark datasets for multivariate time series regression and classification, we show that not only does our modeling approach represent the most successful method employing unsupervised learning of multivariate time series presented to date, but also that it exceeds the current state-of-the-art performance of supervised methods; it does so even when the number of training samples is very limited, while offering computational efficiency. Finally, we demonstrate that unsupervised pre-training of our transformer models offers a substantial performance benefit over fully supervised learning, even without leveraging additional unlabeled data, i.e., by reusing the same data samples through the unsupervised objective.
Interest Clock: Time Perception in Real-Time Streaming Recommendation System
User preferences follow a dynamic pattern over a day, e.g., at 8 am, a user might prefer to read news, while at 8 pm, they might prefer to watch movies. Time modeling aims to enable recommendation systems to perceive time changes to capture users' dynamic preferences over time, which is an important and challenging problem in recommendation systems. Especially, streaming recommendation systems in the industry, with only available samples of the current moment, present greater challenges for time modeling. There is still a lack of effective time modeling methods for streaming recommendation systems. In this paper, we propose an effective and universal method Interest Clock to perceive time information in recommendation systems. Interest Clock first encodes users' time-aware preferences into a clock (hour-level personalized features) and then uses Gaussian distribution to smooth and aggregate them into the final interest clock embedding according to the current time for the final prediction. By arming base models with Interest Clock, we conduct online A/B tests, obtaining +0.509% and +0.758% improvements on user active days and app duration respectively. Besides, the extended offline experiments show improvements as well. Interest Clock has been deployed on Douyin Music App.
DeFTAN-II: Efficient Multichannel Speech Enhancement with Subgroup Processing
In this work, we present DeFTAN-II, an efficient multichannel speech enhancement model based on transformer architecture and subgroup processing. Despite the success of transformers in speech enhancement, they face challenges in capturing local relations, reducing the high computational complexity, and lowering memory usage. To address these limitations, we introduce subgroup processing in our model, combining subgroups of locally emphasized features with other subgroups containing original features. The subgroup processing is implemented in several blocks of the proposed network. In the proposed split dense blocks extracting spatial features, a pair of subgroups is sequentially concatenated and processed by convolution layers to effectively reduce the computational complexity and memory usage. For the F- and T-transformers extracting temporal and spectral relations, we introduce cross-attention between subgroups to identify relationships between locally emphasized and non-emphasized features. The dual-path feedforward network then aggregates attended features in terms of the gating of local features processed by dilated convolutions. Through extensive comparisons with state-of-the-art multichannel speech enhancement models, we demonstrate that DeFTAN-II with subgroup processing outperforms existing methods at significantly lower computational complexity. Moreover, we evaluate the model's generalization capability on real-world data without fine-tuning, which further demonstrates its effectiveness in practical scenarios.
Learning Disentangled Speech Representations with Contrastive Learning and Time-Invariant Retrieval
Voice conversion refers to transferring speaker identity with well-preserved content. Better disentanglement of speech representations leads to better voice conversion. Recent studies have found that phonetic information from input audio has the potential ability to well represent content. Besides, the speaker-style modeling with pre-trained models making the process more complex. To tackle these issues, we introduce a new method named "CTVC" which utilizes disentangled speech representations with contrastive learning and time-invariant retrieval. Specifically, a similarity-based compression module is used to facilitate a more intimate connection between the frame-level hidden features and linguistic information at phoneme-level. Additionally, a time-invariant retrieval is proposed for timbre extraction based on multiple segmentations and mutual information. Experimental results demonstrate that "CTVC" outperforms previous studies and improves the sound quality and similarity of converted results.
TimelyGPT: Extrapolatable Transformer Pre-training for Long-term Time-Series Forecasting in Healthcare
Large-scale pre-trained models (PTMs) such as BERT and GPT have recently achieved great success in Natural Language Processing and Computer Vision domains. However, the development of PTMs on healthcare time-series data is lagging behind.This underscores the limitations of the existing transformer-based architectures, particularly their scalability to handle large-scale time series and ability to capture long-term temporal dependencies. In this study, we present Timely Generative Pre-trained Transformer (TimelyGPT). TimelyGPT employs an extrapolatable position (xPos) embedding to encode trend and periodic patterns into time-series representations. It also integrates recurrent attention and temporal convolution modules to effectively capture global-local temporal dependencies. We evaluated TimelyGPT on two large-scale healthcare time series datasets corresponding to continuous biosignals and irregularly-sampled time series, respectively. Our experiments show that during pre-training, TimelyGPT excels in learning time-series representations from continuously monitored biosignals and irregularly-sampled time series data commonly observed in longitudinal electronic health records (EHRs). In forecasting continuous biosignals, TimelyGPT achieves accurate extrapolation up to 6,000 timesteps of body temperature during the sleep stage transition, given a short look-up window (i.e., prompt) containing only 2,000 timesteps. For irregularly-sampled time series, TimelyGPT with a proposed time-specific inference demonstrates high top recall scores in predicting future diagnoses using early diagnostic records, effectively handling irregular intervals between clinical records. Together, we envision TimelyGPT to be useful in a broad spectrum of health domains, including long-term patient health state forecasting and patient risk trajectory prediction.
Representation, Exploration and Recommendation of Music Playlists
Playlists have become a significant part of our listening experience because of the digital cloud-based services such as Spotify, Pandora, Apple Music. Owing to the meteoric rise in the usage of playlists, recommending playlists is crucial to music services today. Although there has been a lot of work done in playlist prediction, the area of playlist representation hasn't received that level of attention. Over the last few years, sequence-to-sequence models, especially in the field of natural language processing, have shown the effectiveness of learned embeddings in capturing the semantic characteristics of sequences. We can apply similar concepts to music to learn fixed length representations for playlists and use those representations for downstream tasks such as playlist discovery, browsing, and recommendation. In this work, we formulate the problem of learning a fixed-length playlist representation in an unsupervised manner, using Sequence-to-sequence (Seq2seq) models, interpreting playlists as sentences and songs as words. We compare our model with two other encoding architectures for baseline comparison. We evaluate our work using the suite of tasks commonly used for assessing sentence embeddings, along with a few additional tasks pertaining to music, and a recommendation task to study the traits captured by the playlist embeddings and their effectiveness for the purpose of music recommendation.
Feature-aligned N-BEATS with Sinkhorn divergence
In this study, we propose Feature-aligned N-BEATS as a domain generalization model for univariate time series forecasting problems. The proposed model is an extension of the doubly residual stacking architecture of N-BEATS (Oreshkin et al. [34]) into a representation learning framework. The model is a new structure that involves marginal feature probability measures (i.e., pushforward measures of multiple source domains) induced by the intricate composition of residual operators of N-BEATS in each stack and aligns them stack-wise via an entropic regularized Wasserstein distance referred to as the Sinkhorn divergence (Genevay et al. [14]). The loss function consists of a typical forecasting loss for multiple source domains and an alignment loss calculated with the Sinkhorn divergence, which allows the model to learn invariant features stack-wise across multiple source data sequences while retaining N-BEATS's interpretable design. We conduct a comprehensive experimental evaluation of the proposed approach and the results demonstrate the model's forecasting and generalization capabilities in comparison with methods based on the original N-BEATS.
