diff --git "a/pipeline.py" "b/pipeline.py" --- "a/pipeline.py" +++ "b/pipeline.py" @@ -1,79 +1,52 @@ -# source https://github.com/huggingface/diffusers/blob/main/examples/community/lpw_stable_diffusion_onnx.py +# source https://github.com/huggingface/diffusers/blob/main/examples/community/lpw_stable_diffusion_xl.py +## ---------------------------------------------------------- +# A SDXL pipeline can take unlimited weighted prompt +# +# Author: Andrew Zhu +# Github: https://github.com/xhinker +# Medium: https://medium.com/@xhinker +## ----------------------------------------------------------- + import inspect -import re -from typing import Callable, List, Optional, Union +import os +from typing import Any, Callable, Dict, List, Optional, Tuple, Union -import numpy as np -import PIL.Image import torch -from packaging import version -from transformers import CLIPImageProcessor, CLIPTokenizer - -import diffusers -from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, SchedulerMixin -from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput -from diffusers.utils import logging - - -try: - from diffusers.pipelines.onnx_utils import ORT_TO_NP_TYPE -except ImportError: - ORT_TO_NP_TYPE = { - "tensor(bool)": np.bool_, - "tensor(int8)": np.int8, - "tensor(uint8)": np.uint8, - "tensor(int16)": np.int16, - "tensor(uint16)": np.uint16, - "tensor(int32)": np.int32, - "tensor(uint32)": np.uint32, - "tensor(int64)": np.int64, - "tensor(uint64)": np.uint64, - "tensor(float16)": np.float16, - "tensor(float)": np.float32, - "tensor(double)": np.float64, - } - -try: - from diffusers.utils import PIL_INTERPOLATION -except ImportError: - if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("9.1.0"): - PIL_INTERPOLATION = { - "linear": PIL.Image.Resampling.BILINEAR, - "bilinear": PIL.Image.Resampling.BILINEAR, - "bicubic": PIL.Image.Resampling.BICUBIC, - "lanczos": PIL.Image.Resampling.LANCZOS, - "nearest": PIL.Image.Resampling.NEAREST, - } - else: - PIL_INTERPOLATION = { - "linear": PIL.Image.LINEAR, - "bilinear": PIL.Image.BILINEAR, - "bicubic": PIL.Image.BICUBIC, - "lanczos": PIL.Image.LANCZOS, - "nearest": PIL.Image.NEAREST, - } -# ------------------------------------------------------------------------------ - -logger = logging.get_logger(__name__) # pylint: disable=invalid-name +from PIL import Image +from transformers import ( + CLIPImageProcessor, + CLIPTextModel, + CLIPTextModelWithProjection, + CLIPTokenizer, + CLIPVisionModelWithProjection, +) -re_attention = re.compile( - r""" -\\\(| -\\\)| -\\\[| -\\]| -\\\\| -\\| -\(| -\[| -:([+-]?[.\d]+)\)| -\)| -]| -[^\\()\[\]:]+| -: -""", - re.X, +from diffusers import DiffusionPipeline, StableDiffusionXLPipeline +from diffusers.image_processor import PipelineImageInput, VaeImageProcessor +from diffusers.loaders import FromSingleFileMixin, IPAdapterMixin, LoraLoaderMixin, TextualInversionLoaderMixin +from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel +from diffusers.models.attention_processor import ( + AttnProcessor2_0, + FusedAttnProcessor2_0, + LoRAAttnProcessor2_0, + LoRAXFormersAttnProcessor, + XFormersAttnProcessor, +) +from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput +from diffusers.schedulers import KarrasDiffusionSchedulers +from diffusers.utils import ( + deprecate, + is_accelerate_available, + is_accelerate_version, + is_invisible_watermark_available, + logging, + replace_example_docstring, ) +from diffusers.utils.torch_utils import randn_tensor + + +if is_invisible_watermark_available(): + from diffusers.pipelines.stable_diffusion_xl.watermark import StableDiffusionXLWatermarker def parse_prompt_attention(text): @@ -89,6 +62,7 @@ def parse_prompt_attention(text): \\] - literal character ']' \\ - literal character '\' anything else - just text + >>> parse_prompt_attention('normal text') [['normal text', 1.0]] >>> parse_prompt_attention('an (important) word') @@ -110,6 +84,17 @@ def parse_prompt_attention(text): ['sky', 1.4641000000000006], ['.', 1.1]] """ + import re + + re_attention = re.compile( + r""" + \\\(|\\\)|\\\[|\\]|\\\\|\\|\(|\[|:([+-]?[.\d]+)\)| + \)|]|[^\\()\[\]:]+|: + """, + re.X, + ) + + re_break = re.compile(r"\s*\bBREAK\b\s*", re.S) res = [] round_brackets = [] @@ -139,7 +124,11 @@ def parse_prompt_attention(text): elif text == "]" and len(square_brackets) > 0: multiply_range(square_brackets.pop(), square_bracket_multiplier) else: - res.append([text, 1.0]) + parts = re.split(re_break, text) + for i, part in enumerate(parts): + if i > 0: + res.append(["BREAK", -1]) + res.append([part, 1.0]) for pos in round_brackets: multiply_range(pos, round_bracket_multiplier) @@ -162,988 +151,2170 @@ def parse_prompt_attention(text): return res -def get_prompts_with_weights(pipe, prompt: List[str], max_length: int): - r""" - Tokenize a list of prompts and return its tokens with weights of each token. - - No padding, starting or ending token is included. +def get_prompts_tokens_with_weights(clip_tokenizer: CLIPTokenizer, prompt: str): """ - tokens = [] - weights = [] - truncated = False - for text in prompt: - texts_and_weights = parse_prompt_attention(text) - text_token = [] - text_weight = [] - for word, weight in texts_and_weights: - # tokenize and discard the starting and the ending token - token = pipe.tokenizer(word, return_tensors="np").input_ids[0, 1:-1] - text_token += list(token) - # copy the weight by length of token - text_weight += [weight] * len(token) - # stop if the text is too long (longer than truncation limit) - if len(text_token) > max_length: - truncated = True - break - # truncate - if len(text_token) > max_length: - truncated = True - text_token = text_token[:max_length] - text_weight = text_weight[:max_length] - tokens.append(text_token) - weights.append(text_weight) - if truncated: - logger.warning("Prompt was truncated. Try to shorten the prompt or increase max_embeddings_multiples") - return tokens, weights - - -def pad_tokens_and_weights(tokens, weights, max_length, bos, eos, pad, no_boseos_middle=True, chunk_length=77): - r""" - Pad the tokens (with starting and ending tokens) and weights (with 1.0) to max_length. + Get prompt token ids and weights, this function works for both prompt and negative prompt + + Args: + pipe (CLIPTokenizer) + A CLIPTokenizer + prompt (str) + A prompt string with weights + + Returns: + text_tokens (list) + A list contains token ids + text_weight (list) + A list contains the correspodent weight of token ids + + Example: + import torch + from transformers import CLIPTokenizer + + clip_tokenizer = CLIPTokenizer.from_pretrained( + "stablediffusionapi/deliberate-v2" + , subfolder = "tokenizer" + , dtype = torch.float16 + ) + + token_id_list, token_weight_list = get_prompts_tokens_with_weights( + clip_tokenizer = clip_tokenizer + ,prompt = "a (red:1.5) cat"*70 + ) """ - max_embeddings_multiples = (max_length - 2) // (chunk_length - 2) - weights_length = max_length if no_boseos_middle else max_embeddings_multiples * chunk_length - for i in range(len(tokens)): - tokens[i] = [bos] + tokens[i] + [pad] * (max_length - 1 - len(tokens[i]) - 1) + [eos] - if no_boseos_middle: - weights[i] = [1.0] + weights[i] + [1.0] * (max_length - 1 - len(weights[i])) - else: - w = [] - if len(weights[i]) == 0: - w = [1.0] * weights_length - else: - for j in range(max_embeddings_multiples): - w.append(1.0) # weight for starting token in this chunk - w += weights[i][j * (chunk_length - 2) : min(len(weights[i]), (j + 1) * (chunk_length - 2))] - w.append(1.0) # weight for ending token in this chunk - w += [1.0] * (weights_length - len(w)) - weights[i] = w[:] + texts_and_weights = parse_prompt_attention(prompt) + text_tokens, text_weights = [], [] + for word, weight in texts_and_weights: + # tokenize and discard the starting and the ending token + token = clip_tokenizer(word, truncation=False).input_ids[1:-1] # so that tokenize whatever length prompt + # the returned token is a 1d list: [320, 1125, 539, 320] + + # merge the new tokens to the all tokens holder: text_tokens + text_tokens = [*text_tokens, *token] - return tokens, weights + # each token chunk will come with one weight, like ['red cat', 2.0] + # need to expand weight for each token. + chunk_weights = [weight] * len(token) + # append the weight back to the weight holder: text_weights + text_weights = [*text_weights, *chunk_weights] + return text_tokens, text_weights -def get_unweighted_text_embeddings( - pipe, - text_input: np.array, - chunk_length: int, - no_boseos_middle: Optional[bool] = True, + +def group_tokens_and_weights(token_ids: list, weights: list, pad_last_block=False): + """ + Produce tokens and weights in groups and pad the missing tokens + + Args: + token_ids (list) + The token ids from tokenizer + weights (list) + The weights list from function get_prompts_tokens_with_weights + pad_last_block (bool) + Control if fill the last token list to 75 tokens with eos + Returns: + new_token_ids (2d list) + new_weights (2d list) + + Example: + token_groups,weight_groups = group_tokens_and_weights( + token_ids = token_id_list + , weights = token_weight_list + ) + """ + bos, eos = 49406, 49407 + + # this will be a 2d list + new_token_ids = [] + new_weights = [] + while len(token_ids) >= 75: + # get the first 75 tokens + head_75_tokens = [token_ids.pop(0) for _ in range(75)] + head_75_weights = [weights.pop(0) for _ in range(75)] + + # extract token ids and weights + temp_77_token_ids = [bos] + head_75_tokens + [eos] + temp_77_weights = [1.0] + head_75_weights + [1.0] + + # add 77 token and weights chunk to the holder list + new_token_ids.append(temp_77_token_ids) + new_weights.append(temp_77_weights) + + # padding the left + if len(token_ids) > 0: + padding_len = 75 - len(token_ids) if pad_last_block else 0 + + temp_77_token_ids = [bos] + token_ids + [eos] * padding_len + [eos] + new_token_ids.append(temp_77_token_ids) + + temp_77_weights = [1.0] + weights + [1.0] * padding_len + [1.0] + new_weights.append(temp_77_weights) + + return new_token_ids, new_weights + + +def get_weighted_text_embeddings_sdxl( + pipe: StableDiffusionXLPipeline, + prompt: str = "", + prompt_2: str = None, + neg_prompt: str = "", + neg_prompt_2: str = None, + num_images_per_prompt: int = 1, + device: Optional[torch.device] = None, + clip_skip: Optional[int] = None, ): """ - When the length of tokens is a multiple of the capacity of the text encoder, - it should be split into chunks and sent to the text encoder individually. + This function can process long prompt with weights, no length limitation + for Stable Diffusion XL + + Args: + pipe (StableDiffusionPipeline) + prompt (str) + prompt_2 (str) + neg_prompt (str) + neg_prompt_2 (str) + num_images_per_prompt (int) + device (torch.device) + clip_skip (int) + Returns: + prompt_embeds (torch.Tensor) + neg_prompt_embeds (torch.Tensor) """ - max_embeddings_multiples = (text_input.shape[1] - 2) // (chunk_length - 2) - if max_embeddings_multiples > 1: - text_embeddings = [] - for i in range(max_embeddings_multiples): - # extract the i-th chunk - text_input_chunk = text_input[:, i * (chunk_length - 2) : (i + 1) * (chunk_length - 2) + 2].copy() - - # cover the head and the tail by the starting and the ending tokens - text_input_chunk[:, 0] = text_input[0, 0] - text_input_chunk[:, -1] = text_input[0, -1] - - text_embedding = pipe.text_encoder(input_ids=text_input_chunk)[0] - - if no_boseos_middle: - if i == 0: - # discard the ending token - text_embedding = text_embedding[:, :-1] - elif i == max_embeddings_multiples - 1: - # discard the starting token - text_embedding = text_embedding[:, 1:] - else: - # discard both starting and ending tokens - text_embedding = text_embedding[:, 1:-1] + device = device or pipe._execution_device + + if prompt_2: + prompt = f"{prompt} {prompt_2}" + + if neg_prompt_2: + neg_prompt = f"{neg_prompt} {neg_prompt_2}" + + prompt_t1 = prompt_t2 = prompt + neg_prompt_t1 = neg_prompt_t2 = neg_prompt + + if isinstance(pipe, TextualInversionLoaderMixin): + prompt_t1 = pipe.maybe_convert_prompt(prompt_t1, pipe.tokenizer) + neg_prompt_t1 = pipe.maybe_convert_prompt(neg_prompt_t1, pipe.tokenizer) + prompt_t2 = pipe.maybe_convert_prompt(prompt_t2, pipe.tokenizer_2) + neg_prompt_t2 = pipe.maybe_convert_prompt(neg_prompt_t2, pipe.tokenizer_2) + + eos = pipe.tokenizer.eos_token_id + + # tokenizer 1 + prompt_tokens, prompt_weights = get_prompts_tokens_with_weights(pipe.tokenizer, prompt_t1) + neg_prompt_tokens, neg_prompt_weights = get_prompts_tokens_with_weights(pipe.tokenizer, neg_prompt_t1) + + # tokenizer 2 + prompt_tokens_2, prompt_weights_2 = get_prompts_tokens_with_weights(pipe.tokenizer_2, prompt_t2) + neg_prompt_tokens_2, neg_prompt_weights_2 = get_prompts_tokens_with_weights(pipe.tokenizer_2, neg_prompt_t2) + + # padding the shorter one for prompt set 1 + prompt_token_len = len(prompt_tokens) + neg_prompt_token_len = len(neg_prompt_tokens) + + if prompt_token_len > neg_prompt_token_len: + # padding the neg_prompt with eos token + neg_prompt_tokens = neg_prompt_tokens + [eos] * abs(prompt_token_len - neg_prompt_token_len) + neg_prompt_weights = neg_prompt_weights + [1.0] * abs(prompt_token_len - neg_prompt_token_len) + else: + # padding the prompt + prompt_tokens = prompt_tokens + [eos] * abs(prompt_token_len - neg_prompt_token_len) + prompt_weights = prompt_weights + [1.0] * abs(prompt_token_len - neg_prompt_token_len) + + # padding the shorter one for token set 2 + prompt_token_len_2 = len(prompt_tokens_2) + neg_prompt_token_len_2 = len(neg_prompt_tokens_2) + + if prompt_token_len_2 > neg_prompt_token_len_2: + # padding the neg_prompt with eos token + neg_prompt_tokens_2 = neg_prompt_tokens_2 + [eos] * abs(prompt_token_len_2 - neg_prompt_token_len_2) + neg_prompt_weights_2 = neg_prompt_weights_2 + [1.0] * abs(prompt_token_len_2 - neg_prompt_token_len_2) + else: + # padding the prompt + prompt_tokens_2 = prompt_tokens_2 + [eos] * abs(prompt_token_len_2 - neg_prompt_token_len_2) + prompt_weights_2 = prompt_weights + [1.0] * abs(prompt_token_len_2 - neg_prompt_token_len_2) + + embeds = [] + neg_embeds = [] + + prompt_token_groups, prompt_weight_groups = group_tokens_and_weights(prompt_tokens.copy(), prompt_weights.copy()) + + neg_prompt_token_groups, neg_prompt_weight_groups = group_tokens_and_weights( + neg_prompt_tokens.copy(), neg_prompt_weights.copy() + ) + + prompt_token_groups_2, prompt_weight_groups_2 = group_tokens_and_weights( + prompt_tokens_2.copy(), prompt_weights_2.copy() + ) + + neg_prompt_token_groups_2, neg_prompt_weight_groups_2 = group_tokens_and_weights( + neg_prompt_tokens_2.copy(), neg_prompt_weights_2.copy() + ) + + # get prompt embeddings one by one is not working. + for i in range(len(prompt_token_groups)): + # get positive prompt embeddings with weights + token_tensor = torch.tensor([prompt_token_groups[i]], dtype=torch.long, device=device) + weight_tensor = torch.tensor(prompt_weight_groups[i], dtype=torch.float16, device=device) + + token_tensor_2 = torch.tensor([prompt_token_groups_2[i]], dtype=torch.long, device=device) + + # use first text encoder + prompt_embeds_1 = pipe.text_encoder(token_tensor.to(device), output_hidden_states=True) + + # use second text encoder + prompt_embeds_2 = pipe.text_encoder_2(token_tensor_2.to(device), output_hidden_states=True) + pooled_prompt_embeds = prompt_embeds_2[0] + + if clip_skip is None: + prompt_embeds_1_hidden_states = prompt_embeds_1.hidden_states[-2] + prompt_embeds_2_hidden_states = prompt_embeds_2.hidden_states[-2] + else: + # "2" because SDXL always indexes from the penultimate layer. + prompt_embeds_1_hidden_states = prompt_embeds_1.hidden_states[-(clip_skip + 2)] + prompt_embeds_2_hidden_states = prompt_embeds_2.hidden_states[-(clip_skip + 2)] + + prompt_embeds_list = [prompt_embeds_1_hidden_states, prompt_embeds_2_hidden_states] + token_embedding = torch.concat(prompt_embeds_list, dim=-1).squeeze(0) + + for j in range(len(weight_tensor)): + if weight_tensor[j] != 1.0: + token_embedding[j] = ( + token_embedding[-1] + (token_embedding[j] - token_embedding[-1]) * weight_tensor[j] + ) + + token_embedding = token_embedding.unsqueeze(0) + embeds.append(token_embedding) + + # get negative prompt embeddings with weights + neg_token_tensor = torch.tensor([neg_prompt_token_groups[i]], dtype=torch.long, device=device) + neg_token_tensor_2 = torch.tensor([neg_prompt_token_groups_2[i]], dtype=torch.long, device=device) + neg_weight_tensor = torch.tensor(neg_prompt_weight_groups[i], dtype=torch.float16, device=device) + + # use first text encoder + neg_prompt_embeds_1 = pipe.text_encoder(neg_token_tensor.to(device), output_hidden_states=True) + neg_prompt_embeds_1_hidden_states = neg_prompt_embeds_1.hidden_states[-2] + + # use second text encoder + neg_prompt_embeds_2 = pipe.text_encoder_2(neg_token_tensor_2.to(device), output_hidden_states=True) + neg_prompt_embeds_2_hidden_states = neg_prompt_embeds_2.hidden_states[-2] + negative_pooled_prompt_embeds = neg_prompt_embeds_2[0] + + neg_prompt_embeds_list = [neg_prompt_embeds_1_hidden_states, neg_prompt_embeds_2_hidden_states] + neg_token_embedding = torch.concat(neg_prompt_embeds_list, dim=-1).squeeze(0) + + for z in range(len(neg_weight_tensor)): + if neg_weight_tensor[z] != 1.0: + neg_token_embedding[z] = ( + neg_token_embedding[-1] + (neg_token_embedding[z] - neg_token_embedding[-1]) * neg_weight_tensor[z] + ) + + neg_token_embedding = neg_token_embedding.unsqueeze(0) + neg_embeds.append(neg_token_embedding) + + prompt_embeds = torch.cat(embeds, dim=1) + negative_prompt_embeds = torch.cat(neg_embeds, dim=1) + + bs_embed, seq_len, _ = prompt_embeds.shape + # duplicate text embeddings for each generation per prompt, using mps friendly method + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + + pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt, 1).view( + bs_embed * num_images_per_prompt, -1 + ) + negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt, 1).view( + bs_embed * num_images_per_prompt, -1 + ) + + return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds - text_embeddings.append(text_embedding) - text_embeddings = np.concatenate(text_embeddings, axis=1) + +# ------------------------------------------------------------------------------------------------------------------------------- +# reuse the backbone code from StableDiffusionXLPipeline +# ------------------------------------------------------------------------------------------------------------------------------- + +logger = logging.get_logger(__name__) # pylint: disable=invalid-name + +EXAMPLE_DOC_STRING = """ + Examples: + ```py + from diffusers import DiffusionPipeline + import torch + + pipe = DiffusionPipeline.from_pretrained( + "stabilityai/stable-diffusion-xl-base-1.0" + , torch_dtype = torch.float16 + , use_safetensors = True + , variant = "fp16" + , custom_pipeline = "lpw_stable_diffusion_xl", + ) + + prompt = "a white cat running on the grass"*20 + prompt2 = "play a football"*20 + prompt = f"{prompt},{prompt2}" + neg_prompt = "blur, low quality" + + pipe.to("cuda") + images = pipe( + prompt = prompt + , negative_prompt = neg_prompt + ).images[0] + + pipe.to("cpu") + torch.cuda.empty_cache() + images + ``` +""" + + +# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg +def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): + """ + Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and + Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4 + """ + std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True) + std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) + # rescale the results from guidance (fixes overexposure) + noise_pred_rescaled = noise_cfg * (std_text / std_cfg) + # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images + noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg + return noise_cfg + + +# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents +def retrieve_latents( + encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample" +): + if hasattr(encoder_output, "latent_dist") and sample_mode == "sample": + return encoder_output.latent_dist.sample(generator) + elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax": + return encoder_output.latent_dist.mode() + elif hasattr(encoder_output, "latents"): + return encoder_output.latents else: - text_embeddings = pipe.text_encoder(input_ids=text_input)[0] - return text_embeddings - - -def get_weighted_text_embeddings( - pipe, - prompt: Union[str, List[str]], - uncond_prompt: Optional[Union[str, List[str]]] = None, - max_embeddings_multiples: Optional[int] = 4, - no_boseos_middle: Optional[bool] = False, - skip_parsing: Optional[bool] = False, - skip_weighting: Optional[bool] = False, + raise AttributeError("Could not access latents of provided encoder_output") + + +# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps +def retrieve_timesteps( + scheduler, + num_inference_steps: Optional[int] = None, + device: Optional[Union[str, torch.device]] = None, + timesteps: Optional[List[int]] = None, **kwargs, +): + """ + Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles + custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. + + Args: + scheduler (`SchedulerMixin`): + The scheduler to get timesteps from. + num_inference_steps (`int`): + The number of diffusion steps used when generating samples with a pre-trained model. If used, + `timesteps` must be `None`. + device (`str` or `torch.device`, *optional*): + The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. + timesteps (`List[int]`, *optional*): + Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default + timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps` + must be `None`. + + Returns: + `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the + second element is the number of inference steps. + """ + if timesteps is not None: + accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accepts_timesteps: + raise ValueError( + f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" + f" timestep schedules. Please check whether you are using the correct scheduler." + ) + scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + else: + scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) + timesteps = scheduler.timesteps + return timesteps, num_inference_steps + + +class SDXLLongPromptWeightingPipeline( + DiffusionPipeline, FromSingleFileMixin, IPAdapterMixin, LoraLoaderMixin, TextualInversionLoaderMixin ): r""" - Prompts can be assigned with local weights using brackets. For example, - prompt 'A (very beautiful) masterpiece' highlights the words 'very beautiful', - and the embedding tokens corresponding to the words get multiplied by a constant, 1.1. + Pipeline for text-to-image generation using Stable Diffusion XL. - Also, to regularize of the embedding, the weighted embedding would be scaled to preserve the original mean. + This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods + implemented for all pipelines (downloading, saving, running on a particular device, etc.). + + The pipeline also inherits the following loading methods: + - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files + - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters + - [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights + - [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights + - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings Args: - pipe (`OnnxStableDiffusionPipeline`): - Pipe to provide access to the tokenizer and the text encoder. - prompt (`str` or `List[str]`): - The prompt or prompts to guide the image generation. - uncond_prompt (`str` or `List[str]`): - The unconditional prompt or prompts for guide the image generation. If unconditional prompt - is provided, the embeddings of prompt and uncond_prompt are concatenated. - max_embeddings_multiples (`int`, *optional*, defaults to `1`): - The max multiple length of prompt embeddings compared to the max output length of text encoder. - no_boseos_middle (`bool`, *optional*, defaults to `False`): - If the length of text token is multiples of the capacity of text encoder, whether reserve the starting and - ending token in each of the chunk in the middle. - skip_parsing (`bool`, *optional*, defaults to `False`): - Skip the parsing of brackets. - skip_weighting (`bool`, *optional*, defaults to `False`): - Skip the weighting. When the parsing is skipped, it is forced True. + vae ([`AutoencoderKL`]): + Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. + text_encoder ([`CLIPTextModel`]): + Frozen text-encoder. Stable Diffusion XL uses the text portion of + [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically + the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. + text_encoder_2 ([` CLIPTextModelWithProjection`]): + Second frozen text-encoder. Stable Diffusion XL uses the text and pool portion of + [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection), + specifically the + [laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k) + variant. + tokenizer (`CLIPTokenizer`): + Tokenizer of class + [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). + tokenizer_2 (`CLIPTokenizer`): + Second Tokenizer of class + [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). + unet ([`UNet2DConditionModel`]): + Conditional U-Net architecture to denoise the encoded image latents. + scheduler ([`SchedulerMixin`]): + A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of + [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. + feature_extractor ([`~transformers.CLIPImageProcessor`]): + A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`. """ - max_length = (pipe.tokenizer.model_max_length - 2) * max_embeddings_multiples + 2 - if isinstance(prompt, str): - prompt = [prompt] - - if not skip_parsing: - prompt_tokens, prompt_weights = get_prompts_with_weights(pipe, prompt, max_length - 2) - if uncond_prompt is not None: - if isinstance(uncond_prompt, str): - uncond_prompt = [uncond_prompt] - uncond_tokens, uncond_weights = get_prompts_with_weights(pipe, uncond_prompt, max_length - 2) - else: - prompt_tokens = [ - token[1:-1] - for token in pipe.tokenizer(prompt, max_length=max_length, truncation=True, return_tensors="np").input_ids - ] - prompt_weights = [[1.0] * len(token) for token in prompt_tokens] - if uncond_prompt is not None: - if isinstance(uncond_prompt, str): - uncond_prompt = [uncond_prompt] - uncond_tokens = [ - token[1:-1] - for token in pipe.tokenizer( - uncond_prompt, + + model_cpu_offload_seq = "text_encoder->text_encoder_2->image_encoder->unet->vae" + _optional_components = [ + "tokenizer", + "tokenizer_2", + "text_encoder", + "text_encoder_2", + "image_encoder", + "feature_extractor", + ] + _callback_tensor_inputs = [ + "latents", + "prompt_embeds", + "negative_prompt_embeds", + "add_text_embeds", + "add_time_ids", + "negative_pooled_prompt_embeds", + "negative_add_time_ids", + ] + + def __init__( + self, + vae: AutoencoderKL, + text_encoder: CLIPTextModel, + text_encoder_2: CLIPTextModelWithProjection, + tokenizer: CLIPTokenizer, + tokenizer_2: CLIPTokenizer, + unet: UNet2DConditionModel, + scheduler: KarrasDiffusionSchedulers, + feature_extractor: Optional[CLIPImageProcessor] = None, + image_encoder: Optional[CLIPVisionModelWithProjection] = None, + force_zeros_for_empty_prompt: bool = True, + add_watermarker: Optional[bool] = None, + ): + super().