“pharaouk” commited on
Commit
9022f69
·
1 Parent(s): f2ee30f
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. added_tokens.json +7 -0
  2. checkpoint-150/config.json +25 -0
  3. checkpoint-150/generation_config.json +6 -0
  4. checkpoint-150/latest +1 -0
  5. checkpoint-150/pytorch_model-00001-of-00002.bin +3 -0
  6. checkpoint-150/pytorch_model-00002-of-00002.bin +3 -0
  7. checkpoint-150/pytorch_model.bin.index.json +298 -0
  8. checkpoint-150/rng_state_0.pth +3 -0
  9. checkpoint-150/rng_state_1.pth +3 -0
  10. checkpoint-150/rng_state_2.pth +3 -0
  11. checkpoint-150/rng_state_3.pth +3 -0
  12. checkpoint-150/trainer_state.json +943 -0
  13. checkpoint-150/training_args.bin +3 -0
  14. checkpoint-150/zero_to_fp32.py +587 -0
  15. checkpoint-200/config.json +25 -0
  16. checkpoint-200/generation_config.json +6 -0
  17. checkpoint-200/latest +1 -0
  18. checkpoint-200/pytorch_model-00001-of-00002.bin +3 -0
  19. checkpoint-200/pytorch_model-00002-of-00002.bin +3 -0
  20. checkpoint-200/pytorch_model.bin.index.json +298 -0
  21. checkpoint-200/rng_state_0.pth +3 -0
  22. checkpoint-200/rng_state_1.pth +3 -0
  23. checkpoint-200/rng_state_2.pth +3 -0
  24. checkpoint-200/rng_state_3.pth +3 -0
  25. checkpoint-200/trainer_state.json +1243 -0
  26. checkpoint-200/training_args.bin +3 -0
  27. checkpoint-200/zero_to_fp32.py +587 -0
  28. checkpoint-250/config.json +25 -0
  29. checkpoint-250/generation_config.json +6 -0
  30. checkpoint-250/latest +1 -0
  31. checkpoint-250/pytorch_model-00001-of-00002.bin +3 -0
  32. checkpoint-250/pytorch_model-00002-of-00002.bin +3 -0
  33. checkpoint-250/pytorch_model.bin.index.json +298 -0
  34. checkpoint-250/rng_state_0.pth +3 -0
  35. checkpoint-250/rng_state_1.pth +3 -0
  36. checkpoint-250/rng_state_2.pth +3 -0
  37. checkpoint-250/rng_state_3.pth +3 -0
  38. checkpoint-250/trainer_state.json +1543 -0
  39. checkpoint-250/training_args.bin +3 -0
  40. checkpoint-250/zero_to_fp32.py +587 -0
  41. config.json +25 -0
  42. generation_config.json +6 -0
  43. latest +1 -0
  44. pytorch_model-00001-of-00002.bin +3 -0
  45. pytorch_model-00002-of-00002.bin +3 -0
  46. pytorch_model.bin.index.json +298 -0
  47. rng_state_0.pth +3 -0
  48. rng_state_1.pth +3 -0
  49. rng_state_2.pth +3 -0
  50. rng_state_3.pth +3 -0
added_tokens.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "</s>": 2,
3
+ "<s>": 1,
4
+ "<unk>": 0,
5
+ "<|im_end|>": 32000,
6
+ "<|im_start|>": 32001
7
+ }
checkpoint-150/config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mistralai/Mistral-7B-v0.1",
3
+ "architectures": [
4
+ "MistralForCausalLM"
5
+ ],
6
+ "bos_token_id": 1,
7
+ "eos_token_id": 2,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 4096,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 14336,
12
+ "max_position_embeddings": 32768,
13
+ "model_type": "mistral",
14
+ "num_attention_heads": 32,
15
+ "num_hidden_layers": 32,
16
+ "num_key_value_heads": 8,
17
+ "rms_norm_eps": 1e-05,
18
+ "rope_theta": 10000.0,
19
+ "sliding_window": 4096,
20
+ "tie_word_embeddings": false,
21
+ "torch_dtype": "bfloat16",
22
+ "transformers_version": "4.34.0.dev0",
23
+ "use_cache": false,
24
+ "vocab_size": 32002
25
+ }
checkpoint-150/generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "transformers_version": "4.34.0.dev0"
6
+ }
checkpoint-150/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step150
checkpoint-150/pytorch_model-00001-of-00002.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5dfffab3ff404e1f12ab78eeaa64de020182e23ef1fdf655b67f138f53b57776
3
+ size 9943044428
checkpoint-150/pytorch_model-00002-of-00002.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b5d5ce3c93e1b594fb0c685762baf81fb339d78111f6fe4459084b45d5dbc36d
3
+ size 4540552031
checkpoint-150/pytorch_model.bin.index.json ADDED
@@ -0,0 +1,298 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 14483496960
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "pytorch_model-00002-of-00002.bin",
7
+ "model.embed_tokens.weight": "pytorch_model-00001-of-00002.bin",
8
+ "model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
9
+ "model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
10
+ "model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
11
+ "model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
12
+ "model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
13
+ "model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
14
+ "model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
15
+ "model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
16
+ "model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
17
+ "model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
18
+ "model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
19
+ "model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
20
+ "model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
21
+ "model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
22
+ "model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
23
+ "model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
24
+ "model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
25
+ "model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
26
+ "model.layers.10.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
27
+ "model.layers.10.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
28
+ "model.layers.10.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
29
+ "model.layers.10.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
30
+ "model.layers.10.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
31
+ "model.layers.10.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
32
+ "model.layers.10.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
33
+ "model.layers.10.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
34
+ "model.layers.10.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
35
+ "model.layers.11.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
36
+ "model.layers.11.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
37
+ "model.layers.11.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
38
+ "model.layers.11.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
39
+ "model.layers.11.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
40
+ "model.layers.11.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
41
+ "model.layers.11.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
42
+ "model.layers.11.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
43
+ "model.layers.11.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
44
+ "model.layers.12.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
45
+ "model.layers.12.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
46
+ "model.layers.12.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
47
+ "model.layers.12.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
48
+ "model.layers.12.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
49
+ "model.layers.12.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
50
+ "model.layers.12.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
51
+ "model.layers.12.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
52
+ "model.layers.12.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
53
+ "model.layers.13.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
54
+ "model.layers.13.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
55
+ "model.layers.13.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
56
+ "model.layers.13.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
57
+ "model.layers.13.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
58
+ "model.layers.13.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
59
+ "model.layers.13.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
60
+ "model.layers.13.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
61
+ "model.layers.13.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
62
+ "model.layers.14.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
63
+ "model.layers.14.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
64
+ "model.layers.14.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
65
+ "model.layers.14.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
66
+ "model.layers.14.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
67
+ "model.layers.14.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
68
+ "model.layers.14.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
69
+ "model.layers.14.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
70
+ "model.layers.14.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
71
+ "model.layers.15.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
72
+ "model.layers.15.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
73
+ "model.layers.15.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
74
+ "model.layers.15.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
75
+ "model.layers.15.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
76
+ "model.layers.15.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
77
+ "model.layers.15.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
78
+ "model.layers.15.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
79
+ "model.layers.15.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
80
+ "model.layers.16.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
81
+ "model.layers.16.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
82
+ "model.layers.16.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
83
+ "model.layers.16.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
84
+ "model.layers.16.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
85
+ "model.layers.16.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
86
+ "model.layers.16.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
87
+ "model.layers.16.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
88
+ "model.layers.16.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
89
+ "model.layers.17.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
90
+ "model.layers.17.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
91
+ "model.layers.17.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
92
+ "model.layers.17.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
93
+ "model.layers.17.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
94
+ "model.layers.17.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
95
+ "model.layers.17.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
96
+ "model.layers.17.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
97
+ "model.layers.17.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
98
+ "model.layers.18.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
99
+ "model.layers.18.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
100
+ "model.layers.18.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
101
+ "model.layers.18.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
102
+ "model.layers.18.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
103
+ "model.layers.18.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
104
+ "model.layers.18.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
105
+ "model.layers.18.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
106
+ "model.layers.18.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
107
+ "model.layers.19.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
108
+ "model.layers.19.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
109
+ "model.layers.19.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
110
+ "model.layers.19.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
111
+ "model.layers.19.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
112
+ "model.layers.19.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
113
+ "model.layers.19.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
114
+ "model.layers.19.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
115
+ "model.layers.19.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
116
+ "model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
117
+ "model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
118
+ "model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
119
+ "model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
120
+ "model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
121
+ "model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
122
+ "model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
123
+ "model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
124
+ "model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
125
+ "model.layers.20.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
126
+ "model.layers.20.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
127
+ "model.layers.20.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
128
+ "model.layers.20.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
129
+ "model.layers.20.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
130
+ "model.layers.20.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
131
+ "model.layers.20.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
132
+ "model.layers.20.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
133
+ "model.layers.20.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
134
+ "model.layers.21.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
135
+ "model.layers.21.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
136
+ "model.layers.21.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
137
+ "model.layers.21.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
138
+ "model.layers.21.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
139
+ "model.layers.21.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
140
+ "model.layers.21.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
141
+ "model.layers.21.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
142
+ "model.layers.21.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
143
+ "model.layers.22.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
144
+ "model.layers.22.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
145
+ "model.layers.22.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
146
+ "model.layers.22.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
147
+ "model.layers.22.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
148
+ "model.layers.22.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
149
+ "model.layers.22.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
150
+ "model.layers.22.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
151
+ "model.layers.22.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
152
+ "model.layers.23.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
153
+ "model.layers.23.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
154
+ "model.layers.23.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
155
+ "model.layers.23.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
156
+ "model.layers.23.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
157
+ "model.layers.23.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
158
+ "model.layers.23.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
159
+ "model.layers.23.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
160
+ "model.layers.23.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
161
+ "model.layers.24.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
162
+ "model.layers.24.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
163
+ "model.layers.24.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
164
+ "model.layers.24.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
165
+ "model.layers.24.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
166
+ "model.layers.24.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
167
+ "model.layers.24.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
168
+ "model.layers.24.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
169
+ "model.layers.24.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
170
+ "model.layers.25.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
171
+ "model.layers.25.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
172
+ "model.layers.25.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
173
+ "model.layers.25.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
174
+ "model.layers.25.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
175
+ "model.layers.25.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
176
+ "model.layers.25.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
177
+ "model.layers.25.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
178
+ "model.layers.25.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
179
+ "model.layers.26.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
180
+ "model.layers.26.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
181
+ "model.layers.26.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
182
+ "model.layers.26.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
183
+ "model.layers.26.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
184
+ "model.layers.26.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
185
+ "model.layers.26.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
186
+ "model.layers.26.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
187
+ "model.layers.26.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
188
