parlange commited on
Commit
63b9bb2
·
verified ·
1 Parent(s): 9dce2b9

Upload Twins_SVT model from experiment c2

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +2 -0
  2. README.md +166 -0
  3. config.json +76 -0
  4. confusion_matrices/Twins_SVT_Confusion_Matrix_a.png +0 -0
  5. confusion_matrices/Twins_SVT_Confusion_Matrix_b.png +0 -0
  6. confusion_matrices/Twins_SVT_Confusion_Matrix_c.png +0 -0
  7. confusion_matrices/Twins_SVT_Confusion_Matrix_d.png +0 -0
  8. confusion_matrices/Twins_SVT_Confusion_Matrix_e.png +0 -0
  9. confusion_matrices/Twins_SVT_Confusion_Matrix_f.png +0 -0
  10. confusion_matrices/Twins_SVT_Confusion_Matrix_g.png +0 -0
  11. confusion_matrices/Twins_SVT_Confusion_Matrix_h.png +0 -0
  12. confusion_matrices/Twins_SVT_Confusion_Matrix_i.png +0 -0
  13. confusion_matrices/Twins_SVT_Confusion_Matrix_j.png +0 -0
  14. confusion_matrices/Twins_SVT_Confusion_Matrix_k.png +0 -0
  15. confusion_matrices/Twins_SVT_Confusion_Matrix_l.png +0 -0
  16. evaluation_results.csv +133 -0
  17. model.safetensors +3 -0
  18. pytorch_model.bin +3 -0
  19. roc_confusion_matrix/Twins_SVT_roc_confusion_matrix_a.png +0 -0
  20. roc_confusion_matrix/Twins_SVT_roc_confusion_matrix_b.png +0 -0
  21. roc_confusion_matrix/Twins_SVT_roc_confusion_matrix_c.png +0 -0
  22. roc_confusion_matrix/Twins_SVT_roc_confusion_matrix_d.png +0 -0
  23. roc_confusion_matrix/Twins_SVT_roc_confusion_matrix_e.png +0 -0
  24. roc_confusion_matrix/Twins_SVT_roc_confusion_matrix_f.png +0 -0
  25. roc_confusion_matrix/Twins_SVT_roc_confusion_matrix_g.png +0 -0
  26. roc_confusion_matrix/Twins_SVT_roc_confusion_matrix_h.png +0 -0
  27. roc_confusion_matrix/Twins_SVT_roc_confusion_matrix_i.png +0 -0
  28. roc_confusion_matrix/Twins_SVT_roc_confusion_matrix_j.png +0 -0
  29. roc_confusion_matrix/Twins_SVT_roc_confusion_matrix_k.png +0 -0
  30. roc_confusion_matrix/Twins_SVT_roc_confusion_matrix_l.png +0 -0
  31. roc_curves/Twins_SVT_ROC_a.png +0 -0
  32. roc_curves/Twins_SVT_ROC_b.png +0 -0
  33. roc_curves/Twins_SVT_ROC_c.png +0 -0
  34. roc_curves/Twins_SVT_ROC_d.png +0 -0
  35. roc_curves/Twins_SVT_ROC_e.png +0 -0
  36. roc_curves/Twins_SVT_ROC_f.png +0 -0
  37. roc_curves/Twins_SVT_ROC_g.png +0 -0
  38. roc_curves/Twins_SVT_ROC_h.png +0 -0
  39. roc_curves/Twins_SVT_ROC_i.png +0 -0
  40. roc_curves/Twins_SVT_ROC_j.png +0 -0
  41. roc_curves/Twins_SVT_ROC_k.png +0 -0
  42. roc_curves/Twins_SVT_ROC_l.png +0 -0
  43. training_curves/Twins_SVT_accuracy.png +0 -0
  44. training_curves/Twins_SVT_auc.png +0 -0
  45. training_curves/Twins_SVT_combined_metrics.png +3 -0
  46. training_curves/Twins_SVT_f1.png +0 -0
  47. training_curves/Twins_SVT_loss.png +0 -0
  48. training_curves/Twins_SVT_metrics.csv +101 -0
  49. training_metrics.csv +101 -0
  50. training_notebook_c2.ipynb +3 -0
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ training_curves/Twins_SVT_combined_metrics.png filter=lfs diff=lfs merge=lfs -text
37
+ training_notebook_c2.ipynb filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,166 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - image-classification
5
+ - pytorch
6
+ - timm
7
+ - twins_svt
8
+ - vision-transformer
9
+ - transformer
10
+ - gravitational-lensing
11
+ - strong-lensing
12
+ - astronomy
13
+ - astrophysics
14
+ datasets:
15
+ - parlange/gravit-c21-j24
16
+ metrics:
17
+ - accuracy
18
+ - auc
19
+ - f1
20
+ paper:
21
+ - title: "GraViT: A Gravitational Lens Discovery Toolkit with Vision Transformers"
22
+ url: "https://arxiv.org/abs/2509.00226"
23
+ authors: "Parlange et al."
24
+ model-index:
25
+ - name: Twins_SVT-c2
26
+ results:
27
+ - task:
28
+ type: image-classification
29
+ name: Strong Gravitational Lens Discovery
30
+ dataset:
31
+ type: common-test-sample
32
+ name: Common Test Sample (More et al. 2024)
33
+ metrics:
34
+ - type: accuracy
35
+ value: 0.8012
36
+ name: Average Accuracy
37
+ - type: auc
38
+ value: 0.8481
39
+ name: Average AUC-ROC
40
+ - type: f1
41
+ value: 0.5502
42
+ name: Average F1-Score
43
+ ---
44
+
45
+ # 🌌 twins_svt-gravit-c2
46
+
47
+ 🔭 This model is part of **GraViT**: Transfer Learning with Vision Transformers and MLP-Mixer for Strong Gravitational Lens Discovery
48
+
49
+ 🔗 **GitHub Repository**: [https://github.com/parlange/gravit](https://github.com/parlange/gravit)
50
+
51
+ ## 🛰️ Model Details
52
+
53
+ - **🤖 Model Type**: Twins_SVT
54
+ - **🧪 Experiment**: C2 - C21+J24-half
55
+ - **🌌 Dataset**: C21+J24
56
+ - **🪐 Fine-tuning Strategy**: half
57
+
58
+
59
+
60
+ ## 💻 Quick Start
61
+
62
+ ```python
63
+ import torch
64
+ import timm
65
+
66
+ # Load the model directly from the Hub
67
+ model = timm.create_model(
68
+ 'hf-hub:parlange/twins_svt-gravit-c2',
69
+ pretrained=True
70
+ )
71
+ model.eval()
72
+
73
+ # Example inference
74
+ dummy_input = torch.randn(1, 3, 224, 224)
75
+ with torch.no_grad():
76
+ output = model(dummy_input)
77
+ predictions = torch.softmax(output, dim=1)
78
+ print(f"Lens probability: {predictions[0][1]:.4f}")
79
+ ```
80
+
81
+ ## ⚡️ Training Configuration
82
+
83
+ **Training Dataset:** C21+J24 (Cañameras et al. 2021 + Jaelani et al. 2024)
84
+ **Fine-tuning Strategy:** half
85
+
86
+
87
+ | 🔧 Parameter | 📝 Value |
88
+ |--------------|----------|
89
+ | Batch Size | 192 |
90
+ | Learning Rate | AdamW with ReduceLROnPlateau |
91
+ | Epochs | 100 |
92
+ | Patience | 10 |
93
+ | Optimizer | AdamW |
94
+ | Scheduler | ReduceLROnPlateau |
95
+ | Image Size | 224x224 |
96
+ | Fine Tune Mode | half |
97
+ | Stochastic Depth Probability | 0.1 |
98
+
99
+
100
+ ## 📈 Training Curves
101
+
102
+ ![Combined Training Metrics](https://huggingface.co/parlange/twins_svt-gravit-c2/resolve/main/training_curves/Twins_SVT_combined_metrics.png)
103
+
104
+
105
+ ## 🏁 Final Epoch Training Metrics
106
+
107
+ | Metric | Training | Validation |
108
+ |:---------:|:-----------:|:-------------:|
109
+ | 📉 Loss | 0.2950 | 0.2921 |
110
+ | 🎯 Accuracy | 0.8781 | 0.8943 |
111
+ | 📊 AUC-ROC | 0.9481 | 0.9535 |
112
+ | ⚖️ F1 Score | 0.8778 | 0.8953 |
113
+
114
+
115
+ ## ☑️ Evaluation Results
116
+
117
+ ### ROC Curves and Confusion Matrices
118
+
119
+ Performance across all test datasets (a through l) in the Common Test Sample (More et al. 2024):
120
+
121
+ ![ROC + Confusion Matrix - Dataset A](https://huggingface.co/parlange/twins_svt-gravit-c2/resolve/main/roc_confusion_matrix/Twins_SVT_roc_confusion_matrix_a.png)
122
+ ![ROC + Confusion Matrix - Dataset B](https://huggingface.co/parlange/twins_svt-gravit-c2/resolve/main/roc_confusion_matrix/Twins_SVT_roc_confusion_matrix_b.png)
123
+ ![ROC + Confusion Matrix - Dataset C](https://huggingface.co/parlange/twins_svt-gravit-c2/resolve/main/roc_confusion_matrix/Twins_SVT_roc_confusion_matrix_c.png)
124
+ ![ROC + Confusion Matrix - Dataset D](https://huggingface.co/parlange/twins_svt-gravit-c2/resolve/main/roc_confusion_matrix/Twins_SVT_roc_confusion_matrix_d.png)
125
+ ![ROC + Confusion Matrix - Dataset E](https://huggingface.co/parlange/twins_svt-gravit-c2/resolve/main/roc_confusion_matrix/Twins_SVT_roc_confusion_matrix_e.png)
126
