parlange commited on
Commit
a74dcd7
·
verified ·
1 Parent(s): 537f15a

Upload CvT model from experiment s2

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +2 -0
  2. README.md +165 -0
  3. config.json +76 -0
  4. confusion_matrices/CvT_Confusion_Matrix_a.png +0 -0
  5. confusion_matrices/CvT_Confusion_Matrix_b.png +0 -0
  6. confusion_matrices/CvT_Confusion_Matrix_c.png +0 -0
  7. confusion_matrices/CvT_Confusion_Matrix_d.png +0 -0
  8. confusion_matrices/CvT_Confusion_Matrix_e.png +0 -0
  9. confusion_matrices/CvT_Confusion_Matrix_f.png +0 -0
  10. confusion_matrices/CvT_Confusion_Matrix_g.png +0 -0
  11. confusion_matrices/CvT_Confusion_Matrix_h.png +0 -0
  12. confusion_matrices/CvT_Confusion_Matrix_i.png +0 -0
  13. confusion_matrices/CvT_Confusion_Matrix_j.png +0 -0
  14. confusion_matrices/CvT_Confusion_Matrix_k.png +0 -0
  15. confusion_matrices/CvT_Confusion_Matrix_l.png +0 -0
  16. cvt-gravit-s2.pth +3 -0
  17. evaluation_results.csv +133 -0
  18. model.safetensors +3 -0
  19. pytorch_model.bin +3 -0
  20. roc_confusion_matrix/CvT_roc_confusion_matrix_a.png +0 -0
  21. roc_confusion_matrix/CvT_roc_confusion_matrix_b.png +0 -0
  22. roc_confusion_matrix/CvT_roc_confusion_matrix_c.png +0 -0
  23. roc_confusion_matrix/CvT_roc_confusion_matrix_d.png +0 -0
  24. roc_confusion_matrix/CvT_roc_confusion_matrix_e.png +0 -0
  25. roc_confusion_matrix/CvT_roc_confusion_matrix_f.png +0 -0
  26. roc_confusion_matrix/CvT_roc_confusion_matrix_g.png +0 -0
  27. roc_confusion_matrix/CvT_roc_confusion_matrix_h.png +0 -0
  28. roc_confusion_matrix/CvT_roc_confusion_matrix_i.png +0 -0
  29. roc_confusion_matrix/CvT_roc_confusion_matrix_j.png +0 -0
  30. roc_confusion_matrix/CvT_roc_confusion_matrix_k.png +0 -0
  31. roc_confusion_matrix/CvT_roc_confusion_matrix_l.png +0 -0
  32. roc_curves/CvT_ROC_a.png +0 -0
  33. roc_curves/CvT_ROC_b.png +0 -0
  34. roc_curves/CvT_ROC_c.png +0 -0
  35. roc_curves/CvT_ROC_d.png +0 -0
  36. roc_curves/CvT_ROC_e.png +0 -0
  37. roc_curves/CvT_ROC_f.png +0 -0
  38. roc_curves/CvT_ROC_g.png +0 -0
  39. roc_curves/CvT_ROC_h.png +0 -0
  40. roc_curves/CvT_ROC_i.png +0 -0
  41. roc_curves/CvT_ROC_j.png +0 -0
  42. roc_curves/CvT_ROC_k.png +0 -0
  43. roc_curves/CvT_ROC_l.png +0 -0
  44. training_curves/CvT_accuracy.png +0 -0
  45. training_curves/CvT_auc.png +0 -0
  46. training_curves/CvT_combined_metrics.png +3 -0
  47. training_curves/CvT_f1.png +0 -0
  48. training_curves/CvT_loss.png +0 -0
  49. training_curves/CvT_metrics.csv +45 -0
  50. training_metrics.csv +45 -0
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ training_curves/CvT_combined_metrics.png filter=lfs diff=lfs merge=lfs -text
37
+ training_notebook_s2.ipynb filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,165 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - vision-transformer
5
+ - image-classification
6
+ - pytorch
7
+ - timm
8
+ - cvt
9
+ - gravitational-lensing
10
+ - strong-lensing
11
+ - astronomy
12
+ - astrophysics
13
+ datasets:
14
+ - parlange/gravit-c21
15
+ metrics:
16
+ - accuracy
17
+ - auc
18
+ - f1
19
+ paper:
20
+ - title: "GraViT: A Gravitational Lens Discovery Toolkit with Vision Transformers"
21
+ url: "https://arxiv.org/abs/2509.00226"
22
+ authors: "Parlange et al."