Implicit Neural Representations with Fourier Kolmogorov-Arnold Networks
Implicit neural representations (INRs) use neural networks to provide continuous and resolution-independent representations of complex signals with a small number of parameters. However, existing INR models often fail to capture important frequency components specific to each task. To address this issue, in this paper, we propose a Fourier Kolmogorov Arnold network (FKAN) for INRs. The proposed FKAN utilizes learnable activation functions modeled as Fourier series in the first layer to effectively control and learn the task-specific frequency components. In addition, the activation functions with learnable Fourier coefficients improve the ability of the network to capture complex patterns and details, which is beneficial for high-resolution and high-dimensional data. Experimental results show that our proposed FKAN model outperforms three state-of-the-art baseline schemes, and improves the peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM) for the image representation task and intersection over union (IoU) for the 3D occupancy volume representation task, respectively.
TimePoint: Accelerated Time Series Alignment via Self-Supervised Keypoint and Descriptor Learning
Fast and scalable alignment of time series is a fundamental challenge in many domains. The standard solution, Dynamic Time Warping (DTW), struggles with poor scalability and sensitivity to noise. We introduce TimePoint, a self-supervised method that dramatically accelerates DTW-based alignment while typically improving alignment accuracy by learning keypoints and descriptors from synthetic data. Inspired by 2D keypoint detection but carefully adapted to the unique challenges of 1D signals, TimePoint leverages efficient 1D diffeomorphisms, which effectively model nonlinear time warping, to generate realistic training data. This approach, along with fully convolutional and wavelet convolutional architectures, enables the extraction of informative keypoints and descriptors. Applying DTW to these sparse representations yield major speedups and typically higher alignment accuracy than standard DTW applied to the full signals. TimePoint demonstrates strong generalization to real-world time series when trained solely on synthetic data, and further improves with fine-tuning on real data. Extensive experiments demonstrate that TimePoint consistently achieves faster and more accurate alignments than standard DTW, making it a scalable solution for time-series analysis. Our code is available at https://github.com/BGU-CS-VIL/TimePoint
Learning Representations for New Sound Classes With Continual Self-Supervised Learning
In this paper, we work on a sound recognition system that continually incorporates new sound classes. Our main goal is to develop a framework where the model can be updated without relying on labeled data. For this purpose, we propose adopting representation learning, where an encoder is trained using unlabeled data. This learning framework enables the study and implementation of a practically relevant use case where only a small amount of the labels is available in a continual learning context. We also make the empirical observation that a similarity-based representation learning method within this framework is robust to forgetting even if no explicit mechanism against forgetting is employed. We show that this approach obtains similar performance compared to several distillation-based continual learning methods when employed on self-supervised representation learning methods.
Spectral Bottleneck in Deep Neural Networks: Noise is All You Need
Deep neural networks are known to exhibit a spectral learning bias, wherein low-frequency components are learned early in training, while high-frequency modes emerge more gradually in later epochs. However, when the target signal lacks low-frequency components and is dominated by broadband high frequencies, training suffers from a 'spectral bottleneck', and the model fails to reconstruct the entire signal, including the frequency components that lie within the network's representational capacity. We examine such a scenario in the context of implicit neural representations (INRs) with sinusoidal representation networks (SIRENs), focusing on the challenge of fitting high-frequency-dominant signals that are susceptible to spectral bottleneck. To effectively fit any target signal irrespective of it's frequency content, we propose a generalized target-aware 'weight perturbation scheme' (WINNER - weight initialization with noise for neural representations) for network initialization. The scheme perturbs uniformly initialized weights with Gaussian noise, where the noise scales are adaptively determined by the spectral centroid of the target signal. We show that the noise scales can provide control over the spectra of network activations and the eigenbasis of the empirical neural tangent kernel. This method not only addresses the spectral bottleneck but also yields faster convergence and with improved representation accuracy, outperforming state-of-the-art approaches in audio fitting and achieving notable gains in image fitting and denoising tasks. Beyond signal reconstruction, our approach opens new directions for adaptive weight initialization strategies in computer vision and scientific machine learning.
Learning Music-Dance Representations through Explicit-Implicit Rhythm Synchronization
Although audio-visual representation has been proved to be applicable in many downstream tasks, the representation of dancing videos, which is more specific and always accompanied by music with complex auditory contents, remains challenging and uninvestigated. Considering the intrinsic alignment between the cadent movement of dancer and music rhythm, we introduce MuDaR, a novel Music-Dance Representation learning framework to perform the synchronization of music and dance rhythms both in explicit and implicit ways. Specifically, we derive the dance rhythms based on visual appearance and motion cues inspired by the music rhythm analysis. Then the visual rhythms are temporally aligned with the music counterparts, which are extracted by the amplitude of sound intensity. Meanwhile, we exploit the implicit coherence of rhythms implied in audio and visual streams by contrastive learning. The model learns the joint embedding by predicting the temporal consistency between audio-visual pairs. The music-dance representation, together with the capability of detecting audio and visual rhythms, can further be applied to three downstream tasks: (a) dance classification, (b) music-dance retrieval, and (c) music-dance retargeting. Extensive experiments demonstrate that our proposed framework outperforms other self-supervised methods by a large margin.
A Novel 1D State Space for Efficient Music Rhythmic Analysis
Inferring music time structures has a broad range of applications in music production, processing and analysis. Scholars have proposed various methods to analyze different aspects of time structures, such as beat, downbeat, tempo and meter. Many state-of-the-art (SOFA) methods, however, are computationally expensive. This makes them inapplicable in real-world industrial settings where the scale of the music collections can be millions. This paper proposes a new state space and a semi-Markov model for music time structure analysis. The proposed approach turns the commonly used 2D state spaces into a 1D model through a jump-back reward strategy. It reduces the state spaces size drastically. We then utilize the proposed method for causal, joint beat, downbeat, tempo, and meter tracking, and compare it against several previous methods. The proposed method delivers similar performance with the SOFA joint causal models with a much smaller state space and a more than 30 times speedup.
Contrast Everything: A Hierarchical Contrastive Framework for Medical Time-Series
Contrastive representation learning is crucial in medical time series analysis as it alleviates dependency on labor-intensive, domain-specific, and scarce expert annotations. However, existing contrastive learning methods primarily focus on one single data level, which fails to fully exploit the intricate nature of medical time series. To address this issue, we present COMET, an innovative hierarchical framework that leverages data consistencies at all inherent levels in medical time series. Our meticulously designed model systematically captures data consistency from four potential levels: observation, sample, trial, and patient levels. By developing contrastive loss at multiple levels, we can learn effective representations that preserve comprehensive data consistency, maximizing information utilization in a self-supervised manner. We conduct experiments in the challenging patient-independent setting. We compare COMET against six baselines using three diverse datasets, which include ECG signals for myocardial infarction and EEG signals for Alzheimer's and Parkinson's diseases. The results demonstrate that COMET consistently outperforms all baselines, particularly in setup with 10% and 1% labeled data fractions across all datasets. These results underscore the significant impact of our framework in advancing contrastive representation learning techniques for medical time series. The source code is available at https://github.com/DL4mHealth/COMET.