+ ![ROC + Confusion Matrix - Dataset F](https://huggingface.co/parlange/twins_svt-gravit-c2/resolve/main/roc_confusion_matrix/Twins_SVT_roc_confusion_matrix_f.png)
127
+ ![ROC + Confusion Matrix - Dataset G](https://huggingface.co/parlange/twins_svt-gravit-c2/resolve/main/roc_confusion_matrix/Twins_SVT_roc_confusion_matrix_g.png)
128
+ ![ROC + Confusion Matrix - Dataset H](https://huggingface.co/parlange/twins_svt-gravit-c2/resolve/main/roc_confusion_matrix/Twins_SVT_roc_confusion_matrix_h.png)
129
+ ![ROC + Confusion Matrix - Dataset I](https://huggingface.co/parlange/twins_svt-gravit-c2/resolve/main/roc_confusion_matrix/Twins_SVT_roc_confusion_matrix_i.png)
130
+ ![ROC + Confusion Matrix - Dataset J](https://huggingface.co/parlange/twins_svt-gravit-c2/resolve/main/roc_confusion_matrix/Twins_SVT_roc_confusion_matrix_j.png)
131
+ ![ROC + Confusion Matrix - Dataset K](https://huggingface.co/parlange/twins_svt-gravit-c2/resolve/main/roc_confusion_matrix/Twins_SVT_roc_confusion_matrix_k.png)
132
+ ![ROC + Confusion Matrix - Dataset L](https://huggingface.co/parlange/twins_svt-gravit-c2/resolve/main/roc_confusion_matrix/Twins_SVT_roc_confusion_matrix_l.png)
133
+
134
+ ### 📋 Performance Summary
135
+
136
+ Average performance across 12 test datasets from the Common Test Sample (More et al. 2024):
137
+
138
+ | Metric | Value |
139
+ |-----------|----------|
140
+ | 🎯 Average Accuracy | 0.8012 |
141
+ | 📈 Average AUC-ROC | 0.8481 |
142
+ | ⚖�� Average F1-Score | 0.5502 |
143
+
144
+
145
+ ## 📘 Citation
146
+
147
+ If you use this model in your research, please cite:
148
+
149
+ ```bibtex
150
+ @misc{parlange2025gravit,
151
+ title={GraViT: Transfer Learning with Vision Transformers and MLP-Mixer for Strong Gravitational Lens Discovery},
152
+ author={René Parlange and Juan C. Cuevas-Tello and Octavio Valenzuela and Omar de J. Cabrera-Rosas and Tomás Verdugo and Anupreeta More and Anton T. Jaelani},
153
+ year={2025},
154
+ eprint={2509.00226},
155
+ archivePrefix={arXiv},
156
+ primaryClass={cs.CV},
157
+ url={https://arxiv.org/abs/2509.00226},
158
+ }
159
+ ```
160
+
161
+ ---
162
+
163
+
164
+ ## Model Card Contact
165
+
166
+ For questions about this model, please contact the author through: https://github.com/parlange/
config.json ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architecture": "vit_base_patch16_224",
3
+ "num_classes": 2,
4
+ "num_features": 1000,
5
+ "global_pool": "avg",
6
+ "crop_pct": 0.875,
7
+ "interpolation": "bicubic",
8
+ "mean": [
9
+ 0.485,
10
+ 0.456,
11
+ 0.406
12
+ ],
13
+ "std": [
14
+ 0.229,
15
+ 0.224,
16
+ 0.225
17
+ ],
18
+ "first_conv": "conv1",
19
+ "classifier": "fc",
20
+ "input_size": [
21
+ 3,
22
+ 224,
23
+ 224
24
+ ],
25
+ "pool_size": [
26
+ 7,
27
+ 7
28
+ ],
29
+ "pretrained_cfg": {
30
+ "tag": "gravit_c2",
31
+ "custom_load": false,
32
+ "input_size": [
33
+ 3,
34
+ 224,
35
+ 224
36
+ ],
37
+ "fixed_input_size": true,
38
+ "interpolation": "bicubic",
39
+ "crop_pct": 0.875,
40
+ "crop_mode": "center",
41
+ "mean": [
42
+ 0.485,
43
+ 0.456,
44
+ 0.406
45
+ ],
46
+ "std": [
47
+ 0.229,
48
+ 0.224,
49
+ 0.225
50
+ ],
51
+ "num_classes": 2,
52
+ "pool_size": [
53
+ 7,
54
+ 7
55
+ ],
56
+ "first_conv": "conv1",
57
+ "classifier": "fc"
58
+ },
59
+ "model_name": "twins_svt_gravit_c2",
60
+ "experiment": "c2",
61
+ "training_strategy": "half",
62
+ "dataset": "C21+J24",
63
+ "hyperparameters": {
64
+ "batch_size": "192",
65
+ "learning_rate": "AdamW with ReduceLROnPlateau",
66
+ "epochs": "100",
67
+ "patience": "10",
68
+ "optimizer": "AdamW",
69
+ "scheduler": "ReduceLROnPlateau",
70
+ "image_size": "224x224",
71
+ "fine_tune_mode": "half",
72
+ "stochastic_depth_probability": "0.1"
73
+ },
74
+ "hf_hub_id": "parlange/twins_svt-gravit-c2",
75
+ "license": "apache-2.0"
76
+ }
confusion_matrices/Twins_SVT_Confusion_Matrix_a.png ADDED
confusion_matrices/Twins_SVT_Confusion_Matrix_b.png ADDED
confusion_matrices/Twins_SVT_Confusion_Matrix_c.png ADDED
confusion_matrices/Twins_SVT_Confusion_Matrix_d.png ADDED
confusion_matrices/Twins_SVT_Confusion_Matrix_e.png ADDED
confusion_matrices/Twins_SVT_Confusion_Matrix_f.png ADDED
confusion_matrices/Twins_SVT_Confusion_Matrix_g.png ADDED
confusion_matrices/Twins_SVT_Confusion_Matrix_h.png ADDED
confusion_matrices/Twins_SVT_Confusion_Matrix_i.png ADDED
confusion_matrices/Twins_SVT_Confusion_Matrix_j.png ADDED
confusion_matrices/Twins_SVT_Confusion_Matrix_k.png ADDED
confusion_matrices/Twins_SVT_Confusion_Matrix_l.png ADDED
evaluation_results.csv ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Model,Dataset,Loss,Accuracy,AUCROC,F1
2
+ ViT,a,0.35447569389258865,0.8949115044247787,0.9020846228498507,0.7480106100795756
3
+ ViT,b,0.2228443425890036,0.9264382269726501,0.9263609576427256,0.5465116279069767
4
+ ViT,c,0.46229862214933587,0.8349575605155611,0.8684438305709024,0.34944237918215615
5
+ ViT,d,0.11673173789463115,0.9537881169443572,0.9704917127071824,0.6573426573426573
6
+ ViT,e,0.3652098159562351,0.8825466520307355,0.920767426019829,0.7249357326478149
7
+ ViT,f,0.24608832064126923,0.9108519842016175,0.9203345361214339,0.22926829268292684
8
+ ViT,g,0.10483654439449311,0.9635,0.997473,0.9644999189495866
9
+ ViT,h,0.23178722894191742,0.915,0.9939590555555555,0.9210526315789473
10
+ ViT,i,0.04857917896906535,0.978,0.9990572222222223,0.9782966129562644
11
+ ViT,j,2.494326035181681,0.6106666666666667,0.5831323333333334,0.42349457058242845
12
+ ViT,k,2.4380686638752618,0.6251666666666666,0.7805802777777779,0.43278688524590164
13
+ ViT,l,1.0272723743838732,0.8127329565949261,0.7993805230717175,0.7184308053873272
14
+ MLP-Mixer,a,1.230455079964832,0.6227876106194691,0.8958911227772556,0.49028400597907323
15
+ MLP-Mixer,b,1.0728926989350893,0.7004086765168186,0.9182900552486188,0.25604996096799376
16
+ MLP-Mixer,c,1.374837134027586,0.5576862621817039,0.8979152854511969,0.18904899135446687
17
+ MLP-Mixer,d,0.09552026474693218,0.9603898145237346,0.9868913443830571,0.7224669603524229
18
+ MLP-Mixer,e,0.9593323631422711,0.7069154774972558,0.9188677817301143,0.5512605042016807
19
+ MLP-Mixer,f,0.9257462782946794,0.7154410381794245,0.9306221006103087,0.09779367918902802
20
+ MLP-Mixer,g,0.5643243643840155,0.8425,0.991425611111111,0.8635773061931572
21
+ MLP-Mixer,h,0.7244052359660467,0.7668333333333334,0.9891666111111111,0.8104592873594364
22
+ MLP-Mixer,i,0.04615406060218811,0.9803333333333333,0.9994367777777778,0.980655737704918
23
+ MLP-Mixer,j,3.0292422666549683,0.45216666666666666,0.392282,0.28309705561613957
24
+ MLP-Mixer,k,2.5110719747940697,0.59,0.7661271111111111,0.3453964874933475
25
+ MLP-Mixer,l,1.4846716919555334,0.6762053625105207,0.7295511702036557,0.5855010004617516
26
+ CvT,a,0.7465745627352621,0.6493362831858407,0.7317079694031161,0.4389380530973451
27
+ CvT,b,0.7336456650122649,0.6765168186104998,0.7552670349907918,0.1942051683633516
28
+ CvT,c,0.8642418710588097,0.5919522162841874,0.6964806629834255,0.16041397153945666
29
+ CvT,d,0.06205783033066015,0.9761081420936812,0.9876427255985267,0.7654320987654321
30
+ CvT,e,0.6019917449757506,0.7178924259055982,0.7936123514720351,0.4910891089108911
31
+ CvT,f,0.5685286294680824,0.7414895617829603,0.8061353821076506,0.08274941608274941
32