__init__() + + self.register_modules( + vae=vae, + text_encoder=text_encoder, + text_encoder_2=text_encoder_2, + tokenizer=tokenizer, + tokenizer_2=tokenizer_2, + unet=unet, + scheduler=scheduler, + feature_extractor=feature_extractor, + image_encoder=image_encoder, + ) + self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) + self.mask_processor = VaeImageProcessor( + vae_scale_factor=self.vae_scale_factor, do_normalize=False, do_binarize=True, do_convert_grayscale=True + ) + self.default_sample_size = self.unet.config.sample_size + + add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available() + + if add_watermarker: + self.watermark = StableDiffusionXLWatermarker() + else: + self.watermark = None + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing + def enable_vae_slicing(self): + r""" + Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to + compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. + """ + self.vae.enable_slicing() + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing + def disable_vae_slicing(self): + r""" + Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to + computing decoding in one step. + """ + self.vae.disable_slicing() + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_tiling + def enable_vae_tiling(self): + r""" + Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to + compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow + processing larger images. + """ + self.vae.enable_tiling() + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_tiling + def disable_vae_tiling(self): + r""" + Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to + computing decoding in one step. + """ + self.vae.disable_tiling() + + def enable_model_cpu_offload(self, gpu_id=0): + r""" + Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared + to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward` + method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with + `enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`. + """ + if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"): + from accelerate import cpu_offload_with_hook + else: + raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.") + + device = torch.device(f"cuda:{gpu_id}") + + if self.device.type != "cpu": + self.to("cpu", silence_dtype_warnings=True) + torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) + + model_sequence = ( + [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2] + ) + model_sequence.extend([self.unet, self.vae]) + + hook = None + for cpu_offloaded_model in model_sequence: + _, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook) + + # We'll offload the last model manually. + self.final_offload_hook = hook + + # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.encode_prompt + def encode_prompt( + self, + prompt: str, + prompt_2: Optional[str] = None, + device: Optional[torch.device] = None, + num_images_per_prompt: int = 1, + do_classifier_free_guidance: bool = True, + negative_prompt: Optional[str] = None, + negative_prompt_2: Optional[str] = None, + prompt_embeds: Optional[torch.FloatTensor] = None, + negative_prompt_embeds: Optional[torch.FloatTensor] = None, + pooled_prompt_embeds: Optional[torch.FloatTensor] = None, + negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, + lora_scale: Optional[float] = None, + ): + r""" + Encodes the prompt into text encoder hidden states. + + Args: + prompt (`str` or `List[str]`, *optional*): + prompt to be encoded + prompt_2 (`str` or `List[str]`, *optional*): + The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is + used in both text-encoders + device: (`torch.device`): + torch device + num_images_per_prompt (`int`): + number of images that should be generated per prompt + do_classifier_free_guidance (`bool`): + whether to use classifier free guidance or not + negative_prompt (`str` or `List[str]`, *optional*): + The prompt or prompts not to guide the image generation. If not defined, one has to pass + `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is + less than `1`). + negative_prompt_2 (`str` or `List[str]`, *optional*): + The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and + `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders + prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not + provided, text embeddings will be generated from `prompt` input argument. + negative_prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt + weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input + argument. + pooled_prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. + If not provided, pooled text embeddings will be generated from `prompt` input argument. + negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt + weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` + input argument. + lora_scale (`float`, *optional*): + A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. + """ + device = device or self._execution_device + + # set lora scale so that monkey patched LoRA + # function of text encoder can correctly access it + if lora_scale is not None and isinstance(self, LoraLoaderMixin): + self._lora_scale = lora_scale + + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + + # Define tokenizers and text encoders + tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2] + text_encoders = ( + [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2] + ) + + if prompt_embeds is None: + prompt_2 = prompt_2 or prompt + # textual inversion: procecss multi-vector tokens if necessary + prompt_embeds_list = [] + prompts = [prompt, prompt_2] + for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders): + if isinstance(self, TextualInversionLoaderMixin): + prompt = self.maybe_convert_prompt(prompt, tokenizer) + + text_inputs = tokenizer( + prompt, + padding="max_length", + max_length=tokenizer.model_max_length, + truncation=True, + return_tensors="pt", + ) + + text_input_ids = text_inputs.input_ids + untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids + + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( + text_input_ids, untruncated_ids + ): + removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1]) + logger.warning( + "The following part of your input was truncated because CLIP can only handle sequences up to" + f" {tokenizer.model_max_length} tokens: {removed_text}" + ) + + prompt_embeds = text_encoder( + text_input_ids.to(device), + output_hidden_states=True, + ) + + # We are only ALWAYS interested in the pooled output of the final text encoder + pooled_prompt_embeds = prompt_embeds[0] + prompt_embeds = prompt_embeds.hidden_states[-2] + + prompt_embeds_list.append(prompt_embeds) + + prompt_embeds = torch.concat(prompt_embeds_list, dim=-1) + + # get unconditional embeddings for classifier free guidance + zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt + if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt: + negative_prompt_embeds = torch.zeros_like(prompt_embeds) + negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds) + elif do_classifier_free_guidance and negative_prompt_embeds is None: + negative_prompt = negative_prompt or "" + negative_prompt_2 = negative_prompt_2 or negative_prompt + + uncond_tokens: List[str] + if prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError( + f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" + f" {type(prompt)}." + ) + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt, negative_prompt_2] + elif batch_size != len(negative_prompt): + raise ValueError( + f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" + f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" + " the batch size of `prompt`." + ) + else: + uncond_tokens = [negative_prompt, negative_prompt_2] + + negative_prompt_embeds_list = [] + for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders): + if isinstance(self, TextualInversionLoaderMixin): + negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer) + + max_length = prompt_embeds.shape[1] + uncond_input = tokenizer( + negative_prompt, + padding="max_length", max_length=max_length, truncation=True, - return_tensors="np", - ).input_ids - ] - uncond_weights = [[1.0] * len(token) for token in uncond_tokens] + return_tensors="pt", + ) - # round up the longest length of tokens to a multiple of (model_max_length - 2) - max_length = max([len(token) for token in prompt_tokens]) - if uncond_prompt is not None: - max_length = max(max_length, max([len(token) for token in uncond_tokens])) + negative_prompt_embeds = text_encoder( + uncond_input.input_ids.to(device), + output_hidden_states=True, + ) + # We are only ALWAYS interested in the pooled output of the final text encoder + negative_pooled_prompt_embeds = negative_prompt_embeds[0] + negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2] - max_embeddings_multiples = min( - max_embeddings_multiples, - (max_length - 1) // (pipe.tokenizer.model_max_length - 2) + 1, - ) - max_embeddings_multiples = max(1, max_embeddings_multiples) - max_length = (pipe.tokenizer.model_max_length - 2) * max_embeddings_multiples + 2 + negative_prompt_embeds_list.append(negative_prompt_embeds) - # pad the length of tokens and weights - bos = pipe.tokenizer.bos_token_id - eos = pipe.tokenizer.eos_token_id - pad = getattr(pipe.tokenizer, "pad_token_id", eos) - prompt_tokens, prompt_weights = pad_tokens_and_weights( - prompt_tokens, - prompt_weights, - max_length, - bos, - eos, - pad, - no_boseos_middle=no_boseos_middle, - chunk_length=pipe.tokenizer.model_max_length, - ) - prompt_tokens = np.array(prompt_tokens, dtype=np.int32) - if uncond_prompt is not None: - uncond_tokens, uncond_weights = pad_tokens_and_weights( - uncond_tokens, - uncond_weights, - max_length, - bos, - eos, - pad, - no_boseos_middle=no_boseos_middle, - chunk_length=pipe.tokenizer.model_max_length, - ) - uncond_tokens = np.array(uncond_tokens, dtype=np.int32) - - # get the embeddings - text_embeddings = get_unweighted_text_embeddings( - pipe, - prompt_tokens, - pipe.tokenizer.model_max_length, - no_boseos_middle=no_boseos_middle, - ) - prompt_weights = np.array(prompt_weights, dtype=text_embeddings.dtype) - if uncond_prompt is not None: - uncond_embeddings = get_unweighted_text_embeddings( - pipe, - uncond_tokens, - pipe.tokenizer.model_max_length, - no_boseos_middle=no_boseos_middle, + negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1) + + prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) + bs_embed, seq_len, _ = prompt_embeds.shape + # duplicate text embeddings for each generation per prompt, using mps friendly method + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + + if do_classifier_free_guidance: + # duplicate unconditional embeddings for each generation per prompt, using mps friendly method + seq_len = negative_prompt_embeds.shape[1] + negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + + pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view( + bs_embed * num_images_per_prompt, -1 ) - uncond_weights = np.array(uncond_weights, dtype=uncond_embeddings.dtype) - - # assign weights to the prompts and normalize in the sense of mean - # TODO: should we normalize by chunk or in a whole (current implementation)? - if (not skip_parsing) and (not skip_weighting): - previous_mean = text_embeddings.mean(axis=(-2, -1)) - text_embeddings *= prompt_weights[:, :, None] - text_embeddings *= (previous_mean / text_embeddings.mean(axis=(-2, -1)))[:, None, None] - if uncond_prompt is not None: - previous_mean = uncond_embeddings.mean(axis=(-2, -1)) - uncond_embeddings *= uncond_weights[:, :, None] - uncond_embeddings *= (previous_mean / uncond_embeddings.mean(axis=(-2, -1)))[:, None, None] - - # For classifier free guidance, we need to do two forward passes. - # Here we concatenate the unconditional and text embeddings into a single batch - # to avoid doing two forward passes - if uncond_prompt is not None: - return text_embeddings, uncond_embeddings - - return text_embeddings - - -def preprocess_image(image): - w, h = image.size - w, h = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 - image = image.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]) - image = np.array(image).astype(np.float32) / 255.0 - image = image[None].transpose(0, 3, 1, 2) - return 2.0 * image - 1.0 - - -def preprocess_mask(mask, scale_factor=8): - mask = mask.convert("L") - w, h = mask.size - w, h = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 - mask = mask.resize((w // scale_factor, h // scale_factor), resample=PIL_INTERPOLATION["nearest"]) - mask = np.array(mask).astype(np.float32) / 255.0 - mask = np.tile(mask, (4, 1, 1)) - mask = mask[None].transpose(0, 1, 2, 3) # what does this step do? - mask = 1 - mask # repaint white, keep black - return mask - - -class OnnxStableDiffusionLongPromptWeightingPipeline(OnnxStableDiffusionPipeline): - r""" - Pipeline for text-to-image generation using Stable Diffusion without tokens length limit, and support parsing - weighting in prompt. + if do_classifier_free_guidance: + negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view( + bs_embed * num_images_per_prompt, -1 + ) - This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the - library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) - """ + return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds - if version.parse(version.parse(diffusers.__version__).base_version) >= version.parse("0.9.0"): - - def __init__( - self, - vae_encoder: OnnxRuntimeModel, - vae_decoder: OnnxRuntimeModel, - text_encoder: OnnxRuntimeModel, - tokenizer: CLIPTokenizer, - unet: OnnxRuntimeModel, - scheduler: SchedulerMixin, - safety_checker: OnnxRuntimeModel, - feature_extractor: CLIPImageProcessor, - requires_safety_checker: bool = True, - ): - super().__init__( - vae_encoder=vae_encoder, - vae_decoder=vae_decoder, - text_encoder=text_encoder, - tokenizer=tokenizer, - unet=unet, - scheduler=scheduler, - safety_checker=safety_checker, - feature_extractor=feature_extractor, - requires_safety_checker=requires_safety_checker, + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image + def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None): + dtype = next(self.image_encoder.parameters()).dtype + + if not isinstance(image, torch.Tensor): + image = self.feature_extractor(image, return_tensors="pt").pixel_values + + image = image.to(device=device, dtype=dtype) + if output_hidden_states: + image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2] + image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_enc_hidden_states = self.image_encoder( + torch.zeros_like(image), output_hidden_states=True + ).hidden_states[-2] + uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave( + num_images_per_prompt, dim=0 ) - self.__init__additional__() + return image_enc_hidden_states, uncond_image_enc_hidden_states + else: + image_embeds = self.image_encoder(image).image_embeds + image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_embeds = torch.zeros_like(image_embeds) - else: + return image_embeds, uncond_image_embeds + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs + def prepare_extra_step_kwargs(self, generator, eta): + # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature + # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. + # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 + # and should be between [0, 1] + + accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs["eta"] = eta + + # check if the scheduler accepts generator + accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs["generator"] = generator + return extra_step_kwargs + + def check_inputs( + self, + prompt, + prompt_2, + height, + width, + strength, + callback_steps, + negative_prompt=None, + negative_prompt_2=None, + prompt_embeds=None, + negative_prompt_embeds=None, + pooled_prompt_embeds=None, + negative_pooled_prompt_embeds=None, + callback_on_step_end_tensor_inputs=None, + ): + if height % 8 != 0 or width % 8 != 0: + raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") - def __init__( - self, - vae_encoder: OnnxRuntimeModel, - vae_decoder: OnnxRuntimeModel, - text_encoder: OnnxRuntimeModel, - tokenizer: CLIPTokenizer, - unet: OnnxRuntimeModel, - scheduler: SchedulerMixin, - safety_checker: OnnxRuntimeModel, - feature_extractor: CLIPImageProcessor, + if strength < 0 or strength > 1: + raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}") + + if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): + raise ValueError( + f"`callback_steps` has to be a positive integer but is {callback_steps} of type" + f" {type(callback_steps)}." + ) + + if callback_on_step_end_tensor_inputs is not None and not all( + k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs ): - super().