On the Utility of Speech and Audio Foundation Models for Marmoset Call Analysis
Marmoset monkeys encode vital information in their calls and serve as a surrogate model for neuro-biologists to understand the evolutionary origins of human vocal communication. Traditionally analyzed with signal processing-based features, recent approaches have utilized self-supervised models pre-trained on human speech for feature extraction, capitalizing on their ability to learn a signal's intrinsic structure independently of its acoustic domain. However, the utility of such foundation models remains unclear for marmoset call analysis in terms of multi-class classification, bandwidth, and pre-training domain. This study assesses feature representations derived from speech and general audio domains, across pre-training bandwidths of 4, 8, and 16 kHz for marmoset call-type and caller classification tasks. Results show that models with higher bandwidth improve performance, and pre-training on speech or general audio yields comparable results, improving over a spectral baseline.
Online Writer Retrieval with Chinese Handwritten Phrases: A Synergistic Temporal-Frequency Representation Learning Approach
Currently, the prevalence of online handwriting has spurred a critical need for effective retrieval systems to accurately search relevant handwriting instances from specific writers, known as online writer retrieval. Despite the growing demand, this field suffers from a scarcity of well-established methodologies and public large-scale datasets. This paper tackles these challenges with a focus on Chinese handwritten phrases. First, we propose DOLPHIN, a novel retrieval model designed to enhance handwriting representations through synergistic temporal-frequency analysis. For frequency feature learning, we propose the HFGA block, which performs gated cross-attention between the vanilla temporal handwriting sequence and its high-frequency sub-bands to amplify salient writing details. For temporal feature learning, we propose the CAIR block, tailored to promote channel interaction and reduce channel redundancy. Second, to address data deficit, we introduce OLIWER, a large-scale online writer retrieval dataset encompassing over 670,000 Chinese handwritten phrases from 1,731 individuals. Through extensive evaluations, we demonstrate the superior performance of DOLPHIN over existing methods. In addition, we explore cross-domain writer retrieval and reveal the pivotal role of increasing feature alignment in bridging the distributional gap between different handwriting data. Our findings emphasize the significance of point sampling frequency and pressure features in improving handwriting representation quality and retrieval performance. Code and dataset are available at https://github.com/SCUT-DLVCLab/DOLPHIN.
A unified one-shot prosody and speaker conversion system with self-supervised discrete speech units
We present a unified system to realize one-shot voice conversion (VC) on the pitch, rhythm, and speaker attributes. Existing works generally ignore the correlation between prosody and language content, leading to the degradation of naturalness in converted speech. Additionally, the lack of proper language features prevents these systems from accurately preserving language content after conversion. To address these issues, we devise a cascaded modular system leveraging self-supervised discrete speech units as language representation. These discrete units provide duration information essential for rhythm modeling. Our system first extracts utterance-level prosody and speaker representations from the raw waveform. Given the prosody representation, a prosody predictor estimates pitch, energy, and duration for each discrete unit in the utterance. A synthesizer further reconstructs speech based on the predicted prosody, speaker representation, and discrete units. Experiments show that our system outperforms previous approaches in naturalness, intelligibility, speaker transferability, and prosody transferability. Code and samples are publicly available.
Diffusion-TS: Interpretable Diffusion for General Time Series Generation
Denoising diffusion probabilistic models (DDPMs) are becoming the leading paradigm for generative models. It has recently shown breakthroughs in audio synthesis, time series imputation and forecasting. In this paper, we propose Diffusion-TS, a novel diffusion-based framework that generates multivariate time series samples of high quality by using an encoder-decoder transformer with disentangled temporal representations, in which the decomposition technique guides Diffusion-TS to capture the semantic meaning of time series while transformers mine detailed sequential information from the noisy model input. Different from existing diffusion-based approaches, we train the model to directly reconstruct the sample instead of the noise in each diffusion step, combining a Fourier-based loss term. Diffusion-TS is expected to generate time series satisfying both interpretablity and realness. In addition, it is shown that the proposed Diffusion-TS can be easily extended to conditional generation tasks, such as forecasting and imputation, without any model changes. This also motivates us to further explore the performance of Diffusion-TS under irregular settings. Finally, through qualitative and quantitative experiments, results show that Diffusion-TS achieves the state-of-the-art results on various realistic analyses of time series.
Mirasol3B: A Multimodal Autoregressive model for time-aligned and contextual modalities
One of the main challenges of multimodal learning is the need to combine heterogeneous modalities (e.g., video, audio, text). For example, video and audio are obtained at much higher rates than text and are roughly aligned in time. They are often not synchronized with text, which comes as a global context, e.g., a title, or a description. Furthermore, video and audio inputs are of much larger volumes, and grow as the video length increases, which naturally requires more compute dedicated to these modalities and makes modeling of long-range dependencies harder. We here decouple the multimodal modeling, dividing it into separate, focused autoregressive models, processing the inputs according to the characteristics of the modalities. We propose a multimodal model, called Mirasol3B, consisting of an autoregressive component for the time-synchronized modalities (audio and video), and an autoregressive component for the context modalities which are not necessarily aligned in time but are still sequential. To address the long-sequences of the video-audio inputs, we propose to further partition the video and audio sequences in consecutive snippets and autoregressively process their representations. To that end, we propose a Combiner mechanism, which models the audio-video information jointly within a timeframe. The Combiner learns to extract audio and video features from raw spatio-temporal signals, and then learns to fuse these features producing compact but expressive representations per snippet. Our approach achieves the state-of-the-art on well established multimodal benchmarks, outperforming much larger models. It effectively addresses the high computational demand of media inputs by both learning compact representations, controlling the sequence length of the audio-video feature representations, and modeling their dependencies in time.
Are Transformers Effective for Time Series Forecasting?
Recently, there has been a surge of Transformer-based solutions for the long-term time series forecasting (LTSF) task. Despite the growing performance over the past few years, we question the validity of this line of research in this work. Specifically, Transformers is arguably the most successful solution to extract the semantic correlations among the elements in a long sequence. However, in time series modeling, we are to extract the temporal relations in an ordered set of continuous points. While employing positional encoding and using tokens to embed sub-series in Transformers facilitate preserving some ordering information, the nature of the permutation-invariant self-attention mechanism inevitably results in temporal information loss. To validate our claim, we introduce a set of embarrassingly simple one-layer linear models named LTSF-Linear for comparison. Experimental results on nine real-life datasets show that LTSF-Linear surprisingly outperforms existing sophisticated Transformer-based LTSF models in all cases, and often by a large margin. Moreover, we conduct comprehensive empirical studies to explore the impacts of various design elements of LTSF models on their temporal relation extraction capability. We hope this surprising finding opens up new research directions for the LTSF task. We also advocate revisiting the validity of Transformer-based solutions for other time series analysis tasks (e.g., anomaly detection) in the future. Code is available at: https://github.com/cure-lab/LTSF-Linear.