+ "model.layers.27.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
189
+ "model.layers.27.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
190
+ "model.layers.27.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
191
+ "model.layers.27.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
192
+ "model.layers.27.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
193
+ "model.layers.27.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
194
+ "model.layers.27.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
195
+ "model.layers.27.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
196
+ "model.layers.27.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
197
+ "model.layers.28.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
198
+ "model.layers.28.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
199
+ "model.layers.28.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
200
+ "model.layers.28.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
201
+ "model.layers.28.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
202
+ "model.layers.28.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
203
+ "model.layers.28.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
204
+ "model.layers.28.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
205
+ "model.layers.28.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
206
+ "model.layers.29.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
207
+ "model.layers.29.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
208
+ "model.layers.29.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
209
+ "model.layers.29.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
210
+ "model.layers.29.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
211
+ "model.layers.29.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
212
+ "model.layers.29.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
213
+ "model.layers.29.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
214
+ "model.layers.29.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
215
+ "model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
216
+ "model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
217
+ "model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
218
+ "model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
219
+ "model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
220
+ "model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
221
+ "model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
222
+ "model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
223
+ "model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
224
+ "model.layers.30.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
225
+ "model.layers.30.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
226
+ "model.layers.30.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
227
+ "model.layers.30.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
228
+ "model.layers.30.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
229
+ "model.layers.30.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
230
+ "model.layers.30.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
231
+ "model.layers.30.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
232
+ "model.layers.30.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
233
+ "model.layers.31.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
234
+ "model.layers.31.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
235
+ "model.layers.31.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
236
+ "model.layers.31.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
237
+ "model.layers.31.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
238
+ "model.layers.31.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
239
+ "model.layers.31.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
240
+ "model.layers.31.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
241
+ "model.layers.31.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
242
+ "model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
243
+ "model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
244
+ "model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
245
+ "model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
246
+ "model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
247
+ "model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
248
+ "model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
249
+ "model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
250
+ "model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
251
+ "model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
252
+ "model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
253
+ "model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
254
+ "model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
255
+ "model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
256
+ "model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
257
+ "model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
258
+ "model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
259
+ "model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
260
+ "model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
261
+ "model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
262
+ "model.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
263
+ "model.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
264
+ "model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
265
+ "model.layers.6.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
266
+ "model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
267
+ "model.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
268
+ "model.layers.6.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
269
+ "model.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
270
+ "model.layers.7.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
271
+ "model.layers.7.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
272
+ "model.layers.7.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
273
+ "model.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
274
+ "model.layers.7.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
275
+ "model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
276
+ "model.layers.7.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
277
+ "model.layers.7.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
278
+ "model.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
279
+ "model.layers.8.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
280
+ "model.layers.8.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
281
+ "model.layers.8.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
282
+ "model.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
283
+ "model.layers.8.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
284
+ "model.layers.8.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
285
+ "model.layers.8.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
286
+ "model.layers.8.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
287
+ "model.layers.9.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
288
+ "model.layers.9.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
289
+ "model.layers.9.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
290
+ "model.layers.9.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
291
+ "model.layers.9.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
292
+ "model.layers.9.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
293
+ "model.layers.9.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
294
+ "model.layers.9.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
295
+ "model.layers.9.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
296
+ "model.norm.weight": "pytorch_model-00002-of-00002.bin"
297
+ }
298
+ }
checkpoint-150/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1eafe3d5e0585dde8c5033613de99a5d4f23df4284a488f4007b3944580c0b97
3
+ size 17655
checkpoint-150/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7e34eb456d2d003a2839f2daa9425e99bdd79ed7e24a1de9fc7d5738476bfb4b
3
+ size 17655
checkpoint-150/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b374af4a2765d8771cee7a72921d3c2e438b9bee34f0b2d098ce6071afeb65e4
3
+ size 17655
checkpoint-150/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5df75d8477fcc69c7abb03025313915ebfe3ac18c54a7c57aaa455c0099e13e5
3
+ size 17655
checkpoint-150/trainer_state.json ADDED
@@ -0,0 +1,943 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.019846520243450648,
5
+ "eval_steps": 756,
6
+ "global_step": 150,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "learning_rate": 0.0,
14
+ "loss": 0.9197,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.0,
19
+ "eval_loss": 1.4652303457260132,
20
+ "eval_runtime": 2.1726,
21
+ "eval_samples_per_second": 79.627,
22
+ "eval_steps_per_second": 3.682,
23
+ "step": 1
24
+ },
25
+ {
26
+ "epoch": 0.0,
27
+ "eval_bench_accuracy_agieval": 0.2711864406779661,
28
+ "eval_bench_accuracy_arc_challenge": 0.8703703703703703,
29
+ "eval_bench_accuracy_arc_easy": 0.9259259259259259,
30
+ "eval_bench_accuracy_bigbench": 0.36065573770491804,
31
+ "eval_bench_accuracy_boolq": 0.5740740740740741,
32
+ "eval_bench_accuracy_mmlu": 0.5185185185185185,
33
+ "eval_bench_accuracy_openbookqa": 0.1111111111111111,
34
+ "eval_bench_accuracy_truthful_qa": 0.3584905660377358,
35
+ "eval_bench_accuracy_winogrande": 0.4444444444444444,
36
+ "eval_bench_average_accuracy": 0.4927530209850072,
37
+ "eval_bench_loss": 2.6978388407144203,
38
+ "eval_bench_total_accuracy": 0.48893360160965793,
39
+ "step": 1
40
+ },
41
+ {
42
+ "epoch": 0.0,
43
+ "learning_rate": 6.000000000000001e-07,
44
+ "loss": 1.3426,
45
+ "step": 2
46
+ },
47
+ {
48
+ "epoch": 0.0,
49
+ "learning_rate": 1.2000000000000002e-06,
50
+ "loss": 1.5882,
51
+ "step": 3
52
+ },
53
+ {
54
+ "epoch": 0.0,
55
+ "learning_rate": 1.8e-06,
56
+ "loss": 0.8542,
57
+ "step": 4
58
+ },
59
+ {
60
+ "epoch": 0.0,
61
+ "learning_rate": 2.4000000000000003e-06,
62
+ "loss": 0.9629,
63
+ "step": 5
64
+ },
65
+ {
66
+ "epoch": 0.0,
67
+ "learning_rate": 3e-06,
68
+ "loss": 0.903,
69
+ "step": 6
70
+ },
71
+ {
72
+ "epoch": 0.0,
73
+ "learning_rate": 3.6e-06,
74
+ "loss": 0.909,
75
+ "step": 7
76
+ },
77
+ {
78
+ "epoch": 0.0,
79
+ "learning_rate": 4.2e-06,
80
+ "loss": 0.8666,
81
+ "step": 8
82
+ },
83
+ {
84
+ "epoch": 0.0,
85
+ "learning_rate": 4.800000000000001e-06,
86
+ "loss": 1.0108,
87
+ "step": 9
88
+ },
89
+ {
90
+ "epoch": 0.0,
91
+ "learning_rate": 5.4e-06,
92
+ "loss": 0.8958,
93
+ "step": 10
94
+ },
95
+ {
96
+ "epoch": 0.0,
97
+ "learning_rate": 6e-06,
98
+ "loss": 0.9348,
99
+ "step": 11
100
+ },
101
+ {
102
+ "epoch": 0.0,
103
+ "learning_rate": 5.999602806831722e-06,
104
+ "loss": 0.7832,
105
+ "step": 12
106
+ },
107
+ {
108
+ "epoch": 0.0,
109
+ "learning_rate": 5.999205613663445e-06,
110
+ "loss": 0.8083,
111
+ "step": 13
112
+ },
113
+ {
114
+ "epoch": 0.0,
115
+ "learning_rate": 5.9988084204951675e-06,
116
+ "loss": 0.8164,
117
+ "step": 14
118
+ },
119
+ {
120
+ "epoch": 0.0,
121
+ "learning_rate": 5.99841122732689e-06,
122
+ "loss": 0.7834,
123
+ "step": 15
124
+ },
125
+ {
126
+ "epoch": 0.0,
127
+ "learning_rate": 5.998014034158613e-06,
128
+ "loss": 0.8718,
129
+ "step": 16
130
+ },
131
+ {
132
+ "epoch": 0.0,
133
+ "learning_rate": 5.997616840990336e-06,
134
+ "loss": 0.84,
135
+ "step": 17
136
+ },
137
+ {
138
+ "epoch": 0.0,
139
+ "learning_rate": 5.997219647822058e-06,
140
+ "loss": 0.7397,
141
+ "step": 18
142
+ },
143
+ {
144
+ "epoch": 0.0,
145
+ "learning_rate": 5.99682245465378e-06,
146
+ "loss": 0.7445,
147
+ "step": 19
148
+ },
149
+ {
150
+ "epoch": 0.0,
151
+ "learning_rate": 5.996425261485502e-06,
152
+ "loss": 0.7898,
153
+ "step": 20
154
+ },
155
+ {
156
+ "epoch": 0.0,
157
+ "learning_rate": 5.996028068317225e-06,
158
+ "loss": 0.7388,
159
+ "step": 21
160
+ },
161
+ {
162
+ "epoch": 0.0,
163
+ "learning_rate": 5.9956308751489475e-06,
164
+ "loss": 0.7296,
165
+ "step": 22
166
+ },
167
+ {
168
+ "epoch": 0.0,
169
+ "learning_rate": 5.99523368198067e-06,
170
+ "loss": 0.7993,
171
+ "step": 23
172
+ },
173
+ {
174
+ "epoch": 0.0,
175
+ "learning_rate": 5.994836488812393e-06,
176
+ "loss": 0.7188,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.0,
181
+ "learning_rate": 5.994439295644115e-06,
182
+ "loss": 0.7473,
183
+ "step": 25
184
+ },
185
+ {
186
+ "epoch": 0.0,
187
+ "learning_rate": 5.994042102475838e-06,
188
+ "loss": 0.6997,
189
+ "step": 26
190
+ },
191
+ {
192
+ "epoch": 0.0,
193
+ "learning_rate": 5.99364490930756e-06,
194
+ "loss": 0.725,
195
+ "step": 27
196
+ },
197
+ {
198
+ "epoch": 0.0,
199
+ "learning_rate": 5.993247716139283e-06,
200
+ "loss": 0.7272,
201
+ "step": 28
202
+ },
203
+ {
204
+ "epoch": 0.0,
205
+ "learning_rate": 5.992850522971005e-06,
206
+ "loss": 0.7427,
207
+ "step": 29
208
+ },
209
+ {
210
+ "epoch": 0.0,
211
+ "learning_rate": 5.992453329802727e-06,
212
+ "loss": 0.7309,
213
+ "step": 30
214
+ },
215
+ {
216
+ "epoch": 0.0,
217
+ "learning_rate": 5.99205613663445e-06,
218
+ "loss": 0.6764,
219
+ "step": 31
220
+ },
221
+ {
222
+ "epoch": 0.0,
223
+ "learning_rate": 5.991658943466173e-06,
224
+ "loss": 0.7556,
225
+ "step": 32
226
+ },
227
+ {
228
+ "epoch": 0.0,
229
+ "learning_rate": 5.991261750297895e-06,
230
+ "loss": 0.7301,
231
+ "step": 33
232
+ },
233
+ {
234
+ "epoch": 0.0,
235
+ "learning_rate": 5.990864557129617e-06,
236
+ "loss": 0.6776,
237
+ "step": 34
238
+ },
239
+ {
240
+ "epoch": 0.0,
241
+ "learning_rate": 5.99046736396134e-06,
242
+ "loss": 0.6884,
243
+ "step": 35
244
+ },
245
+ {
246
+ "epoch": 0.0,
247
+ "learning_rate": 5.990070170793063e-06,
248
+ "loss": 0.7179,
249
+ "step": 36
250
+ },
251
+ {
252
+ "epoch": 0.0,
253
+ "learning_rate": 5.989672977624785e-06,
254
+ "loss": 0.6915,
255
+ "step": 37
256
+ },
257
+ {
258
+ "epoch": 0.01,
259
+ "learning_rate": 5.989275784456507e-06,
260
+ "loss": 0.7308,
261
+ "step": 38
262
+ },
263
+ {
264
+ "epoch": 0.01,
265
+ "learning_rate": 5.98887859128823e-06,
266
+ "loss": 0.6743,
267
+ "step": 39
268
+ },
269
+ {
270
+ "epoch": 0.01,
271
+ "learning_rate": 5.9884813981199526e-06,
272
+ "loss": 0.6604,
273
+ "step": 40
274
+ },
275
+ {
276
+ "epoch": 0.01,
277
+ "learning_rate": 5.988084204951675e-06,
278
+ "loss": 0.6609,
279
+ "step": 41
280
+ },
281
+ {
282
+ "epoch": 0.01,
283
+ "learning_rate": 5.987687011783397e-06,
284
+ "loss": 0.6524,
285
+ "step": 42
286
+ },
287
+ {
288
+ "epoch": 0.01,
289
+ "learning_rate": 5.98728981861512e-06,
290
+ "loss": 0.6386,
291
+ "step": 43
292
+ },
293
+ {
294
+ "epoch": 0.01,
295
+ "learning_rate": 5.986892625446843e-06,
296
+ "loss": 0.728,
297
+ "step": 44
298
+ },
299
+ {
300
+ "epoch": 0.01,
301
+ "learning_rate": 5.986495432278565e-06,
302
+ "loss": 0.6971,
303
+ "step": 45
304
+ },
305
+ {
306
+ "epoch": 0.01,
307
+ "learning_rate": 5.986098239110287e-06,
308
+ "loss": 0.6772,
309
+ "step": 46
310
+ },
311
+ {
312
+ "epoch": 0.01,
313
+ "learning_rate": 5.98570104594201e-06,
314
+ "loss": 0.6774,
315
+ "step": 47
316
+ },
317
+ {
318
+ "epoch": 0.01,
319
+ "learning_rate": 5.9853038527737325e-06,
320
+ "loss": 0.6868,
321
+ "step": 48
322
+ },
323
+ {
324
+ "epoch": 0.01,
325
+ "learning_rate": 5.984906659605455e-06,
326
+ "loss": 0.7169,
327
+ "step": 49
328
+ },
329
+ {
330
+ "epoch": 0.01,
331
+ "learning_rate": 5.984509466437178e-06,
332
+ "loss": 0.669,
333
+ "step": 50
334
+ },
335
+ {
336
+ "epoch": 0.01,
337
+ "learning_rate": 5.9841122732689e-06,
338
+ "loss": 0.7112,
339
+ "step": 51
340
+ },
341
+ {
342
+ "epoch": 0.01,
343
+ "learning_rate": 5.983715080100622e-06,
344
+ "loss": 0.6667,
345
+ "step": 52
346
+ },
347
+ {
348
+ "epoch": 0.01,
349
+ "learning_rate": 5.983317886932344e-06,
350
+ "loss": 0.6528,
351
+ "step": 53
352
+ },
353
+ {
354
+ "epoch": 0.01,
355
+ "learning_rate": 5.982920693764068e-06,
356
+ "loss": 0.6699,
357
+ "step": 54
358
+ },
359
+ {
360
+ "epoch": 0.01,
361
+ "learning_rate": 5.98252350059579e-06,
362
+ "loss": 0.6584,
363
+ "step": 55
364
+ },
365
+ {
366
+ "epoch": 0.01,
367
+ "learning_rate": 5.9821263074275125e-06,
368
+ "loss": 0.6328,
369
+ "step": 56
370
+ },
371
+ {
372
+ "epoch": 0.01,
373
+ "learning_rate": 5.981729114259235e-06,
374
+ "loss": 0.6472,
375
+ "step": 57
376
+ },
377
+ {
378
+ "epoch": 0.01,
379
+ "learning_rate": 5.981331921090958e-06,
380
+ "loss": 0.6992,
381
+ "step": 58
382
+ },
383
+ {
384
+ "epoch": 0.01,
385
+ "learning_rate": 5.98093472792268e-06,
386
+ "loss": 0.6666,
387
+ "step": 59
388
+ },
389
+ {
390
+ "epoch": 0.01,
391
+ "learning_rate": 5.980537534754402e-06,
392
+ "loss": 0.6819,
393
+ "step": 60
394
+ },
395
+ {
396
+ "epoch": 0.01,
397
+ "learning_rate": 5.980140341586125e-06,
398
+ "loss": 0.705,
399
+ "step": 61
400
+ },
401
+ {
402
+ "epoch": 0.01,
403
+ "learning_rate": 5.979743148417847e-06,
404
+ "loss": 0.6871,
405
+ "step": 62
406
+ },
407
+ {
408
+ "epoch": 0.01,
409
+ "learning_rate": 5.97934595524957e-06,
410
+ "loss": 0.6998,
411
+ "step": 63
412
+ },
413
+ {
414
+ "epoch": 0.01,
415
+ "learning_rate": 5.978948762081292e-06,
416
+ "loss": 0.6081,
417
+ "step": 64
418
+ },
419
+ {
420
+ "epoch": 0.01,
421
+ "learning_rate": 5.9785515689130154e-06,
422
+ "loss": 0.6985,
423
+ "step": 65
424
+ },
425
+ {
426
+ "epoch": 0.01,
427
+ "learning_rate": 5.978154375744738e-06,
428
+ "loss": 0.6631,
429
+ "step": 66
430
+ },
431
+ {
432
+ "epoch": 0.01,
433