__init__( - vae_encoder=vae_encoder, - vae_decoder=vae_decoder, - text_encoder=text_encoder, - tokenizer=tokenizer, - unet=unet, - scheduler=scheduler, - safety_checker=safety_checker, - feature_extractor=feature_extractor, + raise ValueError( + f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" + ) + + if prompt is not None and prompt_embeds is not None: + raise ValueError( + f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" + " only forward one of the two." + ) + elif prompt_2 is not None and prompt_embeds is not None: + raise ValueError( + f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to" + " only forward one of the two." + ) + elif prompt is None and prompt_embeds is None: + raise ValueError( + "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." + ) + elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): + raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") + elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)): + raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}") + + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError( + f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" + f" {negative_prompt_embeds}. Please make sure to only forward one of the two." + ) + elif negative_prompt_2 is not None and negative_prompt_embeds is not None: + raise ValueError( + f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:" + f" {negative_prompt_embeds}. Please make sure to only forward one of the two." + ) + + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError( + "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" + f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" + f" {negative_prompt_embeds.shape}." + ) + + if prompt_embeds is not None and pooled_prompt_embeds is None: + raise ValueError( + "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`." + ) + + if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None: + raise ValueError( + "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`." + ) + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_freeu + def enable_freeu(self, s1: float, s2: float, b1: float, b2: float): + r"""Enables the FreeU mechanism as in https://arxiv.org/abs/2309.11497. + + The suffixes after the scaling factors represent the stages where they are being applied. + + Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of the values + that are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL. + + Args: + s1 (`float`): + Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to + mitigate "oversmoothing effect" in the enhanced denoising process. + s2 (`float`): + Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to + mitigate "oversmoothing effect" in the enhanced denoising process. + b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features. + b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features. + """ + if not hasattr(self, "unet"): + raise ValueError("The pipeline must have `unet` for using FreeU.") + self.unet.enable_freeu(s1=s1, s2=s2, b1=b1, b2=b2) + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_freeu + def disable_freeu(self): + """Disables the FreeU mechanism if enabled.""" + self.unet.disable_freeu() + + # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.fuse_qkv_projections + def fuse_qkv_projections(self, unet: bool = True, vae: bool = True): + """ + Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, + key, value) are fused. For cross-attention modules, key and value projection matrices are fused. + + + + This API is 🧪 experimental. + + + + Args: + unet (`bool`, defaults to `True`): To apply fusion on the UNet. + vae (`bool`, defaults to `True`): To apply fusion on the VAE. + """ + self.fusing_unet = False + self.fusing_vae = False + + if unet: + self.fusing_unet = True + self.unet.fuse_qkv_projections() + self.unet.set_attn_processor(FusedAttnProcessor2_0()) + + if vae: + if not isinstance(self.vae, AutoencoderKL): + raise ValueError("`fuse_qkv_projections()` is only supported for the VAE of type `AutoencoderKL`.") + + self.fusing_vae = True + self.vae.fuse_qkv_projections() + self.vae.set_attn_processor(FusedAttnProcessor2_0()) + + # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.unfuse_qkv_projections + def unfuse_qkv_projections(self, unet: bool = True, vae: bool = True): + """Disable QKV projection fusion if enabled. + + + + This API is 🧪 experimental. + + + + Args: + unet (`bool`, defaults to `True`): To apply fusion on the UNet. + vae (`bool`, defaults to `True`): To apply fusion on the VAE. + + """ + if unet: + if not self.fusing_unet: + logger.warning("The UNet was not initially fused for QKV projections. Doing nothing.") + else: + self.unet.unfuse_qkv_projections() + self.fusing_unet = False + + if vae: + if not self.fusing_vae: + logger.warning("The VAE was not initially fused for QKV projections. Doing nothing.") + else: + self.vae.unfuse_qkv_projections() + self.fusing_vae = False + + def get_timesteps(self, num_inference_steps, strength, device, denoising_start=None): + # get the original timestep using init_timestep + if denoising_start is None: + init_timestep = min(int(num_inference_steps * strength), num_inference_steps) + t_start = max(num_inference_steps - init_timestep, 0) + else: + t_start = 0 + + timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :] + + # Strength is irrelevant if we directly request a timestep to start at; + # that is, strength is determined by the denoising_start instead. + if denoising_start is not None: + discrete_timestep_cutoff = int( + round( + self.scheduler.config.num_train_timesteps + - (denoising_start * self.scheduler.config.num_train_timesteps) + ) ) - self.__init__additional__() - def __init__additional__(self): - self.unet.config.in_channels = 4 - self.vae_scale_factor = 8 + num_inference_steps = (timesteps < discrete_timestep_cutoff).sum().item() + if self.scheduler.order == 2 and num_inference_steps % 2 == 0: + # if the scheduler is a 2nd order scheduler we might have to do +1 + # because `num_inference_steps` might be even given that every timestep + # (except the highest one) is duplicated. If `num_inference_steps` is even it would + # mean that we cut the timesteps in the middle of the denoising step + # (between 1st and 2nd devirative) which leads to incorrect results. By adding 1 + # we ensure that the denoising process always ends after the 2nd derivate step of the scheduler + num_inference_steps = num_inference_steps + 1 + + # because t_n+1 >= t_n, we slice the timesteps starting from the end + timesteps = timesteps[-num_inference_steps:] + return timesteps, num_inference_steps + + return timesteps, num_inference_steps - t_start + + def prepare_latents( + self, + image, + mask, + width, + height, + num_channels_latents, + timestep, + batch_size, + num_images_per_prompt, + dtype, + device, + generator=None, + add_noise=True, + latents=None, + is_strength_max=True, + return_noise=False, + return_image_latents=False, + ): + batch_size *= num_images_per_prompt + + if image is None: + shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError( + f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" + f" size of {batch_size}. Make sure the batch size matches the length of the generators." + ) + + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + latents = latents.to(device) + + # scale the initial noise by the standard deviation required by the scheduler + latents = latents * self.scheduler.init_noise_sigma + return latents + + elif mask is None: + if not isinstance(image, (torch.Tensor, Image.Image, list)): + raise ValueError( + f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}" + ) + + # Offload text encoder if `enable_model_cpu_offload` was enabled + if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: + self.text_encoder_2.to("cpu") + torch.cuda.empty_cache() + + image = image.to(device=device, dtype=dtype) + + if image.shape[1] == 4: + init_latents = image + + else: + # make sure the VAE is in float32 mode, as it overflows in float16 + if self.vae.config.force_upcast: + image = image.float() + self.vae.to(dtype=torch.float32) + + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError( + f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" + f" size of {batch_size}. Make sure the batch size matches the length of the generators." + ) + + elif isinstance(generator, list): + init_latents = [ + retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i]) + for i in range(batch_size) + ] + init_latents = torch.cat(init_latents, dim=0) + else: + init_latents = retrieve_latents(self.vae.encode(image), generator=generator) + + if self.vae.config.force_upcast: + self.vae.to(dtype) + + init_latents = init_latents.to(dtype) + init_latents = self.vae.config.scaling_factor * init_latents + + if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0: + # expand init_latents for batch_size + additional_image_per_prompt = batch_size // init_latents.shape[0] + init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0) + elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0: + raise ValueError( + f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts." + ) + else: + init_latents = torch.cat([init_latents], dim=0) + + if add_noise: + shape = init_latents.shape + noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + # get latents + init_latents = self.scheduler.add_noise(init_latents, noise, timestep) + + latents = init_latents + return latents + + else: + shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError( + f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" + f" size of {batch_size}. Make sure the batch size matches the length of the generators." + ) + + if (image is None or timestep is None) and not is_strength_max: + raise ValueError( + "Since strength < 1. initial latents are to be initialised as a combination of Image + Noise." + "However, either the image or the noise timestep has not been provided." + ) + + if image.shape[1] == 4: + image_latents = image.to(device=device, dtype=dtype) + image_latents = image_latents.repeat(batch_size // image_latents.shape[0], 1, 1, 1) + elif return_image_latents or (latents is None and not is_strength_max): + image = image.to(device=device, dtype=dtype) + image_latents = self._encode_vae_image(image=image, generator=generator) + image_latents = image_latents.repeat(batch_size // image_latents.shape[0], 1, 1, 1) + + if latents is None and add_noise: + noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + # if strength is 1. then initialise the latents to noise, else initial to image + noise + latents = noise if is_strength_max else self.scheduler.add_noise(image_latents, noise, timestep) + # if pure noise then scale the initial latents by the Scheduler's init sigma + latents = latents * self.scheduler.init_noise_sigma if is_strength_max else latents + elif add_noise: + noise = latents.to(device) + latents = noise * self.scheduler.init_noise_sigma + else: + noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + latents = image_latents.to(device) - def encode_prompt( - self, - prompt, - num_images_per_prompt, - do_classifier_free_guidance, - negative_prompt, - max_embeddings_multiples, - ): - r""" - Encodes the prompt into text encoder hidden states. + outputs = (latents,) - Args: - prompt (`str` or `list(int)`): - prompt to be encoded - num_images_per_prompt (`int`): - number of images that should be generated per prompt - do_classifier_free_guidance (`bool`): - whether to use classifier free guidance or not - negative_prompt (`str` or `List[str]`): - The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored - if `guidance_scale` is less than `1`). - max_embeddings_multiples (`int`, *optional*, defaults to `3`): - The max multiple length of prompt embeddings compared to the max output length of text encoder. - """ - batch_size = len(prompt) if isinstance(prompt, list) else 1 + if return_noise: + outputs += (noise,) - if negative_prompt is None: - negative_prompt = [""] * batch_size - elif isinstance(negative_prompt, str): - negative_prompt = [negative_prompt] * batch_size - if batch_size != len(negative_prompt): - raise ValueError( - f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" - f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" - " the batch size of `prompt`." - ) + if return_image_latents: + outputs += (image_latents,) - text_embeddings, uncond_embeddings = get_weighted_text_embeddings( - pipe=self, - prompt=prompt, - uncond_prompt=negative_prompt if do_classifier_free_guidance else None, - max_embeddings_multiples=max_embeddings_multiples, - ) + return outputs - text_embeddings = text_embeddings.repeat(num_images_per_prompt, 0) - if do_classifier_free_guidance: - uncond_embeddings = uncond_embeddings.repeat(num_images_per_prompt, 0) - text_embeddings = np.concatenate([uncond_embeddings, text_embeddings]) + def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator): + dtype = image.dtype + if self.vae.config.force_upcast: + image = image.float() + self.vae.to(dtype=torch.float32) - return text_embeddings + if isinstance(generator, list): + image_latents = [ + retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i]) + for i in range(image.shape[0]) + ] + image_latents = torch.cat(image_latents, dim=0) + else: + image_latents = retrieve_latents(self.vae.encode(image), generator=generator) - def check_inputs(self, prompt, height, width, strength, callback_steps): - if not isinstance(prompt, str) and not isinstance(prompt, list): - raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") + if