LiPCoT: Linear Predictive Coding based Tokenizer for Self-supervised Learning of Time Series Data via Language Models
Language models have achieved remarkable success in various natural language processing tasks. However, their application to time series data, a crucial component in many domains, remains limited. This paper proposes LiPCoT (Linear Predictive Coding based Tokenizer for time series), a novel tokenizer that encodes time series data into a sequence of tokens, enabling self-supervised learning of time series using existing Language model architectures such as BERT. Unlike traditional time series tokenizers that rely heavily on CNN encoder for time series feature generation, LiPCoT employs stochastic modeling through linear predictive coding to create a latent space for time series providing a compact yet rich representation of the inherent stochastic nature of the data. Furthermore, LiPCoT is computationally efficient and can effectively handle time series data with varying sampling rates and lengths, overcoming common limitations of existing time series tokenizers. In this proof-of-concept work, we present the effectiveness of LiPCoT in classifying Parkinson's disease (PD) using an EEG dataset from 46 participants. In particular, we utilize LiPCoT to encode EEG data into a small vocabulary of tokens and then use BERT for self-supervised learning and the downstream task of PD classification. We benchmark our approach against several state-of-the-art CNN-based deep learning architectures for PD detection. Our results reveal that BERT models utilizing self-supervised learning outperformed the best-performing existing method by 7.1% in precision, 2.3% in recall, 5.5% in accuracy, 4% in AUC, and 5% in F1-score highlighting the potential for self-supervised learning even on small datasets. Our work will inform future foundational models for time series, particularly for self-supervised learning.
Time series saliency maps: explaining models across multiple domains
Traditional saliency map methods, popularized in computer vision, highlight individual points (pixels) of the input that contribute the most to the model's output. However, in time-series they offer limited insights as semantically meaningful features are often found in other domains. We introduce Cross-domain Integrated Gradients, a generalization of Integrated Gradients. Our method enables feature attributions on any domain that can be formulated as an invertible, differentiable transformation of the time domain. Crucially, our derivation extends the original Integrated Gradients into the complex domain, enabling frequency-based attributions. We provide the necessary theoretical guarantees, namely, path independence and completeness. Our approach reveals interpretable, problem-specific attributions that time-domain methods cannot capture, on three real-world tasks: wearable sensor heart rate extraction, electroencephalography-based seizure detection, and zero-shot time-series forecasting. We release an open-source Tensorflow/PyTorch library to enable plug-and-play cross-domain explainability for time-series models. These results demonstrate the ability of cross-domain integrated gradients to provide semantically meaningful insights in time-series models that are impossible with traditional time-domain saliency.
Classification of BCI-EEG based on augmented covariance matrix
Objective: Electroencephalography signals are recorded as a multidimensional dataset. We propose a new framework based on the augmented covariance extracted from an autoregressive model to improve motor imagery classification. Methods: From the autoregressive model can be derived the Yule-Walker equations, which show the emergence of a symmetric positive definite matrix: the augmented covariance matrix. The state-of the art for classifying covariance matrices is based on Riemannian Geometry. A fairly natural idea is therefore to extend the standard approach using these augmented covariance matrices. The methodology for creating the augmented covariance matrix shows a natural connection with the delay embedding theorem proposed by Takens for dynamical systems. Such an embedding method is based on the knowledge of two parameters: the delay and the embedding dimension, respectively related to the lag and the order of the autoregressive model. This approach provides new methods to compute the hyper-parameters in addition to standard grid search. Results: The augmented covariance matrix performed noticeably better than any state-of-the-art methods. We will test our approach on several datasets and several subjects using the MOABB framework, using both within-session and cross-session evaluation. Conclusion: The improvement in results is due to the fact that the augmented covariance matrix incorporates not only spatial but also temporal information, incorporating nonlinear components of the signal through an embedding procedure, which allows the leveraging of dynamical systems algorithms. Significance: These results extend the concepts and the results of the Riemannian distance based classification algorithm.
Learning Environmental Sounds with Multi-scale Convolutional Neural Network
Deep learning has dramatically improved the performance of sounds recognition. However, learning acoustic models directly from the raw waveform is still challenging. Current waveform-based models generally use time-domain convolutional layers to extract features. The features extracted by single size filters are insufficient for building discriminative representation of audios. In this paper, we propose multi-scale convolution operation, which can get better audio representation by improving the frequency resolution and learning filters cross all frequency area. For leveraging the waveform-based features and spectrogram-based features in a single model, we introduce two-phase method to fuse the different features. Finally, we propose a novel end-to-end network called WaveMsNet based on the multi-scale convolution operation and two-phase method. On the environmental sounds classification datasets ESC-10 and ESC-50, the classification accuracies of our WaveMsNet achieve 93.75% and 79.10% respectively, which improve significantly from the previous methods.
Spectral Codecs: Spectrogram-Based Audio Codecs for High Quality Speech Synthesis
Historically, most speech models in machine-learning have used the mel-spectrogram as a speech representation. Recently, discrete audio tokens produced by neural audio codecs have become a popular alternate speech representation for speech synthesis tasks such as text-to-speech (TTS). However, the data distribution produced by such codecs is too complex for some TTS models to predict, hence requiring large autoregressive models to get reasonable quality. Typical audio codecs compress and reconstruct the time-domain audio signal. We propose a spectral codec which compresses the mel-spectrogram and reconstructs the time-domain audio signal. A study of objective audio quality metrics suggests that our spectral codec has comparable perceptual quality to equivalent audio codecs. Furthermore, non-autoregressive TTS models trained with the proposed spectral codec generate audio with significantly higher quality than when trained with mel-spectrograms or audio codecs.
TIGER: Time-frequency Interleaved Gain Extraction and Reconstruction for Efficient Speech Separation
In recent years, much speech separation research has focused primarily on improving model performance. However, for low-latency speech processing systems, high efficiency is equally important. Therefore, we propose a speech separation model with significantly reduced parameters and computational costs: Time-frequency Interleaved Gain Extraction and Reconstruction network (TIGER). TIGER leverages prior knowledge to divide frequency bands and compresses frequency information. We employ a multi-scale selective attention module to extract contextual features, while introducing a full-frequency-frame attention module to capture both temporal and frequency contextual information. Additionally, to more realistically evaluate the performance of speech separation models in complex acoustic environments, we introduce a dataset called EchoSet. This dataset includes noise and more realistic reverberation (e.g., considering object occlusions and material properties), with speech from two speakers overlapping at random proportions. Experimental results showed that models trained on EchoSet had better generalization ability than those trained on other datasets to the data collected in the physical world, which validated the practical value of the EchoSet. On EchoSet and real-world data, TIGER significantly reduces the number of parameters by 94.3% and the MACs by 95.3% while achieving performance surpassing state-of-the-art (SOTA) model TF-GridNet. This is the first speech separation model with fewer than 1 million parameters that achieves performance comparable to the SOTA model.