23
+ model-index:
24
+ - name: CvT-s2
25
+ results:
26
+ - task:
27
+ type: image-classification
28
+ name: Strong Gravitational Lens Discovery
29
+ dataset:
30
+ type: common-test-sample
31
+ name: Common Test Sample (More et al. 2024)
32
+ metrics:
33
+ - type: accuracy
34
+ value: 0.6852
35
+ name: Average Accuracy
36
+ - type: auc
37
+ value: 0.7569
38
+ name: Average AUC-ROC
39
+ - type: f1
40
+ value: 0.4201
41
+ name: Average F1-Score
42
+ ---
43
+
44
+ # 🌌 cvt-gravit-s2
45
+
46
+ 🔭 This model is part of **GraViT**: Transfer Learning with Vision Transformers and MLP-Mixer for Strong Gravitational Lens Discovery
47
+
48
+ 🔗 **GitHub Repository**: [https://github.com/parlange/gravit](https://github.com/parlange/gravit)
49
+
50
+ ## 🛰️ Model Details
51
+
52
+ - **🤖 Model Type**: CvT
53
+ - **🧪 Experiment**: S2 - C21-half-18660
54
+ - **🌌 Dataset**: C21
55
+ - **🪐 Fine-tuning Strategy**: half
56
+
57
+ - **🎲 Random Seed**: 18660
58
+
59
+ ## 💻 Quick Start
60
+
61
+ ```python
62
+ import torch
63
+ import timm
64
+
65
+ # Load the model directly from the Hub
66
+ model = timm.create_model(
67
+ 'hf-hub:parlange/cvt-gravit-s2',
68
+ pretrained=True
69
+ )
70
+ model.eval()
71
+
72
+ # Example inference
73
+ dummy_input = torch.randn(1, 3, 224, 224)
74
+ with torch.no_grad():
75
+ output = model(dummy_input)
76
+ predictions = torch.softmax(output, dim=1)
77
+ print(f"Lens probability: {predictions[0][1]:.4f}")
78
+ ```
79
+
80
+ ## ⚡️ Training Configuration
81
+
82
+ **Training Dataset:** C21 (Cañameras et al. 2021)
83
+ **Fine-tuning Strategy:** half
84
+
85
+
86
+ | 🔧 Parameter | 📝 Value |
87
+ |--------------|----------|
88
+ | Batch Size | 192 |
89
+ | Learning Rate | AdamW with ReduceLROnPlateau |
90
+ | Epochs | 100 |
91
+ | Patience | 10 |
92
+ | Optimizer | AdamW |
93
+ | Scheduler | ReduceLROnPlateau |
94
+ | Image Size | 224x224 |
95
+ | Fine Tune Mode | half |
96
+ | Stochastic Depth Probability | 0.1 |
97
+
98
+
99
+ ## 📈 Training Curves
100
+
101
+ ![Combined Training Metrics](https://huggingface.co/parlange/cvt-gravit-s2/resolve/main/training_curves/CvT_combined_metrics.png)
102
+
103
+
104
+ ## 🏁 Final Epoch Training Metrics
105
+
106
+ | Metric | Training | Validation |
107
+ |:---------:|:-----------:|:-------------:|
108
+ | 📉 Loss | 0.3223 | 0.2497 |
109
+ | 🎯 Accuracy | 0.8233 | 0.8970 |
110
+ | 📊 AUC-ROC | 0.9285 | 0.9638 |
111
+ | ⚖️ F1 Score | 0.8232 | 0.8987 |
112
+
113
+
114
+ ## ☑️ Evaluation Results
115
+
116
+ ### ROC Curves and Confusion Matrices
117
+
118
+ Performance across all test datasets (a through l) in the Common Test Sample (More et al. 2024):
119
+
120
+ ![ROC + Confusion Matrix - Dataset A](https://huggingface.co/parlange/cvt-gravit-s2/resolve/main/roc_confusion_matrix/CvT_roc_confusion_matrix_a.png)
121
+ ![ROC + Confusion Matrix - Dataset B](https://huggingface.co/parlange/cvt-gravit-s2/resolve/main/roc_confusion_matrix/CvT_roc_confusion_matrix_b.png)
122
+ ![ROC + Confusion Matrix - Dataset C](https://huggingface.co/parlange/cvt-gravit-s2/resolve/main/roc_confusion_matrix/CvT_roc_confusion_matrix_c.png)
123
+ ![ROC + Confusion Matrix - Dataset D](https://huggingface.co/parlange/cvt-gravit-s2/resolve/main/roc_confusion_matrix/CvT_roc_confusion_matrix_d.png)
124
+ ![ROC + Confusion Matrix - Dataset E](https://huggingface.co/parlange/cvt-gravit-s2/resolve/main/roc_confusion_matrix/CvT_roc_confusion_matrix_e.png)
125
+ ![ROC + Confusion Matrix - Dataset F](https://huggingface.co/parlange/cvt-gravit-s2/resolve/main/roc_confusion_matrix/CvT_roc_confusion_matrix_f.png)
126
+ ![ROC + Confusion Matrix - Dataset G](https://huggingface.co/parlange/cvt-gravit-s2/resolve/main/roc_confusion_matrix/CvT_roc_confusion_matrix_g.png)
127
+ ![ROC + Confusion Matrix - Dataset H](https://huggingface.co/parlange/cvt-gravit-s2/resolve/main/roc_confusion_matrix/CvT_roc_confusion_matrix_h.png)
128
+ ![ROC + Confusion Matrix - Dataset I](https://huggingface.co/parlange/cvt-gravit-s2/resolve/main/roc_confusion_matrix/CvT_roc_confusion_matrix_i.png)
129
+ ![ROC + Confusion Matrix - Dataset J](https://huggingface.co/parlange/cvt-gravit-s2/resolve/main/roc_confusion_matrix/CvT_roc_confusion_matrix_j.png)
130
+ ![ROC + Confusion Matrix - Dataset K](https://huggingface.co/parlange/cvt-gravit-s2/resolve/main/roc_confusion_matrix/CvT_roc_confusion_matrix_k.png)
131
+ ![ROC + Confusion Matrix - Dataset L](https://huggingface.co/parlange/cvt-gravit-s2/resolve/main/roc_confusion_matrix/CvT_roc_confusion_matrix_l.png)
132
+
133
+ ### 📋 Performance Summary
134
+
135
+ Average performance across 12 test datasets from the Common Test Sample (More et al. 2024):
136
+
137
+ | Metric | Value |
138
+ |-----------|----------|
139
+ | 🎯 Average Accuracy | 0.6852 |
140
+ | 📈 Average AUC-ROC | 0.7569 |
141
+ | ⚖️ Average F1-Score | 0.4201 |