+ CvT,g,0.4509977758725484,0.8055,0.9201512777777776,0.8277999114652501
33
+ CvT,h,0.5202355206807454,0.7606666666666667,0.9072719444444444,0.7961964235026966
34
+ CvT,i,0.09494428576032321,0.9643333333333334,0.9977035555555557,0.9632554945054945
35
+ CvT,j,2.988422914981842,0.3456666666666667,0.14668444444444442,0.022896963663514187
36
+ CvT,k,2.6323694267769655,0.5045,0.6181494444444444,0.0300163132137031
37
+ CvT,l,1.337245315202257,0.645425033064807,0.6032419706344807,0.5021944632005402
38
+ Swin,a,0.47572549887463056,0.8407079646017699,0.905882487792577,0.6742081447963801
39
+ Swin,b,0.24361524523634911,0.9163784973278843,0.9362615101289135,0.5283687943262412
40
+ Swin,c,0.4370936370240709,0.8535051870480981,0.9087605893186003,0.3900523560209424
41
+ Swin,d,0.038348094671021904,0.9880540710468406,0.9911620626151013,0.8869047619047619
42
+ Swin,e,0.3579506372581067,0.8781558726673985,0.9260273972602739,0.7286063569682152
43
+ Swin,f,0.24650774364781286,0.9156479217603912,0.9413092437445593,0.24937238493723848
44
+ Swin,g,0.11494702147444089,0.9593333333333334,0.9989898888888888,0.9607969151670951
45
+ Swin,h,0.2175228010714054,0.926,0.9979807777777777,0.9308841843088418
46
+ Swin,i,0.006121216081082821,0.9973333333333333,0.9999798888888889,0.9973315543695798
47
+ Swin,j,2.5422419211069744,0.5825,0.4893003333333333,0.3679031037093111
48
+ Swin,k,2.433416116627554,0.6205,0.7913794999999999,0.39036144578313253
49
+ Swin,l,1.035569912688268,0.8089455332451605,0.7797953948083542,0.7088143668682426
50
+ CaiT,a,0.3509529214517205,0.9081858407079646,0.8966973093999068,0.7726027397260274
51
+ CaiT,b,0.1907231829655279,0.9380697893744105,0.9234548802946593,0.5887265135699373
52
+ CaiT,c,0.3048490960337163,0.90883370009431,0.8791160220994475,0.493006993006993
53
+ CaiT,d,0.06549901952829443,0.9849104055328513,0.969243093922652,0.8545454545454545
54
+ CaiT,e,0.31167979835318943,0.9187705817782656,0.9264058124574283,0.7921348314606742
55
+ CaiT,f,0.1541684599891403,0.9499717886025955,0.9222261921687871,0.3464373464373464
56
+ CaiT,g,0.07805611325552066,0.9708333333333333,0.9986172777777778,0.9714937286202965
57
+ CaiT,h,0.13856186520308256,0.9553333333333334,0.997130611111111,0.9569961489088575
58
+ CaiT,i,0.011666435472667217,0.9956666666666667,0.9999013333333333,0.9956594323873121
59
+ CaiT,j,1.8389671653707822,0.6116666666666667,0.7423962222222222,0.4151606425702811
60
+ CaiT,k,1.7725774958133698,0.6365,0.8888650555555555,0.4312907431551499
61
+ CaiT,l,0.7395369254032035,0.8362991463268006,0.8693810723675515,0.7436693965922997
62
+ DeiT,a,0.48058320357736234,0.8263274336283186,0.8941450218931248,0.6594360086767896
63
+ DeiT,b,0.23002449519573911,0.9251807607670544,0.9313581952117864,0.5608856088560885
64
+ DeiT,c,0.49494195908204974,0.8154668343288274,0.8907605893186004,0.34118967452300786
65
+ DeiT,d,0.05036040664735698,0.9849104055328513,0.9769023941068141,0.8636363636363636
66
+ DeiT,e,0.338863200106291,0.8792535675082327,0.9161961704382048,0.7342995169082126
67
+ DeiT,f,0.26403015722496653,0.9037050968591311,0.9291450866890099,0.2289156626506024
68
+ DeiT,g,0.10851164469867945,0.9641666666666666,0.9990410000000001,0.9653393519264872
69
+ DeiT,h,0.2489620513096452,0.906,0.9981344444444444,0.9139194139194139
70
+ DeiT,i,0.013259729760388533,0.9958333333333333,0.9998315555555556,0.9958423415932147
71
+ DeiT,j,1.2026229511300723,0.7143333333333334,0.7246498888888889,0.6356292517006803
72
+ DeiT,k,1.1073710439900557,0.746,0.8698901111111111,0.6623836951705804
73
+ DeiT,l,0.5658274294531473,0.8476012985451485,0.867833726587774,0.7854785478547854
74
+ DeiT3,a,0.39277621998196155,0.8661504424778761,0.9195532732705195,0.7125890736342043
75
+ DeiT3,b,0.338128161960636,0.8824269097767997,0.9331012891344382,0.44510385756676557
76
+ DeiT3,c,0.323060417608134,0.8883998742533794,0.922292817679558,0.4580152671755725
77
+ DeiT3,d,0.12409640010358478,0.9553599497013517,0.9608121546961326,0.6787330316742082
78
+ DeiT3,e,0.24973662732461413,0.9209659714599341,0.9483084840687203,0.8064516129032258
79
+ DeiT3,f,0.2540075041596123,0.9116042881324055,0.9380772021883802,0.24193548387096775
80
+ DeiT3,g,0.1656125110021482,0.9416666666666667,0.9990236666666666,0.944760101010101
81
+ DeiT3,h,0.15762409150910875,0.9448333333333333,0.9990646111111111,0.9476017096723128
82
+ DeiT3,i,0.05214000094247361,0.9803333333333333,0.9997376666666667,0.9806684141546527
83
+ DeiT3,j,1.1591287109454473,0.696,0.7744774999999999,0.6248457424928013
84
+ DeiT3,k,1.0456561943689981,0.7346666666666667,0.845634,0.6561555075593952
85
+ DeiT3,l,0.5223108836063022,0.854033906456655,0.8898184372191467,0.7933968686181075
86
+ Twins_SVT,a,0.4211153812640536,0.8307522123893806,0.8825833123189902,0.6433566433566433
87
+ Twins_SVT,b,0.3625493723054758,0.8550770198050928,0.8962191528545118,0.37449118046132973
88
+ Twins_SVT,c,0.47319920195681764,0.7868594781515247,0.8548139963167587,0.2893081761006289
89
+ Twins_SVT,d,0.1203458983801289,0.9783087079534738,0.9818324125230202,0.8
90
+ Twins_SVT,e,0.5213294555274637,0.7486278814489572,0.8316203738742148,0.5465346534653466
91
+ Twins_SVT,f,0.3335461875583885,0.8666541282678202,0.9034523383543173,0.16292798110979928
92
+ Twins_SVT,g,0.2639119902451833,0.9085,0.9744078888888889,0.912676952441546
93
+ Twins_SVT,h,0.32257486327489215,0.8723333333333333,0.9662636666666669,0.8822263222632226
94
+ Twins_SVT,i,0.13550377811988196,0.9738333333333333,0.9972788888888889,0.9733672603901612
95
+ Twins_SVT,j,1.2430085968176523,0.49,0.43771377777777776,0.1896186440677966
96
+ Twins_SVT,k,1.1146003757913907,0.5553333333333333,0.7234002222222222,0.2115839243498818
97
+ Twins_SVT,l,0.6286477774643219,0.7480461704941685,0.7275090480198628,0.6162439337057046
98
+ Twins_PCPVT,a,0.45601994748664115,0.7699115044247787,0.8394007473464615,0.5458515283842795
99
+ Twins_PCPVT,b,0.3125818614145001,0.8773970449544168,0.9010699815837937,0.390625
100
+ Twins_PCPVT,c,0.5049686531944119,0.7500785916378497,0.8135911602209945,0.23923444976076555
101
+ Twins_PCPVT,d,0.3149096430453517,0.8918579063187677,0.9015690607734806,0.4208754208754209
102
+ Twins_PCPVT,e,0.42039827045572575,0.8079034028540066,0.8655339438431847,0.5882352941176471
103
+ Twins_PCPVT,f,0.3770137148085496,0.8412638706037239,0.8693597175042401,0.12899896800825594
104
+ Twins_PCPVT,g,0.2785677030881246,0.9015,0.9626754444444443,0.9027480664801711
105
+ Twins_PCPVT,h,0.3805647597312927,0.834,0.928301,0.8463437210737427
106
+ Twins_PCPVT,i,0.2798018006483714,0.9091666666666667,0.9656723333333334,0.9096335599403084
107
+ Twins_PCPVT,j,0.614702238559723,0.6835,0.7995154444444446,0.6018033130635353
108
+ Twins_PCPVT,k,0.6159363424777985,0.6911666666666667,0.7903985,0.6076646199449502
109
+ Twins_PCPVT,l,0.45535326129802217,0.7889864133702056,0.8498913163479216,0.7103004291845494
110
+ PiT,a,0.3937257931823224,0.8296460176991151,0.8874127904755356,0.641860465116279
111
+ PiT,b,0.2796248870145521,0.8777114115058158,0.91848802946593,0.4150375939849624
112
+ PiT,c,0.5313189482209218,0.7613957874882112,0.8498581952117863,0.26666666666666666
113
+ PiT,d,0.049343678185640734,0.9798805407104684,0.9911620626151012,0.8117647058823529
114