+ "learning_rate": 5.97775718257646e-06,
434
+ "loss": 0.6534,
435
+ "step": 67
436
+ },
437
+ {
438
+ "epoch": 0.01,
439
+ "learning_rate": 5.977359989408182e-06,
440
+ "loss": 0.6685,
441
+ "step": 68
442
+ },
443
+ {
444
+ "epoch": 0.01,
445
+ "learning_rate": 5.976962796239905e-06,
446
+ "loss": 0.6821,
447
+ "step": 69
448
+ },
449
+ {
450
+ "epoch": 0.01,
451
+ "learning_rate": 5.976565603071627e-06,
452
+ "loss": 0.6241,
453
+ "step": 70
454
+ },
455
+ {
456
+ "epoch": 0.01,
457
+ "learning_rate": 5.976168409903349e-06,
458
+ "loss": 0.6357,
459
+ "step": 71
460
+ },
461
+ {
462
+ "epoch": 0.01,
463
+ "learning_rate": 5.975771216735072e-06,
464
+ "loss": 0.6466,
465
+ "step": 72
466
+ },
467
+ {
468
+ "epoch": 0.01,
469
+ "learning_rate": 5.975374023566795e-06,
470
+ "loss": 0.6579,
471
+ "step": 73
472
+ },
473
+ {
474
+ "epoch": 0.01,
475
+ "learning_rate": 5.9749768303985176e-06,
476
+ "loss": 0.6298,
477
+ "step": 74
478
+ },
479
+ {
480
+ "epoch": 0.01,
481
+ "learning_rate": 5.97457963723024e-06,
482
+ "loss": 0.703,
483
+ "step": 75
484
+ },
485
+ {
486
+ "epoch": 0.01,
487
+ "learning_rate": 5.974182444061963e-06,
488
+ "loss": 0.6152,
489
+ "step": 76
490
+ },
491
+ {
492
+ "epoch": 0.01,
493
+ "learning_rate": 5.973785250893685e-06,
494
+ "loss": 0.6682,
495
+ "step": 77
496
+ },
497
+ {
498
+ "epoch": 0.01,
499
+ "learning_rate": 5.973388057725407e-06,
500
+ "loss": 0.6427,
501
+ "step": 78
502
+ },
503
+ {
504
+ "epoch": 0.01,
505
+ "learning_rate": 5.972990864557129e-06,
506
+ "loss": 0.6969,
507
+ "step": 79
508
+ },
509
+ {
510
+ "epoch": 0.01,
511
+ "learning_rate": 5.972593671388852e-06,
512
+ "loss": 0.6619,
513
+ "step": 80
514
+ },
515
+ {
516
+ "epoch": 0.01,
517
+ "learning_rate": 5.9721964782205745e-06,
518
+ "loss": 0.6332,
519
+ "step": 81
520
+ },
521
+ {
522
+ "epoch": 0.01,
523
+ "learning_rate": 5.9717992850522975e-06,
524
+ "loss": 0.6203,
525
+ "step": 82
526
+ },
527
+ {
528
+ "epoch": 0.01,
529
+ "learning_rate": 5.97140209188402e-06,
530
+ "loss": 0.6463,
531
+ "step": 83
532
+ },
533
+ {
534
+ "epoch": 0.01,
535
+ "learning_rate": 5.971004898715743e-06,
536
+ "loss": 0.6718,
537
+ "step": 84
538
+ },
539
+ {
540
+ "epoch": 0.01,
541
+ "learning_rate": 5.970607705547465e-06,
542
+ "loss": 0.6495,
543
+ "step": 85
544
+ },
545
+ {
546
+ "epoch": 0.01,
547
+ "learning_rate": 5.970210512379187e-06,
548
+ "loss": 0.5787,
549
+ "step": 86
550
+ },
551
+ {
552
+ "epoch": 0.01,
553
+ "learning_rate": 5.96981331921091e-06,
554
+ "loss": 0.6897,
555
+ "step": 87
556
+ },
557
+ {
558
+ "epoch": 0.01,
559
+ "learning_rate": 5.969416126042632e-06,
560
+ "loss": 0.6688,
561
+ "step": 88
562
+ },
563
+ {
564
+ "epoch": 0.01,
565
+ "learning_rate": 5.9690189328743544e-06,
566
+ "loss": 0.6697,
567
+ "step": 89
568
+ },
569
+ {
570
+ "epoch": 0.01,
571
+ "learning_rate": 5.968621739706077e-06,
572
+ "loss": 0.6156,
573
+ "step": 90
574
+ },
575
+ {
576
+ "epoch": 0.01,
577
+ "learning_rate": 5.9682245465378e-06,
578
+ "loss": 0.6301,
579
+ "step": 91
580
+ },
581
+ {
582
+ "epoch": 0.01,
583
+ "learning_rate": 5.967827353369523e-06,
584
+ "loss": 0.6121,
585
+ "step": 92
586
+ },
587
+ {
588
+ "epoch": 0.01,
589
+ "learning_rate": 5.967430160201245e-06,
590
+ "loss": 0.6177,
591
+ "step": 93
592
+ },
593
+ {
594
+ "epoch": 0.01,
595
+ "learning_rate": 5.967032967032967e-06,
596
+ "loss": 0.611,
597
+ "step": 94
598
+ },
599
+ {
600
+ "epoch": 0.01,
601
+ "learning_rate": 5.96663577386469e-06,
602
+ "loss": 0.6359,
603
+ "step": 95
604
+ },
605
+ {
606
+ "epoch": 0.01,
607
+ "learning_rate": 5.966238580696412e-06,
608
+ "loss": 0.6417,
609
+ "step": 96
610
+ },
611
+ {
612
+ "epoch": 0.01,
613
+ "learning_rate": 5.965841387528134e-06,
614
+ "loss": 0.6312,
615
+ "step": 97
616
+ },
617
+ {
618
+ "epoch": 0.01,
619
+ "learning_rate": 5.965444194359857e-06,
620
+ "loss": 0.6184,
621
+ "step": 98
622
+ },
623
+ {
624
+ "epoch": 0.01,
625
+ "learning_rate": 5.9650470011915796e-06,
626
+ "loss": 0.6724,
627
+ "step": 99
628
+ },
629
+ {
630
+ "epoch": 0.01,
631
+ "learning_rate": 5.964649808023302e-06,
632
+ "loss": 0.6833,
633
+ "step": 100
634
+ },
635
+ {
636
+ "epoch": 0.01,
637
+ "learning_rate": 5.964252614855025e-06,
638
+ "loss": 0.6433,
639
+ "step": 101
640
+ },
641
+ {
642
+ "epoch": 0.01,
643
+ "learning_rate": 5.963855421686747e-06,
644
+ "loss": 0.6766,
645
+ "step": 102
646
+ },
647
+ {
648
+ "epoch": 0.01,
649
+ "learning_rate": 5.96345822851847e-06,
650
+ "loss": 0.6527,
651
+ "step": 103
652
+ },
653
+ {
654
+ "epoch": 0.01,
655
+ "learning_rate": 5.963061035350192e-06,
656
+ "loss": 0.5982,
657
+ "step": 104
658
+ },
659
+ {
660
+ "epoch": 0.01,
661
+ "learning_rate": 5.962663842181914e-06,
662
+ "loss": 0.6749,
663
+ "step": 105
664
+ },
665
+ {
666
+ "epoch": 0.01,
667
+ "learning_rate": 5.962266649013637e-06,
668
+ "loss": 0.6494,
669
+ "step": 106
670
+ },
671
+ {
672
+ "epoch": 0.01,
673
+ "learning_rate": 5.9618694558453595e-06,
674
+ "loss": 0.6998,
675
+ "step": 107
676
+ },
677
+ {
678
+ "epoch": 0.01,
679
+ "learning_rate": 5.961472262677082e-06,
680
+ "loss": 0.6112,
681
+ "step": 108
682
+ },
683
+ {
684
+ "epoch": 0.01,
685
+ "learning_rate": 5.961075069508805e-06,
686
+ "loss": 0.624,
687
+ "step": 109
688
+ },
689
+ {
690
+ "epoch": 0.01,
691
+ "learning_rate": 5.960677876340528e-06,
692
+ "loss": 0.6329,
693
+ "step": 110
694
+ },
695
+ {
696
+ "epoch": 0.01,
697
+ "learning_rate": 5.96028068317225e-06,
698
+ "loss": 0.6491,
699
+ "step": 111
700
+ },
701
+ {
702
+ "epoch": 0.01,
703
+ "learning_rate": 5.959883490003972e-06,
704
+ "loss": 0.6672,
705
+ "step": 112
706
+ },
707
+ {
708
+ "epoch": 0.01,
709
+ "learning_rate": 5.959486296835694e-06,
710
+ "loss": 0.6279,
711
+ "step": 113
712
+ },
713
+ {
714
+ "epoch": 0.02,
715
+ "learning_rate": 5.959089103667417e-06,
716
+ "loss": 0.6479,
717
+ "step": 114
718
+ },
719
+ {
720
+ "epoch": 0.02,
721
+ "learning_rate": 5.9586919104991395e-06,
722
+ "loss": 0.6214,
723
+ "step": 115
724
+ },
725
+ {
726
+ "epoch": 0.02,
727
+ "learning_rate": 5.958294717330862e-06,
728
+ "loss": 0.6618,
729
+ "step": 116
730
+ },
731
+ {
732
+ "epoch": 0.02,
733
+ "learning_rate": 5.957897524162585e-06,
734
+ "loss": 0.6703,
735
+ "step": 117
736
+ },
737
+ {
738
+ "epoch": 0.02,
739
+ "learning_rate": 5.957500330994307e-06,
740
+ "loss": 0.6417,
741
+ "step": 118
742
+ },
743
+ {
744
+ "epoch": 0.02,
745
+ "learning_rate": 5.957103137826029e-06,
746
+ "loss": 0.631,
747
+ "step": 119
748
+ },
749
+ {
750
+ "epoch": 0.02,
751
+ "learning_rate": 5.956705944657752e-06,
752
+ "loss": 0.6169,
753
+ "step": 120
754
+ },
755
+ {
756
+ "epoch": 0.02,
757
+ "learning_rate": 5.956308751489475e-06,
758
+ "loss": 0.6521,
759
+ "step": 121
760
+ },
761
+ {
762
+ "epoch": 0.02,
763
+ "learning_rate": 5.955911558321197e-06,
764
+ "loss": 0.6635,
765
+ "step": 122
766
+ },
767
+ {
768
+ "epoch": 0.02,
769
+ "learning_rate": 5.955514365152919e-06,
770
+ "loss": 0.6496,
771
+ "step": 123
772
+ },
773
+ {
774
+ "epoch": 0.02,
775
+ "learning_rate": 5.955117171984642e-06,
776
+ "loss": 0.6431,
777
+ "step": 124
778
+ },
779
+ {
780
+ "epoch": 0.02,
781
+ "learning_rate": 5.954719978816365e-06,
782
+ "loss": 0.6246,
783
+ "step": 125
784
+ },
785
+ {
786
+ "epoch": 0.02,
787
+ "learning_rate": 5.954322785648087e-06,
788
+ "loss": 0.6557,
789
+ "step": 126
790
+ },
791
+ {
792
+ "epoch": 0.02,
793
+ "learning_rate": 5.953925592479809e-06,
794
+ "loss": 0.6082,
795
+ "step": 127
796
+ },
797
+ {
798
+ "epoch": 0.02,
799
+ "learning_rate": 5.953528399311532e-06,
800
+ "loss": 0.5941,
801
+ "step": 128
802
+ },
803
+ {
804
+ "epoch": 0.02,
805
+ "learning_rate": 5.953131206143255e-06,
806
+ "loss": 0.6566,
807
+ "step": 129
808
+ },
809
+ {
810
+ "epoch": 0.02,
811
+ "learning_rate": 5.952734012974977e-06,
812
+ "loss": 0.6243,
813
+ "step": 130
814
+ },
815
+ {
816
+ "epoch": 0.02,
817
+ "learning_rate": 5.952336819806699e-06,
818
+ "loss": 0.594,
819
+ "step": 131
820
+ },
821
+ {
822
+ "epoch": 0.02,
823
+ "learning_rate": 5.951939626638422e-06,
824
+ "loss": 0.68,
825
+ "step": 132
826
+ },
827
+ {
828
+ "epoch": 0.02,
829
+ "learning_rate": 5.9515424334701446e-06,
830
+ "loss": 0.6302,
831
+ "step": 133
832
+ },
833
+ {
834
+ "epoch": 0.02,
835
+ "learning_rate": 5.951145240301867e-06,
836
+ "loss": 0.6251,
837
+ "step": 134
838
+ },
839
+ {
840
+ "epoch": 0.02,
841
+ "learning_rate": 5.950748047133589e-06,
842
+ "loss": 0.6326,
843
+ "step": 135
844
+ },
845
+ {
846
+ "epoch": 0.02,
847
+ "learning_rate": 5.950350853965312e-06,
848
+ "loss": 0.6314,
849
+ "step": 136
850
+ },
851
+ {
852
+ "epoch": 0.02,
853
+ "learning_rate": 5.949953660797034e-06,
854
+ "loss": 0.6598,
855
+ "step": 137
856
+ },
857
+ {
858
+ "epoch": 0.02,
859
+ "learning_rate": 5.949556467628757e-06,
860
+ "loss": 0.6583,
861
+ "step": 138
862
+ },
863
+ {
864
+ "epoch": 0.02,
865
+ "learning_rate": 5.949159274460479e-06,
866
+ "loss": 0.6162,
867
+ "step": 139
868
+ },
869
+ {
870
+ "epoch": 0.02,
871
+ "learning_rate": 5.948762081292202e-06,
872
+ "loss": 0.7042,
873
+ "step": 140
874
+ },
875
+ {
876
+ "epoch": 0.02,
877
+ "learning_rate": 5.9483648881239245e-06,
878
+ "loss": 0.6733,
879
+ "step": 141
880
+ },
881
+ {
882
+ "epoch": 0.02,
883
+ "learning_rate": 5.947967694955647e-06,
884
+ "loss": 0.6103,
885
+ "step": 142
886
+ },
887
+ {
888
+ "epoch": 0.02,
889
+ "learning_rate": 5.94757050178737e-06,
890
+ "loss": 0.6269,
891
+ "step": 143
892
+ },
893
+ {
894
+ "epoch": 0.02,
895
+ "learning_rate": 5.947173308619092e-06,
896
+ "loss": 0.663,
897
+ "step": 144
898
+ },
899
+ {
900
+ "epoch": 0.02,
901
+ "learning_rate": 5.946776115450814e-06,
902
+ "loss": 0.5794,
903
+ "step": 145
904
+ },
905
+ {
906
+ "epoch": 0.02,
907
+ "learning_rate": 5.946378922282537e-06,
908
+ "loss": 0.6868,
909
+ "step": 146
910
+ },
911
+ {
912
+ "epoch": 0.02,
913
+ "learning_rate": 5.945981729114259e-06,
914
+ "loss": 0.6064,
915
+ "step": 147
916
+ },
917
+ {
918
+ "epoch": 0.02,
919
+ "learning_rate": 5.945584535945982e-06,
920
+ "loss": 0.6519,
921
+ "step": 148
922
+ },
923
+ {
924
+ "epoch": 0.02,
925
+ "learning_rate": 5.9451873427777045e-06,
926
+ "loss": 0.655,
927
+ "step": 149
928
+ },
929
+ {
930
+ "epoch": 0.02,
931
+ "learning_rate": 5.944790149609427e-06,
932
+ "loss": 0.6617,
933
+ "step": 150
934
+ }
935
+ ],
936
+ "logging_steps": 1,
937
+ "max_steps": 15116,
938
+ "num_train_epochs": 2,
939
+ "save_steps": 50,
940
+ "total_flos": 6.291064218451968e+17,
941
+ "trial_name": null,
942
+ "trial_params": null
943
+ }
checkpoint-150/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2f05be88d930176935da1678b48a8294634889bf7ae4f8bebdbaca140c2dac08
3
+ size 5947
checkpoint-150/zero_to_fp32.py ADDED
@@ -0,0 +1,587 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
215
+ elif zero_stage == 3:
216
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
217
+
218
+
219
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
220
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
221
+ return
222
+
223
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
224
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
225
+
226
+ if debug:
227
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
228
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
229
+
230
+ wanted_params = len(frozen_param_shapes)
231
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
232
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
233
+ print(f'Frozen params: Have {avail_numel} numels to process.')
234
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
235
+
236
+ total_params = 0
237
+ total_numel = 0
238
+ for name, shape in frozen_param_shapes.items():
239
+ total_params += 1
240
+ unpartitioned_numel = shape.numel()
241
+ total_numel += unpartitioned_numel
242
+
243
+ state_dict[name] = frozen_param_fragments[name]
244
+
245
+ if debug:
246
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
247
+
248
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
249
+
250
+
251
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
252
+ param_shapes = zero_model_states[0].param_shapes
253
+
254
+ # Reconstruction protocol:
255
+ #
256
+ # XXX: document this
257
+
258
+ if debug:
259
+ for i in range(world_size):
260
+ for j in range(len(fp32_flat_groups[0])):
261
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
262
+
263
+ # XXX: memory usage doubles here (zero2)
264
+ num_param_groups = len(fp32_flat_groups[0])
265
+ merged_single_partition_of_fp32_groups = []
266
+ for i in range(num_param_groups):
267
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
268
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
269
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
270
+ avail_numel = sum(
271
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
272
+
273
+ if debug:
274
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
275
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
276
+ # not asserting if there is a mismatch due to possible padding
277
+ print(f"Have {avail_numel} numels to process.")
278
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
279
+
280
+ # params
281
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
282
+ # out-of-core computing solution
283
+ total_numel = 0
284
+ total_params = 0
285
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
286
+ offset = 0
287
+ avail_numel = full_single_fp32_vector.numel()
288
+ for name, shape in shapes.items():
289
+
290
+ unpartitioned_numel = shape.numel()
291
+ total_numel += unpartitioned_numel
292
+ total_params += 1
293
+
294
+ if debug:
295
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
296
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
297
+ offset += unpartitioned_numel
298
+
299
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
300
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
301
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
302
+ # live optimizer object, so we are checking that the numbers are within the right range
303
+ align_to = 2 * world_size
304
+
305
+ def zero2_align(x):
306
+ return align_to * math.ceil(x / align_to)
307
+
308
+ if debug:
309
+ print(f"original offset={offset}, avail_numel={avail_numel}")
310
+
311
+ offset = zero2_align(offset)
312
+ avail_numel = zero2_align(avail_numel)
313
+
314
+ if debug:
315
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
316
+
317
+ # Sanity check
318
+ if offset != avail_numel:
319
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
320
+
321
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
322
+
323
+
324
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
325
+ state_dict = OrderedDict()
326
+
327
+ # buffers
328
+ buffers = zero_model_states[0].buffers
329
+ state_dict.update(buffers)
330
+ if debug:
331
+ print(f"added {len(buffers)} buffers")
332
+
333
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
334
+
335
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
336
+
337
+ # recover shared parameters
338
+ for pair in zero_model_states[0].shared_params:
339
+ if pair[1] in state_dict:
340
+ state_dict[pair[0]] = state_dict[pair[1]]
341
+
342
+ return state_dict
343
+
344
+
345
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
346
+ remainder = unpartitioned_numel % world_size
347
+ padding_numel = (world_size - remainder) if remainder else 0
348
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
349
+ return partitioned_numel, padding_numel
350
+
351
+
352
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
353
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
354
+ return
355
+
356
+ if debug:
357
+ for i in range(world_size):
358
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
359
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
360
+
361
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
362
+ wanted_params = len(frozen_param_shapes)
363
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
364
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
365
+ print(f'Frozen params: Have {avail_numel} numels to process.')
366
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
367
+
368
+ total_params = 0
369
+ total_numel = 0
370
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
371
+ total_params += 1
372
+ unpartitioned_numel = shape.numel()
373
+ total_numel += unpartitioned_numel
374
+
375
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
376
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
377
+
378
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
379
+
380
+ if debug:
381
+ print(
382
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
383
+ )
384
+
385
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
386
+
387
+
388
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
389
+ param_shapes = zero_model_states[0].param_shapes
390
+ avail_numel = fp32_flat_groups[0].numel() * world_size
391
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
392
+ # param, re-consolidating each param, while dealing with padding if any
393
+
394
+ # merge list of dicts, preserving order
395
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
396
+
397
+ if debug:
398
+ for i in range(world_size):
399
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
400
+
401
+ wanted_params = len(param_shapes)
402
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
403
+ # not asserting if there is a mismatch due to possible padding
404
+ avail_numel = fp32_flat_groups[0].numel() * world_size
405
+ print(f"Trainable params: Have {avail_numel} numels to process.")