142
+
143
+
144
+ ## 📘 Citation
145
+
146
+ If you use this model in your research, please cite:
147
+
148
+ ```bibtex
149
+ @misc{parlange2025gravit,
150
+ title={GraViT: Transfer Learning with Vision Transformers and MLP-Mixer for Strong Gravitational Lens Discovery},
151
+ author={René Parlange and Juan C. Cuevas-Tello and Octavio Valenzuela and Omar de J. Cabrera-Rosas and Tomás Verdugo and Anupreeta More and Anton T. Jaelani},
152
+ year={2025},
153
+ eprint={2509.00226},
154
+ archivePrefix={arXiv},
155
+ primaryClass={cs.CV},
156
+ url={https://arxiv.org/abs/2509.00226},
157
+ }
158
+ ```
159
+
160
+ ---
161
+
162
+
163
+ ## Model Card Contact
164
+
165
+ For questions about this model, please contact the author through: https://github.com/parlange/
config.json ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architecture": "cvt_13_224",
3
+ "num_classes": 2,
4
+ "num_features": 1000,
5
+ "global_pool": "avg",
6
+ "crop_pct": 0.875,
7
+ "interpolation": "bicubic",
8
+ "mean": [
9
+ 0.485,
10
+ 0.456,
11
+ 0.406
12
+ ],
13
+ "std": [
14
+ 0.229,
15
+ 0.224,
16
+ 0.225
17
+ ],
18
+ "first_conv": "conv1",
19
+ "classifier": "fc",
20
+ "input_size": [
21
+ 3,
22
+ 224,
23
+ 224
24
+ ],
25
+ "pool_size": [
26
+ 7,
27
+ 7
28
+ ],
29
+ "pretrained_cfg": {
30
+ "tag": "gravit_s2",
31
+ "custom_load": false,
32
+ "input_size": [
33
+ 3,
34
+ 224,
35
+ 224
36
+ ],
37
+ "fixed_input_size": true,
38
+ "interpolation": "bicubic",
39
+ "crop_pct": 0.875,
40
+ "crop_mode": "center",
41
+ "mean": [
42
+ 0.485,
43
+ 0.456,
44
+ 0.406
45
+ ],
46
+ "std": [
47
+ 0.229,
48
+ 0.224,
49
+ 0.225
50
+ ],
51
+ "num_classes": 2,
52
+ "pool_size": [
53
+ 7,
54
+ 7
55
+ ],
56
+ "first_conv": "conv1",
57
+ "classifier": "fc"
58
+ },
59
+ "model_name": "cvt_gravit_s2",
60
+ "experiment": "s2",
61
+ "training_strategy": "half",
62
+ "dataset": "C21",
63
+ "hyperparameters": {
64
+ "batch_size": "192",
65
+ "learning_rate": "AdamW with ReduceLROnPlateau",
66
+ "epochs": "100",
67
+ "patience": "10",
68
+ "optimizer": "AdamW",
69
+ "scheduler": "ReduceLROnPlateau",
70
+ "image_size": "224x224",
71
+ "fine_tune_mode": "half",
72
+ "stochastic_depth_probability": "0.1"
73
+ },
74
+ "hf_hub_id": "parlange/cvt-gravit-s2",
75
+ "license": "apache-2.0"
76
+ }
confusion_matrices/CvT_Confusion_Matrix_a.png ADDED
confusion_matrices/CvT_Confusion_Matrix_b.png ADDED
confusion_matrices/CvT_Confusion_Matrix_c.png ADDED
confusion_matrices/CvT_Confusion_Matrix_d.png ADDED
confusion_matrices/CvT_Confusion_Matrix_e.png ADDED
confusion_matrices/CvT_Confusion_Matrix_f.png ADDED
confusion_matrices/CvT_Confusion_Matrix_g.png ADDED
confusion_matrices/CvT_Confusion_Matrix_h.png ADDED
confusion_matrices/CvT_Confusion_Matrix_i.png ADDED
confusion_matrices/CvT_Confusion_Matrix_j.png ADDED
confusion_matrices/CvT_Confusion_Matrix_k.png ADDED
confusion_matrices/CvT_Confusion_Matrix_l.png ADDED
cvt-gravit-s2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:935c2d8b222977ead0026a69503106db45585d3b04150c95876d200528c37df5
3
+ size 125471131
evaluation_results.csv ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Model,Dataset,Loss,Accuracy,AUCROC,F1
2
+ ViT,a,0.26081677189425306,0.9402703552342031,0.948634438305709,0.602510460251046
3
+ ViT,b,0.22714076965991073,0.9490726186733731,0.954792817679558,0.64
4
+ ViT,c,0.5409317808831798,0.8802263439170073,0.9180930018416207,0.4304932735426009
5
+ ViT,d,0.2093577366257868,0.9440427538509902,0.9635985267034991,0.6180257510729614
6
+ ViT,e,0.626060025425041,0.8693743139407245,0.9101869371073942,0.7076167076167076
7
+ ViT,f,0.28432284784108347,0.9316861590891488,0.9442099621115129,0.24615384615384617
8
+ ViT,g,0.0920504999384284,0.9766666666666667,0.9990343333333334,0.9770867430441899
9
+ ViT,h,0.2584120511338115,0.9401666666666667,0.9969072222222223,0.9432769789856218
10
+ ViT,i,0.08262255262583494,0.974,0.9991285555555557,0.9745347698334965
11
+ ViT,j,4.850409872978926,0.5285,0.5466985,0.17304881613563286
12
+ ViT,k,4.840981937706471,0.5258333333333334,0.6174096111111111,0.17224323537969158
13
+ ViT,l,1.707986980357526,0.8095817249220031,0.7775850352542502,0.6554396708448952
14
+ MLP-Mixer,a,0.3746531411129437,0.8808550770198051,0.9587697974217311,0.4669479606188467
15
+ MLP-Mixer,b,0.4263077380896289,0.8786545111600126,0.9555377532228361,0.4623955431754875
16
+ MLP-Mixer,c,0.7193417321657543,0.8101226029550456,0.9323139963167587,0.3547008547008547
17
+ MLP-Mixer,d,0.06999178051348941,0.9739075762338887,0.9913977900552486,0.8
18
+ MLP-Mixer,e,0.5372455838482937,0.8397365532381997,0.938428063271021,0.694560669456067
19
+ MLP-Mixer,f,0.40886121419995697,0.8808767717450237,0.9582961898851193,0.17754010695187167
20
+ MLP-Mixer,g,0.220160967502743,0.936,0.9966087777777778,0.9396036489462095
21
