|
import numpy as np |
|
import onnx |
|
from onnxconverter_common import auto_mixed_precision_model_path |
|
import argparse |
|
from rtmo_gpu import RTMO_GPU, draw_skeleton |
|
import cv2 |
|
|
|
PROVIDERS=[('TensorrtExecutionProvider', {'trt_fp16_enable':True,}), 'CUDAExecutionProvider', 'CPUExecutionProvider'] |
|
|
|
def detect_model_input_size(model_path): |
|
model = onnx.load(model_path) |
|
for input_tensor in model.graph.input: |
|
|
|
if input_tensor.name == 'input': |
|
tensor_shape = input_tensor.type.tensor_type.shape |
|
|
|
dims = [dim.dim_value for dim in tensor_shape.dim] |
|
|
|
if dims[0] < 1: |
|
dims[0] = 1 |
|
return tuple(dims[2:4]) |
|
raise ValueError("Input node 'input' not found in the model") |
|
|
|
def load_and_preprocess_image(image_path, preprocesss=None): |
|
|
|
image = cv2.imread(image_path) |
|
|
|
if preprocesss is not None: |
|
image = preprocesss(image) |
|
|
|
return image |
|
|
|
def compare_result(res1, res2): |
|
keypoints1, scores1 = res1 |
|
keypoints2, scores2 = res2 |
|
|
|
from termcolor import colored |
|
|
|
for j, (d1, d2) in enumerate(zip(keypoints1, keypoints2)): |
|
print(f'Detection {j}: ') |
|
for i, (j1, j2) in enumerate(zip(d1, d2)): |
|
(x1, y1), (x2, y2) = j1, j2 |
|
s1, s2 = scores1[j][i], scores2[j][i] |
|
print(f"Joint-{i:2d}:") |
|
print(f'\tOriginal ({colored("x", "blue")},{colored("y","green")},{colored("score", "red")}) = ({colored("{:4.1f}".format(x1),"blue")}, {colored("{:4.1f}".format(y1),"green")}, {colored("{:5.4f}".format(s1),"red")})') |
|
print(f'\tConverted ({colored("x", "blue")},{colored("y","green")},{colored("score", "red")}) = ({colored("{:4.1f}".format(x2),"blue")}, {colored("{:4.1f}".format(y2),"green")}, {colored("{:5.4f}".format(s2),"red")})') |
|
|
|
def validate_pose(res1, res2, postprocess=None): |
|
|
|
if postprocess is not None: |
|
res1 = postprocess(res1) |
|
res2 = postprocess(res2) |
|
|
|
compare_result(res1, res2) |
|
|
|
for r1, r2 in zip(res1, res2): |
|
if not np.allclose(r1, r2, rtol=args.rtol, atol=args.atol): |
|
return False |
|
return True |
|
|
|
def infer_on_image(onnx_model, model_input_size, test_image_path): |
|
body = RTMO_GPU(onnx_model=onnx_model, |
|
model_input_size=model_input_size, |
|
is_yolo_nas_pose=args.yolo_nas_pose) |
|
|
|
frame = cv2.imread(test_image_path) |
|
img_show = frame.copy() |
|
keypoints, scores = body(img_show) |
|
|
|
img_show = draw_skeleton(img_show, |
|
keypoints, |
|
scores, |
|
kpt_thr=0.3, |
|
line_width=2) |
|
img_show = cv2.resize(img_show, (788, 525)) |
|
cv2.imshow(f'{args.target_model_path}', img_show) |
|
cv2.waitKey(0) |
|
cv2.destroyAllWindows() |
|
|
|
def main(args): |
|
model_input_size = detect_model_input_size(args.source_model_path) |
|
|
|
body = RTMO_GPU(onnx_model=args.source_model_path, |
|
model_input_size=model_input_size, |
|
is_yolo_nas_pose=args.yolo_nas_pose) |
|
|
|
def preprocess(image, body, is_yolo_nas_pose): |
|
|
|
img, _ = body.preprocess(image) |
|
|
|
|
|
img = img.transpose(2, 0, 1) |
|
img = np.ascontiguousarray(img, dtype=np.float32 if not is_yolo_nas_pose else np.uint8) |
|
img = img[None, :, :, :] |
|
return img |
|
|
|
image = load_and_preprocess_image(args.test_image_path, lambda img: preprocess(img, body, args.yolo_nas_pose)) |
|
|
|
input_feed = {'input': image} |
|
|
|
auto_mixed_precision_model_path.auto_convert_mixed_precision_model_path(source_model_path=args.source_model_path, |
|
input_feed=input_feed, |
|
target_model_path=args.target_model_path, |
|
customized_validate_func=lambda res1,res2:validate_pose(res1, res2, body.postprocess), |
|
rtol=args.rtol, atol=args.atol, |
|
provider=PROVIDERS, |
|
keep_io_types=True, |
|
verbose=True) |
|
|
|
infer_on_image(args.target_model_path, model_input_size, args.test_image_path) |
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser(description="Convert an ONNX model to mixed precision format.") |
|
parser.add_argument("source_model_path", type=str, help="Path to the source ONNX model.") |
|
parser.add_argument("target_model_path", type=str, help="Path where the mixed precision model will be saved.") |
|
parser.add_argument("test_image_path", type=str, help="Path to a test image for validating the model conversion.") |
|
parser.add_argument('--rtol', type=float, default=0.01, help=' the relative tolerance to do validation') |
|
parser.add_argument('--atol', type=float, default=0.001, help=' the absolute tolerance to do validation') |
|
parser.add_argument('--yolo_nas_pose', action='store_true', help='Use YOLO NAS Pose (flat format only) instead of RTMO Model') |
|
|
|
args = parser.parse_args() |
|
|
|
main(args) |
|
|