406
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
407
+
408
+ # params
409
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
410
+ # out-of-core computing solution
411
+ offset = 0
412
+ total_numel = 0
413
+ total_params = 0
414
+ for name, shape in param_shapes.items():
415
+
416
+ unpartitioned_numel = shape.numel()
417
+ total_numel += unpartitioned_numel
418
+ total_params += 1
419
+
420
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
421
+
422
+ if debug:
423
+ print(
424
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
425
+ )
426
+
427
+ # XXX: memory usage doubles here
428
+ state_dict[name] = torch.cat(
429
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
430
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
431
+ offset += partitioned_numel
432
+
433
+ offset *= world_size
434
+
435
+ # Sanity check
436
+ if offset != avail_numel:
437
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
438
+
439
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
440
+
441
+
442
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
443
+ state_dict = OrderedDict()
444
+
445
+ # buffers
446
+ buffers = zero_model_states[0].buffers
447
+ state_dict.update(buffers)
448
+ if debug:
449
+ print(f"added {len(buffers)} buffers")
450
+
451
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
452
+
453
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
454
+
455
+ # recover shared parameters
456
+ for pair in zero_model_states[0].shared_params:
457
+ if pair[1] in state_dict:
458
+ state_dict[pair[0]] = state_dict[pair[1]]
459
+
460
+ return state_dict
461
+
462
+
463
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
464
+ """
465
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
466
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
467
+ via a model hub.
468
+
469
+ Args:
470
+ - ``checkpoint_dir``: path to the desired checkpoint folder
471
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
472
+
473
+ Returns:
474
+ - pytorch ``state_dict``
475
+
476
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
477
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
478
+ the checkpoint.
479
+
480
+ A typical usage might be ::
481
+
482
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
483
+ # do the training and checkpoint saving
484
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
485
+ model = model.cpu() # move to cpu
486
+ model.load_state_dict(state_dict)
487
+ # submit to model hub or save the model to share with others
488
+
489
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
490
+ application. i.e. you will need to re-initialize the deepspeed engine, since
491
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
492
+
493
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
494
+
495
+ """
496
+ if tag is None:
497
+ latest_path = os.path.join(checkpoint_dir, 'latest')
498
+ if os.path.isfile(latest_path):
499
+ with open(latest_path, 'r') as fd:
500
+ tag = fd.read().strip()
501
+ else:
502
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
503
+
504
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
505
+
506
+ if not os.path.isdir(ds_checkpoint_dir):
507
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
508
+
509
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
510
+
511
+
512
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
513
+ """
514
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
515
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
516
+
517
+ Args:
518
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
519
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
520
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
521
+ """
522
+
523
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
524
+ print(f"Saving fp32 state dict to {output_file}")
525
+ torch.save(state_dict, output_file)
526
+
527
+
528
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
529
+ """
530
+ 1. Put the provided model to cpu
531
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
532
+ 3. Load it into the provided model
533
+
534
+ Args:
535
+ - ``model``: the model object to update
536
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
537
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
538
+
539
+ Returns:
540
+ - ``model`: modified model
541
+
542
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
543
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
544
+ conveniently placed for you in the checkpoint folder.
545
+
546
+ A typical usage might be ::
547
+
548
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
549
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
550
+ # submit to model hub or save the model to share with others
551
+
552
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
553
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
554
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
555
+
556
+ """
557
+ logger.info(f"Extracting fp32 weights")
558
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
559
+
560
+ logger.info(f"Overwriting model with fp32 weights")
561
+ model = model.cpu()
562
+ model.load_state_dict(state_dict, strict=False)
563
+
564
+ return model
565
+
566
+
567
+ if __name__ == "__main__":
568
+
569
+ parser = argparse.ArgumentParser()
570
+ parser.add_argument("checkpoint_dir",
571
+ type=str,
572
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
573
+ parser.add_argument(
574
+ "output_file",
575
+ type=str,
576
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
577
+ parser.add_argument("-t",
578
+ "--tag",
579
+ type=str,
580
+ default=None,
581
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
582
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
583
+ args = parser.parse_args()
584
+
585
+ debug = args.debug
586
+
587
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
checkpoint-200/config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mistralai/Mistral-7B-v0.1",
3
+ "architectures": [
4
+ "MistralForCausalLM"
5
+ ],
6
+ "bos_token_id": 1,
7
+ "eos_token_id": 2,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 4096,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 14336,
12
+ "max_position_embeddings": 32768,
13
+ "model_type": "mistral",
14
+ "num_attention_heads": 32,
15
+ "num_hidden_layers": 32,
16
+ "num_key_value_heads": 8,
17
+ "rms_norm_eps": 1e-05,
18
+ "rope_theta": 10000.0,
19
+ "sliding_window": 4096,
20
+ "tie_word_embeddings": false,
21
+ "torch_dtype": "bfloat16",
22
+ "transformers_version": "4.34.0.dev0",
23
+ "use_cache": false,
24
+ "vocab_size": 32002
25
+ }
checkpoint-200/generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "transformers_version": "4.34.0.dev0"
6
+ }
checkpoint-200/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step200
checkpoint-200/pytorch_model-00001-of-00002.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:903412ad8d63a3544a84531bed488838561c60f33953ec8821e76bb9806cdf31
3
+ size 9943044428
checkpoint-200/pytorch_model-00002-of-00002.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2ee97a78f24972026adf4f389f4fe546b265d44003a9d0533a43de09bc36f2fd
3
+ size 4540552031
checkpoint-200/pytorch_model.bin.index.json ADDED
@@ -0,0 +1,298 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 14483496960
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "pytorch_model-00002-of-00002.bin",
7
+ "model.embed_tokens.weight": "pytorch_model-00001-of-00002.bin",
8
+ "model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
9
+ "model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
10
+ "model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
11
+ "model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
12
+ "model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
13
+ "model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
14
+ "model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
15
+ "model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
16
+ "model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
17
+ "model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
18
+ "model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
19
+ "model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
20
+ "model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
21
+ "model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
22
+ "model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
23
+ "model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
24
+ "model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
25
+ "model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
26
+ "model.layers.10.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
27
+ "model.layers.10.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
28
+ "model.layers.10.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
29
+ "model.layers.10.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
30
+ "model.layers.10.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
31
+ "model.layers.10.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
32
+ "model.layers.10.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
33
+ "model.layers.10.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
34
+ "model.layers.10.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
35
+ "model.layers.11.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
36
+ "model.layers.11.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
37
+ "model.layers.11.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
38
+ "model.layers.11.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
39
+ "model.layers.11.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
40
+ "model.layers.11.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
41
+ "model.layers.11.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
42
+ "model.layers.11.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
43
+ "model.layers.11.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
44
+ "model.layers.12.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
45
+ "model.layers.12.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
46
+ "model.layers.12.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
47
+ "model.layers.12.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
48
+ "model.layers.12.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
49
+ "model.layers.12.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
50
+ "model.layers.12.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
51
+ "model.layers.12.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
52
+ "model.layers.12.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
53
+ "model.layers.13.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
54
+ "model.layers.13.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
55
+ "model.layers.13.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
56
+ "model.layers.13.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
57
+ "model.layers.13.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
58
+ "model.layers.13.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
59
+ "model.layers.13.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
60
+ "model.layers.13.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
61
+ "model.layers.13.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
62
+ "model.layers.14.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
63
+ "model.layers.14.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
64
+ "model.layers.14.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
65
+ "model.layers.14.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
66
+ "model.layers.14.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
67
+ "model.layers.14.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
68
+ "model.layers.14.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
69
+ "model.layers.14.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
70
+ "model.layers.14.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
71
+ "model.layers.15.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
72
+ "model.layers.15.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
73
+ "model.layers.15.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
74
+ "model.layers.15.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
75
+ "model.layers.15.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
76
+ "model.layers.15.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
77
+ "model.layers.15.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
78
+ "model.layers.15.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
79
+ "model.layers.15.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
80
+ "model.layers.16.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
81
+ "model.layers.16.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
82
+ "model.layers.16.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
83
+ "model.layers.16.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
84
+ "model.layers.16.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
85
+ "model.layers.16.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
86
+ "model.layers.16.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
87
+ "model.layers.16.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
88
+ "model.layers.16.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
89
+ "model.layers.17.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
90
+ "model.layers.17.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
91
+ "model.layers.17.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
92
+ "model.layers.17.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
93
+ "model.layers.17.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
94
+ "model.layers.17.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
95
+ "model.layers.17.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
96
+ "model.layers.17.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
97
+ "model.layers.17.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
98
+ "model.layers.18.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
99
+ "model.layers.18.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
100
+ "model.layers.18.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
101
+ "model.layers.18.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
102
+ "model.layers.18.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
103
+ "model.layers.18.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
104
+ "model.layers.18.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
105
+ "model.layers.18.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
106
+ "model.layers.18.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
107
+ "model.layers.19.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
108
+ "model.layers.19.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
109
+ "model.layers.19.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
110
+ "model.layers.19.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
111
+ "model.layers.19.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
112
+ "model.layers.19.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
113
+ "model.layers.19.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
114
+ "model.layers.19.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
115
+ "model.layers.19.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
116
+ "model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
117
+ "model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
118
+ "model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
119
+ "model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
120
+ "model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
121
+ "model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
122
+ "model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
123
+ "model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
124
+ "model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
125
+ "model.layers.20.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
126
+ "model.layers.20.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
127
+ "model.layers.20.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
128
+ "model.layers.20.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
129
+ "model.layers.20.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
130
+ "model.layers.20.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
131
+ "model.layers.20.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
132
+ "model.layers.20.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
133
+ "model.layers.20.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