+ MLP-Mixer,h,0.3755178214646876,0.8996666666666666,0.9936971666666665,0.9084549878345499
22
+ MLP-Mixer,i,0.03125413155928254,0.9865,0.9996044444444444,0.9866226259289843
23
+ MLP-Mixer,j,4.689226661682129,0.45866666666666667,0.35093755555555556,0.07040641099026904
24
+ MLP-Mixer,k,4.50031984564662,0.5091666666666667,0.5708096111111112,0.0770918207458477
25
+ MLP-Mixer,l,1.7004726856614425,0.7658505631642959,0.7001407272343229,0.5967213114754099
26
+ CvT,a,0.7275567101967556,0.6862621817038667,0.8178130755064457,0.223950233281493
27
+ CvT,b,0.8674648388381725,0.6309336686576549,0.7877642725598526,0.19699042407660738
28
+ CvT,c,0.8444347186157517,0.6369066331342346,0.7903591160220995,0.1995841995841996
29
+ CvT,d,0.06786359480738227,0.9761081420936812,0.984121546961326,0.7912087912087912
30
+ CvT,e,1.079856214224965,0.544456641053787,0.714894422159994,0.4096728307254623
31
+ CvT,f,0.6667535994093697,0.7157462628766168,0.8375527856501153,0.07276402223345124
32
+ CvT,g,0.4902210609912872,0.7958333333333333,0.9368645,0.8262164846077458
33
+ CvT,h,0.4780112521648407,0.799,0.9404210555555556,0.8284495021337127
34
+ CvT,i,0.06629910692572594,0.9788333333333333,0.998182,0.9786590488993446
35
+ CvT,j,3.285769058704376,0.31566666666666665,0.11980044444444445,0.014875239923224568
36
+ CvT,k,2.8618470991551876,0.49866666666666665,0.5598825555555555,0.020195439739413682
37
+ CvT,l,1.3706902678378083,0.6442811062344667,0.5954304635509091,0.4785675529028757
38
+ Swin,a,0.17904385026568925,0.9320968248978309,0.9377541436464087,0.5573770491803278
39
+ Swin,b,0.16908444278234958,0.9302106255894372,0.9438968692449355,0.5506072874493927
40
+ Swin,c,0.3163154192856744,0.8805407104684062,0.9053370165745855,0.4171779141104294
41
+ Swin,d,0.05074489927894287,0.9833385727758567,0.9865469613259669,0.8369230769230769
42
+ Swin,e,0.4723492567023645,0.7859495060373216,0.8619995459017633,0.582441113490364
43
+ Swin,f,0.17172798980294332,0.9313763457516846,0.9387167824732112,0.23488773747841105
44
+ Swin,g,0.07050645374506712,0.9703333333333334,0.9997747777777777,0.971178756476684
45
+ Swin,h,0.14856340130418538,0.944,0.9992891111111111,0.9469529523208083
46
+ Swin,i,0.007766767971217632,0.9985,0.9999895555555555,0.9985017479607124
47
+ Swin,j,2.8674492346346376,0.485,0.43114961111111116,0.05330882352941176
48
+ Swin,k,2.804709552191198,0.5131666666666667,0.6342635555555556,0.056219709208400644
49
+ Swin,l,1.0054080692499547,0.7990587488763153,0.7133887608594007,0.6290511518937915
50
+ CaiT,a,0.4621231952897036,0.821754165356806,0.9297688766114179,0.36363636363636365
51
+ CaiT,b,0.258825070179322,0.9122917321596982,0.9613351749539596,0.5373134328358209
52
+ CaiT,c,0.8353647122552507,0.685004715498271,0.8978766114180479,0.24434389140271492
53
+ CaiT,d,0.031897671438732525,0.9902546369066332,0.9952596685082873,0.9126760563380282
54
+ CaiT,e,0.4524560969171618,0.8463227222832053,0.9379777491864074,0.6982758620689655
55
+ CaiT,f,0.4045827676295477,0.8495081713267756,0.9455966026222479,0.14292015880017644
56
+ CaiT,g,0.12979762570466846,0.9553333333333334,0.9989632222222222,0.9571337172104927
57
+ CaiT,h,0.43545972697343677,0.8348333333333333,0.9963943888888888,0.857921146953405
58
+ CaiT,i,0.009488287813030183,0.9966666666666667,0.9999612222222222,0.9966688874083944
59
+ CaiT,j,3.0854302213191986,0.4766666666666667,0.32313933333333333,0.07100591715976332
60
+ CaiT,k,2.9651209139451384,0.518,0.598769,0.07662835249042145
61
+ CaiT,l,1.2156231775795154,0.7445402146898631,0.6535540584867622,0.5754459970120397
62
+ DeiT,a,0.21973140770554805,0.9163784973278843,0.9421279926335173,0.5333333333333333
63
+ DeiT,b,0.18026995446669986,0.9349261238604213,0.9484125230202579,0.5949119373776908
64
+ DeiT,c,0.24070323096322999,0.9154353976736875,0.9384106813996317,0.5305410122164049
65
+ DeiT,d,0.045521379231525945,0.9877397044954417,0.9928232044198896,0.8862973760932945
66
+ DeiT,e,0.6630487046833227,0.7760702524698134,0.8773329296904565,0.5984251968503937
67
+ DeiT,f,0.1809546241546691,0.9326930524359074,0.9509643553098133,0.2591645353793691
68
+ DeiT,g,0.08131901465170085,0.9685,0.9991698888888889,0.9693530079455165
69
+ DeiT,h,0.11335872827284038,0.9581666666666667,0.9988661111111111,0.9597046074811366
70
+ DeiT,i,0.009879813833162188,0.9965,0.9999472222222223,0.9964994165694282
71
+ DeiT,j,3.730827052116394,0.49016666666666664,0.3371602222222222,0.07218683651804671
72
+ DeiT,k,3.6593878800719977,0.5181666666666667,0.7405100555555556,0.07606263982102908
73
+ DeiT,l,1.2843114430264382,0.8011210406641637,0.708836413391112,0.634179554518043
74
+ DeiT3,a,0.10351562584202569,0.9666771455517132,0.967061694290976,0.7309644670050761
75
+ DeiT3,b,0.10786095303265189,0.9651053127947187,0.9586629834254143,0.7218045112781954
76
+ DeiT3,c,0.12137072830127493,0.9622760138321282,0.9632596685082873,0.7058823529411765
77