FunCodec: A Fundamental, Reproducible and Integrable Open-source Toolkit for Neural Speech Codec
This paper presents FunCodec, a fundamental neural speech codec toolkit, which is an extension of the open-source speech processing toolkit FunASR. FunCodec provides reproducible training recipes and inference scripts for the latest neural speech codec models, such as SoundStream and Encodec. Thanks to the unified design with FunASR, FunCodec can be easily integrated into downstream tasks, such as speech recognition. Along with FunCodec, pre-trained models are also provided, which can be used for academic or generalized purposes. Based on the toolkit, we further propose the frequency-domain codec models, FreqCodec, which can achieve comparable speech quality with much lower computation and parameter complexity. Experimental results show that, under the same compression ratio, FunCodec can achieve better reconstruction quality compared with other toolkits and released models. We also demonstrate that the pre-trained models are suitable for downstream tasks, including automatic speech recognition and personalized text-to-speech synthesis. This toolkit is publicly available at https://github.com/alibaba-damo-academy/FunCodec.
Temporal Modeling Matters: A Novel Temporal Emotional Modeling Approach for Speech Emotion Recognition
Speech emotion recognition (SER) plays a vital role in improving the interactions between humans and machines by inferring human emotion and affective states from speech signals. Whereas recent works primarily focus on mining spatiotemporal information from hand-crafted features, we explore how to model the temporal patterns of speech emotions from dynamic temporal scales. Towards that goal, we introduce a novel temporal emotional modeling approach for SER, termed Temporal-aware bI-direction Multi-scale Network (TIM-Net), which learns multi-scale contextual affective representations from various time scales. Specifically, TIM-Net first employs temporal-aware blocks to learn temporal affective representation, then integrates complementary information from the past and the future to enrich contextual representations, and finally, fuses multiple time scale features for better adaptation to the emotional variation. Extensive experimental results on six benchmark SER datasets demonstrate the superior performance of TIM-Net, gaining 2.34% and 2.61% improvements of the average UAR and WAR over the second-best on each corpus. The source code is available at https://github.com/Jiaxin-Ye/TIM-Net_SER.
Sample-level Deep Convolutional Neural Networks for Music Auto-tagging Using Raw Waveforms
Recently, the end-to-end approach that learns hierarchical representations from raw data using deep convolutional neural networks has been successfully explored in the image, text and speech domains. This approach was applied to musical signals as well but has been not fully explored yet. To this end, we propose sample-level deep convolutional neural networks which learn representations from very small grains of waveforms (e.g. 2 or 3 samples) beyond typical frame-level input representations. Our experiments show how deep architectures with sample-level filters improve the accuracy in music auto-tagging and they provide results comparable to previous state-of-the-art performances for the Magnatagatune dataset and Million Song Dataset. In addition, we visualize filters learned in a sample-level DCNN in each layer to identify hierarchically learned features and show that they are sensitive to log-scaled frequency along layer, such as mel-frequency spectrogram that is widely used in music classification systems.
Improving Medical Predictions by Irregular Multimodal Electronic Health Records Modeling
Health conditions among patients in intensive care units (ICUs) are monitored via electronic health records (EHRs), composed of numerical time series and lengthy clinical note sequences, both taken at irregular time intervals. Dealing with such irregularity in every modality, and integrating irregularity into multimodal representations to improve medical predictions, is a challenging problem. Our method first addresses irregularity in each single modality by (1) modeling irregular time series by dynamically incorporating hand-crafted imputation embeddings into learned interpolation embeddings via a gating mechanism, and (2) casting a series of clinical note representations as multivariate irregular time series and tackling irregularity via a time attention mechanism. We further integrate irregularity in multimodal fusion with an interleaved attention mechanism across temporal steps. To the best of our knowledge, this is the first work to thoroughly model irregularity in multimodalities for improving medical predictions. Our proposed methods for two medical prediction tasks consistently outperforms state-of-the-art (SOTA) baselines in each single modality and multimodal fusion scenarios. Specifically, we observe relative improvements of 6.5\%, 3.6\%, and 4.3\% in F1 for time series, clinical notes, and multimodal fusion, respectively. These results demonstrate the effectiveness of our methods and the importance of considering irregularity in multimodal EHRs.
TimeDART: A Diffusion Autoregressive Transformer for Self-Supervised Time Series Representation
Self-supervised learning has garnered increasing attention in time series analysis for benefiting various downstream tasks and reducing reliance on labeled data. Despite its effectiveness, existing methods often struggle to comprehensively capture both long-term dynamic evolution and subtle local patterns in a unified manner. In this work, we propose TimeDART, a novel self-supervised time series pre-training framework that unifies two powerful generative paradigms to learn more transferable representations. Specifically, we first employ a causal Transformer encoder, accompanied by a patch-based embedding strategy, to model the evolving trends from left to right. Building on this global modeling, we further introduce a denoising diffusion process to capture fine-grained local patterns through forward diffusion and reverse denoising. Finally, we optimize the model in an autoregressive manner. As a result, TimeDART effectively accounts for both global and local sequence features in a coherent way. We conduct extensive experiments on public datasets for time series forecasting and classification. The experimental results demonstrate that TimeDART consistently outperforms previous compared methods, validating the effectiveness of our approach. Our code is available at https://github.com/Melmaphother/TimeDART.
HDC-MiniROCKET: Explicit Time Encoding in Time Series Classification with Hyperdimensional Computing
Classification of time series data is an important task for many application domains. One of the best existing methods for this task, in terms of accuracy and computation time, is MiniROCKET. In this work, we extend this approach to provide better global temporal encodings using hyperdimensional computing (HDC) mechanisms. HDC (also known as Vector Symbolic Architectures, VSA) is a general method to explicitly represent and process information in high-dimensional vectors. It has previously been used successfully in combination with deep neural networks and other signal processing algorithms. We argue that the internal high-dimensional representation of MiniROCKET is well suited to be complemented by the algebra of HDC. This leads to a more general formulation, HDC-MiniROCKET, where the original algorithm is only a special case. We will discuss and demonstrate that HDC-MiniROCKET can systematically overcome catastrophic failures of MiniROCKET on simple synthetic datasets. These results are confirmed by experiments on the 128 datasets from the UCR time series classification benchmark. The extension with HDC can achieve considerably better results on datasets with high temporal dependence without increasing the computational effort for inference.