self.vae.config.force_upcast: + self.vae.to(dtype) - if strength < 0 or strength > 1: - raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}") + image_latents = image_latents.to(dtype) + image_latents = self.vae.config.scaling_factor * image_latents - if height % 8 != 0 or width % 8 != 0: - raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") + return image_latents - if (callback_steps is None) or ( - callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) - ): - raise ValueError( - f"`callback_steps` has to be a positive integer but is {callback_steps} of type" - f" {type(callback_steps)}." - ) + def prepare_mask_latents( + self, mask, masked_image, batch_size, height, width, dtype, device, generator, do_classifier_free_guidance + ): + # resize the mask to latents shape as we concatenate the mask to the latents + # we do that before converting to dtype to avoid breaking in case we're using cpu_offload + # and half precision + mask = torch.nn.functional.interpolate( + mask, size=(height // self.vae_scale_factor, width // self.vae_scale_factor) + ) + mask = mask.to(device=device, dtype=dtype) + + # duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method + if mask.shape[0] < batch_size: + if not batch_size % mask.shape[0] == 0: + raise ValueError( + "The passed mask and the required batch size don't match. Masks are supposed to be duplicated to" + f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number" + " of masks that you pass is divisible by the total requested batch size." + ) + mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1) - def get_timesteps(self, num_inference_steps, strength, is_text2img): - if is_text2img: - return self.scheduler.timesteps, num_inference_steps + mask = torch.cat([mask] * 2) if do_classifier_free_guidance else mask + + if masked_image is not None and masked_image.shape[1] == 4: + masked_image_latents = masked_image else: - # get the original timestep using init_timestep - offset = self.scheduler.config.get("steps_offset", 0) - init_timestep = int(num_inference_steps * strength) + offset - init_timestep = min(init_timestep, num_inference_steps) - - t_start = max(num_inference_steps - init_timestep + offset, 0) - timesteps = self.scheduler.timesteps[t_start:] - return timesteps, num_inference_steps - t_start - - def run_safety_checker(self, image): - if self.safety_checker is not None: - safety_checker_input = self.feature_extractor( - self.numpy_to_pil(image), return_tensors="np" - ).pixel_values.astype(image.dtype) - # There will throw an error if use safety_checker directly and batchsize>1 - images, has_nsfw_concept = [], [] - for i in range(image.shape[0]): - image_i, has_nsfw_concept_i = self.safety_checker( - clip_input=safety_checker_input[i : i + 1], images=image[i : i + 1] + masked_image_latents = None + + if masked_image is not None: + if masked_image_latents is None: + masked_image = masked_image.to(device=device, dtype=dtype) + masked_image_latents = self._encode_vae_image(masked_image, generator=generator) + + if masked_image_latents.shape[0] < batch_size: + if not batch_size % masked_image_latents.shape[0] == 0: + raise ValueError( + "The passed images and the required batch size don't match. Images are supposed to be duplicated" + f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed." + " Make sure the number of images that you pass is divisible by the total requested batch size." + ) + masked_image_latents = masked_image_latents.repeat( + batch_size // masked_image_latents.shape[0], 1, 1, 1 ) - images.append(image_i) - has_nsfw_concept.append(has_nsfw_concept_i[0]) - image = np.concatenate(images) - else: - has_nsfw_concept = None - return image, has_nsfw_concept - - def decode_latents(self, latents): - latents = 1 / 0.18215 * latents - # image = self.vae_decoder(latent_sample=latents)[0] - # it seems likes there is a strange result for using half-precision vae decoder if batchsize>1 - image = np.concatenate( - [self.vae_decoder(latent_sample=latents[i : i + 1])[0] for i in range(latents.shape[0])] - ) - image = np.clip(image / 2 + 0.5, 0, 1) - image = image.transpose((0, 2, 3, 1)) - return image - def prepare_extra_step_kwargs(self, generator, eta): - # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature - # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. - # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 - # and should be between [0, 1] + masked_image_latents = ( + torch.cat([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents + ) - accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) - extra_step_kwargs = {} - if accepts_eta: - extra_step_kwargs["eta"] = eta + # aligning device to prevent device errors when concating it with the latent model input + masked_image_latents = masked_image_latents.to(device=device, dtype=dtype) - # check if the scheduler accepts generator - accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) - if accepts_generator: - extra_step_kwargs["generator"] = generator - return extra_step_kwargs + return mask, masked_image_latents - def prepare_latents(self, image, timestep, batch_size, height, width, dtype, generator, latents=None): - if image is None: - shape = ( - batch_size, - self.unet.config.in_channels, - height // self.vae_scale_factor, - width // self.vae_scale_factor, + def _get_add_time_ids(self, original_size, crops_coords_top_left, target_size, dtype): + add_time_ids = list(original_size + crops_coords_top_left + target_size) + + passed_add_embed_dim = ( + self.unet.config.addition_time_embed_dim * len(add_time_ids) + self.text_encoder_2.config.projection_dim + ) + expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features + + if expected_add_embed_dim != passed_add_embed_dim: + raise ValueError( + f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`." ) - if latents is None: - latents = torch.randn(shape, generator=generator, device="cpu").numpy().astype(dtype) - else: - if latents.shape != shape: - raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") + add_time_ids = torch.tensor([add_time_ids], dtype=dtype) + return add_time_ids + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae + def upcast_vae(self): + dtype = self.vae.dtype + self.vae.to(dtype=torch.float32) + use_torch_2_0_or_xformers = isinstance( + self.vae.decoder.mid_block.attentions[0].processor, + ( + AttnProcessor2_0, + XFormersAttnProcessor, + LoRAXFormersAttnProcessor, + LoRAAttnProcessor2_0, + ), + ) + # if xformers or torch_2_0 is used attention block does not need + # to be in float32 which can save lots of memory + if use_torch_2_0_or_xformers: + self.vae.post_quant_conv.to(dtype) + self.vae.decoder.conv_in.to(dtype) + self.vae.decoder.mid_block.to(dtype) + + # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding + def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32): + """ + See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298 - # scale the initial noise by the standard deviation required by the scheduler - latents = (torch.from_numpy(latents) * self.scheduler.init_noise_sigma).numpy() - return latents, None, None - else: - init_latents = self.vae_encoder(sample=image)[0] - init_latents = 0.18215 * init_latents - init_latents = np.concatenate([init_latents] * batch_size, axis=0) - init_latents_orig = init_latents - shape = init_latents.shape - - # add noise to latents using the timesteps - noise = torch.randn(shape, generator=generator, device="cpu").numpy().astype(dtype) - latents = self.scheduler.add_noise( - torch.from_numpy(init_latents), torch.from_numpy(noise), timestep - ).numpy() - return latents, init_latents_orig, noise + Args: + timesteps (`torch.Tensor`): + generate embedding vectors at these timesteps + embedding_dim (`int`, *optional*, defaults to 512): + dimension of the embeddings to generate + dtype: + data type of the generated embeddings + + Returns: + `torch.FloatTensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)` + """ + assert len(w.shape) == 1 + w = w * 1000.0 + + half_dim = embedding_dim // 2 + emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) + emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) + emb = w.to(dtype)[:, None] * emb[None, :] + emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) + if embedding_dim % 2 == 1: # zero pad + emb = torch.nn.functional.pad(emb, (0, 1)) + assert emb.shape == (w.shape[0], embedding_dim) + return emb + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def guidance_rescale(self): + return self._guidance_rescale + + @property + def clip_skip(self): + return self._clip_skip + + # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) + # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` + # corresponds to doing no classifier free guidance. + @property + def do_classifier_free_guidance(self): + return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None + + @property + def cross_attention_kwargs(self): + return self._cross_attention_kwargs + + @property + def denoising_end(self): + return self._denoising_end + + @property + def denoising_start(self): + return self._denoising_start + + @property + def num_timesteps(self): + return self._num_timesteps @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, - prompt: Union[str, List[str]], - negative_prompt: Optional[Union[str, List[str]]] = None, - image: Union[np.ndarray, PIL.Image.Image] = None, - mask_image: Union[np.ndarray, PIL.Image.Image] = None, - height: int = 512, - width: int = 512, - num_inference_steps: int = 50, - guidance_scale: float = 7.5, + prompt: str = None, + prompt_2: Optional[str] = None, + image: Optional[PipelineImageInput] = None, + mask_image: Optional[PipelineImageInput] = None, + masked_image_latents: Optional[torch.FloatTensor] = None, + height: Optional[int] = None, + width: Optional[int] = None, strength: float = 0.8, + num_inference_steps: int = 50, + timesteps: List[int] = None, + denoising_start: Optional[float] = None, + denoising_end: Optional[float] = None, + guidance_scale: float = 5.0, + negative_prompt: Optional[str] = None, + negative_prompt_2: Optional[str] = None, num_images_per_prompt: Optional[int] = 1, eta: float = 0.0, - generator: Optional[torch.Generator] = None, - latents: Optional[np.ndarray] = None, - max_embeddings_multiples: Optional[int] = 3, + generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, + latents: Optional[torch.FloatTensor] = None, + ip_adapter_image: Optional[PipelineImageInput] = None, + prompt_embeds: Optional[torch.FloatTensor] = None, + negative_prompt_embeds: Optional[torch.FloatTensor] = None, + pooled_prompt_embeds: Optional[torch.FloatTensor] = None, + negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, - callback: Optional[Callable[[int, int, np.ndarray], None]] = None, - is_cancelled_callback: Optional[Callable[[], bool]] = None, - callback_steps: int = 1, + cross_attention_kwargs: Optional[Dict[str, Any]] = None, + guidance_rescale: float = 0.0, + original_size: Optional[Tuple[int, int]] = None, + crops_coords_top_left: Tuple[int, int] = (0, 0), + target_size: Optional[Tuple[int, int]] = None, + clip_skip: Optional[int] = None, + callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, + callback_on_step_end_tensor_inputs: List[str] = ["latents"], **kwargs, ): r""" Function invoked when calling the pipeline for generation. Args: - prompt (`str` or `List[str]`): - The prompt or prompts to guide the image generation. - negative_prompt (`str` or `List[str]`, *optional*): - The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored - if `guidance_scale` is less than `1`). - image (`np.ndarray` or `PIL.Image.Image`): + prompt (`str`): + The prompt to guide the image generation. If not defined, one has to pass `prompt_embeds`. + instead. + prompt_2 (`str`): + The prompt to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is + used in both text-encoders + image (`PipelineImageInput`, *optional*): `Image`, or tensor representing an image batch, that will be used as the starting point for the process. - mask_image (`np.ndarray` or `PIL.Image.Image`): + mask_image (`PipelineImageInput`, *optional*): `Image`, or tensor representing an image batch, to mask `image`. White pixels in the mask will be replaced by noise and therefore repainted, while black pixels will be preserved. If `mask_image` is a PIL image, it will be converted to a single channel (luminance) before use. If it's a tensor, it should contain one color channel (L) instead of 3, so the expected shape would be `(B, H, W, 1)`. - height (`int`, *optional*, defaults to 512): + height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): The height in pixels of the generated image. - width (`int`, *optional*, defaults to 512): + width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): The width in pixels of the generated image. + strength (`float`, *optional*, defaults to 0.8): + Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1. + `image` will be used as a starting point, adding more noise to it the larger the `strength`. The + number of denoising steps depends on the amount of noise initially added. When `strength` is 1, added + noise will be maximum and the denoising process will run for the full number of iterations specified in + `num_inference_steps`. A value of 1, therefore, essentially ignores `image`. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. - guidance_scale (`float`, *optional*, defaults to 7.5): + timesteps (`List[int]`, *optional*): + Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument + in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is + passed will be used. Must be in descending order. + denoising_start (`float`, *optional*): + When specified, indicates the fraction (between 0.0 and 1.0) of the total denoising process to be + bypassed before it is initiated. Consequently, the initial part of the denoising process is skipped and + it is assumed that the passed `image` is a partly denoised image. Note that when this is specified, + strength will be ignored. The `denoising_start` parameter is particularly beneficial when this pipeline + is integrated into a "Mixture of Denoisers" multi-pipeline setup, as detailed in [**Refine Image + Quality**](https://huggingface.co/docs/diffusers/using-diffusers/sdxl#refine-image-quality). + denoising_end (`float`, *optional*): + When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be + completed before it is intentionally prematurely terminated. As a result, the returned sample will + still retain a substantial amount of noise (ca. final 20% of timesteps still needed) and should be + denoised by a successor pipeline that has `denoising_start` set to 0.8 so that it only denoises the + final 20% of the scheduler. The denoising_end parameter should ideally be utilized when this pipeline + forms a part of a "Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refine Image + Quality**](https://huggingface.co/docs/diffusers/using-diffusers/sdxl#refine-image-quality). + guidance_scale (`float`, *optional*, defaults to 5.0): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. - strength (`float`, *optional*, defaults to 0.8): - Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1. - `image` will be used as a starting point, adding more noise to it the larger the `strength`. The - number of denoising steps depends on the amount of noise initially added. When `strength` is 1, added - noise will be maximum and the denoising process will run for the full number of iterations specified in - `num_inference_steps`. A value of 1, therefore, essentially ignores `image`. + negative_prompt (`str`): + The prompt not to guide the image generation. If not defined, one has to pass + `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is + less than `1`). + negative_prompt_2 (`str`): + The prompt not to guide the image generation to be sent to `tokenizer_2` and + `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to [`schedulers.DDIMScheduler`], will be ignored for others. - generator (`torch.Generator`, *optional*): - A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation - deterministic. - latents (`np.ndarray`, *optional*): + generator (`torch.Generator` or `List[torch.Generator]`, *optional*): + One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) + to make generation deterministic. + latents (`torch.FloatTensor`, *optional*): Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`. - max_embeddings_multiples (`int`, *optional*, defaults to `3`): - The max multiple length of prompt embeddings compared to the max output length of text encoder. + ip_adapter_image: (`PipelineImageInput`, *optional*): + Optional image input to work with IP Adapters. + prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not + provided, text embeddings will be generated from `prompt` input argument. + negative_prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt + weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input + argument. + pooled_prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. + If not provided, pooled text embeddings will be generated from `prompt` input argument. + negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt + weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` + input argument. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): - Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a - plain tuple. - callback (`Callable`, *optional*): - A function that will be called every `callback_steps` steps during inference. The function will be - called with the following arguments: `callback(step: int, timestep: int, latents: np.ndarray)`. - is_cancelled_callback (`Callable`, *optional*): - A function that will be called every `callback_steps` steps during inference. If the function returns - `True`, the inference will be cancelled. - callback_steps (`int`, *optional*, defaults to 1): - The frequency at which the `callback` function will be called. If not specified, the callback will be - called at every step. + Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead + of a plain tuple. + cross_attention_kwargs (`dict`, *optional*): + A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under + `self.processor` in + [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). + guidance_rescale (`float`, *optional*, defaults to 0.0): + Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are + Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of + [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). + Guidance rescale factor should fix overexposure when using zero terminal SNR. + original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): + If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled. + `original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as + explained in section 2.2 of + [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). + crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)): + `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position + `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting + `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of + [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). + target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): + For most cases, `target_size` should be set to the desired height and width of the generated image. If + not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in + section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). + clip_skip (`int`, *optional*): + Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that + the output of the pre-final layer will be used for computing the prompt embeddings. + callback_on_step_end (`Callable`, *optional*): + A function that calls at the end of each denoising steps during the inference. The function is called + with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, + callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by + `callback_on_step_end_tensor_inputs`. + callback_on_step_end_tensor_inputs (`List`, *optional*): + The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list + will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the + `._callback_tensor_inputs` attribute of your pipeine class. + + Examples: Returns: - `None` if cancelled by `is_cancelled_callback`, - [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: - [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. - When returning a tuple, the first element is a list with the generated images, and the second element is a - list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" - (nsfw) content, according to the `safety_checker`. + [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] or `tuple`: + [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a + `tuple`. When returning a tuple, the first element is a list with the generated images. """ + + callback = kwargs.pop("callback", None) + callback_steps = kwargs.pop("callback_steps", None) + + if callback is not None: + deprecate( + "callback", + "1.0.0", + "Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`", + ) + if callback_steps is not None: + deprecate( + "callback_steps", + "1.0.0", + "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`", + ) + # 0. Default height and width to unet - height = height or self.unet.config.sample_size * self.vae_scale_factor - width = width or self.unet.config.sample_size * self.vae_scale_factor + height = height or self.default_sample_size * self.vae_scale_factor + width = width or self.default_sample_size * self.vae_scale_factor + + original_size = original_size or (height, width) + target_size = target_size or (height, width) # 1. Check inputs. Raise error if not correct - self.check_inputs(prompt, height, width, strength, callback_steps) + self.check_inputs( + prompt, + prompt_2, + height, + width, + strength, + callback_steps, + negative_prompt, + negative_prompt_2, + prompt_embeds, + negative_prompt_embeds, + pooled_prompt_embeds, + negative_pooled_prompt_embeds, + callback_on_step_end_tensor_inputs, + ) + + self._guidance_scale = guidance_scale + self._guidance_rescale = guidance_rescale + self._clip_skip = clip_skip + self._cross_attention_kwargs = cross_attention_kwargs + self._denoising_end = denoising_end + self._denoising_start = denoising_start # 2. Define call parameters - batch_size = 1 if isinstance(prompt, str) else len(prompt) - # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) - # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` - # corresponds to doing no classifier free guidance. - do_classifier_free_guidance = guidance_scale > 1.0 + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + + device = self._execution_device + + if ip_adapter_image is not None: + output_hidden_state = False if isinstance(self.unet.encoder_hid_proj, ImageProjection) else True + image_embeds, negative_image_embeds = self.encode_image( + ip_adapter_image, device, num_images_per_prompt, output_hidden_state + ) + if self.do_classifier_free_guidance: + image_embeds = torch.cat([negative_image_embeds, image_embeds]) # 3. Encode input prompt - text_embeddings = self.encode_prompt( - prompt, - num_images_per_prompt, - do_classifier_free_guidance, - negative_prompt, - max_embeddings_multiples, + (self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None) + + negative_prompt = negative_prompt if negative_prompt is not None else "" + + ( + prompt_embeds, + negative_prompt_embeds, + pooled_prompt_embeds, + negative_pooled_prompt_embeds, + ) = get_weighted_text_embeddings_sdxl( + pipe=self, + prompt=prompt, + neg_prompt=negative_prompt, + num_images_per_prompt=num_images_per_prompt, + clip_skip=clip_skip, ) - dtype = text_embeddings.dtype + dtype = prompt_embeds.dtype - # 4. Preprocess image and mask - if isinstance(image, PIL.Image.Image): - image = preprocess_image(image) + if isinstance(image, Image.Image): + image = self.image_processor.preprocess(image, height=height, width=width) if image is not None: - image = image.astype(dtype) - if isinstance(mask_image, PIL.Image.Image): - mask_image = preprocess_mask(mask_image, self.vae_scale_factor) + image = image.to(device=self.device, dtype=dtype) + + if isinstance(mask_image, Image.Image): + mask = self.mask_processor.preprocess(mask_image, height=height, width=width) + else: + mask = mask_image if mask_image is not None: - mask = mask_image.astype(dtype) - mask = np.concatenate([mask] * batch_size * num_images_per_prompt) + mask = mask.to(device=self.device, dtype=dtype) + + if masked_image_latents is not None: + masked_image = masked_image_latents + elif image.shape[1] == 4: + # if image is in latent space, we can't mask it + masked_image = None + else: + masked_image = image * (mask < 0.5) else: mask = None - # 5. set timesteps - self.scheduler.set_timesteps(num_inference_steps) - timestep_dtype = next( - (input.type for input in self.unet.model.get_inputs() if input.name == "timestep"), "tensor(float)" - ) - timestep_dtype = ORT_TO_NP_TYPE[timestep_dtype] - timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, image is None) + # 4. Prepare timesteps + def denoising_value_valid(dnv): + return isinstance(self.denoising_end, float) and 0 < dnv < 1 + + timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps) + if image is not None: + timesteps, num_inference_steps = self.get_timesteps( + num_inference_steps, + strength, + device, + denoising_start=self.denoising_start if denoising_value_valid else None, + ) + + # check that number of inference steps is not < 1 - as this doesn't make sense + if num_inference_steps < 1: + raise ValueError( + f"After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipeline" + f"steps is {num_inference_steps} which is < 1 and not appropriate for this pipeline." + ) + latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) + is_strength_max = strength == 1.0 + add_noise = True if self.denoising_start is None else False - # 6. Prepare latent variables - latents, init_latents_orig, noise = self.prepare_latents( - image, - latent_timestep, - batch_size * num_images_per_prompt, - height, - width, - dtype, - generator, - latents, + # 5. Prepare latent variables + num_channels_latents = self.vae.config.latent_channels + num_channels_unet = self.unet.config.in_channels + return_image_latents = num_channels_unet == 4 + + latents = self.prepare_latents( + image=image, + mask=mask, + width=width, + height=height, + num_channels_latents=num_channels_unet, + timestep=latent_timestep, + batch_size=batch_size, + num_images_per_prompt=num_images_per_prompt, + dtype=prompt_embeds.dtype, + device=device, + generator=generator, + add_noise=add_noise, + latents=latents, + is_strength_max=is_strength_max, + return_noise=True, + return_image_latents=return_image_latents, ) - # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline + if mask is not None: + if return_image_latents: + latents, noise, image_latents = latents + else: + latents, noise = latents + + # 5.1 Prepare mask latent variables + if mask is not None: + mask, masked_image_latents = self.prepare_mask_latents( + mask=mask, + masked_image=masked_image, + batch_size=batch_size * num_images_per_prompt, + height=height, + width=width, + dtype=prompt_embeds.dtype, + device=device, + generator=generator, + do_classifier_free_guidance=self.do_classifier_free_guidance, + ) + + # Check that sizes of mask, masked image and latents match + if num_channels_unet == 9: + # default case for runwayml/stable-diffusion-inpainting + num_channels_mask = mask.shape[1] + num_channels_masked_image = masked_image_latents.shape[1] + if num_channels_latents + num_channels_mask + num_channels_masked_image != num_channels_unet: + raise ValueError( + f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects" + f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +" + f" `num_channels_mask`: {num_channels_mask} + `num_channels_masked_image`: {num_channels_masked_image}" + f" = {num_channels_latents+num_channels_masked_image+num_channels_mask}. Please verify the config of" + " `pipeline.unet` or your `mask_image` or `image` input." + ) + elif num_channels_unet != 4: + raise ValueError( + f"The unet {self.unet.