+ PiT,e,0.3259278782832505,0.8518111964873765,0.9145841216983274,0.6715328467153284
115
+ PiT,f,0.2841162405192056,0.8750235094978371,0.9172267022129574,0.17196261682242991
116
+ PiT,g,0.1590204114516576,0.9338333333333333,0.9916004444444445,0.9369340746624305
117
+ PiT,h,0.2924602138201396,0.8721666666666666,0.981646111111111,0.8849212303075769
118
+ PiT,i,0.03693298858900865,0.988,0.999485,0.9879396984924623
119
+ PiT,j,2.9977854507366817,0.461,0.277717,0.06477732793522267
120
+ PiT,k,2.8756980224698783,0.5151666666666667,0.7229978888888889,0.07149696776252792
121
+ PiT,l,1.2244331041709067,0.7434170975111218,0.6790239785353327,0.599849990624414
122
+ Ensemble,a,,0.9070796460176991,0.941851401847734,0.79
123
+ Ensemble,b,,0.9374410562716127,0.9600349907918969,0.6135922330097088
124
+ Ensemble,c,,0.895001571832757,0.9307624309392265,0.48615384615384616
125
+ Ensemble,d,,0.9911977365608299,0.9944677716390424,0.9186046511627907
126
+ Ensemble,e,,0.9264544456641054,0.955384848255506,0.825065274151436
127
+ Ensemble,f,,0.941696445363927,0.9599335198386041,0.33760683760683763
128
+ Ensemble,g,,0.9701666666666666,0.9990522222222222,0.9710027539283979
129
+ Ensemble,h,,0.9476666666666667,0.9979163333333333,0.9502219403931516
130
+ Ensemble,i,,0.9986666666666667,0.9999886666666667,0.9986671109630123
131
+ Ensemble,j,,0.5698333333333333,0.6426453333333333,0.31556616282153277
132
+ Ensemble,k,,0.5983333333333334,0.8897323333333333,0.33055555555555555
133
+ Ensemble,l,,0.8179632078874595,0.832089495815299,0.712386018237082
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6433edd01fed12b293921d4e4f88c70192c29e0850e44e5d32e214f78a718143
3
+ size 221250080
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8e514f9f775e7b97df80f807e3fec004da5e0d036fe6850dc5a9bcbc828263d9
3
+ size 221357966
roc_confusion_matrix/Twins_SVT_roc_confusion_matrix_a.png ADDED
roc_confusion_matrix/Twins_SVT_roc_confusion_matrix_b.png ADDED
roc_confusion_matrix/Twins_SVT_roc_confusion_matrix_c.png ADDED
roc_confusion_matrix/Twins_SVT_roc_confusion_matrix_d.png ADDED
roc_confusion_matrix/Twins_SVT_roc_confusion_matrix_e.png ADDED
roc_confusion_matrix/Twins_SVT_roc_confusion_matrix_f.png ADDED
roc_confusion_matrix/Twins_SVT_roc_confusion_matrix_g.png ADDED
roc_confusion_matrix/Twins_SVT_roc_confusion_matrix_h.png ADDED
roc_confusion_matrix/Twins_SVT_roc_confusion_matrix_i.png ADDED
roc_confusion_matrix/Twins_SVT_roc_confusion_matrix_j.png ADDED
roc_confusion_matrix/Twins_SVT_roc_confusion_matrix_k.png ADDED
roc_confusion_matrix/Twins_SVT_roc_confusion_matrix_l.png ADDED
roc_curves/Twins_SVT_ROC_a.png ADDED
roc_curves/Twins_SVT_ROC_b.png ADDED
roc_curves/Twins_SVT_ROC_c.png ADDED
roc_curves/Twins_SVT_ROC_d.png ADDED
roc_curves/Twins_SVT_ROC_e.png ADDED
roc_curves/Twins_SVT_ROC_f.png ADDED
roc_curves/Twins_SVT_ROC_g.png ADDED
roc_curves/Twins_SVT_ROC_h.png ADDED
roc_curves/Twins_SVT_ROC_i.png ADDED
roc_curves/Twins_SVT_ROC_j.png ADDED
roc_curves/Twins_SVT_ROC_k.png ADDED
roc_curves/Twins_SVT_ROC_l.png ADDED
training_curves/Twins_SVT_accuracy.png ADDED
training_curves/Twins_SVT_auc.png ADDED
training_curves/Twins_SVT_combined_metrics.png ADDED

Git LFS Details

  • SHA256: ec7d60b6badf4dbcd52d673f9cc3cde875788c851ad14e65a6c010fa2c4a78ec
  • Pointer size: 131 Bytes
  • Size of remote file: 173 kB
training_curves/Twins_SVT_f1.png ADDED
training_curves/Twins_SVT_loss.png ADDED
training_curves/Twins_SVT_metrics.csv ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ epoch,train_loss,val_loss,train_accuracy,val_accuracy,train_auc,val_auc,train_f1,val_f1
2
+ 1,0.5446424307449126,0.5379439401209528,0.7412354208708144,0.7383381924198251,0.8243628908304748,0.8305287337758926,0.7378914911308204,0.7572684246112238
3
+ 2,0.454549150721019,0.4865019646399918,0.7972688716352567,0.7835276967930029,0.8816649200617552,0.868910912969936,0.7943551534811911,0.7980965329707682
4
+ 3,0.42023529398109827,0.4545239159734187,0.8163970311591476,0.8053935860058309,0.898060376236598,0.8866426828957321,0.8146952724511107,0.8144544822793607
5
+ 4,0.40130441891725877,0.42591113477684667,0.8256233539692855,0.8177842565597667,0.9064214511837533,0.9000756487517957,0.8244993502525839,0.8167155425219942
6
+ 5,0.3899777613802697,0.41321886124485785,0.83129254027431,0.8294460641399417,0.911019619061121,0.9079635186019429,0.8303846219975585,0.8326180257510729
7
+ 6,0.3798845899618002,0.4043816922357409,0.8359099770838321,0.8338192419825073,0.9155396963551692,0.912642691395592,0.8351091252792576,0.8382978723404255
8
+ 7,0.3706598464188956,0.400466085349158,0.8408865478674282,0.8360058309037901,0.9196629335822379,0.9160022609626941,0.8401594282572842,0.8434237995824635
9
+ 8,0.3655349807117748,0.3915146115743732,0.8436228067175154,0.8381924198250729,0.9213570042134509,0.9187105287762752,0.8430268488635584,0.8438818565400844
10
+ 9,0.3589263488960791,0.3847308796626833,0.8473167561651332,0.8469387755102041,0.9243861122561097,0.9221784715552194,0.8470342322585067,0.8529411764705882
11
+ 10,0.3552572647052991,0.3760677532621445,0.8484796661764203,0.8542274052478134,0.9255136670108286,0.9239209428044438,0.8482200979888307,0.8561151079136691
12
+ 11,0.3512043328303076,0.37131105411156967,0.8501299722953791,0.8549562682215743,0.9271145653527233,0.9274876964530085,0.8497638497209913,0.8589652728561304
13
+ 12,0.3485164185834615,0.3730417228474909,0.8517289735608988,0.8534985422740525,0.9284655858483204,0.9276651310253382,0.8513654831907562,0.8591450595655221
14
+ 13,0.34554251704724204,0.3646171033034867,0.8530628997503164,0.85932944606414,0.9293580815364075,0.9304807095682922,0.8528716736874551,0.8636042402826856
15
+ 14,0.342526679847926,0.3604712650483968,0.8551321955056949,0.857871720116618,0.9307526787815158,0.93093651454751,0.8547571284056033,0.860813704496788
16
+ 15,0.34038383896679003,0.3544324828480145,0.8564319184594863,0.8673469387755102,0.9315460222878775,0.9332792883917416,0.8561564031390289,0.8696275071633238
17
+ 16,0.33718494734502497,0.3599347966579237,0.8573468550124842,0.8534985422740525,0.932795234285373,0.9331826024870591,0.8570963569550208,0.8593421973407978
18
+ 17,0.3361370416498463,0.35602168395637424,0.8575349728084277,0.8556851311953353,0.9329873051889741,0.9345627672143408,0.8573410167053404,0.8609550561797753
19
+ 18,0.3322440128257794,0.3453344241349412,0.8602626808496083,0.8739067055393586,0.9348430263809965,0.9365485469489753,0.8600496702920271,0.8749096167751266
20
+ 19,0.33157964036040405,0.34167999819833406,0.8609980504155693,0.8746355685131195,0.9349465308855575,0.937675840848626,0.8609766526981955,0.8748180494905385
21
+ 20,0.3288776744413821,0.3446091073768827,0.862007045866539,0.8666180758017493,0.9360993980760477,0.938164582784384,0.861744598461354,0.8704883227176221
22
+ 21,0.3292270256657768,0.34415516795986945,0.860681670486028,0.8658892128279884,0.9357567114748395,0.9389253202322161,0.8604035471019149,0.8702397743300423
23
+ 22,0.326715263755213,0.34245030568918056,0.8632469131579847,0.8651603498542274,0.9368819520976205,0.9388732585912333,0.8629316329416604,0.8690728945506015
24
+ 23,0.326037298707673,0.33613531391405155,0.8634777849984608,0.8775510204081632,0.937116014588634,0.9403692339076406,0.8632884078571061,0.8793103448275862