+ DeiT3,d,0.05938508253192066,0.9852247720842502,0.9764714548802946,0.8597014925373134
78
+ DeiT3,e,0.2852305471569987,0.9198682766190999,0.9255581624158026,0.7977839335180056
79
+ DeiT3,f,0.06806116103929771,0.9760669196808922,0.9640239483015283,0.4824120603015075
80
+ DeiT3,g,0.03457943443208933,0.9858333333333333,0.9997122222222222,0.9859805376876134
81
+ DeiT3,h,0.04174186686426401,0.9843333333333333,0.99965,0.9845191040843215
82
+ DeiT3,i,0.00887914503365755,0.9965,0.9999582222222222,0.9964994165694282
83
+ DeiT3,j,3.737933710604906,0.519,0.5266332222222222,0.11526670754138565
84
+ DeiT3,k,3.71223342192173,0.5296666666666666,0.6497483333333334,0.11757348342714197
85
+ DeiT3,l,1.2237240775665559,0.8343821056527947,0.8068982843173076,0.6795580110497238
86
+ Twins_SVT,a,0.42038975148709157,0.8192392329456146,0.8869475138121546,0.33983926521239954
87
+ Twins_SVT,b,0.4005945102762254,0.8091795033008488,0.8857955801104973,0.327796234772979
88
+ Twins_SVT,c,0.4493913765093771,0.8054071046840616,0.87690423572744,0.32349726775956283
89
+ Twins_SVT,d,0.10364232180450968,0.9761081420936812,0.9843406998158379,0.7956989247311828
90
+ Twins_SVT,e,0.5988346448190649,0.70801317233809,0.8065163096949973,0.5266903914590747
91
+ Twins_SVT,f,0.3545602475236788,0.8442413445898846,0.9026489390789582,0.1283051582141309
92
+ Twins_SVT,g,0.2474187276363373,0.8956666666666667,0.9830134444444444,0.9040171726464274
93
+ Twins_SVT,h,0.273289222240448,0.8936666666666667,0.9851210555555556,0.9023569023569024
94
+ Twins_SVT,i,0.0899845923781395,0.9841666666666666,0.9985422222222222,0.9841428809881488
95
+ Twins_SVT,j,2.6232716159820555,0.4155,0.1803668888888889,0.03680307607800055
96
+ Twins_SVT,k,2.4658374714255333,0.504,0.3982547777777778,0.043086816720257236
97
+ Twins_SVT,l,1.027051387313659,0.7358151340489663,0.5966640795291248,0.5587352057940294
98
+ Twins_PCPVT,a,0.430052495628586,0.8000628733102798,0.8719401473296501,0.3041575492341357
99
+ Twins_PCPVT,b,0.3465015141235437,0.8560201194592896,0.9034383057090241,0.37771739130434784
100
+ Twins_PCPVT,c,0.4657778265396779,0.7752279157497642,0.857121546961326,0.2799597180261833
101
+ Twins_PCPVT,d,0.2879813692922751,0.9056900345803206,0.9308342541436465,0.4809688581314879
102
+ Twins_PCPVT,e,0.4774637080311906,0.7716794731064764,0.8551956406569287,0.5720164609053497
103
+ Twins_PCPVT,f,0.3843120121954025,0.8335527844473705,0.8887894780242434,0.11454470539761022
104
+ Twins_PCPVT,g,0.25515789008140566,0.9081666666666667,0.9717176666666667,0.9122751154274797
105
+ Twins_PCPVT,h,0.31839424538612365,0.8653333333333333,0.9604102222222224,0.8764148057509942
106
+ Twins_PCPVT,i,0.2241324300765991,0.9345,0.9829576666666666,0.9358157765801078
107
+ Twins_PCPVT,j,1.4245353891849517,0.49833333333333335,0.46813805555555554,0.21245421245421245
108
+ Twins_PCPVT,k,1.3935099244117737,0.5246666666666666,0.4594932222222222,0.22161572052401746
109
+ Twins_PCPVT,l,0.6877527087257096,0.7420548886891227,0.697346002300591,0.5830056419900838
110
+ PiT,a,0.45982032410006446,0.7887456774599183,0.924538674033149,0.3225806451612903
111
+ PiT,b,0.4223166468832261,0.8010059729644766,0.9304309392265193,0.3357817418677859
112
+ PiT,c,0.6344863635794392,0.7136120716755737,0.8947255985267035,0.25995125913891143
113
+ PiT,d,0.03659489378333092,0.9845960389814524,0.9966464088397791,0.8672086720867209
114
+ PiT,e,0.6467190528151494,0.7200878155872668,0.8809127374555362,0.5565217391304348
115
+ PiT,f,0.41419300931409125,0.8113236774843157,0.93339286411791,0.11611030478955008
116
+ PiT,g,0.22269588689506054,0.8966666666666666,0.9961491111111112,0.9061175045427013
117
+ PiT,h,0.3351811931580305,0.8503333333333334,0.9926552222222224,0.8695146759662888
118
+ PiT,i,0.018199062839150428,0.994,0.999871,0.9940199335548173
119
+ PiT,j,4.0110640263557436,0.4066666666666667,0.19481644444444443,0.028384279475982533
120
+ PiT,k,3.806567204385996,0.504,0.6367970000000001,0.033766233766233764
121
+ PiT,l,1.4887937803340863,0.7148749405108138,0.6321520235401981,0.5430508474576271
122
+ Ensemble,a,,0.9481295190191764,0.9716399631675874,0.656964656964657
123
+ Ensemble,b,,0.945300220056586,0.973926335174954,0.6448979591836734
124
+ Ensemble,c,,0.9022320025149324,0.9555580110497237,0.5039872408293461
125
+ Ensemble,d,,0.9905690034580321,0.9966666666666667,0.9132947976878613
126
+ Ensemble,e,,0.8737650933040615,0.9450768182850223,0.7331786542923434
127
+ Ensemble,f,,0.9455503059406708,0.9727634725471218,0.310107948969578
128
+ Ensemble,g,,0.9748333333333333,0.9997657777777778,0.9754511461550968
129
+ Ensemble,h,,0.952,0.9993787777777778,0.9541984732824428
130
+ Ensemble,i,,0.9988333333333334,0.999993888888889,0.9988346928583319
131
+ Ensemble,j,,0.4875,0.25661944444444446,0.04710257204834211
132
+ Ensemble,k,,0.5115,0.4922346666666667,0.04930262731106066
133