__class__} should have either 4 or 9 input channels, not {self.unet.config.in_channels}." + ) + + # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) - # 8. Denoising loop - for i, t in enumerate(self.progress_bar(timesteps)): - # expand the latents if we are doing classifier free guidance - latent_model_input = np.concatenate([latents] * 2) if do_classifier_free_guidance else latents - latent_model_input = self.scheduler.scale_model_input(torch.from_numpy(latent_model_input), t) - latent_model_input = latent_model_input.numpy() - - # predict the noise residual - noise_pred = self.unet( - sample=latent_model_input, - timestep=np.array([t], dtype=timestep_dtype), - encoder_hidden_states=text_embeddings, - ) - noise_pred = noise_pred[0] + # 6.1 Add image embeds for IP-Adapter + added_cond_kwargs = {"image_embeds": image_embeds} if ip_adapter_image is not None else {} - # perform guidance - if do_classifier_free_guidance: - noise_pred_uncond, noise_pred_text = np.split(noise_pred, 2) - noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + height, width = latents.shape[-2:] + height = height * self.vae_scale_factor + width = width * self.vae_scale_factor - # compute the previous noisy sample x_t -> x_t-1 - scheduler_output = self.scheduler.step( - torch.from_numpy(noise_pred), t, torch.from_numpy(latents), **extra_step_kwargs - ) - latents = scheduler_output.prev_sample.numpy() + original_size = original_size or (height, width) + target_size = target_size or (height, width) - if mask is not None: - # masking - init_latents_proper = self.scheduler.add_noise( - torch.from_numpy(init_latents_orig), - torch.from_numpy(noise), - t, - ).numpy() - latents = (init_latents_proper * mask) + (latents * (1 - mask)) + # 7. Prepare added time ids & embeddings + add_text_embeds = pooled_prompt_embeds + add_time_ids = self._get_add_time_ids( + original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype + ) - # call the callback, if provided - if i % callback_steps == 0: - if callback is not None: - step_idx = i // getattr(self.scheduler, "order", 1) - callback(step_idx, t, latents) - if is_cancelled_callback is not None and is_cancelled_callback(): - return None + if self.do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) + add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0) + add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0) + + prompt_embeds = prompt_embeds.to(device) + add_text_embeds = add_text_embeds.to(device) + add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1) + + num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) + + # 7.1 Apply denoising_end + if ( + self.denoising_end is not None + and self.denoising_start is not None + and denoising_value_valid(self.denoising_end) + and denoising_value_valid(self.denoising_start) + and self.denoising_start >= self.denoising_end + ): + raise ValueError( + f"`denoising_start`: {self.denoising_start} cannot be larger than or equal to `denoising_end`: " + + f" {self.denoising_end} when using type float." + ) + elif self.denoising_end is not None and denoising_value_valid(self.denoising_end): + discrete_timestep_cutoff = int( + round( + self.scheduler.config.num_train_timesteps + - (self.denoising_end * self.scheduler.config.num_train_timesteps) + ) + ) + num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps))) + timesteps = timesteps[:num_inference_steps] + + # 8. Optionally get Guidance Scale Embedding + timestep_cond = None + if self.unet.config.time_cond_proj_dim is not None: + guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt) + timestep_cond = self.get_guidance_scale_embedding( + guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim + ).to(device=device, dtype=latents.dtype) + + self._num_timesteps = len(timesteps) + + # 9. Denoising loop + with self.progress_bar(total=num_inference_steps) as progress_bar: + for i, t in enumerate(timesteps): + # expand the latents if we are doing classifier free guidance + latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents + + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + + if mask is not None and num_channels_unet == 9: + latent_model_input = torch.cat([latent_model_input, mask, masked_image_latents], dim=1) + + # predict the noise residual + added_cond_kwargs.update({"text_embeds": add_text_embeds, "time_ids": add_time_ids}) + noise_pred = self.unet( + latent_model_input, + t, + encoder_hidden_states=prompt_embeds, + timestep_cond=timestep_cond, + cross_attention_kwargs=self.cross_attention_kwargs, + added_cond_kwargs=added_cond_kwargs, + return_dict=False, + )[0] + + # perform guidance + if self.do_classifier_free_guidance: + noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) + + if self.do_classifier_free_guidance and guidance_rescale > 0.0: + # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf + noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale) + + # compute the previous noisy sample x_t -> x_t-1 + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] + + if mask is not None and num_channels_unet == 4: + init_latents_proper = image_latents + + if self.do_classifier_free_guidance: + init_mask, _ = mask.chunk(2) + else: + init_mask = mask + + if i < len(timesteps) - 1: + noise_timestep = timesteps[i + 1] + init_latents_proper = self.scheduler.add_noise( + init_latents_proper, noise, torch.tensor([noise_timestep]) + ) + + latents = (1 - init_mask) * init_latents_proper + init_mask * latents + + if callback_on_step_end is not None: + callback_kwargs = {} + for k in callback_on_step_end_tensor_inputs: + callback_kwargs[k] = locals()[k] + callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) + + latents = callback_outputs.pop("latents", latents) + prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) + negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) + add_text_embeds = callback_outputs.pop("add_text_embeds", add_text_embeds) + negative_pooled_prompt_embeds = callback_outputs.pop( + "negative_pooled_prompt_embeds", negative_pooled_prompt_embeds + ) + add_time_ids = callback_outputs.pop("add_time_ids", add_time_ids) + + # call the callback, if provided + if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if callback is not None and i % callback_steps == 0: + step_idx = i // getattr(self.scheduler, "order", 1) + callback(step_idx, t, latents) + + if not output_type == "latent": + # make sure the VAE is in float32 mode, as it overflows in float16 + needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast + + if needs_upcasting: + self.upcast_vae() + latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) + + image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] + + # cast back to fp16 if needed + if needs_upcasting: + self.vae.to(dtype=torch.float16) + else: + image = latents + return StableDiffusionXLPipelineOutput(images=image) - # 9. Post-processing - image = self.decode_latents(latents) + # apply watermark if available + if self.watermark is not None: + image = self.watermark.apply_watermark(image) - # 10. Run safety checker - image, has_nsfw_concept = self.run_safety_checker(image) + image = self.image_processor.postprocess(image, output_type=output_type) - # 11. Convert to PIL - if output_type == "pil": - image = self.numpy_to_pil(image) + # Offload last model to CPU + if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: + self.final_offload_hook.offload() if not return_dict: - return image, has_nsfw_concept + return (image,) - return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) + return StableDiffusionXLPipelineOutput(images=image) def text2img( self, - prompt: Union[str, List[str]], - negative_prompt: Optional[Union[str, List[str]]] = None, - height: int = 512, - width: int = 512, + prompt: str = None, + prompt_2: Optional[str] = None, + height: Optional[int] = None, + width: Optional[int] = None, num_inference_steps: int = 50, - guidance_scale: float = 7.5, + timesteps: List[int] = None, + denoising_start: Optional[float] = None, + denoising_end: Optional[float] = None, + guidance_scale: float = 5.0, + negative_prompt: Optional[str] = None, + negative_prompt_2: Optional[str] = None, num_images_per_prompt: Optional[int] = 1, eta: float = 0.0, - generator: Optional[torch.Generator] = None, - latents: Optional[np.ndarray] = None, - max_embeddings_multiples: Optional[int] = 3, + generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, + latents: Optional[torch.FloatTensor] = None, + ip_adapter_image: Optional[PipelineImageInput] = None, + prompt_embeds: Optional[torch.FloatTensor] = None, + negative_prompt_embeds: Optional[torch.FloatTensor] = None, + pooled_prompt_embeds: Optional[torch.FloatTensor] = None, + negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, - callback: Optional[Callable[[int, int, np.ndarray], None]] = None, - callback_steps: int = 1, + cross_attention_kwargs: Optional[Dict[str, Any]] = None, + guidance_rescale: float = 0.0, + original_size: Optional[Tuple[int, int]] = None, + crops_coords_top_left: Tuple[int, int] = (0, 0), + target_size: Optional[Tuple[int, int]] = None, + clip_skip: Optional[int] = None, + callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, + callback_on_step_end_tensor_inputs: List[str] = ["latents"], **kwargs, ): r""" - Function for text-to-image generation. - Args: - prompt (`str` or `List[str]`): - The prompt or prompts to guide the image generation. - negative_prompt (`str` or `List[str]`, *optional*): - The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored - if `guidance_scale` is less than `1`). - height (`int`, *optional*, defaults to 512): - The height in pixels of the generated image. - width (`int`, *optional*, defaults to 512): - The width in pixels of the generated image. - num_inference_steps (`int`, *optional*, defaults to 50): - The number of denoising steps. More denoising steps usually lead to a higher quality image at the - expense of slower inference. - guidance_scale (`float`, *optional*, defaults to 7.5): - Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). - `guidance_scale` is defined as `w` of equation 2. of [Imagen - Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > - 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, - usually at the expense of lower image quality. - num_images_per_prompt (`int`, *optional*, defaults to 1): - The number of images to generate per prompt. - eta (`float`, *optional*, defaults to 0.0): - Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to - [`schedulers.DDIMScheduler`], will be ignored for others. - generator (`torch.Generator`, *optional*): - A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation - deterministic. - latents (`np.ndarray`, *optional*): - Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image - generation. Can be used to tweak the same generation with different prompts. If not provided, a latents - tensor will ge generated by sampling using the supplied random `generator`. - max_embeddings_multiples (`int`, *optional*, defaults to `3`): - The max multiple length of prompt embeddings compared to the max output length of text encoder. - output_type (`str`, *optional*, defaults to `"pil"`): - The output format of the generate image. Choose between - [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. - return_dict (`bool`, *optional*, defaults to `True`): - Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a - plain tuple. - callback (`Callable`, *optional*): - A function that will be called every `callback_steps` steps during inference. The function will be - called with the following arguments: `callback(step: int, timestep: int, latents: np.ndarray)`. - callback_steps (`int`, *optional*, defaults to 1): - The frequency at which the `callback` function will be called. If not specified, the callback will be - called at every step. - Returns: - [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: - [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. - When returning a tuple, the first element is a list with the generated images, and the second element is a - list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" - (nsfw) content, according to the `safety_checker`. + Function invoked when calling pipeline for text-to-image. + + Refer to the documentation of the `__call__` method for parameter descriptions. """ return self.__call__( prompt=prompt, - negative_prompt=negative_prompt, + prompt_2=prompt_2, height=height, width=width, num_inference_steps=num_inference_steps, + timesteps=timesteps, + denoising_start=denoising_start, + denoising_end=denoising_end, guidance_scale=guidance_scale, + negative_prompt=negative_prompt, + negative_prompt_2=negative_prompt_2, num_images_per_prompt=num_images_per_prompt, eta=eta, generator=generator, latents=latents, - max_embeddings_multiples=max_embeddings_multiples, + ip_adapter_image=ip_adapter_image, + prompt_embeds=prompt_embeds, + negative_prompt_embeds=negative_prompt_embeds, + pooled_prompt_embeds=pooled_prompt_embeds, + negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, output_type=output_type, return_dict=return_dict, - callback=callback, - callback_steps=callback_steps, + cross_attention_kwargs=cross_attention_kwargs, + guidance_rescale=guidance_rescale, + original_size=original_size, + crops_coords_top_left=crops_coords_top_left, + target_size=target_size, + clip_skip=clip_skip, + callback_on_step_end=callback_on_step_end, + callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, **kwargs, ) def img2img( self, - image: Union[np.ndarray, PIL.Image.Image], - prompt: Union[str, List[str]], - negative_prompt: Optional[Union[str, List[str]]] = None, + prompt: str = None, + prompt_2: Optional[str] = None, + image: Optional[PipelineImageInput] = None, + height: Optional[int] = None, + width: Optional[int] = None, strength: float = 0.8, - num_inference_steps: Optional[int] = 50, - guidance_scale: Optional[float] = 7.5, + num_inference_steps: int = 50, + timesteps: List[int] = None, + denoising_start: Optional[float] = None, + denoising_end: Optional[float] = None, + guidance_scale: float = 5.0, + negative_prompt: Optional[str] = None, + negative_prompt_2: Optional[str] = None, num_images_per_prompt: Optional[int] = 1, - eta: Optional[float] = 0.0, - generator: Optional[torch.Generator] = None, - max_embeddings_multiples: Optional[int] = 3, + eta: float = 0.0, + generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, + latents: Optional[torch.FloatTensor] = None, + ip_adapter_image: Optional[PipelineImageInput] = None, + prompt_embeds: Optional[torch.FloatTensor] = None, + negative_prompt_embeds: Optional[torch.FloatTensor] = None, + pooled_prompt_embeds: Optional[torch.FloatTensor] = None, + negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, - callback: Optional[Callable[[int, int, np.ndarray], None]] = None, - callback_steps: int = 1, + cross_attention_kwargs: Optional[Dict[str, Any]] = None, + guidance_rescale: float = 0.0, + original_size: Optional[Tuple[int, int]] = None, + crops_coords_top_left: Tuple[int, int] = (0, 0), + target_size: Optional[Tuple[int, int]] = None, + clip_skip: Optional[int] = None, + callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, + callback_on_step_end_tensor_inputs: List[str] = ["latents"], **kwargs, ): r""" - Function for image-to-image generation. - Args: - image (`np.ndarray` or `PIL.Image.Image`): - `Image`, or ndarray representing an image batch, that will be used as the starting point for the - process. - prompt (`str` or `List[str]`): - The prompt or prompts to guide the image generation. - negative_prompt (`str` or `List[str]`, *optional*): - The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored - if `guidance_scale` is less than `1`). - strength (`float`, *optional*, defaults to 0.8): - Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1. - `image` will be used as a starting point, adding more noise to it the larger the `strength`. The - number of denoising steps depends on the amount of noise initially added. When `strength` is 1, added - noise will be maximum and the denoising process will run for the full number of iterations specified in - `num_inference_steps`. A value of 1, therefore, essentially ignores `image`. - num_inference_steps (`int`, *optional*, defaults to 50): - The number of denoising steps. More denoising steps usually lead to a higher quality image at the - expense of slower inference. This parameter will be modulated by `strength`. - guidance_scale (`float`, *optional*, defaults to 7.5): - Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). - `guidance_scale` is defined as `w` of equation 2. of [Imagen - Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > - 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, - usually at the expense of lower image quality. - num_images_per_prompt (`int`, *optional*, defaults to 1): - The number of images to generate per prompt. - eta (`float`, *optional*, defaults to 0.0): - Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to - [`schedulers.DDIMScheduler`], will be ignored for others. - generator (`torch.Generator`, *optional*): - A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation - deterministic. - max_embeddings_multiples (`int`, *optional*, defaults to `3`): - The max multiple length of prompt embeddings compared to the max output length of text encoder. - output_type (`str`, *optional*, defaults to `"pil"`): - The output format of the generate image. Choose between - [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. - return_dict (`bool`, *optional*, defaults to `True`): - Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a - plain tuple. - callback (`Callable`, *optional*): - A function that will be called every `callback_steps` steps during inference. The function will be - called with the following arguments: `callback(step: int, timestep: int, latents: np.ndarray)`. - callback_steps (`int`, *optional*, defaults to 1): - The frequency at which the `callback` function will be called. If not specified, the callback will be - called at every step. - Returns: - [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: - [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. - When returning a tuple, the first element is a list with the generated images, and the second element is a - list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" - (nsfw) content, according to the `safety_checker`. + Function invoked when calling pipeline for image-to-image. + + Refer to the documentation of the `__call__` method for parameter descriptions. """ return self.__call__( prompt=prompt, - negative_prompt=negative_prompt, + prompt_2=prompt_2, image=image, + height=height, + width=width, + strength=strength, num_inference_steps=num_inference_steps, + timesteps=timesteps, + denoising_start=denoising_start, + denoising_end=denoising_end, guidance_scale=guidance_scale, - strength=strength, + negative_prompt=negative_prompt, + negative_prompt_2=negative_prompt_2, num_images_per_prompt=num_images_per_prompt, eta=eta, generator=generator, - max_embeddings_multiples=max_embeddings_multiples, + latents=latents, + ip_adapter_image=ip_adapter_image, + prompt_embeds=prompt_embeds, + negative_prompt_embeds=negative_prompt_embeds, + pooled_prompt_embeds=pooled_prompt_embeds, + negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, output_type=output_type, return_dict=return_dict, - callback=callback, - callback_steps=callback_steps, + cross_attention_kwargs=cross_attention_kwargs, + guidance_rescale=guidance_rescale, + original_size=original_size, + crops_coords_top_left=crops_coords_top_left, + target_size=target_size, + clip_skip=clip_skip, + callback_on_step_end=callback_on_step_end, + callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, **kwargs, ) def inpaint( self, - image: Union[np.ndarray, PIL.Image.Image], - mask_image: Union[np.ndarray, PIL.Image.Image], - prompt: Union[str, List[str]], - negative_prompt: Optional[Union[str, List[str]]] = None, + prompt: str = None, + prompt_2: Optional[str] = None, + image: Optional[PipelineImageInput] = None, + mask_image: Optional[PipelineImageInput] = None, + masked_image_latents: Optional[torch.FloatTensor] = None, + height: Optional[int] = None, + width: Optional[int] = None, strength: float = 0.8, - num_inference_steps: Optional[int] = 50, - guidance_scale: Optional[float] = 7.5, + num_inference_steps: int = 50, + timesteps: List[int] = None, + denoising_start: Optional[float] = None, + denoising_end: Optional[float] = None, + guidance_scale: float = 5.0, + negative_prompt: Optional[str] = None, + negative_prompt_2: Optional[str] = None, num_images_per_prompt: Optional[int] = 1, - eta: Optional[float] = 0.0, - generator: Optional[torch.Generator] = None, - max_embeddings_multiples: Optional[int] = 3, + eta: float = 0.0, + generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, + latents: Optional[torch.FloatTensor] = None, + ip_adapter_image: Optional[PipelineImageInput] = None, + prompt_embeds: Optional[torch.FloatTensor] = None, + negative_prompt_embeds: Optional[torch.FloatTensor] = None, + pooled_prompt_embeds: Optional[torch.FloatTensor] = None, + negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, - callback: Optional[Callable[[int, int, np.ndarray], None]] = None, - callback_steps: int = 1, + cross_attention_kwargs: Optional[Dict[str, Any]] = None, + guidance_rescale: float = 0.0, + original_size: Optional[Tuple[int, int]] = None, + crops_coords_top_left: Tuple[int, int] = (0, 0), + target_size: Optional[Tuple[int, int]] = None, + clip_skip: Optional[int] = None, + callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, + callback_on_step_end_tensor_inputs: List[str] = ["latents"], **kwargs, ): r""" - Function for inpaint. - Args: - image (`np.ndarray` or `PIL.Image.Image`): - `Image`, or tensor representing an image batch, that will be used as the starting point for the - process. This is the image whose masked region will be inpainted. - mask_image (`np.ndarray` or `PIL.Image.Image`): - `Image`, or tensor representing an image batch, to mask `image`. White pixels in the mask will be - replaced by noise and therefore repainted, while black pixels will be preserved. If `mask_image` is a - PIL image, it will be converted to a single channel (luminance) before use. If it's a tensor, it should - contain one color channel (L) instead of 3, so the expected shape would be `(B, H, W, 1)`. - prompt (`str` or `List[str]`): - The prompt or prompts to guide the image generation. - negative_prompt (`str` or `List[str]`, *optional*): - The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored - if `guidance_scale` is less than `1`). - strength (`float`, *optional*, defaults to 0.8): - Conceptually, indicates how much to inpaint the masked area. Must be between 0 and 1. When `strength` - is 1, the denoising process will be run on the masked area for the full number of iterations specified - in `num_inference_steps`. `image` will be used as a reference for the masked area, adding more - noise to that region the larger the `strength`. If `strength` is 0, no inpainting will occur. - num_inference_steps (`int`, *optional*, defaults to 50): - The reference number of denoising steps. More denoising steps usually lead to a higher quality image at - the expense of slower inference. This parameter will be modulated by `strength`, as explained above. - guidance_scale (`float`, *optional*, defaults to 7.5): - Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). - `guidance_scale` is defined as `w` of equation 2. of [Imagen - Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > - 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, - usually at the expense of lower image quality. - num_images_per_prompt (`int`, *optional*, defaults to 1): - The number of images to generate per prompt. - eta (`float`, *optional*, defaults to 0.0): - Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to - [`schedulers.DDIMScheduler`], will be ignored for others. - generator (`torch.Generator`, *optional*): - A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation - deterministic. - max_embeddings_multiples (`int`, *optional*, defaults to `3`): - The max multiple length of prompt embeddings compared to the max output length of text encoder. - output_type (`str`, *optional*, defaults to `"pil"`): - The output format of the generate image. Choose between - [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. - return_dict (`bool`, *optional*, defaults to `True`): - Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a - plain tuple. - callback (`Callable`, *optional*): - A function that will be called every `callback_steps` steps during inference. The function will be - called with the following arguments: `callback(step: int, timestep: int, latents: np.ndarray)`. - callback_steps (`int`, *optional*, defaults to 1): - The frequency at which the `callback` function will be called. If not specified, the callback will be - called at every step. - Returns: - [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: - [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. - When returning a tuple, the first element is a list with the generated images, and the second element is a - list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" - (nsfw) content, according to the `safety_checker`. + Function invoked when calling pipeline for inpainting. + + Refer to the documentation of the `__call__` method for parameter descriptions. """ return self.__call__( prompt=prompt, - negative_prompt=negative_prompt, + prompt_2=prompt_2, image=image, mask_image=mask_image, + masked_image_latents=masked_image_latents, + height=height, + width=width, + strength=strength, num_inference_steps=num_inference_steps, + timesteps=timesteps, + denoising_start=denoising_start, + denoising_end=denoising_end, guidance_scale=guidance_scale, - strength=strength, + negative_prompt=negative_prompt, + negative_prompt_2=negative_prompt_2, num_images_per_prompt=num_images_per_prompt, eta=eta, generator=generator, - max_embeddings_multiples=max_embeddings_multiples, + latents=latents, + ip_adapter_image=ip_adapter_image, + prompt_embeds=prompt_embeds, + negative_prompt_embeds=negative_prompt_embeds, + pooled_prompt_embeds=pooled_prompt_embeds, + negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, output_type=output_type, return_dict=return_dict, - callback=callback, - callback_steps=callback_steps, + cross_attention_kwargs=cross_attention_kwargs, + guidance_rescale=guidance_rescale, + original_size=original_size, + crops_coords_top_left=crops_coords_top_left, + target_size=target_size, + clip_skip=clip_skip, + callback_on_step_end=callback_on_step_end, + callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, **kwargs, - ) \ No newline at end of file + ) + + # Overrride to properly handle the loading and unloading of the additional text encoder. + def load_lora_weights(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs): + # We could have accessed the unet config from `lora_state_dict()` too. We pass + # it here explicitly to be able to tell that it's coming from an SDXL + # pipeline. + state_dict, network_alphas = self.lora_state_dict( + pretrained_model_name_or_path_or_dict, + unet_config=self.unet.config, + **kwargs, + ) + self.load_lora_into_unet(state_dict, network_alphas=network_alphas, unet=self.unet) + + text_encoder_state_dict = {k: v for k, v in state_dict.items() if "text_encoder." in k} + if len(text_encoder_state_dict) > 0: + self.load_lora_into_text_encoder( + text_encoder_state_dict, + network_alphas=network_alphas, + text_encoder=self.text_encoder, + prefix="text_encoder", + lora_scale=self.lora_scale, + ) + + text_encoder_2_state_dict = {k: v for k, v in state_dict.items() if "text_encoder_2." in k} + if len(text_encoder_2_state_dict) > 0: + self.load_lora_into_text_encoder( + text_encoder_2_state_dict, + network_alphas=network_alphas, + text_encoder=self.text_encoder_2, + prefix="text_encoder_2", + lora_scale=self.lora_scale, + ) + + @classmethod + def save_lora_weights( + self, + save_directory: Union[str, os.PathLike], + unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, + text_encoder_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, + text_encoder_2_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, + is_main_process: bool = True, + weight_name: str = None, + save_function: Callable = None, + safe_serialization: bool = False, + ): + state_dict = {} + + def pack_weights(layers, prefix): + layers_weights = layers.state_dict() if isinstance(layers, torch.nn.Module) else layers + layers_state_dict = {f"{prefix}.{module_name}": param for module_name, param in layers_weights.items()} + return layers_state_dict + + state_dict.update(pack_weights(unet_lora_layers, "unet")) + + if text_encoder_lora_layers and text_encoder_2_lora_layers: + state_dict.update(pack_weights(text_encoder_lora_layers, "text_encoder")) + state_dict.update(pack_weights(text_encoder_2_lora_layers, "text_encoder_2")) + + self.write_lora_layers( + state_dict=state_dict, + save_directory=save_directory, + is_main_process=is_main_process, + weight_name=weight_name, + save_function=save_function, + safe_serialization=safe_serialization, + ) + + def _remove_text_encoder_monkey_patch(self): + self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder) + self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder_2) \ No newline at end of file