134
+ "model.layers.21.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
135
+ "model.layers.21.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
136
+ "model.layers.21.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
137
+ "model.layers.21.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
138
+ "model.layers.21.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
139
+ "model.layers.21.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
140
+ "model.layers.21.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
141
+ "model.layers.21.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
142
+ "model.layers.21.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
143
+ "model.layers.22.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
144
+ "model.layers.22.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
145
+ "model.layers.22.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
146
+ "model.layers.22.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
147
+ "model.layers.22.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
148
+ "model.layers.22.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
149
+ "model.layers.22.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
150
+ "model.layers.22.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
151
+ "model.layers.22.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
152
+ "model.layers.23.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
153
+ "model.layers.23.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
154
+ "model.layers.23.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
155
+ "model.layers.23.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
156
+ "model.layers.23.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
157
+ "model.layers.23.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
158
+ "model.layers.23.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
159
+ "model.layers.23.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
160
+ "model.layers.23.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
161
+ "model.layers.24.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
162
+ "model.layers.24.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
163
+ "model.layers.24.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
164
+ "model.layers.24.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
165
+ "model.layers.24.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
166
+ "model.layers.24.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
167
+ "model.layers.24.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
168
+ "model.layers.24.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
169
+ "model.layers.24.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
170
+ "model.layers.25.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
171
+ "model.layers.25.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
172
+ "model.layers.25.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
173
+ "model.layers.25.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
174
+ "model.layers.25.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
175
+ "model.layers.25.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
176
+ "model.layers.25.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
177
+ "model.layers.25.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
178
+ "model.layers.25.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
179
+ "model.layers.26.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
180
+ "model.layers.26.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
181
+ "model.layers.26.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
182
+ "model.layers.26.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
183
+ "model.layers.26.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
184
+ "model.layers.26.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
185
+ "model.layers.26.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
186
+ "model.layers.26.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
187
+ "model.layers.26.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
188
+ "model.layers.27.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
189
+ "model.layers.27.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
190
+ "model.layers.27.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
191
+ "model.layers.27.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
192
+ "model.layers.27.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
193
+ "model.layers.27.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
194
+ "model.layers.27.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
195
+ "model.layers.27.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
196
+ "model.layers.27.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
197
+ "model.layers.28.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
198
+ "model.layers.28.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
199
+ "model.layers.28.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
200
+ "model.layers.28.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
201
+ "model.layers.28.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
202
+ "model.layers.28.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
203
+ "model.layers.28.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
204
+ "model.layers.28.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
205
+ "model.layers.28.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
206
+ "model.layers.29.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
207
+ "model.layers.29.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
208
+ "model.layers.29.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
209
+ "model.layers.29.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
210
+ "model.layers.29.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
211
+ "model.layers.29.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
212
+ "model.layers.29.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
213
+ "model.layers.29.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
214
+ "model.layers.29.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
215
+ "model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
216
+ "model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
217
+ "model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
218
+ "model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
219
+ "model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
220
+ "model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
221
+ "model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
222
+ "model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
223
+ "model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
224
+ "model.layers.30.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
225
+ "model.layers.30.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
226
+ "model.layers.30.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
227
+ "model.layers.30.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
228
+ "model.layers.30.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
229
+ "model.layers.30.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
230
+ "model.layers.30.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
231
+ "model.layers.30.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
232
+ "model.layers.30.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
233
+ "model.layers.31.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
234
+ "model.layers.31.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
235
+ "model.layers.31.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
236
+ "model.layers.31.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
237
+ "model.layers.31.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
238
+ "model.layers.31.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
239
+ "model.layers.31.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
240
+ "model.layers.31.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
241
+ "model.layers.31.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
242
+ "model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
243
+ "model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
244
+ "model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
245
+ "model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
246
+ "model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
247
+ "model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
248
+ "model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
249
+ "model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
250
+ "model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
251
+ "model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
252
+ "model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
253
+ "model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
254
+ "model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
255
+ "model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
256
+ "model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
257
+ "model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
258
+ "model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
259
+ "model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
260
+ "model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
261
+ "model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
262
+ "model.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
263
+ "model.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
264
+ "model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
265
+ "model.layers.6.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
266
+ "model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
267
+ "model.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
268
+ "model.layers.6.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
269
+ "model.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
270
+ "model.layers.7.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
271
+ "model.layers.7.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
272
+ "model.layers.7.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
273
+ "model.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
274
+ "model.layers.7.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
275
+ "model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
276
+ "model.layers.7.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
277
+ "model.layers.7.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
278
+ "model.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
279
+ "model.layers.8.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
280
+ "model.layers.8.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
281
+ "model.layers.8.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
282
+ "model.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
283
+ "model.layers.8.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
284
+ "model.layers.8.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
285
+ "model.layers.8.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
286
+ "model.layers.8.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
287
+ "model.layers.9.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
288
+ "model.layers.9.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
289
+ "model.layers.9.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
290
+ "model.layers.9.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
291
+ "model.layers.9.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
292
+ "model.layers.9.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
293
+ "model.layers.9.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
294
+ "model.layers.9.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
295
+ "model.layers.9.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
296
+ "model.norm.weight": "pytorch_model-00002-of-00002.bin"
297
+ }
298
+ }
checkpoint-200/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1eafe3d5e0585dde8c5033613de99a5d4f23df4284a488f4007b3944580c0b97
3
+ size 17655
checkpoint-200/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7e34eb456d2d003a2839f2daa9425e99bdd79ed7e24a1de9fc7d5738476bfb4b
3
+ size 17655
checkpoint-200/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b374af4a2765d8771cee7a72921d3c2e438b9bee34f0b2d098ce6071afeb65e4
3
+ size 17655
checkpoint-200/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5df75d8477fcc69c7abb03025313915ebfe3ac18c54a7c57aaa455c0099e13e5
3
+ size 17655
checkpoint-200/trainer_state.json ADDED
@@ -0,0 +1,1243 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.02646202699126753,
5
+ "eval_steps": 756,
6
+ "global_step": 200,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "learning_rate": 0.0,
14
+ "loss": 0.9197,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.0,
19
+ "eval_loss": 1.4652303457260132,
20
+ "eval_runtime": 2.1726,
21
+ "eval_samples_per_second": 79.627,
22
+ "eval_steps_per_second": 3.682,
23
+ "step": 1
24
+ },
25
+ {
26
+ "epoch": 0.0,
27
+ "eval_bench_accuracy_agieval": 0.2711864406779661,
28
+ "eval_bench_accuracy_arc_challenge": 0.8703703703703703,
29
+ "eval_bench_accuracy_arc_easy": 0.9259259259259259,
30
+ "eval_bench_accuracy_bigbench": 0.36065573770491804,
31
+ "eval_bench_accuracy_boolq": 0.5740740740740741,
32
+ "eval_bench_accuracy_mmlu": 0.5185185185185185,
33
+ "eval_bench_accuracy_openbookqa": 0.1111111111111111,
34
+ "eval_bench_accuracy_truthful_qa": 0.3584905660377358,
35
+ "eval_bench_accuracy_winogrande": 0.4444444444444444,
36
+ "eval_bench_average_accuracy": 0.4927530209850072,
37
+ "eval_bench_loss": 2.6978388407144203,
38
+ "eval_bench_total_accuracy": 0.48893360160965793,
39
+ "step": 1
40
+ },
41
+ {
42
+ "epoch": 0.0,
43
+ "learning_rate": 6.000000000000001e-07,
44
+ "loss": 1.3426,
45
+ "step": 2
46
+ },
47
+ {
48
+ "epoch": 0.0,
49
+ "learning_rate": 1.2000000000000002e-06,
50
+ "loss": 1.5882,
51
+ "step": 3
52
+ },
53
+ {
54
+ "epoch": 0.0,
55
+ "learning_rate": 1.8e-06,
56
+ "loss": 0.8542,
57
+ "step": 4
58
+ },
59
+ {
60
+ "epoch": 0.0,
61
+ "learning_rate": 2.4000000000000003e-06,
62
+ "loss": 0.9629,
63
+ "step": 5
64
+ },
65
+ {
66
+ "epoch": 0.0,
67
+ "learning_rate": 3e-06,
68
+ "loss": 0.903,
69
+ "step": 6
70
+ },
71
+ {
72
+ "epoch": 0.0,
73
+ "learning_rate": 3.6e-06,
74
+ "loss": 0.909,
75
+ "step": 7
76
+ },
77
+ {
78
+ "epoch": 0.0,
79
+ "learning_rate": 4.2e-06,
80
+ "loss": 0.8666,
81
+ "step": 8
82
+ },
83
+ {
84
+ "epoch": 0.0,
85
+ "learning_rate": 4.800000000000001e-06,
86
+ "loss": 1.0108,
87
+ "step": 9
88
+ },
89
+ {
90
+ "epoch": 0.0,
91
+ "learning_rate": 5.4e-06,
92
+ "loss": 0.8958,
93
+ "step": 10
94
+ },
95
+ {
96
+ "epoch": 0.0,
97
+ "learning_rate": 6e-06,
98
+ "loss": 0.9348,
99
+ "step": 11
100
+ },
101
+ {
102
+ "epoch": 0.0,
103
+ "learning_rate": 5.999602806831722e-06,
104
+ "loss": 0.7832,
105
+ "step": 12
106
+ },
107
+ {
108
+ "epoch": 0.0,
109
+ "learning_rate": 5.999205613663445e-06,
110
+ "loss": 0.8083,
111
+ "step": 13
112
+ },
113
+ {
114
+ "epoch": 0.0,
115
+ "learning_rate": 5.9988084204951675e-06,
116
+ "loss": 0.8164,
117
+ "step": 14
118
+ },
119
+ {
120
+ "epoch": 0.0,
121
+ "learning_rate": 5.99841122732689e-06,
122
+ "loss": 0.7834,
123
+ "step": 15
124
+ },
125
+ {
126
+ "epoch": 0.0,
127
+ "learning_rate": 5.998014034158613e-06,
128
+ "loss": 0.8718,
129
+ "step": 16
130
+ },
131
+ {
132
+ "epoch": 0.0,
133
+ "learning_rate": 5.997616840990336e-06,
134
+ "loss": 0.84,
135
+ "step": 17
136
+ },
137
+ {
138
+ "epoch": 0.0,
139
+ "learning_rate": 5.997219647822058e-06,
140
+ "loss": 0.7397,
141
+ "step": 18
142
+ },
143
+ {
144
+ "epoch": 0.0,
145
+ "learning_rate": 5.99682245465378e-06,
146
+ "loss": 0.7445,
147
+ "step": 19
148
+ },
149
+ {
150
+ "epoch": 0.0,
151
+ "learning_rate": 5.996425261485502e-06,
152
+ "loss": 0.7898,
153
+ "step": 20
154
+ },
155
+ {
156
+ "epoch": 0.0,
157
+ "learning_rate": 5.996028068317225e-06,
158
+ "loss": 0.7388,
159
+ "step": 21
160
+ },
161
+ {
162
+ "epoch": 0.0,
163
+ "learning_rate": 5.9956308751489475e-06,
164
+ "loss": 0.7296,
165
+ "step": 22
166
+ },
167
+ {
168
+ "epoch": 0.0,
169
+ "learning_rate": 5.99523368198067e-06,
170
+ "loss": 0.7993,
171
+ "step": 23
172
+ },
173
+ {
174
+ "epoch": 0.0,
175
+ "learning_rate": 5.994836488812393e-06,
176
+ "loss": 0.7188,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.0,
181
+ "learning_rate": 5.994439295644115e-06,
182
+ "loss": 0.7473,
183
+ "step": 25
184
+ },
185
+ {
186
+ "epoch": 0.0,
187
+ "learning_rate": 5.994042102475838e-06,