+ Ensemble,l,,0.8082068637301042,0.6421131491191425,0.6407132243684993
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:46c041bb0d95fabb8d6d9c3311a162287f1f02997a0caa74a3389c496f376a33
3
+ size 125239576
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:935c2d8b222977ead0026a69503106db45585d3b04150c95876d200528c37df5
3
+ size 125471131
roc_confusion_matrix/CvT_roc_confusion_matrix_a.png ADDED
roc_confusion_matrix/CvT_roc_confusion_matrix_b.png ADDED
roc_confusion_matrix/CvT_roc_confusion_matrix_c.png ADDED
roc_confusion_matrix/CvT_roc_confusion_matrix_d.png ADDED
roc_confusion_matrix/CvT_roc_confusion_matrix_e.png ADDED
roc_confusion_matrix/CvT_roc_confusion_matrix_f.png ADDED
roc_confusion_matrix/CvT_roc_confusion_matrix_g.png ADDED
roc_confusion_matrix/CvT_roc_confusion_matrix_h.png ADDED
roc_confusion_matrix/CvT_roc_confusion_matrix_i.png ADDED
roc_confusion_matrix/CvT_roc_confusion_matrix_j.png ADDED
roc_confusion_matrix/CvT_roc_confusion_matrix_k.png ADDED
roc_confusion_matrix/CvT_roc_confusion_matrix_l.png ADDED
roc_curves/CvT_ROC_a.png ADDED
roc_curves/CvT_ROC_b.png ADDED
roc_curves/CvT_ROC_c.png ADDED
roc_curves/CvT_ROC_d.png ADDED
roc_curves/CvT_ROC_e.png ADDED
roc_curves/CvT_ROC_f.png ADDED
roc_curves/CvT_ROC_g.png ADDED
roc_curves/CvT_ROC_h.png ADDED
roc_curves/CvT_ROC_i.png ADDED
roc_curves/CvT_ROC_j.png ADDED
roc_curves/CvT_ROC_k.png ADDED
roc_curves/CvT_ROC_l.png ADDED
training_curves/CvT_accuracy.png ADDED
training_curves/CvT_auc.png ADDED
training_curves/CvT_combined_metrics.png ADDED

Git LFS Details

  • SHA256: 4520b4b1cab00ef01aa2e2f6fb21301c6e5f76401e26713253c779f5ecf00537
  • Pointer size: 131 Bytes
  • Size of remote file: 161 kB
training_curves/CvT_f1.png ADDED
training_curves/CvT_loss.png ADDED
training_curves/CvT_metrics.csv ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ epoch,train_loss,val_loss,train_accuracy,val_accuracy,train_auc,val_auc,train_f1,val_f1
2
+ 1,0.5810069377974298,0.5488423731327057,0.6605037513397642,0.707,0.7442277688172969,0.817224,0.6562483043030007,0.7404782993799823
3
+ 2,0.44997175542871287,0.46011225509643555,0.7554662379421222,0.768,0.8611716101524545,0.888134,0.7574936224489796,0.7932263814616756
4
+ 3,0.4186917702293089,0.37896743416786194,0.7713022508038585,0.829,0.8799081450196384,0.9152499999999999,0.7756132187081,0.8372978116079924
5
+ 4,0.4023784536257434,0.35902694511413574,0.7809753483386924,0.847,0.8885943087735744,0.934978,0.7848041280539174,0.8589861751152074
6
+ 5,0.392730695105059,0.3683323709964752,0.7828242229367631,0.83,0.8931283723860955,0.9374279999999999,0.7838378450460062,0.8473967684021544
7
+ 6,0.38261979235713506,0.330795640707016,0.7921221864951768,0.863,0.8992497176874148,0.9402020000000001,0.795895816890292,0.8706326723323891
8
+ 7,0.3742205956357852,0.34796459555625914,0.7979903536977492,0.846,0.9044855032631085,0.9398340000000001,0.80232832533627,0.8576709796672828
9
+ 8,0.36936824618811775,0.35536236000061033,0.7991157556270096,0.843,0.906306558727336,0.9348200000000001,0.8024557982661853,0.8536812674743709
10
+ 9,0.3621403247980443,0.2982906231880188,0.804983922829582,0.875,0.9106292713061279,0.951416,0.8083728278041075,0.8812915479582146
11
+ 10,0.36013111201896547,0.3295904839038849,0.8042068595927117,0.863,0.9113218303160637,0.937846,0.8059899636247776,0.8678881388621023
12
+ 11,0.3544689358622315,0.3333071744441986,0.8099142550911039,0.859,0.9148217553581952,0.9414099999999999,0.8105032588951812,0.8671065032987747
13
+ 12,0.35769600682319935,0.2905820226669312,0.8037781350482315,0.879,0.9119931885985922,0.955086,0.8015070609600737,0.8855250709555346
14
+ 13,0.34610839990174275,0.29659646236896514,0.8141747052518756,0.881,0.9185031961920254,0.951722,0.8152883206818484,0.8861244019138756
15
+ 14,0.3476408286876617,0.27957506382465364,0.8106377277599143,0.887,0.9169516185730089,0.955234,0.8111589129679608,0.8903976721629486
16
+ 15,0.3429360215111944,0.282425630569458,0.8120578778135048,0.883,0.9190525928529827,0.9546779999999999,0.8127602776294715,0.8865179437439379
17
+ 16,0.3383608748100195,0.27267832922935487,0.8131028938906752,0.882,0.9209398108419521,0.9545380000000001,0.8142328281886702,0.8805668016194332
18
+ 17,0.34067110904160036,0.2762571161985397,0.8102625937834941,0.878,0.9197575227831714,0.9536240000000001,0.8129045895315349,0.8784860557768924
19
+ 18,0.3386077652406846,0.27553155159950254,0.8138799571275456,0.88,0.9208016528640799,0.957288,0.815147966787311,0.884393063583815
20
+ 19,0.33532541957698836,0.2967168786525726,0.817524115755627,0.878,0.9228272442270954,0.954898,0.8190177527373232,0.8838095238095238
21
+ 20,0.33647846801871273,0.2837833144664764,0.8193997856377278,0.887,0.9231991415170094,0.9583780000000001,0.8198342689120556,0.8914505283381364
22
+ 21,0.33475628357224907,0.28021864235401156,0.817443729903537,0.882,0.9232771867306766,0.9580420000000001,0.8183151550708019,0.8874045801526718