25
+ 24,0.32471502803967606,0.34030956438261983,0.8642302561822348,0.8688046647230321,0.9376623360264309,0.940381983697269,0.8640256225807557,0.8734177215189873
26
+ 25,0.32313399170929763,0.33400125223763133,0.8647262030988131,0.8782798833819242,0.9382950349064919,0.9408994126596911,0.8646938077317824,0.8804581245526127
27
+ 26,0.32119776360369756,0.3330164099052418,0.8662824503198002,0.8753644314868805,0.9389488130791115,0.9416686499672758,0.8660877905084862,0.8784648187633263
28
+ 27,0.320834662129836,0.3302050251133588,0.8657779525943154,0.880466472303207,0.9390761905050805,0.9423369514403013,0.8656320353361125,0.882689556509299
29
+ 28,0.31985798187819675,0.3367246842940417,0.8660686800971372,0.8673469387755102,0.9394201420188488,0.9420171442171205,0.865803610442352,0.8723702664796634
30
+ 29,0.3184459108099768,0.3285483396870054,0.866017375243698,0.8775510204081632,0.9399073598689008,0.9430233151153006,0.8657867011572031,0.88
31
+ 30,0.31666722281909526,0.328711580430801,0.8679755104832917,0.8760932944606414,0.9407160269500907,0.9428543804027234,0.8677425433862705,0.8789173789173789
32
+ 31,0.3160057449984429,0.32610270989184476,0.8687194308581592,0.8775510204081632,0.9409686475362699,0.9438297393093014,0.8685249411260972,0.8801711840228246
33
+ 32,0.31629127630372134,0.3227261549008483,0.8677275370250026,0.8855685131195336,0.9408469705520834,0.9444247294919634,0.8675338465622511,0.8868060562364816
34
+ 33,0.31457162578487485,0.32731021163067386,0.8683688476929917,0.8724489795918368,0.9414362721101144,0.9445256653265222,0.8682426649320415,0.8763250883392226
35
+ 34,0.31433948484781477,0.3214086585246439,0.8692666826281766,0.8848396501457726,0.9414525239699059,0.9449602206563592,0.8690169201113729,0.8863309352517985
36
+ 35,0.31205297713526486,0.3180324106800313,0.870925539556042,0.89067055393586,0.942372315008714,0.9452864027743542,0.8707719439426757,0.8909883720930233
37
+ 36,0.31285721755641005,0.3188892189337283,0.8690614632144201,0.8855685131195336,0.9419125796871954,0.9458187064913429,0.8688607421490293,0.8869690424766019
38
+ 37,0.31280192113768307,0.3143594661189933,0.8696172657933441,0.892128279883382,0.9418803095011801,0.9463988219194384,0.8694252243611701,0.891970802919708
39
+ 38,0.31133682056601447,0.3219277590252568,0.870942641173855,0.8731778425655977,0.9426083707971966,0.9460014534760176,0.8707492314147962,0.8765957446808511
40
+ 39,0.3123218973888134,0.3160600688297617,0.8702158224168006,0.8862973760932945,0.9420196184890588,0.947095810419128,0.870022436501276,0.8877697841726618
41
+ 40,0.31068517289364894,0.32041090344548573,0.8718490269179464,0.8746355685131195,0.9426879596804111,0.9466538177120076,0.8716657675478031,0.8780141843971632
42
+ 41,0.30878777175149924,0.31512955204738474,0.8715497486062181,0.8855685131195336,0.9434026999117266,0.946903501092232,0.8713120652434636,0.8869690424766019
43
+ 42,0.30959829052516297,0.3208778205140339,0.87243048192359,0.8739067055393586,0.943066656952996,0.9469024386097631,0.872228360011305,0.8780831571529246
44
+ 43,0.30783384963250804,0.3127320889307528,0.873379621712214,0.8841107871720116,0.9437981712409529,0.9484855374886314,0.8731909500402487,0.886184681460272
45
+ 44,0.30812783008985717,0.3107508579078986,0.8721568560385813,0.89067055393586,0.9436018183524286,0.9483962889612322,0.8717983896553794,0.8919308357348703
46
+ 45,0.3079498694222077,0.30958711423262214,0.8725929472928139,0.89067055393586,0.9435619867677242,0.9484717252165339,0.8724183991505977,0.8916184971098265
47
+ 46,0.3070175064828387,0.308785991574863,0.872268016554366,0.8892128279883382,0.9440518008325268,0.9490295285127794,0.8719439015190481,0.8906474820143885
48
+ 47,0.30432806252275263,0.3108641914480282,0.874704997092725,0.8862973760932945,0.9450680691651356,0.948417538610613,0.8746095722195124,0.8880918220946915
49
+ 48,0.30607724376602563,0.3068450878729973,0.8727896158976639,0.8950437317784257,0.9442740483090655,0.949016778723151,0.8725225572607388,0.895500725689405
50
+ 49,0.3055651034282815,0.3155789692443592,0.8729606320757943,0.8782798833819242,0.9445862224409025,0.9485917857355356,0.8726546495581441,0.8819787985865725
51
+ 50,0.30728487023754936,0.31112385656326225,0.8721568560385813,0.8833819241982507,0.9436875985804851,0.9491591513740023,0.8720266372219226,0.8858773181169758
52
+ 51,0.30418316055647704,0.3079418093400516,0.87361049355269,0.8899416909620991,0.9448521363075764,0.9490954024258601,0.8734297531276491,0.8911319394376351
53
+ 52,0.3043760073373748,0.309304129104225,0.8744741252522489,0.8833819241982507,0.9448223852716966,0.949583081879149,0.8742181475451974,0.8858773181169758
54
+ 53,0.3042581718108329,0.3014481227529987,0.8738755686287922,0.8965014577259475,0.9448449488258143,0.9502418210099534,0.8737546646581533,0.8969521044992743
55
+ 54,0.30231608073207517,0.3035348205889627,0.8748503608441358,0.891399416909621,0.945627041483326,0.9501780720618109,0.8745887030435975,0.8922631959508315
56
+ 55,0.30114940834908993,0.3072216841813079,0.8755942812190033,0.8848396501457726,0.9462414093675515,0.9501334477981114,0.8752711217797591,0.8871428571428571
57
+ 56,0.3025527961803664,0.3094072619958105,0.8744655744433424,0.8819241982507289,0.9454534236798363,0.950042074305774,0.8741632166765237,0.8854314002828855
58
+ 57,0.30167997646772954,0.3019283588530371,0.8760218216643294,0.8935860058309038,0.945710328298196,0.9502970700983433,0.8758168815040042,0.894356005788712
59
+ 58,0.3005397005664971,0.30058057236949487,0.8772018332934296,0.8928571428571429,0.9463201919238462,0.9508325612627392,0.876954580895016,0.8935553946415641
60
+ 59,0.30153753607114575,0.31079828217842836,0.8751838423914903,0.8790087463556852,0.9457610542165109,0.950473442188204,0.8749110914964908,0.8826025459688827
61
+ 60,0.30005881872745344,0.3038449190100845,0.8770821219687382,0.8899416909620991,0.9465613445056665,0.9503533816692025,0.8768050734884518,0.8916008614501076
62
+ 61,0.30102897576885046,0.2990800254372744,0.8751581899647707,0.891399416909621,0.9459420104138739,0.9513053659614616,0.8750171209423366,0.8924187725631769
63
+ 62,0.2997765360287253,0.3061117821810197,0.8750470294489858,0.8855685131195336,0.9465451156044037,0.9506986884716402,0.8748747720208585,0.887937187723055
64
+ 63,0.3026365153319484,0.298130892021663,0.8746878954749119,0.8928571428571429,0.9452566861994005,0.9517983578270959,0.8745946038455943,0.8938628158844766
65
+ 64,0.3037879186142697,0.2983519917587497,0.8744997776789685,0.892128279883382,0.9448093979099391,0.9518482945031407,0.8741975022928505,0.8930635838150289
66
+ 65,0.29927374308894256,0.3039230259444901,0.8761158805623012,0.8877551020408163,0.9467708668156176,0.9514296764103393,0.8759822636147301,0.89
67
+ 66,0.2996466278399897,0.29495449464105655,0.8756626876902555,0.8928571428571429,0.9465362012610898,0.9516124233950141,0.8754870143770925,0.8927789934354485
68
+ 67,0.29891866101107795,0.29520770429522236,0.8762868967404317,0.8943148688046647,0.9467588170977137,0.9520406038300367,0.8760069932467176,0.8946986201888163
69