188
+ "loss": 0.6997,
189
+ "step": 26
190
+ },
191
+ {
192
+ "epoch": 0.0,
193
+ "learning_rate": 5.99364490930756e-06,
194
+ "loss": 0.725,
195
+ "step": 27
196
+ },
197
+ {
198
+ "epoch": 0.0,
199
+ "learning_rate": 5.993247716139283e-06,
200
+ "loss": 0.7272,
201
+ "step": 28
202
+ },
203
+ {
204
+ "epoch": 0.0,
205
+ "learning_rate": 5.992850522971005e-06,
206
+ "loss": 0.7427,
207
+ "step": 29
208
+ },
209
+ {
210
+ "epoch": 0.0,
211
+ "learning_rate": 5.992453329802727e-06,
212
+ "loss": 0.7309,
213
+ "step": 30
214
+ },
215
+ {
216
+ "epoch": 0.0,
217
+ "learning_rate": 5.99205613663445e-06,
218
+ "loss": 0.6764,
219
+ "step": 31
220
+ },
221
+ {
222
+ "epoch": 0.0,
223
+ "learning_rate": 5.991658943466173e-06,
224
+ "loss": 0.7556,
225
+ "step": 32
226
+ },
227
+ {
228
+ "epoch": 0.0,
229
+ "learning_rate": 5.991261750297895e-06,
230
+ "loss": 0.7301,
231
+ "step": 33
232
+ },
233
+ {
234
+ "epoch": 0.0,
235
+ "learning_rate": 5.990864557129617e-06,
236
+ "loss": 0.6776,
237
+ "step": 34
238
+ },
239
+ {
240
+ "epoch": 0.0,
241
+ "learning_rate": 5.99046736396134e-06,
242
+ "loss": 0.6884,
243
+ "step": 35
244
+ },
245
+ {
246
+ "epoch": 0.0,
247
+ "learning_rate": 5.990070170793063e-06,
248
+ "loss": 0.7179,
249
+ "step": 36
250
+ },
251
+ {
252
+ "epoch": 0.0,
253
+ "learning_rate": 5.989672977624785e-06,
254
+ "loss": 0.6915,
255
+ "step": 37
256
+ },
257
+ {
258
+ "epoch": 0.01,
259
+ "learning_rate": 5.989275784456507e-06,
260
+ "loss": 0.7308,
261
+ "step": 38
262
+ },
263
+ {
264
+ "epoch": 0.01,
265
+ "learning_rate": 5.98887859128823e-06,
266
+ "loss": 0.6743,
267
+ "step": 39
268
+ },
269
+ {
270
+ "epoch": 0.01,
271
+ "learning_rate": 5.9884813981199526e-06,
272
+ "loss": 0.6604,
273
+ "step": 40
274
+ },
275
+ {
276
+ "epoch": 0.01,
277
+ "learning_rate": 5.988084204951675e-06,
278
+ "loss": 0.6609,
279
+ "step": 41
280
+ },
281
+ {
282
+ "epoch": 0.01,
283
+ "learning_rate": 5.987687011783397e-06,
284
+ "loss": 0.6524,
285
+ "step": 42
286
+ },
287
+ {
288
+ "epoch": 0.01,
289
+ "learning_rate": 5.98728981861512e-06,
290
+ "loss": 0.6386,
291
+ "step": 43
292
+ },
293
+ {
294
+ "epoch": 0.01,
295
+ "learning_rate": 5.986892625446843e-06,
296
+ "loss": 0.728,
297
+ "step": 44
298
+ },
299
+ {
300
+ "epoch": 0.01,
301
+ "learning_rate": 5.986495432278565e-06,
302
+ "loss": 0.6971,
303
+ "step": 45
304
+ },
305
+ {
306
+ "epoch": 0.01,
307
+ "learning_rate": 5.986098239110287e-06,
308
+ "loss": 0.6772,
309
+ "step": 46
310
+ },
311
+ {
312
+ "epoch": 0.01,
313
+ "learning_rate": 5.98570104594201e-06,
314
+ "loss": 0.6774,
315
+ "step": 47
316
+ },
317
+ {
318
+ "epoch": 0.01,
319
+ "learning_rate": 5.9853038527737325e-06,
320
+ "loss": 0.6868,
321
+ "step": 48
322
+ },
323
+ {
324
+ "epoch": 0.01,
325
+ "learning_rate": 5.984906659605455e-06,
326
+ "loss": 0.7169,
327
+ "step": 49
328
+ },
329
+ {
330
+ "epoch": 0.01,
331
+ "learning_rate": 5.984509466437178e-06,
332
+ "loss": 0.669,
333
+ "step": 50
334
+ },
335
+ {
336
+ "epoch": 0.01,
337
+ "learning_rate": 5.9841122732689e-06,
338
+ "loss": 0.7112,
339
+ "step": 51
340
+ },
341
+ {
342
+ "epoch": 0.01,
343
+ "learning_rate": 5.983715080100622e-06,
344
+ "loss": 0.6667,
345
+ "step": 52
346
+ },
347
+ {
348
+ "epoch": 0.01,
349
+ "learning_rate": 5.983317886932344e-06,
350
+ "loss": 0.6528,
351
+ "step": 53
352
+ },
353
+ {
354
+ "epoch": 0.01,
355
+ "learning_rate": 5.982920693764068e-06,
356
+ "loss": 0.6699,
357
+ "step": 54
358
+ },
359
+ {
360
+ "epoch": 0.01,
361
+ "learning_rate": 5.98252350059579e-06,
362
+ "loss": 0.6584,
363
+ "step": 55
364
+ },
365
+ {
366
+ "epoch": 0.01,
367
+ "learning_rate": 5.9821263074275125e-06,
368
+ "loss": 0.6328,
369
+ "step": 56
370
+ },
371
+ {
372
+ "epoch": 0.01,
373
+ "learning_rate": 5.981729114259235e-06,
374
+ "loss": 0.6472,
375
+ "step": 57
376
+ },
377
+ {
378
+ "epoch": 0.01,
379
+ "learning_rate": 5.981331921090958e-06,
380
+ "loss": 0.6992,
381
+ "step": 58
382
+ },
383
+ {
384
+ "epoch": 0.01,
385
+ "learning_rate": 5.98093472792268e-06,
386
+ "loss": 0.6666,
387
+ "step": 59
388
+ },
389
+ {
390
+ "epoch": 0.01,
391
+ "learning_rate": 5.980537534754402e-06,
392
+ "loss": 0.6819,
393
+ "step": 60
394
+ },
395
+ {
396
+ "epoch": 0.01,
397
+ "learning_rate": 5.980140341586125e-06,
398
+ "loss": 0.705,
399
+ "step": 61
400
+ },
401
+ {
402
+ "epoch": 0.01,
403
+ "learning_rate": 5.979743148417847e-06,
404
+ "loss": 0.6871,
405
+ "step": 62
406
+ },
407
+ {
408
+ "epoch": 0.01,
409
+ "learning_rate": 5.97934595524957e-06,
410
+ "loss": 0.6998,
411
+ "step": 63
412
+ },
413
+ {
414
+ "epoch": 0.01,
415
+ "learning_rate": 5.978948762081292e-06,
416
+ "loss": 0.6081,
417
+ "step": 64
418
+ },
419
+ {
420
+ "epoch": 0.01,
421
+ "learning_rate": 5.9785515689130154e-06,
422
+ "loss": 0.6985,
423
+ "step": 65
424
+ },
425
+ {
426
+ "epoch": 0.01,
427
+ "learning_rate": 5.978154375744738e-06,
428
+ "loss": 0.6631,
429
+ "step": 66
430
+ },
431
+ {
432
+ "epoch": 0.01,
433
+ "learning_rate": 5.97775718257646e-06,
434
+ "loss": 0.6534,
435
+ "step": 67
436
+ },
437
+ {
438
+ "epoch": 0.01,
439
+ "learning_rate": 5.977359989408182e-06,
440
+ "loss": 0.6685,
441
+ "step": 68
442
+ },
443
+ {
444
+ "epoch": 0.01,
445
+ "learning_rate": 5.976962796239905e-06,
446
+ "loss": 0.6821,
447
+ "step": 69
448
+ },
449
+ {
450
+ "epoch": 0.01,
451
+ "learning_rate": 5.976565603071627e-06,
452
+ "loss": 0.6241,
453
+ "step": 70
454
+ },
455
+ {
456
+ "epoch": 0.01,
457
+ "learning_rate": 5.976168409903349e-06,
458
+ "loss": 0.6357,
459
+ "step": 71
460
+ },
461
+ {
462
+ "epoch": 0.01,
463
+ "learning_rate": 5.975771216735072e-06,
464
+ "loss": 0.6466,
465
+ "step": 72
466
+ },
467
+ {
468
+ "epoch": 0.01,
469
+ "learning_rate": 5.975374023566795e-06,
470
+ "loss": 0.6579,
471
+ "step": 73
472
+ },
473
+ {
474
+ "epoch": 0.01,
475
+ "learning_rate": 5.9749768303985176e-06,
476
+ "loss": 0.6298,
477
+ "step": 74
478
+ },
479
+ {
480
+ "epoch": 0.01,
481
+ "learning_rate": 5.97457963723024e-06,
482
+ "loss": 0.703,
483
+ "step": 75
484
+ },
485
+ {
486
+ "epoch": 0.01,
487
+ "learning_rate": 5.974182444061963e-06,
488
+ "loss": 0.6152,
489
+ "step": 76
490
+ },
491
+ {
492
+ "epoch": 0.01,
493
+ "learning_rate": 5.973785250893685e-06,
494
+ "loss": 0.6682,
495
+ "step": 77
496
+ },
497
+ {
498
+ "epoch": 0.01,
499
+ "learning_rate": 5.973388057725407e-06,
500
+ "loss": 0.6427,
501
+ "step": 78
502
+ },
503
+ {
504
+ "epoch": 0.01,
505
+ "learning_rate": 5.972990864557129e-06,
506
+ "loss": 0.6969,
507
+ "step": 79
508
+ },
509
+ {
510
+ "epoch": 0.01,
511
+ "learning_rate": 5.972593671388852e-06,
512
+ "loss": 0.6619,
513
+ "step": 80
514
+ },
515
+ {
516
+ "epoch": 0.01,
517
+ "learning_rate": 5.9721964782205745e-06,
518
+ "loss": 0.6332,
519
+ "step": 81
520
+ },
521
+ {
522
+ "epoch": 0.01,
523
+ "learning_rate": 5.9717992850522975e-06,
524
+ "loss": 0.6203,
525
+ "step": 82
526
+ },
527
+ {
528
+ "epoch": 0.01,
529
+ "learning_rate": 5.97140209188402e-06,
530
+ "loss": 0.6463,
531
+ "step": 83
532
+ },
533
+ {
534
+ "epoch": 0.01,
535
+ "learning_rate": 5.971004898715743e-06,
536
+ "loss": 0.6718,
537
+ "step": 84
538
+ },
539
+ {
540
+ "epoch": 0.01,
541
+ "learning_rate": 5.970607705547465e-06,
542
+ "loss": 0.6495,
543
+ "step": 85
544
+ },
545
+ {
546
+ "epoch": 0.01,
547
+ "learning_rate": 5.970210512379187e-06,
548
+ "loss": 0.5787,
549
+ "step": 86
550
+ },
551
+ {
552
+ "epoch": 0.01,
553
+ "learning_rate": 5.96981331921091e-06,
554
+ "loss": 0.6897,
555
+ "step": 87
556
+ },
557
+ {
558
+ "epoch": 0.01,
559
+ "learning_rate": 5.969416126042632e-06,
560
+ "loss": 0.6688,
561
+ "step": 88
562
+ },
563
+ {
564
+ "epoch": 0.01,
565
+ "learning_rate": 5.9690189328743544e-06,
566
+ "loss": 0.6697,
567
+ "step": 89
568
+ },
569
+ {
570
+ "epoch": 0.01,
571
+ "learning_rate": 5.968621739706077e-06,
572
+ "loss": 0.6156,
573
+ "step": 90
574
+ },
575
+ {
576
+ "epoch": 0.01,
577
+ "learning_rate": 5.9682245465378e-06,
578
+ "loss": 0.6301,
579
+ "step": 91
580
+ },
581
+ {
582
+ "epoch": 0.01,
583
+ "learning_rate": 5.967827353369523e-06,
584
+ "loss": 0.6121,
585
+ "step": 92
586
+ },
587
+ {
588
+ "epoch": 0.01,
589
+ "learning_rate": 5.967430160201245e-06,
590
+ "loss": 0.6177,
591
+ "step": 93
592
+ },
593
+ {
594
+ "epoch": 0.01,
595
+ "learning_rate": 5.967032967032967e-06,
596
+ "loss": 0.611,
597
+ "step": 94
598
+ },
599
+ {
600
+ "epoch": 0.01,
601
+ "learning_rate": 5.96663577386469e-06,
602
+ "loss": 0.6359,
603
+ "step": 95
604
+ },
605
+ {
606
+ "epoch": 0.01,
607
+ "learning_rate": 5.966238580696412e-06,
608
+ "loss": 0.6417,
609
+ "step": 96
610
+ },
611
+ {
612
+ "epoch": 0.01,
613
+ "learning_rate": 5.965841387528134e-06,
614
+ "loss": 0.6312,
615
+ "step": 97
616
+ },
617
+ {
618
+ "epoch": 0.01,
619
+ "learning_rate": 5.965444194359857e-06,
620
+ "loss": 0.6184,
621
+ "step": 98
622
+ },
623
+ {
624
+ "epoch": 0.01,
625
+ "learning_rate": 5.9650470011915796e-06,
626
+ "loss": 0.6724,
627
+ "step": 99
628
+ },
629
+ {
630
+ "epoch": 0.01,
631
+ "learning_rate": 5.964649808023302e-06,
632
+ "loss": 0.6833,
633
+ "step": 100
634
+ },
635
+ {
636
+ "epoch": 0.01,
637
+ "learning_rate": 5.964252614855025e-06,
638
+ "loss": 0.6433,
639
+ "step": 101
640
+ },
641
+ {
642
+ "epoch": 0.01,
643
+ "learning_rate": 5.963855421686747e-06,
644
+ "loss": 0.6766,
645
+ "step": 102
646
+ },
647
+ {
648
+ "epoch": 0.01,
649
+ "learning_rate": 5.96345822851847e-06,
650
+ "loss": 0.6527,
651
+ "step": 103
652
+ },
653
+ {
654
+ "epoch": 0.01,
655
+ "learning_rate": 5.963061035350192e-06,
656
+ "loss": 0.5982,
657
+ "step": 104
658
+ },
659
+ {
660
+ "epoch": 0.01,
661
+ "learning_rate": 5.962663842181914e-06,
662
+ "loss": 0.6749,
663
+ "step": 105
664
+ },
665
+ {
666
+ "epoch": 0.01,
667
+ "learning_rate": 5.962266649013637e-06,
668
+ "loss": 0.6494,
669
+ "step": 106
670
+ },
671
+ {
672
+ "epoch": 0.01,
673
+ "learning_rate": 5.9618694558453595e-06,
674
+ "loss": 0.6998,
675
+ "step": 107
676
+ },
677
+ {
678
+ "epoch": 0.01,
679
+ "learning_rate": 5.961472262677082e-06,
680
+ "loss": 0.6112,
681
+ "step": 108
682
+ },
683
+ {
684
+ "epoch": 0.01,
685
+ "learning_rate": 5.961075069508805e-06,
686
+ "loss": 0.624,
687
+ "step": 109
688
+ },
689
+ {
690
+ "epoch": 0.01,
691
+ "learning_rate": 5.960677876340528e-06,
692
+ "loss": 0.6329,
693
+ "step": 110
694
+ },
695
+ {
696
+ "epoch": 0.01,
697
+ "learning_rate": 5.96028068317225e-06,
698
+ "loss": 0.6491,
699
+ "step": 111
700
+ },
701
+ {
702
+ "epoch": 0.01,
703
+ "learning_rate": 5.959883490003972e-06,
704
+ "loss": 0.6672,
705
+ "step": 112
706
+ },
707
+ {
708
+ "epoch": 0.01,
709
+ "learning_rate": 5.959486296835694e-06,
710
+ "loss": 0.6279,
711
+ "step": 113
712
+ },
713
+ {
714
+ "epoch": 0.02,
715
+ "learning_rate": 5.959089103667417e-06,
716
+ "loss": 0.6479,
717
+ "step": 114
718
+ },
719
+ {
720
+ "epoch": 0.02,
721
+ "learning_rate": 5.9586919104991395e-06,
722
+ "loss": 0.6214,
723
+ "step": 115
724
+ },
725
+ {
726
+ "epoch": 0.02,
727
+ "learning_rate": 5.958294717330862e-06,
728
+ "loss": 0.6618,
729
+ "step": 116
730
+ },
731
+ {
732
+ "epoch": 0.02,
733
+ "learning_rate": 5.957897524162585e-06,
734
+ "loss": 0.6703,
735
+ "step": 117
736
+ },
737
+ {
738
+ "epoch": 0.02,
739
+ "learning_rate": 5.957500330994307e-06,
740
+ "loss": 0.6417,
741
+ "step": 118
742
+ },
743
+ {
744
+ "epoch": 0.02,
745
+ "learning_rate": 5.957103137826029e-06,
746
+ "loss": 0.631,
747
+ "step": 119
748
+ },
749
+ {
750
+ "epoch": 0.02,
751
+ "learning_rate": 5.956705944657752e-06,
752
+ "loss": 0.6169,
753
+ "step": 120
754
+ },
755
+ {
756
+ "epoch": 0.02,
757
+ "learning_rate": 5.956308751489475e-06,
758
+ "loss": 0.6521,
759
+ "step": 121
760
+ },
761
+ {
762
+ "epoch": 0.02,
763
+ "learning_rate": 5.955911558321197e-06,
764
+ "loss": 0.6635,
765
+ "step": 122
766
+ },
767
+ {
768
+ "epoch": 0.02,
769
+ "learning_rate": 5.955514365152919e-06,
770
+ "loss": 0.6496,
771
+ "step": 123
772
+ },
773
+ {
774
+ "epoch": 0.02,
775
+ "learning_rate": 5.955117171984642e-06,
776
+ "loss": 0.6431,
777
+ "step": 124
778
+ },
779
+ {
780
+ "epoch": 0.02,
781
+ "learning_rate": 5.954719978816365e-06,
782
+ "loss": 0.6246,
783
+ "step": 125
784
+ },
785
+ {
786
+ "epoch": 0.02,
787
+ "learning_rate": 5.954322785648087e-06,
788
+ "loss": 0.6557,
789
+ "step": 126
790
+ },
791
+ {
792
+ "epoch": 0.02,
793
+ "learning_rate": 5.953925592479809e-06,
794
+ "loss": 0.6082,
795
+ "step": 127
796
+ },
797
+ {
798
+ "epoch": 0.02,
799
+ "learning_rate": 5.953528399311532e-06,
800
+ "loss": 0.5941,
801
+ "step": 128
802
+ },
803
+ {
804
+ "epoch": 0.02,
805
+ "learning_rate": 5.953131206143255e-06,
806
+ "loss": 0.6566,
807
+ "step": 129
808
+ },
809
+ {
810
+ "epoch": 0.02,
811
+ "learning_rate": 5.952734012974977e-06,
812
+ "loss": 0.6243,
813
+ "step": 130
814
+ },
815
+ {
816
+ "epoch": 0.02,
817
+ "learning_rate": 5.952336819806699e-06,
818
+ "loss": 0.594,
819
+ "step": 131
820
+ },
821
+ {
822
+ "epoch": 0.02,
823
+ "learning_rate": 5.951939626638422e-06,
824
+ "loss": 0.68,
825
+ "step": 132
826
+ },
827
+ {
828
+ "epoch": 0.02,
829
+ "learning_rate": 5.9515424334701446e-06,
830
+ "loss": 0.6302,
831
+ "step": 133
832
+ },
833
+ {
834
+ "epoch": 0.02,
835
+ "learning_rate": 5.951145240301867e-06,
836
+ "loss": 0.6251,
837
+ "step": 134
838
+ },
839
+ {
840
+ "epoch": 0.02,
841
+ "learning_rate": 5.950748047133589e-06,
842
+ "loss": 0.6326,
843
+ "step": 135
844
+ },
845
+ {
846
+ "epoch": 0.02,
847
+ "learning_rate": 5.950350853965312e-06,
848
+ "loss": 0.6314,
849
+ "step": 136
850
+ },
851
+ {
852
+ "epoch": 0.02,
853
+ "learning_rate": 5.949953660797034e-06,
854
+ "loss": 0.6598,
855
+ "step": 137
856
+ },
857
+ {
858
+ "epoch": 0.02,
859
+ "learning_rate": 5.949556467628757e-06,
860
+ "loss": 0.6583,
861
+ "step": 138
862
+ },
863
+ {
864
+ "epoch": 0.02,
865
+ "learning_rate": 5.949159274460479e-06,
866
+ "loss": 0.6162,
867
+ "step": 139
868
+ },
869
+ {
870
+ "epoch": 0.02,
871
+ "learning_rate": 5.948762081292202e-06,
872
+ "loss": 0.7042,
873
+ "step": 140
874
+ },
875
+ {
876
+ "epoch": 0.02,
877
+ "learning_rate": 5.9483648881239245e-06,
878
+ "loss": 0.6733,
879
+ "step": 141
880
+ },
881
+ {
882
+ "epoch": 0.02,
883
+ "learning_rate": 5.947967694955647e-06,
884
+ "loss": 0.6103,
885
+ "step": 142
886
+ },
887
+ {
888
+ "epoch": 0.02,
889
+ "learning_rate": 5.94757050178737e-06,
890
+ "loss": 0.6269,
891
+ "step": 143
892
+ },
893
+ {
894
+ "epoch": 0.02,
895
+ "learning_rate": 5.947173308619092e-06,
896
+ "loss": 0.663,
897
+ "step": 144
898
+ },
899
+ {
900
+ "epoch": 0.02,
901
+ "learning_rate": 5.946776115450814e-06,
902
+ "loss": 0.5794,
903
+ "step": 145
904
+ },
905
+ {
906
+ "epoch": 0.02,
907
+ "learning_rate": 5.946378922282537e-06,
908
+ "loss": 0.6868,
909
+ "step": 146
910
+ },
911
+ {
912
+ "epoch": 0.02,
913
+ "learning_rate": 5.945981729114259e-06,
914
+ "loss": 0.6064,
915
+ "step": 147
916
+ },
917
+ {
918
+ "epoch": 0.02,
919
+ "learning_rate": 5.945584535945982e-06,
920
+ "loss": 0.6519,
921
+ "step": 148
922
+ },
923
+ {
924
+ "epoch": 0.02,
925
+ "learning_rate": 5.9451873427777045e-06,
926
+ "loss": 0.655,
927
+ "step": 149
928
+ },
929
+ {
930
+ "epoch": 0.02,
931
+ "learning_rate": 5.944790149609427e-06,
932
+ "loss": 0.6617,
933
+ "step": 150
934
+ },
935
+ {
936
+ "epoch": 0.02,
937
+ "learning_rate": 5.94439295644115e-06,
938
+ "loss": 0.627,
939
+ "step": 151
940
+ },
941
+ {
942
+ "epoch": 0.02,
943
+ "learning_rate": 5.943995763272872e-06,
944
+ "loss": 0.5837,
945
+ "step": 152
946
+ },
947
+ {
948
+ "epoch": 0.02,
949
+ "learning_rate": 5.943598570104594e-06,
950
+ "loss": 0.6201,
951
+ "step": 153
952
+ },
953
+ {
954
+ "epoch": 0.02,
955
+ "learning_rate": 5.943201376936317e-06,
956
+ "loss": 0.6291,
957
+ "step": 154
958
+ },
959
+ {
960
+ "epoch": 0.02,
961
+ "learning_rate": 5.942804183768039e-06,
962
+ "loss": 0.6061,
963
+ "step": 155
964
+ },
965
+ {
966
+ "epoch": 0.02,
967
+ "learning_rate": 5.942406990599761e-06,
968
+ "loss": 0.624,
969
+ "step": 156
970
+ },
971
+ {
972
+ "epoch": 0.02,
973
+ "learning_rate": 5.942009797431484e-06,
974
+ "loss": 0.6418,
975
+ "step": 157
976
+ },
977
+ {
978
+ "epoch": 0.02,
979
+ "learning_rate": 5.941612604263207e-06,
980
+ "loss": 0.5858,
981
+ "step": 158
982
+ },
983
+ {
984
+ "epoch": 0.02,
985
+ "learning_rate": 5.94121541109493e-06,
986
+ "loss": 0.6407,
987
+ "step": 159
988
+ },
989
+ {
990
+ "epoch": 0.02,
991
+ "learning_rate": 5.940818217926652e-06,
992
+ "loss": 0.6222,
993
+ "step": 160
994
+ },
995
+ {
996
+ "epoch": 0.02,
997
+ "learning_rate": 5.940421024758374e-06,
998
+ "loss": 0.5938,
999
+ "step": 161
1000
+ },
1001
+ {
1002
+ "epoch": 0.02,
1003