Audio Spectrogram Representations for Processing with Convolutional Neural Networks
One of the decisions that arise when designing a neural network for any application is how the data should be represented in order to be presented to, and possibly generated by, a neural network. For audio, the choice is less obvious than it seems to be for visual images, and a variety of representations have been used for different applications including the raw digitized sample stream, hand-crafted features, machine discovered features, MFCCs and variants that include deltas, and a variety of spectral representations. This paper reviews some of these representations and issues that arise, focusing particularly on spectrograms for generating audio using neural networks for style transfer.
Noise2Music: Text-conditioned Music Generation with Diffusion Models
We introduce Noise2Music, where a series of diffusion models is trained to generate high-quality 30-second music clips from text prompts. Two types of diffusion models, a generator model, which generates an intermediate representation conditioned on text, and a cascader model, which generates high-fidelity audio conditioned on the intermediate representation and possibly the text, are trained and utilized in succession to generate high-fidelity music. We explore two options for the intermediate representation, one using a spectrogram and the other using audio with lower fidelity. We find that the generated audio is not only able to faithfully reflect key elements of the text prompt such as genre, tempo, instruments, mood, and era, but goes beyond to ground fine-grained semantics of the prompt. Pretrained large language models play a key role in this story -- they are used to generate paired text for the audio of the training set and to extract embeddings of the text prompts ingested by the diffusion models. Generated examples: https://google-research.github.io/noise2music
Grid-free Harmonic Retrieval and Model Order Selection using Deep Convolutional Neural Networks
Harmonic retrieval techniques are the foundation of radio channel sounding, estimation and modeling. This paper introduces a Deep Learning approach for two-dimensional spectral estimation from frequency and time samples of a radio channel transfer function. Our work can estimate two-dimensional parameters from a signal containing an unknown number of paths. In contrast to existing deep learning-based methods, the signal parameters are not estimated via classification but instead in a quasi-grid-free manner. This alleviates the bias, spectral leakage, and ghost targets that grid-based approaches inherently produce. The proposed architecture also reliably estimates the number of spectral components in the measurement. Hence, the architecture jointly solves the model order selection problem and the parameter estimation task. Additionally, we propose a multi-channel windowing of the data during preprocessing, increasing the resulting estimator's robustness. We verify the performance compared to existing harmonic retrieval methods and also show how it can be integrated into an existing maximum likelihood estimator for efficient initialization of a gradient-based iteration.
MossFormer2: Combining Transformer and RNN-Free Recurrent Network for Enhanced Time-Domain Monaural Speech Separation
Our previously proposed MossFormer has achieved promising performance in monaural speech separation. However, it predominantly adopts a self-attention-based MossFormer module, which tends to emphasize longer-range, coarser-scale dependencies, with a deficiency in effectively modelling finer-scale recurrent patterns. In this paper, we introduce a novel hybrid model that provides the capabilities to model both long-range, coarse-scale dependencies and fine-scale recurrent patterns by integrating a recurrent module into the MossFormer framework. Instead of applying the recurrent neural networks (RNNs) that use traditional recurrent connections, we present a recurrent module based on a feedforward sequential memory network (FSMN), which is considered "RNN-free" recurrent network due to the ability to capture recurrent patterns without using recurrent connections. Our recurrent module mainly comprises an enhanced dilated FSMN block by using gated convolutional units (GCU) and dense connections. In addition, a bottleneck layer and an output layer are also added for controlling information flow. The recurrent module relies on linear projections and convolutions for seamless, parallel processing of the entire sequence. The integrated MossFormer2 hybrid model demonstrates remarkable enhancements over MossFormer and surpasses other state-of-the-art methods in WSJ0-2/3mix, Libri2Mix, and WHAM!/WHAMR! benchmarks.
Transform Once: Efficient Operator Learning in Frequency Domain
Spectral analysis provides one of the most effective paradigms for information-preserving dimensionality reduction, as simple descriptions of naturally occurring signals are often obtained via few terms of periodic basis functions. In this work, we study deep neural networks designed to harness the structure in frequency domain for efficient learning of long-range correlations in space or time: frequency-domain models (FDMs). Existing FDMs are based on complex-valued transforms i.e. Fourier Transforms (FT), and layers that perform computation on the spectrum and input data separately. This design introduces considerable computational overhead: for each layer, a forward and inverse FT. Instead, this work introduces a blueprint for frequency domain learning through a single transform: transform once (T1). To enable efficient, direct learning in the frequency domain we derive a variance-preserving weight initialization scheme and investigate methods for frequency selection in reduced-order FDMs. Our results noticeably streamline the design process of FDMs, pruning redundant transforms, and leading to speedups of 3x to 10x that increase with data resolution and model size. We perform extensive experiments on learning the solution operator of spatio-temporal dynamics, including incompressible Navier-Stokes, turbulent flows around airfoils and high-resolution video of smoke. T1 models improve on the test performance of FDMs while requiring significantly less computation (5 hours instead of 32 for our large-scale experiment), with over 20% reduction in average predictive error across tasks.
HiFi-SR: A Unified Generative Transformer-Convolutional Adversarial Network for High-Fidelity Speech Super-Resolution
The application of generative adversarial networks (GANs) has recently advanced speech super-resolution (SR) based on intermediate representations like mel-spectrograms. However, existing SR methods that typically rely on independently trained and concatenated networks may lead to inconsistent representations and poor speech quality, especially in out-of-domain scenarios. In this work, we propose HiFi-SR, a unified network that leverages end-to-end adversarial training to achieve high-fidelity speech super-resolution. Our model features a unified transformer-convolutional generator designed to seamlessly handle both the prediction of latent representations and their conversion into time-domain waveforms. The transformer network serves as a powerful encoder, converting low-resolution mel-spectrograms into latent space representations, while the convolutional network upscales these representations into high-resolution waveforms. To enhance high-frequency fidelity, we incorporate a multi-band, multi-scale time-frequency discriminator, along with a multi-scale mel-reconstruction loss in the adversarial training process. HiFi-SR is versatile, capable of upscaling any input speech signal between 4 kHz and 32 kHz to a 48 kHz sampling rate. Experimental results demonstrate that HiFi-SR significantly outperforms existing speech SR methods across both objective metrics and ABX preference tests, for both in-domain and out-of-domain scenarios (https://github.com/modelscope/ClearerVoice-Studio).
A Survey on Principles, Models and Methods for Learning from Irregularly Sampled Time Series
Irregularly sampled time series data arise naturally in many application domains including biology, ecology, climate science, astronomy, and health. Such data represent fundamental challenges to many classical models from machine learning and statistics due to the presence of non-uniform intervals between observations. However, there has been significant progress within the machine learning community over the last decade on developing specialized models and architectures for learning from irregularly sampled univariate and multivariate time series data. In this survey, we first describe several axes along which approaches to learning from irregularly sampled time series differ including what data representations they are based on, what modeling primitives they leverage to deal with the fundamental problem of irregular sampling, and what inference tasks they are designed to perform. We then survey the recent literature organized primarily along the axis of modeling primitives. We describe approaches based on temporal discretization, interpolation, recurrence, attention and structural invariance. We discuss similarities and differences between approaches and highlight primary strengths and weaknesses.