23
+ 22,0.3317486240932796,0.275274400472641,0.8180600214362272,0.889,0.9242578926902005,0.9577439999999999,0.8156193993374247,0.892128279883382
24
+ 23,0.3271151032286825,0.2775604016780853,0.8197481243301179,0.88,0.9259947986131932,0.956974,0.8167079916078581,0.884393063583815
25
+ 24,0.3243635906475533,0.24242133009433747,0.8238745980707396,0.91,0.9281524766539268,0.9651259999999999,0.8226628895184136,0.9105367793240556
26
+ 25,0.32931717041987696,0.2727523832321167,0.8185959271168275,0.878,0.9251302141669797,0.9598240000000001,0.8172739541160594,0.882466281310212
27
+ 26,0.32261106762855385,0.25530711317062377,0.8246248660235799,0.893,0.9286778063823897,0.9614119999999999,0.82436602710318,0.8949950932286556
28
+ 27,0.32507631826630745,0.271099805355072,0.8219453376205788,0.887,0.9270628850565601,0.959052,0.8241365621278285,0.8906098741529526
29
+ 28,0.32730844655220914,0.24925938618183135,0.8191318327974276,0.896,0.9257626991840218,0.963342,0.822284239903112,0.8974358974358975
30
+ 29,0.3232409065559363,0.27019736969470975,0.8252947481243301,0.889,0.9286461445808045,0.958164,0.8293908310655222,0.8919182083739046
31
+ 30,0.31966163585040347,0.27033305168151855,0.82497320471597,0.89,0.9298085013136295,0.957322,0.8245783650230959,0.8923679060665362
32
+ 31,0.3227184886526065,0.25729180419445036,0.8219453376205788,0.889,0.9282415386639005,0.96024,0.8253751346805771,0.8906403940886699
33
+ 32,0.32393497426026885,0.26746924781799314,0.8223740621650589,0.887,0.9276935377701498,0.959782,0.8256122905321863,0.8899707887049659
34
+ 33,0.3178728149443194,0.2603160631656647,0.8279474812433012,0.888,0.9308012536631709,0.9620060000000001,0.8303073548455298,0.8916827852998066
35
+ 34,0.31903316974639895,0.2615310963392258,0.8244372990353698,0.893,0.9296174793707905,0.959944,0.8256426632604184,0.8945812807881773
36
+ 35,0.3216844116376527,0.2946858558654785,0.8233922829581993,0.884,0.9286307107269594,0.9549899999999999,0.8241790487368954,0.8888888888888888
37
+ 36,0.32555744155426886,0.24786870670318603,0.8229635584137192,0.904,0.9272817232612933,0.9630860000000001,0.8230062417959227,0.904572564612326
38
+ 37,0.3198907693482672,0.25034555172920225,0.8254555198285102,0.904,0.929600132798921,0.96349,0.825174449812131,0.9058823529411765
39
+ 38,0.32117122620631644,0.2737807540893555,0.8222668810289389,0.878,0.9286592406681762,0.958818,0.8230020013342229,0.8826923076923077
40
+ 39,0.3230648726704036,0.2672017843723297,0.8208735262593784,0.89,0.9275104553302799,0.960638,0.8218805787215901,0.8932038834951457
41
+ 40,0.31986991155569194,0.2768093681335449,0.8238745980707396,0.881,0.9293863463524524,0.957876,0.8238981915606162,0.8848015488867377
42
+ 41,0.31857546941643744,0.2584452579021454,0.8280278670953912,0.891,0.930821914464169,0.95993,0.8273431615194232,0.8921859545004945
43
+ 42,0.3232113939581193,0.26418426156044006,0.8235262593783494,0.883,0.9284273738668725,0.962722,0.822441496818721,0.8882521489971347
44
+ 43,0.31843074629161133,0.2844834225177765,0.8257502679528403,0.876,0.9304397198011692,0.956348,0.8254649883249685,0.8807692307692307
45
+ 44,0.32233591386359606,0.24970791351795196,0.8233118971061093,0.897,0.9284944467994426,0.963794,0.8231981981981982,0.8987217305801377
training_metrics.csv ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ epoch,train_loss,val_loss,train_accuracy,val_accuracy,train_auc,val_auc,train_f1,val_f1
2
+ 1,0.5810069377974298,0.5488423731327057,0.6605037513397642,0.707,0.7442277688172969,0.817224,0.6562483043030007,0.7404782993799823
3
+ 2,0.44997175542871287,0.46011225509643555,0.7554662379421222,0.768,0.8611716101524545,0.888134,0.7574936224489796,0.7932263814616756
4
+ 3,0.4186917702293089,0.37896743416786194,0.7713022508038585,0.829,0.8799081450196384,0.9152499999999999,0.7756132187081,0.8372978116079924
5
+ 4,0.4023784536257434,0.35902694511413574,0.7809753483386924,0.847,0.8885943087735744,0.934978,0.7848041280539174,0.8589861751152074
6
+ 5,0.392730695105059,0.3683323709964752,0.7828242229367631,0.83,0.8931283723860955,0.9374279999999999,0.7838378450460062,0.8473967684021544
7
+ 6,0.38261979235713506,0.330795640707016,0.7921221864951768,0.863,0.8992497176874148,0.9402020000000001,0.795895816890292,0.8706326723323891
8
+ 7,0.3742205956357852,0.34796459555625914,0.7979903536977492,0.846,0.9044855032631085,0.9398340000000001,0.80232832533627,0.8576709796672828
9
+ 8,0.36936824618811775,0.35536236000061033,0.7991157556270096,0.843,0.906306558727336,0.9348200000000001,0.8024557982661853,0.8536812674743709
10
+ 9,0.3621403247980443,0.2982906231880188,0.804983922829582,0.875,0.9106292713061279,0.951416,0.8083728278041075,0.8812915479582146
11
+ 10,0.36013111201896547,0.3295904839038849,0.8042068595927117,0.863,0.9113218303160637,0.937846,0.8059899636247776,0.8678881388621023