+ "learning_rate": 5.940023831590097e-06,
1004
+ "loss": 0.6157,
1005
+ "step": 162
1006
+ },
1007
+ {
1008
+ "epoch": 0.02,
1009
+ "learning_rate": 5.939626638421819e-06,
1010
+ "loss": 0.5989,
1011
+ "step": 163
1012
+ },
1013
+ {
1014
+ "epoch": 0.02,
1015
+ "learning_rate": 5.939229445253541e-06,
1016
+ "loss": 0.7056,
1017
+ "step": 164
1018
+ },
1019
+ {
1020
+ "epoch": 0.02,
1021
+ "learning_rate": 5.938832252085264e-06,
1022
+ "loss": 0.6606,
1023
+ "step": 165
1024
+ },
1025
+ {
1026
+ "epoch": 0.02,
1027
+ "learning_rate": 5.9384350589169865e-06,
1028
+ "loss": 0.6303,
1029
+ "step": 166
1030
+ },
1031
+ {
1032
+ "epoch": 0.02,
1033
+ "learning_rate": 5.9380378657487095e-06,
1034
+ "loss": 0.6332,
1035
+ "step": 167
1036
+ },
1037
+ {
1038
+ "epoch": 0.02,
1039
+ "learning_rate": 5.937640672580432e-06,
1040
+ "loss": 0.6197,
1041
+ "step": 168
1042
+ },
1043
+ {
1044
+ "epoch": 0.02,
1045
+ "learning_rate": 5.937243479412155e-06,
1046
+ "loss": 0.6318,
1047
+ "step": 169
1048
+ },
1049
+ {
1050
+ "epoch": 0.02,
1051
+ "learning_rate": 5.936846286243877e-06,
1052
+ "loss": 0.6598,
1053
+ "step": 170
1054
+ },
1055
+ {
1056
+ "epoch": 0.02,
1057
+ "learning_rate": 5.936449093075599e-06,
1058
+ "loss": 0.662,
1059
+ "step": 171
1060
+ },
1061
+ {
1062
+ "epoch": 0.02,
1063
+ "learning_rate": 5.936051899907321e-06,
1064
+ "loss": 0.6018,
1065
+ "step": 172
1066
+ },
1067
+ {
1068
+ "epoch": 0.02,
1069
+ "learning_rate": 5.935654706739044e-06,
1070
+ "loss": 0.6955,
1071
+ "step": 173
1072
+ },
1073
+ {
1074
+ "epoch": 0.02,
1075
+ "learning_rate": 5.9352575135707665e-06,
1076
+ "loss": 0.6283,
1077
+ "step": 174
1078
+ },
1079
+ {
1080
+ "epoch": 0.02,
1081
+ "learning_rate": 5.934860320402489e-06,
1082
+ "loss": 0.6829,
1083
+ "step": 175
1084
+ },
1085
+ {
1086
+ "epoch": 0.02,
1087
+ "learning_rate": 5.934463127234212e-06,
1088
+ "loss": 0.5985,
1089
+ "step": 176
1090
+ },
1091
+ {
1092
+ "epoch": 0.02,
1093
+ "learning_rate": 5.934065934065935e-06,
1094
+ "loss": 0.6385,
1095
+ "step": 177
1096
+ },
1097
+ {
1098
+ "epoch": 0.02,
1099
+ "learning_rate": 5.933668740897657e-06,
1100
+ "loss": 0.6326,
1101
+ "step": 178
1102
+ },
1103
+ {
1104
+ "epoch": 0.02,
1105
+ "learning_rate": 5.933271547729379e-06,
1106
+ "loss": 0.639,
1107
+ "step": 179
1108
+ },
1109
+ {
1110
+ "epoch": 0.02,
1111
+ "learning_rate": 5.932874354561102e-06,
1112
+ "loss": 0.6084,
1113
+ "step": 180
1114
+ },
1115
+ {
1116
+ "epoch": 0.02,
1117
+ "learning_rate": 5.932477161392824e-06,
1118
+ "loss": 0.6549,
1119
+ "step": 181
1120
+ },
1121
+ {
1122
+ "epoch": 0.02,
1123
+ "learning_rate": 5.932079968224546e-06,
1124
+ "loss": 0.6728,
1125
+ "step": 182
1126
+ },
1127
+ {
1128
+ "epoch": 0.02,
1129
+ "learning_rate": 5.931682775056269e-06,
1130
+ "loss": 0.6351,
1131
+ "step": 183
1132
+ },
1133
+ {
1134
+ "epoch": 0.02,
1135
+ "learning_rate": 5.931285581887992e-06,
1136
+ "loss": 0.6375,
1137
+ "step": 184
1138
+ },
1139
+ {
1140
+ "epoch": 0.02,
1141
+ "learning_rate": 5.930888388719714e-06,
1142
+ "loss": 0.6814,
1143
+ "step": 185
1144
+ },
1145
+ {
1146
+ "epoch": 0.02,
1147
+ "learning_rate": 5.930491195551437e-06,
1148
+ "loss": 0.5968,
1149
+ "step": 186
1150
+ },
1151
+ {
1152
+ "epoch": 0.02,
1153
+ "learning_rate": 5.930094002383159e-06,
1154
+ "loss": 0.6053,
1155
+ "step": 187
1156
+ },
1157
+ {
1158
+ "epoch": 0.02,
1159
+ "learning_rate": 5.929696809214882e-06,
1160
+ "loss": 0.6468,
1161
+ "step": 188
1162
+ },
1163
+ {
1164
+ "epoch": 0.03,
1165
+ "learning_rate": 5.929299616046604e-06,
1166
+ "loss": 0.6407,
1167
+ "step": 189
1168
+ },
1169
+ {
1170
+ "epoch": 0.03,
1171
+ "learning_rate": 5.928902422878326e-06,
1172
+ "loss": 0.6996,
1173
+ "step": 190
1174
+ },
1175
+ {
1176
+ "epoch": 0.03,
1177
+ "learning_rate": 5.928505229710049e-06,
1178
+ "loss": 0.6158,
1179
+ "step": 191
1180
+ },
1181
+ {
1182
+ "epoch": 0.03,
1183
+ "learning_rate": 5.9281080365417716e-06,
1184
+ "loss": 0.6128,
1185
+ "step": 192
1186
+ },
1187
+ {
1188
+ "epoch": 0.03,
1189
+ "learning_rate": 5.927710843373494e-06,
1190
+ "loss": 0.6558,
1191
+ "step": 193
1192
+ },
1193
+ {
1194
+ "epoch": 0.03,
1195
+ "learning_rate": 5.927313650205216e-06,
1196
+ "loss": 0.6726,
1197
+ "step": 194
1198
+ },
1199
+ {
1200
+ "epoch": 0.03,
1201
+ "learning_rate": 5.92691645703694e-06,
1202
+ "loss": 0.6292,
1203
+ "step": 195
1204
+ },
1205
+ {
1206
+ "epoch": 0.03,
1207
+ "learning_rate": 5.926519263868662e-06,
1208
+ "loss": 0.6004,
1209
+ "step": 196
1210
+ },
1211
+ {
1212
+ "epoch": 0.03,
1213
+ "learning_rate": 5.926122070700384e-06,
1214
+ "loss": 0.599,
1215
+ "step": 197
1216
+ },
1217
+ {
1218
+ "epoch": 0.03,
1219
+ "learning_rate": 5.925724877532106e-06,
1220
+ "loss": 0.6374,
1221
+ "step": 198
1222
+ },
1223
+ {
1224
+ "epoch": 0.03,
1225
+ "learning_rate": 5.925327684363829e-06,
1226
+ "loss": 0.6472,
1227
+ "step": 199
1228
+ },
1229
+ {
1230
+ "epoch": 0.03,
1231
+ "learning_rate": 5.9249304911955515e-06,
1232
+ "loss": 0.594,
1233
+ "step": 200
1234
+ }
1235
+ ],
1236
+ "logging_steps": 1,
1237
+ "max_steps": 15116,
1238
+ "num_train_epochs": 2,
1239
+ "save_steps": 50,
1240
+ "total_flos": 8.388085624602624e+17,
1241
+ "trial_name": null,
1242
+ "trial_params": null
1243
+ }
checkpoint-200/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2f05be88d930176935da1678b48a8294634889bf7ae4f8bebdbaca140c2dac08
3
+ size 5947
checkpoint-200/zero_to_fp32.py ADDED
@@ -0,0 +1,587 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
215
+ elif zero_stage == 3:
216
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
217
+
218
+
219
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
220
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
221
+ return
222
+
223
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
224
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
225
+
226
+ if debug:
227
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
228
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
229
+
230
+ wanted_params = len(frozen_param_shapes)
231
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
232
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
233
+ print(f'Frozen params: Have {avail_numel} numels to process.')
234
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
235
+
236
+ total_params = 0
237
+ total_numel = 0
238
+ for name, shape in frozen_param_shapes.items():
239
+ total_params += 1
240
+ unpartitioned_numel = shape.numel()
241
+ total_numel += unpartitioned_numel
242
+
243
+ state_dict[name] = frozen_param_fragments[name]
244
+
245
+ if debug:
246
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
247
+
248
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
249
+
250
+
251
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
252
+ param_shapes = zero_model_states[0].param_shapes
253
+
254
+ # Reconstruction protocol:
255
+ #
256
+ # XXX: document this
257
+
258
+ if debug:
259
+ for i in range(world_size):
260
+ for j in range(len(fp32_flat_groups[0])):
261
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
262
+
263
+ # XXX: memory usage doubles here (zero2)
264
+ num_param_groups = len(fp32_flat_groups[0])
265
+ merged_single_partition_of_fp32_groups = []
266
+ for i in range(num_param_groups):
267
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
268
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
269
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
270
+ avail_numel = sum(
271
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
272
+
273
+ if debug:
274
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
275
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
276
+ # not asserting if there is a mismatch due to possible padding
277
+ print(f"Have {avail_numel} numels to process.")
278
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
279
+
280
+ # params
281
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
282
+ # out-of-core computing solution
283
+ total_numel = 0
284
+ total_params = 0
285
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
286
+ offset = 0
287
+ avail_numel = full_single_fp32_vector.numel()
288
+ for name, shape in shapes.items():
289
+
290
+ unpartitioned_numel = shape.numel()
291
+ total_numel += unpartitioned_numel
292
+ total_params += 1
293
+
294
+ if debug:
295
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
296
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
297
+ offset += unpartitioned_numel
298
+
299
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
300
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
301
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
302
+ # live optimizer object, so we are checking that the numbers are within the right range
303
+ align_to = 2 * world_size
304
+
305
+ def zero2_align(x):
306
+ return align_to * math.ceil(x / align_to)
307
+
308
+ if debug:
309
+ print(f"original offset={offset}, avail_numel={avail_numel}")
310
+
311
+ offset = zero2_align(offset)
312
+ avail_numel = zero2_align(avail_numel)
313
+
314
+ if debug:
315
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
316
+
317
+ # Sanity check
318
+ if offset != avail_numel:
319
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
320
+
321
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
322
+
323
+
324
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
325
+ state_dict = OrderedDict()
326
+
327
+ # buffers
328
+ buffers = zero_model_states[0].buffers
329
+ state_dict.update(buffers)
330
+ if debug:
331
+ print(f"added {len(buffers)} buffers")
332
+
333
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
334
+
335
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
336
+
337
+ # recover shared parameters
338
+ for pair in zero_model_states[0].shared_params:
339
+ if pair[1] in state_dict:
340
+ state_dict[pair[0]] = state_dict[pair[1]]
341
+
342
+ return state_dict
343
+
344
+
345
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
346
+ remainder = unpartitioned_numel % world_size
347
+ padding_numel = (world_size - remainder) if remainder else 0
348
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
349
+ return partitioned_numel, padding_numel
350
+
351
+
352
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
353
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
354
+ return
355
+
356
+ if debug:
357
+ for i in range(world_size):
358
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
359
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
360
+
361
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
362
+ wanted_params = len(frozen_param_shapes)
363
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
364
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
365
+ print(f'Frozen params: Have {avail_numel} numels to process.')
366
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
367
+
368
+ total_params = 0
369
+ total_numel = 0
370
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
371
+ total_params += 1
372
+ unpartitioned_numel = shape.numel()
373
+ total_numel += unpartitioned_numel
374
+
375
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
376
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
377
+
378
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
379
+
380
+ if debug:
381
+ print(
382
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
383
+ )
384
+
385
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
386
+
387
+
388
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
389
+ param_shapes = zero_model_states[0].param_shapes
390
+ avail_numel = fp32_flat_groups[0].numel() * world_size
391
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
392
+ # param, re-consolidating each param, while dealing with padding if any
393
+
394
+ # merge list of dicts, preserving order
395
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
396
+
397
+ if debug:
398
+ for i in range(world_size):
399
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
400
+
401
+ wanted_params = len(param_shapes)
402
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
403
+ # not asserting if there is a mismatch due to possible padding
404
+ avail_numel = fp32_flat_groups[0].numel() * world_size
405
+ print(f"Trainable params: Have {avail_numel} numels to process.")
406
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
407
+
408
+ # params
409
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
410
+ # out-of-core computing solution
411
+ offset = 0
412
+ total_numel = 0
413
+ total_params = 0
414
+ for name, shape in param_shapes.items():
415
+
416
+ unpartitioned_numel = shape.numel()
417
+ total_numel += unpartitioned_numel
418
+ total_params += 1
419
+
420
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
421
+
422
+ if debug:
423
+ print(
424
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
425
+ )
426
+
427
+ # XXX: memory usage doubles here
428
+ state_dict[name] = torch.cat(
429
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
430
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
431
+ offset += partitioned_numel
432
+
433
+ offset *= world_size
434
+
435
+ # Sanity check
436
+ if offset != avail_numel:
437
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
438
+
439
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
440
+
441
+
442
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
443
+ state_dict = OrderedDict()
444
+
445
+ # buffers
446
+ buffers = zero_model_states[0].buffers
447
+ state_dict.update(buffers)
448
+ if debug:
449
+ print(f"added {len(buffers)} buffers")
450
+
451
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
452
+
453
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
454
+
455
+ # recover shared parameters
456
+ for pair in zero_model_states[0].shared_params:
457
+ if pair[1] in state_dict:
458
+ state_dict[pair[0]] = state_dict[pair[1]]
459
+
460
+ return state_dict
461
+
462
+
463
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
464
+ """
465
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
466
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
467
+ via a model hub.
468
+
469
+ Args:
470
+ - ``checkpoint_dir``: path to the desired checkpoint folder
471
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
472
+
473
+ Returns:
474
+ - pytorch ``state_dict``
475
+
476
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
477
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
478
+ the checkpoint.
479
+
480
+ A typical usage might be ::
481
+
482
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
483
+ # do the training and checkpoint saving
484
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
485
+ model = model.cpu() # move to cpu
486
+ model.load_state_dict(state_dict)
487
+ # submit to model hub or save the model to share with others
488
+
489
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
490
+ application. i.e. you will need to re-initialize the deepspeed engine, since
491
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
492
+
493
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
494
+
495
+ """
496
+ if tag is None:
497
+ latest_path = os.path.join(checkpoint_dir, 'latest')
498
+ if os.path.isfile(latest_path):
499
+ with open(latest_path, 'r') as fd:
500
+ tag = fd.read().strip()
501
+ else:
502
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
503
+
504
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
505
+
506
+ if not os.path.isdir(ds_checkpoint_dir):
507
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
508
+
509
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
510
+
511
+
512
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
513
+ """
514
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
515
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
516
+
517
+ Args:
518
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
519
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
520
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
521
+ """
522
+
523
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
524
+ print(f"Saving fp32 state dict to {output_file}")
525
+ torch.save(state_dict, output_file)
526
+
527
+
528
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
529
+ """
530
+ 1. Put the provided model to cpu
531
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
532
+ 3. Load it into the provided model
533
+
534
+ Args:
535
+ - ``model``: the model object to update
536
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
537
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
538
+
539
+ Returns:
540
+ - ``model`: modified model
541
+
542
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
543
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
544
+ conveniently placed for you in the checkpoint folder.