FSD50K: An Open Dataset of Human-Labeled Sound Events
Most existing datasets for sound event recognition (SER) are relatively small and/or domain-specific, with the exception of AudioSet, based on over 2M tracks from YouTube videos and encompassing over 500 sound classes. However, AudioSet is not an open dataset as its official release consists of pre-computed audio features. Downloading the original audio tracks can be problematic due to YouTube videos gradually disappearing and usage rights issues. To provide an alternative benchmark dataset and thus foster SER research, we introduce FSD50K, an open dataset containing over 51k audio clips totalling over 100h of audio manually labeled using 200 classes drawn from the AudioSet Ontology. The audio clips are licensed under Creative Commons licenses, making the dataset freely distributable (including waveforms). We provide a detailed description of the FSD50K creation process, tailored to the particularities of Freesound data, including challenges encountered and solutions adopted. We include a comprehensive dataset characterization along with discussion of limitations and key factors to allow its audio-informed usage. Finally, we conduct sound event classification experiments to provide baseline systems as well as insight on the main factors to consider when splitting Freesound audio data for SER. Our goal is to develop a dataset to be widely adopted by the community as a new open benchmark for SER research.
AudioTime: A Temporally-aligned Audio-text Benchmark Dataset
Recent advancements in audio generation have enabled the creation of high-fidelity audio clips from free-form textual descriptions. However, temporal relationships, a critical feature for audio content, are currently underrepresented in mainstream models, resulting in an imprecise temporal controllability. Specifically, users cannot accurately control the timestamps of sound events using free-form text. We acknowledge that a significant factor is the absence of high-quality, temporally-aligned audio-text datasets, which are essential for training models with temporal control. The more temporally-aligned the annotations, the better the models can understand the precise relationship between audio outputs and temporal textual prompts. Therefore, we present a strongly aligned audio-text dataset, AudioTime. It provides text annotations rich in temporal information such as timestamps, duration, frequency, and ordering, covering almost all aspects of temporal control. Additionally, we offer a comprehensive test set and evaluation metric to assess the temporal control performance of various models. Examples are available on the https://zeyuxie29.github.io/AudioTime/
Deep Learning-based Approaches for State Space Models: A Selective Review
State-space models (SSMs) offer a powerful framework for dynamical system analysis, wherein the temporal dynamics of the system are assumed to be captured through the evolution of the latent states, which govern the values of the observations. This paper provides a selective review of recent advancements in deep neural network-based approaches for SSMs, and presents a unified perspective for discrete time deep state space models and continuous time ones such as latent neural Ordinary Differential and Stochastic Differential Equations. It starts with an overview of the classical maximum likelihood based approach for learning SSMs, reviews variational autoencoder as a general learning pipeline for neural network-based approaches in the presence of latent variables, and discusses in detail representative deep learning models that fall under the SSM framework. Very recent developments, where SSMs are used as standalone architectural modules for improving efficiency in sequence modeling, are also examined. Finally, examples involving mixed frequency and irregularly-spaced time series data are presented to demonstrate the advantage of SSMs in these settings.
TimeCMA: Towards LLM-Empowered Time Series Forecasting via Cross-Modality Alignment
The widespread adoption of scalable mobile sensing has led to large amounts of time series data for real-world applications. A fundamental application is multivariate time series forecasting (MTSF), which aims to predict future time series values based on historical observations. Existing MTSF methods suffer from limited parameterization and small-scale training data. Recently, Large language models (LLMs) have been introduced in time series, which achieve promising forecasting performance but incur heavy computational costs. To solve these challenges, we propose TimeCMA, an LLM-empowered framework for time series forecasting with cross-modality alignment. We design a dual-modality encoding module with two branches, where the time series encoding branch extracts relatively low-quality yet pure embeddings of time series through an inverted Transformer. In addition, the LLM-empowered encoding branch wraps the same time series as prompts to obtain high-quality yet entangled prompt embeddings via a Pre-trained LLM. Then, we design a cross-modality alignment module to retrieve high-quality and pure time series embeddings from the prompt embeddings. Moreover, we develop a time series forecasting module to decode the aligned embeddings while capturing dependencies among multiple variables for forecasting. Notably, we tailor the prompt to encode sufficient temporal information into a last token and design the last token embedding storage to reduce computational costs. Extensive experiments on real data offer insight into the accuracy and efficiency of the proposed framework.
State-Free Inference of State-Space Models: The Transfer Function Approach
We approach designing a state-space model for deep learning applications through its dual representation, the transfer function, and uncover a highly efficient sequence parallel inference algorithm that is state-free: unlike other proposed algorithms, state-free inference does not incur any significant memory or computational cost with an increase in state size. We achieve this using properties of the proposed frequency domain transfer function parametrization, which enables direct computation of its corresponding convolutional kernel's spectrum via a single Fast Fourier Transform. Our experimental results across multiple sequence lengths and state sizes illustrates, on average, a 35% training speed improvement over S4 layers -- parametrized in time-domain -- on the Long Range Arena benchmark, while delivering state-of-the-art downstream performances over other attention-free approaches. Moreover, we report improved perplexity in language modeling over a long convolutional Hyena baseline, by simply introducing our transfer function parametrization. Our code is available at https://github.com/ruke1ire/RTF.
CREPE: A Convolutional Representation for Pitch Estimation
The task of estimating the fundamental frequency of a monophonic sound recording, also known as pitch tracking, is fundamental to audio processing with multiple applications in speech processing and music information retrieval. To date, the best performing techniques, such as the pYIN algorithm, are based on a combination of DSP pipelines and heuristics. While such techniques perform very well on average, there remain many cases in which they fail to correctly estimate the pitch. In this paper, we propose a data-driven pitch tracking algorithm, CREPE, which is based on a deep convolutional neural network that operates directly on the time-domain waveform. We show that the proposed model produces state-of-the-art results, performing equally or better than pYIN. Furthermore, we evaluate the model's generalizability in terms of noise robustness. A pre-trained version of CREPE is made freely available as an open-source Python module for easy application.
Transformers in Time Series: A Survey
Transformers have achieved superior performances in many tasks in natural language processing and computer vision, which also triggered great interest in the time series community. Among multiple advantages of Transformers, the ability to capture long-range dependencies and interactions is especially attractive for time series modeling, leading to exciting progress in various time series applications. In this paper, we systematically review Transformer schemes for time series modeling by highlighting their strengths as well as limitations. In particular, we examine the development of time series Transformers in two perspectives. From the perspective of network structure, we summarize the adaptations and modifications that have been made to Transformers in order to accommodate the challenges in time series analysis. From the perspective of applications, we categorize time series Transformers based on common tasks including forecasting, anomaly detection, and classification. Empirically, we perform robust analysis, model size analysis, and seasonal-trend decomposition analysis to study how Transformers perform in time series. Finally, we discuss and suggest future directions to provide useful research guidance. To the best of our knowledge, this paper is the first work to comprehensively and systematically summarize the recent advances of Transformers for modeling time series data. We hope this survey will ignite further research interests in time series Transformers.