12
+ 11,0.3544689358622315,0.3333071744441986,0.8099142550911039,0.859,0.9148217553581952,0.9414099999999999,0.8105032588951812,0.8671065032987747
13
+ 12,0.35769600682319935,0.2905820226669312,0.8037781350482315,0.879,0.9119931885985922,0.955086,0.8015070609600737,0.8855250709555346
14
+ 13,0.34610839990174275,0.29659646236896514,0.8141747052518756,0.881,0.9185031961920254,0.951722,0.8152883206818484,0.8861244019138756
15
+ 14,0.3476408286876617,0.27957506382465364,0.8106377277599143,0.887,0.9169516185730089,0.955234,0.8111589129679608,0.8903976721629486
16
+ 15,0.3429360215111944,0.282425630569458,0.8120578778135048,0.883,0.9190525928529827,0.9546779999999999,0.8127602776294715,0.8865179437439379
17
+ 16,0.3383608748100195,0.27267832922935487,0.8131028938906752,0.882,0.9209398108419521,0.9545380000000001,0.8142328281886702,0.8805668016194332
18
+ 17,0.34067110904160036,0.2762571161985397,0.8102625937834941,0.878,0.9197575227831714,0.9536240000000001,0.8129045895315349,0.8784860557768924
19
+ 18,0.3386077652406846,0.27553155159950254,0.8138799571275456,0.88,0.9208016528640799,0.957288,0.815147966787311,0.884393063583815
20
+ 19,0.33532541957698836,0.2967168786525726,0.817524115755627,0.878,0.9228272442270954,0.954898,0.8190177527373232,0.8838095238095238
21
+ 20,0.33647846801871273,0.2837833144664764,0.8193997856377278,0.887,0.9231991415170094,0.9583780000000001,0.8198342689120556,0.8914505283381364
22
+ 21,0.33475628357224907,0.28021864235401156,0.817443729903537,0.882,0.9232771867306766,0.9580420000000001,0.8183151550708019,0.8874045801526718
23
+ 22,0.3317486240932796,0.275274400472641,0.8180600214362272,0.889,0.9242578926902005,0.9577439999999999,0.8156193993374247,0.892128279883382
24
+ 23,0.3271151032286825,0.2775604016780853,0.8197481243301179,0.88,0.9259947986131932,0.956974,0.8167079916078581,0.884393063583815
25
+ 24,0.3243635906475533,0.24242133009433747,0.8238745980707396,0.91,0.9281524766539268,0.9651259999999999,0.8226628895184136,0.9105367793240556
26
+ 25,0.32931717041987696,0.2727523832321167,0.8185959271168275,0.878,0.9251302141669797,0.9598240000000001,0.8172739541160594,0.882466281310212
27
+ 26,0.32261106762855385,0.25530711317062377,0.8246248660235799,0.893,0.9286778063823897,0.9614119999999999,0.82436602710318,0.8949950932286556
28
+ 27,0.32507631826630745,0.271099805355072,0.8219453376205788,0.887,0.9270628850565601,0.959052,0.8241365621278285,0.8906098741529526
29
+ 28,0.32730844655220914,0.24925938618183135,0.8191318327974276,0.896,0.9257626991840218,0.963342,0.822284239903112,0.8974358974358975
30
+ 29,0.3232409065559363,0.27019736969470975,0.8252947481243301,0.889,0.9286461445808045,0.958164,0.8293908310655222,0.8919182083739046
31
+ 30,0.31966163585040347,0.27033305168151855,0.82497320471597,0.89,0.9298085013136295,0.957322,0.8245783650230959,0.8923679060665362
32
+ 31,0.3227184886526065,0.25729180419445036,0.8219453376205788,0.889,0.9282415386639005,0.96024,0.8253751346805771,0.8906403940886699
33
+ 32,0.32393497426026885,0.26746924781799314,0.8223740621650589,0.887,0.9276935377701498,0.959782,0.8256122905321863,0.8899707887049659
34
+ 33,0.3178728149443194,0.2603160631656647,0.8279474812433012,0.888,0.9308012536631709,0.9620060000000001,0.8303073548455298,0.8916827852998066
35
+ 34,0.31903316974639895,0.2615310963392258,0.8244372990353698,0.893,0.9296174793707905,0.959944,0.8256426632604184,0.8945812807881773
36
+ 35,0.3216844116376527,0.2946858558654785,0.8233922829581993,0.884,0.9286307107269594,0.9549899999999999,0.8241790487368954,0.8888888888888888
37
+ 36,0.32555744155426886,0.24786870670318603,0.8229635584137192,0.904,0.9272817232612933,0.9630860000000001,0.8230062417959227,0.904572564612326
38
+ 37,0.3198907693482672,0.25034555172920225,0.8254555198285102,0.904,0.929600132798921,0.96349,0.825174449812131,0.9058823529411765
39
+ 38,0.32117122620631644,0.2737807540893555,0.8222668810289389,0.878,0.9286592406681762,0.958818,0.8230020013342229,0.8826923076923077
40
+ 39,0.3230648726704036,0.2672017843723297,0.8208735262593784,0.89,0.9275104553302799,0.960638,0.8218805787215901,0.8932038834951457
41
+ 40,0.31986991155569194,0.2768093681335449,0.8238745980707396,0.881,0.9293863463524524,0.957876,0.8238981915606162,0.8848015488867377
42
+ 41,0.31857546941643744,0.2584452579021454,0.8280278670953912,0.891,0.930821914464169,0.95993,0.8273431615194232,0.8921859545004945
43
+ 42,0.3232113939581193,0.26418426156044006,0.8235262593783494,0.883,0.9284273738668725,0.962722,0.822441496818721,0.8882521489971347
44
+ 43,0.31843074629161133,0.2844834225177765,0.8257502679528403,0.876,0.9304397198011692,0.956348,0.8254649883249685,0.8807692307692307
45
+ 44,0.32233591386359606,0.24970791351795196,0.8233118971061093,0.897,0.9284944467994426,0.963794,0.8231981981981982,0.8987217305801377