+ 68,0.2992068211361269,0.29826838951069135,0.8768598009371686,0.8928571428571429,0.9465606417114741,0.9521277273924981,0.8766604715696434,0.8940158615717375
70
+ 69,0.300023810353093,0.2980609195572989,0.8759448643841707,0.8928571428571429,0.9463566946681439,0.9519332931006638,0.8756769726468774,0.8940158615717375
71
+ 70,0.29902642388780415,0.2969317672551547,0.8769367582173273,0.891399416909621,0.9467130788831678,0.9523912230448199,0.8765885197825378,0.8925739005046863
72
+ 71,0.2985941489597358,0.30110730261218793,0.8757652973971338,0.8870262390670554,0.9467718370693559,0.9525219083885117,0.8754511242745578,0.8892065761258041
73
+ 72,0.2994444637070742,0.29304098257518024,0.8767400896124773,0.8965014577259475,0.9466066791180545,0.9529894006748889,0.8766187635342754,0.8969521044992743
74
+ 73,0.2987085390031617,0.2927165796909666,0.8766631323323186,0.8943148688046647,0.9467220151613818,0.9525697200996184,0.876273803396809,0.8948513415518492
75
+ 74,0.29678881809018065,0.290040037635464,0.8774070527071861,0.8972303206997084,0.9475395445270565,0.9532996455558483,0.8770928169122753,0.8970051132213295
76
+ 75,0.29888968735675414,0.303810591165943,0.876620378287786,0.8826530612244898,0.94647972649798,0.9526398439425751,0.8764079590910259,0.8858965272856131
77
+ 76,0.2981660920750342,0.29966457844128064,0.876620378287786,0.8884839650145773,0.9469285416027062,0.9527715917687357,0.8764439420796191,0.8907922912205567
78
+ 77,0.29668866997236154,0.2903334669573314,0.8785785135273797,0.8950437317784257,0.9474874451915435,0.953831949272837,0.878303794864763,0.8958031837916064
79
+ 78,0.29789352928189117,0.2924420841407498,0.8779372028593905,0.8935860058309038,0.9471604838662969,0.9530499621756241,0.8776914311173563,0.894356005788712
80
+ 79,0.2959314442086196,0.2950594404348479,0.8784759038205014,0.89067055393586,0.947808764129376,0.9529702759904464,0.8781863375332133,0.8920863309352518
81
+ 80,0.29536313135948405,0.2940729642748485,0.8783305400690905,0.892128279883382,0.9479226828857052,0.9538829484313509,0.8780646654040946,0.894134477825465
82
+ 81,0.29698671840645285,0.2917524718682203,0.8780996682286144,0.8950437317784257,0.9473707538638687,0.9537437632279067,0.8779180296983917,0.8961038961038961
83
+ 82,0.2963161134846654,0.2899084388340875,0.8786041659540993,0.8950437317784257,0.9476863219096487,0.9537055138590214,0.8782950853400314,0.8956521739130435
84
+ 83,0.29765883190758996,0.2913934758731297,0.8766460307145056,0.8935860058309038,0.9471080946976399,0.9536513272531003,0.8764283633996334,0.8945086705202312
85
+ 84,0.2958092256439129,0.29152449574484424,0.8782279303622123,0.8943148688046647,0.9477595581533906,0.9536768268323572,0.8778592564003602,0.8953068592057761
86
+ 85,0.2950949931720028,0.29267637375144845,0.8787580805144166,0.8935860058309038,0.9480599681597205,0.9535620787257012,0.8784431394401817,0.8948126801152738
87
+ 86,0.2979606837345123,0.2923553272343238,0.8774070527071861,0.8928571428571429,0.9470137194984118,0.9535142670145942,0.8771538982237569,0.8940158615717375
88
+ 87,0.2959931950772694,0.2927944220537347,0.8779115504326709,0.8928571428571429,0.9476618301315984,0.9535195794269394,0.8775870642500728,0.8941684665226782
89
+ 88,0.2977584292130092,0.29271251354203626,0.8772958921914014,0.8935860058309038,0.9470368105137553,0.9534388307592924,0.8769381174533479,0.8948126801152738
90
+ 89,0.297230199089466,0.2923718749086641,0.8778602455792318,0.8943148688046647,0.9472476322471755,0.9534537055138591,0.8776447208374021,0.8953068592057761
91
+ 90,0.295511191539645,0.2923993112046934,0.8783305400690905,0.8935860058309038,0.947878969262419,0.9534717677158328,0.8778951523628905,0.8946608946608947
92
+ 91,0.2944620200510402,0.29242924811541166,0.879613161405069,0.8943148688046647,0.9483791303119635,0.9534845175054611,0.8794368754121102,0.8953068592057761
93
+ 92,0.298020875358743,0.29222166069047445,0.8768854533638882,0.8943148688046647,0.9470113353210268,0.9534898299178064,0.8767442258633383,0.8953068592057761
94
+ 93,0.2954836324992338,0.29225393347767975,0.8782193795533058,0.8943148688046647,0.9478763402915511,0.9535047046723729,0.8778391546009744,0.8953068592057761
95
+ 94,0.2972753527851532,0.2921081119306581,0.8773129938092143,0.8943148688046647,0.9472067379896879,0.9535302042516298,0.8770922921413764,0.8953068592057761
96
+ 95,0.29527183692277603,0.29211140886687675,0.8794934500803776,0.8943148688046647,0.9480973048689116,0.9535397665938512,0.8792797731730926,0.8953068592057761
97
+ 96,0.2953797382772974,0.2921384789332009,0.8790060539727058,0.8943148688046647,0.9479928112465985,0.9535195794269395,0.8787385380066843,0.8953068592057761
98
+ 97,0.295356783660528,0.2921505264568607,0.8782364811711187,0.8943148688046647,0.9480003397429375,0.9535217043918777,0.8779526209331825,0.8953068592057761
99
+ 98,0.2960802502490576,0.2921417018414934,0.8786127167630058,0.8943148688046647,0.9476094269246058,0.9535227668743466,0.8782817456915031,0.8953068592057761
100
+ 99,0.29817039309233945,0.2920929309491166,0.8775011116051579,0.8943148688046647,0.9468233121376181,0.9535227668743466,0.8773479906165991,0.8953068592057761
101
+ 100,0.29501230854616367,0.2920899890775931,0.8780740158018948,0.8943148688046647,0.9480615517132597,0.9535323292165678,0.8777698723608528,0.8953068592057761
training_metrics.csv ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ epoch,train_loss,val_loss,train_accuracy,val_accuracy,train_auc,val_auc,train_f1,val_f1
2
+ 1,0.5446424307449126,0.5379439401209528,0.7412354208708144,0.7383381924198251,0.8243628908304748,0.8305287337758926,0.7378914911308204,0.7572684246112238
3
+ 2,0.454549150721019,0.4865019646399918,0.7972688716352567,0.7835276967930029,0.8816649200617552,0.868910912969936,0.7943551534811911,0.7980965329707682
4
+ 3,0.42023529398109827,0.4545239159734187,0.8163970311591476,0.8053935860058309,0.898060376236598,0.8866426828957321,0.8146952724511107,0.8144544822793607
5
+ 4,0.40130441891725877,0.42591113477684667,0.8256233539692855,0.8177842565597667,0.9064214511837533,0.9000756487517957,0.8244993502525839,0.8167155425219942
6
+ 5,0.3899777613802697,0.41321886124485785,0.83129254027431,0.8294460641399417,0.911019619061121,0.9079635186019429,0.8303846219975585,0.8326180257510729
7
+ 6,0.3798845899618002,0.4043816922357409,0.8359099770838321,0.8338192419825073,0.9155396963551692,0.912642691395592,0.8351091252792576,0.8382978723404255
8
+ 7,0.3706598464188956,0.400466085349158,0.8408865478674282,0.8360058309037901,0.9196629335822379,0.9160022609626941,0.8401594282572842,0.8434237995824635
9
+ 8,0.3655349807117748,0.3915146115743732,0.8436228067175154,0.8381924198250729,0.9213570042134509,0.9187105287762752,0.8430268488635584,0.8438818565400844
10
+ 9,0.3589263488960791,0.3847308796626833,0.8473167561651332,0.8469387755102041,0.9243861122561097,0.9221784715552194,0.8470342322585067,0.8529411764705882
11
+ 10,0.3552572647052991,0.3760677532621445,0.8484796661764203,0.8542274052478134,0.9255136670108286,0.9239209428044438,0.8482200979888307,0.8561151079136691
12
+ 11,0.3512043328303076,0.37131105411156967,0.8501299722953791,0.8549562682215743,0.9271145653527233,0.9274876964530085,0.8497638497209913,0.8589652728561304
13
