---
base_model: pawan2411/address_net
datasets: []
language: []
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:4008
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: Orchard Road 313, Singapore 238895
sentences:
- Orchard Rd 313, Singapore 238895
- 15 Rue de la Paix/75002/France
- NY, 5th Avenue and 57th Street
- source_sentence: 1 Raffles Place, One Raffles Place, Singapore 048616
sentences:
- 1 Raffles Place, Singapore 048616
- Madrid 28001 Spain Calle Serrano 30
- Kurfürstendamm 185/10707 Berlin/Germany
- source_sentence: Kurfürstendamm 207-208, 10719 Berlin, Germany
sentences:
- Argentina CABA C1073ABA 1925 Avenida 9 de Julio
- Kurfürstendamm ๒๐๗-๒๐๘, ๑๐๗๑๙ Berlin, Germany
- 123 Main St, Anytown, AB T1A 1A1
- source_sentence: Via Tornabuoni, 50123 Firenze FI, Italy
sentences:
- Hamngatan 18-20, Stockholm, Sweden
- 1 Florida, Argentina
- Tornabuoni St, 50123 Italy
- source_sentence: Nanjing Road Pedestrian Street, Huangpu, Shanghai 200001, China
sentences:
- Nanjing Rd Ped St, Huangpu Dist, Shanghai, China
- 5 Rue du Faubourg Saint-Honoré, Paris, France
- 6 Place d'Italie, Paris
---
# SentenceTransformer based on pawan2411/address_net
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [pawan2411/address_net](https://huggingface.co/pawan2411/address_net). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [pawan2411/address_net](https://huggingface.co/pawan2411/address_net)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("pawan2411/address-emnet")
# Run inference
sentences = [
'Nanjing Road Pedestrian Street, Huangpu, Shanghai 200001, China',
'Nanjing Rd Ped St, Huangpu Dist, Shanghai, China',
"6 Place d'Italie, Paris",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 4,008 training samples
* Columns: sentence_0
and sentence_1
* Approximate statistics based on the first 1000 samples:
| | sentence_0 | sentence_1 |
|:--------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
| type | string | string |
| details |
1-7-1 Konan, Minato City, Tokyo 108-0075, Japan
| 1-7-1 Konan, Tokyo 108-0075, Japan
|
| Avenida Paulista, 1000 - Bela Vista, São Paulo - SP, 01310-100, Brazil
| Bela Vista 01310-100
|
| Strada Lipscani 25, București 030031, Romania
| Strada Lipscani București
|
* Loss: [MultipleNegativesRankingLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `num_train_epochs`: 100
- `multi_dataset_batch_sampler`: round_robin
#### All Hyperparameters