Integrating Recurrence Dynamics for Speech Emotion Recognition
We investigate the performance of features that can capture nonlinear recurrence dynamics embedded in the speech signal for the task of Speech Emotion Recognition (SER). Reconstruction of the phase space of each speech frame and the computation of its respective Recurrence Plot (RP) reveals complex structures which can be measured by performing Recurrence Quantification Analysis (RQA). These measures are aggregated by using statistical functionals over segment and utterance periods. We report SER results for the proposed feature set on three databases using different classification methods. When fusing the proposed features with traditional feature sets, we show an improvement in unweighted accuracy of up to 5.7% and 10.7% on Speaker-Dependent (SD) and Speaker-Independent (SI) SER tasks, respectively, over the baseline. Following a segment-based approach we demonstrate state-of-the-art performance on IEMOCAP using a Bidirectional Recurrent Neural Network.
Hierarchical Recurrent Neural Networks for Conditional Melody Generation with Long-term Structure
The rise of deep learning technologies has quickly advanced many fields, including that of generative music systems. There exist a number of systems that allow for the generation of good sounding short snippets, yet, these generated snippets often lack an overarching, longer-term structure. In this work, we propose CM-HRNN: a conditional melody generation model based on a hierarchical recurrent neural network. This model allows us to generate melodies with long-term structures based on given chord accompaniments. We also propose a novel, concise event-based representation to encode musical lead sheets while retaining the notes' relative position within the bar with respect to the musical meter. With this new data representation, the proposed architecture can simultaneously model the rhythmic, as well as the pitch structures in an effective way. Melodies generated by the proposed model were extensively evaluated in quantitative experiments as well as a user study to ensure the musical quality of the output as well as to evaluate if they contain repeating patterns. We also compared the system with the state-of-the-art AttentionRNN. This comparison shows that melodies generated by CM-HRNN contain more repeated patterns (i.e., higher compression ratio) and a lower tonal tension (i.e., more tonally concise). Results from our listening test indicate that CM-HRNN outperforms AttentionRNN in terms of long-term structure and overall rating.
Wavelet Policy: Imitation Policy Learning in Frequency Domain with Wavelet Transforms
Recent imitation learning policies, often framed as time series prediction tasks, directly map robotic observations-such as high-dimensional visual data and proprioception-into the action space. While time series prediction primarily relies on spatial domain modeling, the underutilization of frequency domain analysis in robotic manipulation trajectory prediction may lead to neglecting the inherent temporal information embedded within action sequences. To address this, we reframe imitation learning policies through the lens of the frequency domain and introduce the Wavelet Policy. This novel approach employs wavelet transforms (WT) for feature preprocessing and extracts multi-scale features from the frequency domain using the SE2MD (Single Encoder to Multiple Decoder) architecture. Furthermore, to enhance feature mapping in the frequency domain and increase model capacity, we introduce a Learnable Frequency-Domain Filter (LFDF) after each frequency decoder, improving adaptability under different visual conditions. Our results show that the Wavelet Policy outperforms state-of-the-art (SOTA) end-to-end methods by over 10% on four challenging robotic arm tasks, while maintaining a comparable parameter count. In long-range settings, its performance declines more slowly as task volume increases. The source code is available at https://github.com/lurenjia384/Wavelet_Policy.
Transformers in Time-series Analysis: A Tutorial
Transformer architecture has widespread applications, particularly in Natural Language Processing and computer vision. Recently Transformers have been employed in various aspects of time-series analysis. This tutorial provides an overview of the Transformer architecture, its applications, and a collection of examples from recent research papers in time-series analysis. We delve into an explanation of the core components of the Transformer, including the self-attention mechanism, positional encoding, multi-head, and encoder/decoder. Several enhancements to the initial, Transformer architecture are highlighted to tackle time-series tasks. The tutorial also provides best practices and techniques to overcome the challenge of effectively training Transformers for time-series analysis.
Sound Event Localization and Detection of Overlapping Sources Using Convolutional Recurrent Neural Networks
In this paper, we propose a convolutional recurrent neural network for joint sound event localization and detection (SELD) of multiple overlapping sound events in three-dimensional (3D) space. The proposed network takes a sequence of consecutive spectrogram time-frames as input and maps it to two outputs in parallel. As the first output, the sound event detection (SED) is performed as a multi-label classification task on each time-frame producing temporal activity for all the sound event classes. As the second output, localization is performed by estimating the 3D Cartesian coordinates of the direction-of-arrival (DOA) for each sound event class using multi-output regression. The proposed method is able to associate multiple DOAs with respective sound event labels and further track this association with respect to time. The proposed method uses separately the phase and magnitude component of the spectrogram calculated on each audio channel as the feature, thereby avoiding any method- and array-specific feature extraction. The method is evaluated on five Ambisonic and two circular array format datasets with different overlapping sound events in anechoic, reverberant and real-life scenarios. The proposed method is compared with two SED, three DOA estimation, and one SELD baselines. The results show that the proposed method is generic and applicable to any array structures, robust to unseen DOA values, reverberation, and low SNR scenarios. The proposed method achieved a consistently higher recall of the estimated number of DOAs across datasets in comparison to the best baseline. Additionally, this recall was observed to be significantly better than the best baseline method for a higher number of overlapping sound events.
Inference via Interpolation: Contrastive Representations Provably Enable Planning and Inference
Given time series data, how can we answer questions like "what will happen in the future?" and "how did we get here?" These sorts of probabilistic inference questions are challenging when observations are high-dimensional. In this paper, we show how these questions can have compact, closed form solutions in terms of learned representations. The key idea is to apply a variant of contrastive learning to time series data. Prior work already shows that the representations learned by contrastive learning encode a probability ratio. By extending prior work to show that the marginal distribution over representations is Gaussian, we can then prove that joint distribution of representations is also Gaussian. Taken together, these results show that representations learned via temporal contrastive learning follow a Gauss-Markov chain, a graphical model where inference (e.g., prediction, planning) over representations corresponds to inverting a low-dimensional matrix. In one special case, inferring intermediate representations will be equivalent to interpolating between the learned representations. We validate our theory using numerical simulations on tasks up to 46-dimensions.
Convolutional Recurrent Neural Networks for Bird Audio Detection
Bird sounds possess distinctive spectral structure which may exhibit small shifts in spectrum depending on the bird species and environmental conditions. In this paper, we propose using convolutional recurrent neural networks on the task of automated bird audio detection in real-life environments. In the proposed method, convolutional layers extract high dimensional, local frequency shift invariant features, while recurrent layers capture longer term dependencies between the features extracted from short time frames. This method achieves 88.5% Area Under ROC Curve (AUC) score on the unseen evaluation data and obtains the second place in the Bird Audio Detection challenge.

 
			 
			 
			 
			 
			 
			 
			 
			 
			 
	 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			