+ 12,0.3485164185834615,0.3730417228474909,0.8517289735608988,0.8534985422740525,0.9284655858483204,0.9276651310253382,0.8513654831907562,0.8591450595655221
14
+ 13,0.34554251704724204,0.3646171033034867,0.8530628997503164,0.85932944606414,0.9293580815364075,0.9304807095682922,0.8528716736874551,0.8636042402826856
15
+ 14,0.342526679847926,0.3604712650483968,0.8551321955056949,0.857871720116618,0.9307526787815158,0.93093651454751,0.8547571284056033,0.860813704496788
16
+ 15,0.34038383896679003,0.3544324828480145,0.8564319184594863,0.8673469387755102,0.9315460222878775,0.9332792883917416,0.8561564031390289,0.8696275071633238
17
+ 16,0.33718494734502497,0.3599347966579237,0.8573468550124842,0.8534985422740525,0.932795234285373,0.9331826024870591,0.8570963569550208,0.8593421973407978
18
+ 17,0.3361370416498463,0.35602168395637424,0.8575349728084277,0.8556851311953353,0.9329873051889741,0.9345627672143408,0.8573410167053404,0.8609550561797753
19
+ 18,0.3322440128257794,0.3453344241349412,0.8602626808496083,0.8739067055393586,0.9348430263809965,0.9365485469489753,0.8600496702920271,0.8749096167751266
20
+ 19,0.33157964036040405,0.34167999819833406,0.8609980504155693,0.8746355685131195,0.9349465308855575,0.937675840848626,0.8609766526981955,0.8748180494905385
21
+ 20,0.3288776744413821,0.3446091073768827,0.862007045866539,0.8666180758017493,0.9360993980760477,0.938164582784384,0.861744598461354,0.8704883227176221
22
+ 21,0.3292270256657768,0.34415516795986945,0.860681670486028,0.8658892128279884,0.9357567114748395,0.9389253202322161,0.8604035471019149,0.8702397743300423
23
+ 22,0.326715263755213,0.34245030568918056,0.8632469131579847,0.8651603498542274,0.9368819520976205,0.9388732585912333,0.8629316329416604,0.8690728945506015
24
+ 23,0.326037298707673,0.33613531391405155,0.8634777849984608,0.8775510204081632,0.937116014588634,0.9403692339076406,0.8632884078571061,0.8793103448275862
25
+ 24,0.32471502803967606,0.34030956438261983,0.8642302561822348,0.8688046647230321,0.9376623360264309,0.940381983697269,0.8640256225807557,0.8734177215189873
26
+ 25,0.32313399170929763,0.33400125223763133,0.8647262030988131,0.8782798833819242,0.9382950349064919,0.9408994126596911,0.8646938077317824,0.8804581245526127
27
+ 26,0.32119776360369756,0.3330164099052418,0.8662824503198002,0.8753644314868805,0.9389488130791115,0.9416686499672758,0.8660877905084862,0.8784648187633263
28
+ 27,0.320834662129836,0.3302050251133588,0.8657779525943154,0.880466472303207,0.9390761905050805,0.9423369514403013,0.8656320353361125,0.882689556509299
29
+ 28,0.31985798187819675,0.3367246842940417,0.8660686800971372,0.8673469387755102,0.9394201420188488,0.9420171442171205,0.865803610442352,0.8723702664796634
30
+ 29,0.3184459108099768,0.3285483396870054,0.866017375243698,0.8775510204081632,0.9399073598689008,0.9430233151153006,0.8657867011572031,0.88
31
+ 30,0.31666722281909526,0.328711580430801,0.8679755104832917,0.8760932944606414,0.9407160269500907,0.9428543804027234,0.8677425433862705,0.8789173789173789
32
+ 31,0.3160057449984429,0.32610270989184476,0.8687194308581592,0.8775510204081632,0.9409686475362699,0.9438297393093014,0.8685249411260972,0.8801711840228246
33
+ 32,0.31629127630372134,0.3227261549008483,0.8677275370250026,0.8855685131195336,0.9408469705520834,0.9444247294919634,0.8675338465622511,0.8868060562364816
34
+ 33,0.31457162578487485,0.32731021163067386,0.8683688476929917,0.8724489795918368,0.9414362721101144,0.9445256653265222,0.8682426649320415,0.8763250883392226
35
+ 34,0.31433948484781477,0.3214086585246439,0.8692666826281766,0.8848396501457726,0.9414525239699059,0.9449602206563592,0.8690169201113729,0.8863309352517985
36
+ 35,0.31205297713526486,0.3180324106800313,0.870925539556042,0.89067055393586,0.942372315008714,0.9452864027743542,0.8707719439426757,0.8909883720930233
37
+ 36,0.31285721755641005,0.3188892189337283,0.8690614632144201,0.8855685131195336,0.9419125796871954,0.9458187064913429,0.8688607421490293,0.8869690424766019
38
+ 37,0.31280192113768307,0.3143594661189933,0.8696172657933441,0.892128279883382,0.9418803095011801,0.9463988219194384,0.8694252243611701,0.891970802919708
39
+ 38,0.31133682056601447,0.3219277590252568,0.870942641173855,0.8731778425655977,0.9426083707971966,0.9460014534760176,0.8707492314147962,0.8765957446808511
40
+ 39,0.3123218973888134,0.3160600688297617,0.8702158224168006,0.8862973760932945,0.9420196184890588,0.947095810419128,0.870022436501276,0.8877697841726618
41
+ 40,0.31068517289364894,0.32041090344548573,0.8718490269179464,0.8746355685131195,0.9426879596804111,0.9466538177120076,0.8716657675478031,0.8780141843971632
42
+ 41,0.30878777175149924,0.31512955204738474,0.8715497486062181,0.8855685131195336,0.9434026999117266,0.946903501092232,0.8713120652434636,0.8869690424766019
43
+ 42,0.30959829052516297,0.3208778205140339,0.87243048192359,0.8739067055393586,0.943066656952996,0.9469024386097631,0.872228360011305,0.8780831571529246
44
+ 43,0.30783384963250804,0.3127320889307528,0.873379621712214,0.8841107871720116,0.9437981712409529,0.9484855374886314,0.8731909500402487,0.886184681460272
45
+ 44,0.30812783008985717,0.3107508579078986,0.8721568560385813,0.89067055393586,0.9436018183524286,0.9483962889612322,0.8717983896553794,0.8919308357348703
46
+ 45,0.3079498694222077,0.30958711423262214,0.8725929472928139,0.89067055393586,0.9435619867677242,0.9484717252165339,0.8724183991505977,0.8916184971098265
47
+ 46,0.3070175064828387,0.308785991574863,0.872268016554366,0.8892128279883382,0.9440518008325268,0.9490295285127794,0.8719439015190481,0.8906474820143885
48
+ 47,0.30432806252275263,0.3108641914480282,0.874704997092725,0.8862973760932945,0.9450680691651356,0.948417538610613,0.8746095722195124,0.8880918220946915
49
+ 48,0.30607724376602563,0.3068450878729973,0.8727896158976639,0.8950437317784257,0.9442740483090655,0.949016778723151,0.8725225572607388,0.895500725689405
50
+ 49,0.3055651034282815,0.3155789692443592,0.8729606320757943,0.8782798833819242,0.9445862224409025,0.9485917857355356,0.8726546495581441,0.8819787985865725
51
+ 50,0.30728487023754936,0.31112385656326225,0.8721568560385813,0.8833819241982507,0.9436875985804851,0.9491591513740023,0.8720266372219226,0.8858773181169758
52
+ 51,0.30418316055647704,0.3079418093400516,0.87361049355269,0.8899416909620991,0.9448521363075764,0.9490954024258601,0.8734297531276491,0.8911319394376351
53
+ 52,0.3043760073373748,0.309304129104225,0.8744741252522489,0.8833819241982507,0.9448223852716966,0.949583081879149,0.8742181475451974,0.8858773181169758
54
+ 53,0.3042581718108329,0.3014481227529987,0.8738755686287922,0.8965014577259475,0.9448449488258143,0.9502418210099534,0.8737546646581533,0.8969521044992743
55
+ 54,0.30231608073207517,0.3035348205889627,0.8748503608441358,0.891399416909621,0.945627041483326,0.9501780720618109,0.8745887030435975,0.8922631959508315
56
+ 55,0.30114940834908993,0.3072216841813079,0.8755942812190033,0.8848396501457726,0.9462414093675515,0.9501334477981114,0.8752711217797591,0.8871428571428571
57
+ 56,0.3025527961803664,0.3094072619958105,0.8744655744433424,0.8819241982507289,0.9454534236798363,0.950042074305774,0.8741632166765237,0.8854314002828855
58
+ 57,0.30167997646772954,0.3019283588530371,0.8760218216643294,0.8935860058309038,0.945710328298196,0.9502970700983433,0.8758168815040042,0.894356005788712
59
+ 58,0.3005397005664971,0.30058057236949487,0.8772018332934296,0.8928571428571429,0.9463201919238462,0.9508325612627392,0.876954580895016,0.8935553946415641
60
+ 59,0.30153753607114575,0.31079828217842836,0.8751838423914903,0.8790087463556852,0.9457610542165109,0.950473442188204,0.8749110914964908,0.8826025459688827
61
+ 60,0.30005881872745344,0.3038449190100845,0.8770821219687382,0.8899416909620991,0.9465613445056665,0.9503533816692025,0.8768050734884518,0.8916008614501076
62
+ 61,0.30102897576885046,0.2990800254372744,0.8751581899647707,0.891399416909621,0.9459420104138739,0.9513053659614616,0.8750171209423366,0.8924187725631769
63
+ 62,0.2997765360287253,0.3061117821810197,0.8750470294489858,0.8855685131195336,0.9465451156044037,0.9506986884716402,0.8748747720208585,0.887937187723055
64
+ 63,0.3026365153319484,0.298130892021663,0.8746878954749119,0.8928571428571429,0.9452566861994005,0.9517983578270959,0.8745946038455943,0.8938628158844766
65
+ 64,0.3037879186142697,0.2983519917587497,0.8744997776789685,0.892128279883382,0.9448093979099391,0.9518482945031407,0.8741975022928505,0.8930635838150289
66
+ 65,0.29927374308894256,0.3039230259444901,0.8761158805623012,0.8877551020408163,0.9467708668156176,0.9514296764103393,0.8759822636147301,0.89
67
+ 66,0.2996466278399897,0.29495449464105655,0.8756626876902555,0.8928571428571429,0.9465362012610898,0.9516124233950141,0.8754870143770925,0.8927789934354485
68
+ 67,0.29891866101107795,0.29520770429522236,0.8762868967404317,0.8943148688046647,0.9467588170977137,0.9520406038300367,0.8760069932467176,0.8946986201888163
69
+ 68,0.2992068211361269,0.29826838951069135,0.8768598009371686,0.8928571428571429,0.9465606417114741,0.9521277273924981,0.8766604715696434,0.8940158615717375
70
+ 69,0.300023810353093,0.2980609195572989,0.8759448643841707,0.8928571428571429,0.9463566946681439,0.9519332931006638,0.8756769726468774,0.8940158615717375
71
+ 70,0.29902642388780415,0.2969317672551547,0.8769367582173273,0.891399416909621,0.9467130788831678,0.9523912230448199,0.8765885197825378,0.8925739005046863
72
+ 71,0.2985941489597358,0.30110730261218793,0.8757652973971338,0.8870262390670554,0.9467718370693559,0.9525219083885117,0.8754511242745578,0.8892065761258041
73
+ 72,0.2994444637070742,0.29304098257518024,0.8767400896124773,0.8965014577259475,0.9466066791180545,0.9529894006748889,0.8766187635342754,0.8969521044992743
74
+ 73,0.2987085390031617,0.2927165796909666,0.8766631323323186,0.8943148688046647,0.9467220151613818,0.9525697200996184,0.876273803396809,0.8948513415518492
75
+ 74,0.29678881809018065,0.290040037635464,0.8774070527071861,0.8972303206997084,0.9475395445270565,0.9532996455558483,0.8770928169122753,0.8970051132213295
76
+ 75,0.29888968735675414,0.303810591165943,0.876620378287786,0.8826530612244898,0.94647972649798,0.9526398439425751,0.8764079590910259,0.8858965272856131
77
+ 76,0.2981660920750342,0.29966457844128064,0.876620378287786,0.8884839650145773,0.9469285416027062,0.9527715917687357,0.8764439420796191,0.8907922912205567
78
+ 77,0.29668866997236154,0.2903334669573314,0.8785785135273797,0.8950437317784257,0.9474874451915435,0.953831949272837,0.878303794864763,0.8958031837916064
79
+ 78,0.29789352928189117,0.2924420841407498,0.8779372028593905,0.8935860058309038,0.9471604838662969,0.9530499621756241,0.8776914311173563,0.894356005788712
80
+ 79,0.2959314442086196,0.2950594404348479,0.8784759038205014,0.89067055393586,0.947808764129376,0.9529702759904464,0.8781863375332133,0.8920863309352518
81
+ 80,0.29536313135948405,0.2940729642748485,0.8783305400690905,0.892128279883382,0.9479226828857052,0.9538829484313509,0.8780646654040946,0.894134477825465
82
+ 81,0.29698671840645285,0.2917524718682203,0.8780996682286144,0.8950437317784257,0.9473707538638687,0.9537437632279067,0.8779180296983917,0.8961038961038961
83
+ 82,0.2963161134846654,0.2899084388340875,0.8786041659540993,0.8950437317784257,0.9476863219096487,0.9537055138590214,0.8782950853400314,0.8956521739130435
84
+ 83,0.29765883190758996,0.2913934758731297,0.8766460307145056,0.8935860058309038,0.9471080946976399,0.9536513272531003,0.8764283633996334,0.8945086705202312
85
+ 84,0.2958092256439129,0.29152449574484424,0.8782279303622123,0.8943148688046647,0.9477595581533906,0.9536768268323572,0.8778592564003602,0.8953068592057761
86
+ 85,0.2950949931720028,0.29267637375144845,0.8787580805144166,0.8935860058309038,0.9480599681597205,0.9535620787257012,0.8784431394401817,0.8948126801152738
87
+ 86,0.2979606837345123,0.2923553272343238,0.8774070527071861,0.8928571428571429,0.9470137194984118,0.9535142670145942,0.8771538982237569,0.8940158615717375
88
+ 87,0.2959931950772694,0.2927944220537347,0.8779115504326709,0.8928571428571429,0.9476618301315984,0.9535195794269394,0.8775870642500728,0.8941684665226782
89
+ 88,0.2977584292130092,0.29271251354203626,0.8772958921914014,0.8935860058309038,0.9470368105137553,0.9534388307592924,0.8769381174533479,0.8948126801152738
90
+ 89,0.297230199089466,0.2923718749086641,0.8778602455792318,0.8943148688046647,0.9472476322471755,0.9534537055138591,0.8776447208374021,0.8953068592057761
91
+ 90,0.295511191539645,0.2923993112046934,0.8783305400690905,0.8935860058309038,0.947878969262419,0.9534717677158328,0.8778951523628905,0.8946608946608947
92
+ 91,0.2944620200510402,0.29242924811541166,0.879613161405069,0.8943148688046647,0.9483791303119635,0.9534845175054611,0.8794368754121102,0.8953068592057761
93
+ 92,0.298020875358743,0.29222166069047445,0.8768854533638882,0.8943148688046647,0.9470113353210268,0.9534898299178064,0.8767442258633383,0.8953068592057761
94
+ 93,0.2954836324992338,0.29225393347767975,0.8782193795533058,0.8943148688046647,0.9478763402915511,0.9535047046723729,0.8778391546009744,0.8953068592057761
95
+ 94,0.2972753527851532,0.2921081119306581,0.8773129938092143,0.8943148688046647,0.9472067379896879,0.9535302042516298,0.8770922921413764,0.8953068592057761
96
+ 95,0.29527183692277603,0.29211140886687675,0.8794934500803776,0.8943148688046647,0.9480973048689116,0.9535397665938512,0.8792797731730926,0.8953068592057761
97
+ 96,0.2953797382772974,0.2921384789332009,0.8790060539727058,0.8943148688046647,0.9479928112465985,0.9535195794269395,0.8787385380066843,0.8953068592057761
98
+ 97,0.295356783660528,0.2921505264568607,0.8782364811711187,0.8943148688046647,0.9480003397429375,0.9535217043918777,0.8779526209331825,0.8953068592057761
99
+ 98,0.2960802502490576,0.2921417018414934,0.8786127167630058,0.8943148688046647,0.9476094269246058,0.9535227668743466,0.8782817456915031,0.8953068592057761
100
+ 99,0.29817039309233945,0.2920929309491166,0.8775011116051579,0.8943148688046647,0.9468233121376181,0.9535227668743466,0.8773479906165991,0.8953068592057761
101
+ 100,0.29501230854616367,0.2920899890775931,0.8780740158018948,0.8943148688046647,0.9480615517132597,0.9535323292165678,0.8777698723608528,0.8953068592057761
training_notebook_c2.ipynb ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3840ec461cf0a549c6e39196be842adfbe3b10df2d6dbc623fd1d1a0a8689940
3
+ size 25453968