545
+
546
+ A typical usage might be ::
547
+
548
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
549
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
550
+ # submit to model hub or save the model to share with others
551
+
552
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
553
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
554
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
555
+
556
+ """
557
+ logger.info(f"Extracting fp32 weights")
558
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
559
+
560
+ logger.info(f"Overwriting model with fp32 weights")
561
+ model = model.cpu()
562
+ model.load_state_dict(state_dict, strict=False)
563
+
564
+ return model
565
+
566
+
567
+ if __name__ == "__main__":
568
+
569
+ parser = argparse.ArgumentParser()
570
+ parser.add_argument("checkpoint_dir",
571
+ type=str,
572
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
573
+ parser.add_argument(
574
+ "output_file",
575
+ type=str,
576
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
577
+ parser.add_argument("-t",
578
+ "--tag",
579
+ type=str,
580
+ default=None,
581
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
582
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
583
+ args = parser.parse_args()
584
+
585
+ debug = args.debug
586
+
587
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
checkpoint-250/config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mistralai/Mistral-7B-v0.1",
3
+ "architectures": [
4
+ "MistralForCausalLM"
5
+ ],
6
+ "bos_token_id": 1,
7
+ "eos_token_id": 2,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 4096,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 14336,
12
+ "max_position_embeddings": 32768,
13
+ "model_type": "mistral",
14
+ "num_attention_heads": 32,
15
+ "num_hidden_layers": 32,
16
+ "num_key_value_heads": 8,
17
+ "rms_norm_eps": 1e-05,
18
+ "rope_theta": 10000.0,
19
+ "sliding_window": 4096,
20
+ "tie_word_embeddings": false,
21
+ "torch_dtype": "bfloat16",
22
+ "transformers_version": "4.34.0.dev0",
23
+ "use_cache": false,
24
+ "vocab_size": 32002
25
+ }
checkpoint-250/generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "transformers_version": "4.34.0.dev0"
6
+ }
checkpoint-250/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step250
checkpoint-250/pytorch_model-00001-of-00002.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0b50d9439b999b9fd5b6c2e695a1483624a4c6c6bcee46f35f79806dde564275
3
+ size 9943044428
checkpoint-250/pytorch_model-00002-of-00002.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2a838f1a551e9ca10152f3cdb899a08d47a341ddb20b01839dc38a3eb6dac268
3
+ size 4540552031
checkpoint-250/pytorch_model.bin.index.json ADDED
@@ -0,0 +1,298 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 14483496960
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "pytorch_model-00002-of-00002.bin",
7
+ "model.embed_tokens.weight": "pytorch_model-00001-of-00002.bin",
8
+ "model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
9
+ "model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
10
+ "model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
11
+ "model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
12
+ "model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
13
+ "model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
14
+ "model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
15
+ "model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
16
+ "model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
17
+ "model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
18
+ "model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
19
+ "model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
20
+ "model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
21
+ "model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
22
+ "model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
23
+ "model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
24
+ "model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
25
+ "model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
26
+ "model.layers.10.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
27
+ "model.layers.10.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
28
+ "model.layers.10.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
29
+ "model.layers.10.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
30
+ "model.layers.10.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
31
+ "model.layers.10.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
32
+ "model.layers.10.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
33
+ "model.layers.10.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
34
+ "model.layers.10.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
35
+ "model.layers.11.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
36
+ "model.layers.11.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
37
+ "model.layers.11.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
38
+ "model.layers.11.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
39
+ "model.layers.11.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
40
+ "model.layers.11.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
41
+ "model.layers.11.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
42
+ "model.layers.11.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
43
+ "model.layers.11.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
44
+ "model.layers.12.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
45
+ "model.layers.12.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
46
+ "model.layers.12.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
47
+ "model.layers.12.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
48
+ "model.layers.12.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
49
+ "model.layers.12.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
50
+ "model.layers.12.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
51
+ "model.layers.12.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
52
+ "model.layers.12.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
53
+ "model.layers.13.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
54
+ "model.layers.13.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
55
+ "model.layers.13.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
56
+ "model.layers.13.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
57
+ "model.layers.13.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
58
+ "model.layers.13.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
59
+ "model.layers.13.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
60
+ "model.layers.13.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
61
+ "model.layers.13.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
62
+ "model.layers.14.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
63
+ "model.layers.14.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
64
+ "model.layers.14.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
65
+ "model.layers.14.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
66
+ "model.layers.14.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
67
+ "model.layers.14.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
68
+ "model.layers.14.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
69
+ "model.layers.14.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
70
+ "model.layers.14.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
71
+ "model.layers.15.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
72
+ "model.layers.15.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
73
+ "model.layers.15.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
74
+ "model.layers.15.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
75
+ "model.layers.15.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
76
+ "model.layers.15.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
77
+ "model.layers.15.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
78
+ "model.layers.15.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
79
+ "model.layers.15.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
80
+ "model.layers.16.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
81
+ "model.layers.16.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
82
+ "model.layers.16.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
83
+ "model.layers.16.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
84
+ "model.layers.16.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
85
+ "model.layers.16.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
86
+ "model.layers.16.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
87
+ "model.layers.16.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
88
+ "model.layers.16.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
89
+ "model.layers.17.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
90
+ "model.layers.17.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
91
+ "model.layers.17.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
92
+ "model.layers.17.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
93
+ "model.layers.17.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
94
+ "model.layers.17.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
95
+ "model.layers.17.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
96
+ "model.layers.17.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
97
+ "model.layers.17.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
98
+ "model.layers.18.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
99
+ "model.layers.18.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
100
+ "model.layers.18.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
101
+ "model.layers.18.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
102
+ "model.layers.18.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
103
+ "model.layers.18.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
104
+ "model.layers.18.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
105
+ "model.layers.18.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
106
+ "model.layers.18.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
107
+ "model.layers.19.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
108
+ "model.layers.19.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
109
+ "model.layers.19.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
110
+ "model.layers.19.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
111
+ "model.layers.19.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
112
+ "model.layers.19.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
113
+ "model.layers.19.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
114
+ "model.layers.19.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
115
+ "model.layers.19.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
116
+ "model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
117
+ "model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
118
+ "model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
119
+ "model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
120
+ "model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
121
+ "model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
122
+ "model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
123
+ "model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
124
+ "model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
125
+ "model.layers.20.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
126
+ "model.layers.20.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
127
+ "model.layers.20.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
128
+ "model.layers.20.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
129
+ "model.layers.20.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
130
+ "model.layers.20.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
131
+ "model.layers.20.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
132
+ "model.layers.20.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
133
+ "model.layers.20.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
134
+ "model.layers.21.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
135
+ "model.layers.21.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
136
+ "model.layers.21.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
137
+ "model.layers.21.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
138
+ "model.layers.21.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
139
+ "model.layers.21.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
140
+ "model.layers.21.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
141
+ "model.layers.21.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
142
+ "model.layers.21.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
143
+ "model.layers.22.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
144
+ "model.layers.22.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
145
+ "model.layers.22.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
146
+ "model.layers.22.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
147
+ "model.layers.22.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
148
+ "model.layers.22.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
149
+ "model.layers.22.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
150
+ "model.layers.22.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
151
+ "model.layers.22.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
152
+ "model.layers.23.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
153
+ "model.layers.23.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
154
+ "model.layers.23.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
155
+ "model.layers.23.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
156
+ "model.layers.23.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
157
+ "model.layers.23.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
158
+ "model.layers.23.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
159
+ "model.layers.23.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
160
+ "model.layers.23.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
161
+ "model.layers.24.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
162
+ "model.layers.24.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
163
+ "model.layers.24.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
164
+ "model.layers.24.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
165
+ "model.layers.24.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
166
+ "model.layers.24.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
167
+ "model.layers.24.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
168
+ "model.layers.24.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
169
+ "model.layers.24.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
170
+ "model.layers.25.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
171
+ "model.layers.25.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
172
+ "model.layers.25.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
173
+ "model.layers.25.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
174
+ "model.layers.25.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
175
+ "model.layers.25.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
176
+ "model.layers.25.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
177
+ "model.layers.25.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
178
+ "model.layers.25.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
179
+ "model.layers.26.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
180
+ "model.layers.26.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
181
+ "model.layers.26.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
182
+ "model.layers.26.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
183
+ "model.layers.26.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
184
+ "model.layers.26.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
185
+ "model.layers.26.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
186
+ "model.layers.26.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
187
+ "model.layers.26.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
188
+ "model.layers.27.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
189
+ "model.layers.27.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
190
+ "model.layers.27.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
191
+ "model.layers.27.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
192
+ "model.layers.27.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
193
+ "model.layers.27.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
194
+ "model.layers.27.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
195
+ "model.layers.27.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
196
+ "model.layers.27.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
197
+ "model.layers.28.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
198
+ "model.layers.28.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
199
+ "model.layers.28.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
200
+ "model.layers.28.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
201
+ "model.layers.28.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
202
+ "model.layers.28.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
203
+ "model.layers.28.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
204
+ "model.layers.28.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
205
+ "model.layers.28.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
206
+ "model.layers.29.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
207
+ "model.layers.29.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
208
+ "model.layers.29.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
209
+ "model.layers.29.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
210
+ "model.layers.29.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
211
+ "model.layers.29.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
212
+ "model.layers.29.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
213
+ "model.layers.29.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
214
+ "model.layers.29.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
215
+ "model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
216
+ "model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
217
+ "model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
218
+ "model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
219
+ "model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
220
+ "model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
221
+ "model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
222
+ "model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
223
+ "model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
224
+ "model.layers.30.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
225
+ "model.layers.30.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
226
+ "model.layers.30.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
227
+ "model.layers.30.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
228
+ "model.layers.30.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
229
+ "model.layers.30.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
230
+ "model.layers.30.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
231
+ "model.layers.30.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
232
+ "model.layers.30.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
233
+ "model.layers.31.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
234
+ "model.layers.31.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
235
+ "model.layers.31.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
236
+ "model.layers.31.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
237
+ "model.layers.31.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
238
+ "model.layers.31.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
239
+ "model.layers.31.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
240
+ "model.layers.31.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
241
+ "model.layers.31.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
242
+ "model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
243
+ "model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
244
+ "model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
245
+ "model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
246
+ "model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
247
+ "model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
248
+ "model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
249
+ "model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
250
+ "model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
251
+ "model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
252
+ "model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
253
+ "model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
254
+ "model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
255
+ "model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
256
+ "model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
257
+ "model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
258
+ "model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
259
+ "model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
260
+ "model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
261
+ "model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
262
+ "model.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
263
+ "model.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
264
+ "model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
265
+ "model.layers.6.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
266
+ "model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
267
+ "model.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
268
+ "model.layers.6.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
269
+ "model.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
270
+ "model.layers.7.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
271
+ "model.layers.7.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
272
+ "model.layers.7.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
273
+ "model.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
274
+ "model.layers.7.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
275
+ "model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
276
+ "model.layers.7.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
277
+ "model.layers.7.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
278
+ "model.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
279
+ "model.layers.8.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
280
+ "model.layers.8.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
281
+ "model.layers.8.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
282
+ "model.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
283
+ "model.layers.8.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
284
+ "model.layers.8.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
285
+ "model.layers.8.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
286
+ "model.layers.8.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
287
+ "model.layers.9.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
288
+ "model.layers.9.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
289
+ "model.layers.9.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
290
+ "model.layers.9.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
291
+ "model.layers.9.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
292
+ "model.layers.9.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
293
+ "model.layers.9.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
294
+ "model.layers.9.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
295
+ "model.layers.9.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
296
+ "model.norm.weight": "pytorch_model-00002-of-00002.bin"
297
+ }
298
+ }
checkpoint-250/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1eafe3d5e0585dde8c5033613de99a5d4f23df4284a488f4007b3944580c0b97
3
+ size 17655
checkpoint-250/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7e34eb456d2d003a2839f2daa9425e99bdd79ed7e24a1de9fc7d5738476bfb4b
3
+ size 17655
checkpoint-250/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b374af4a2765d8771cee7a72921d3c2e438b9bee34f0b2d098ce6071afeb65e4
3
+ size 17655
checkpoint-250/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5df75d8477fcc69c7abb03025313915ebfe3ac18c54a7c57aaa455c0099e13e5
3
+ size 17655
checkpoint-250/trainer_state.json ADDED
@@ -0,0 +1,1543 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.03307753373908441,
5
+ "eval_steps": 756,
6
+ "global_step": 250,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "learning_rate": 0.0,
14
+ "loss": 0.9197,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.0,
19
+ "eval_loss": 1.4652303457260132,
20
+ "eval_runtime": 2.1726,
21
+ "eval_samples_per_second": 79.627,
22
+ "eval_steps_per_second": 3.682,
23
+ "step": 1
24
+ },
25
+ {
26
+ "epoch": 0.0,
27
+ "eval_bench_accuracy_agieval": 0.2711864406779661,
28
+ "eval_bench_accuracy_arc_challenge": 0.8703703703703703,
29
+ "eval_bench_accuracy_arc_easy": 0.9259259259259259,
30
+ "eval_bench_accuracy_bigbench": 0.36065573770491804,
31
+ "eval_bench_accuracy_boolq": 0.5740740740740741,
32
+ "eval_bench_accuracy_mmlu": 0.5185185185185185,
33
+ "eval_bench_accuracy_openbookqa": 0.1111111111111111,
34
+ "eval_bench_accuracy_truthful_qa": 0.3584905660377358,
35
+ "eval_bench_accuracy_winogrande": 0.4444444444444444,
36
+ "eval_bench_average_accuracy": 0.4927530209850072,
37
+ "eval_bench_loss": 2.6978388407144203,
38
+ "eval_bench_total_accuracy": 0.48893360160965793,
39
+ "step": 1
40
+ },
41
+ {
42
+ "epoch": 0.0,
43
+ "learning_rate": 6.000000000000001e-07,
44
+ "loss": 1.3426,
45
+ "step": 2
46
+ },
47
+ {
48
+ "epoch": 0.0,
49
+ "learning_rate": 1.2000000000000002e-06,
50
+ "loss": 1.5882,
51
+ "step": 3
52
+ },
53
+ {
54
+ "epoch": 0.0,
55
+ "learning_rate": 1.8e-06,
56
+ "loss": 0.8542,
57
+ "step": 4
58
+ },
59
+ {
60
+ "epoch": 0.0,
61
+ "learning_rate": 2.4000000000000003e-06,
62
+ "loss": 0.9629,
63
+ "step": 5
64
+ },
65
+ {
66
+ "epoch": 0.0,
67
+ "learning_rate": 3e-06,
68
+ "loss": 0.903,
69
+ "step": 6
70
+ },
71
+ {
72
+ "epoch": 0.0,
73
+ "learning_rate": 3.6e-06,
74
+ "loss": 0.909,
75
+ "step": 7
76
+ },
77
+ {
78
+ "epoch": 0.0,
79
+ "learning_rate": 4.2e-06,
80
+ "loss": 0.8666,
81
+ "step": 8
82
+ },
83
+ {
84
+ "epoch": 0.0,
85
+ "learning_rate": 4.800000000000001e-06,
86
+ "loss": 1.0108,
87
+ "step": 9
88
+ },
89
+ {
90
+ "epoch": 0.0,
91
+ "learning_rate": 5.4e-06,
92
+ "loss": 0.8958,
93
+ "step": 10
94
+ },
95
+ {
96
+ "epoch": 0.0,
97
+ "learning_rate": 6e-06,
98
+ "loss": 0.9348,
99
+ "step": 11
100
+ },
101
+ {
102
+ "epoch": 0.0,
103
+ "learning_rate": 5.999602806831722e-06,
104
+ "loss": 0.7832,
105
+ "step": 12
106
+ },
107
+ {
108
+ "epoch": 0.0,
109
+ "learning_rate": 5.999205613663445e-06,
110
+ "loss": 0.8083,
111
+ "step": 13
112
+ },
113
+ {
114
+ "epoch": 0.0,
115
+ "learning_rate": 5.9988084204951675e-06,
116
+ "loss": 0.8164,
117
+ "step": 14
118
+ },
119
+ {
120
+ "epoch": 0.0,
121
+ "learning_rate": 5.99841122732689e-06,
122
+ "loss": 0.7834,
123
+ "step": 15
124
+ },
125
+ {
126
+ "epoch": 0.0,
127
+ "learning_rate": 5.998014034158613e-06,
128
+ "loss": 0.8718,
129
+ "step": 16
130
+ },
131
+ {
132
+ "epoch": 0.0,
133
+ "learning_rate": 5.997616840990336e-06,
134
+ "loss": 0.84,
135
+ "step": 17
136
+ },
137
+ {
138
+ "epoch": 0.0,
139
+ "learning_rate": 5.997219647822058e-06,
140
+ "loss": 0.7397,
141
+ "step": 18
142
+ },
143
+ {
144
+ "epoch": 0.0,
145
+ "learning_rate": 5.99682245465378e-06,
146
+ "loss": 0.7445,
147
+ "step": 19
148
+ },
149
+ {
150
+ "epoch": 0.0,
151
+ "learning_rate": 5.996425261485502e-06,
152
+ "loss": 0.7898,
153
+ "step": 20
154
+ },
155
+ {
156
+ "epoch": 0.0,
157
+ "learning_rate": 5.996028068317225e-06,
158
+ "loss": 0.7388,
159
+ "step": 21
160
+ },
161
+ {
162
+ "epoch": 0.0,
163
+ "learning_rate": 5.9956308751489475e-06,
164
+ "loss": 0.7296,
165
+ "step": 22
166
+ },
167
+ {
168
+ "epoch": 0.0,
169
+ "learning_rate": 5.99523368198067e-06,
170
+ "loss": 0.7993,
171
+ "step": 23
172
+ },
173
+ {
174
+ "epoch": 0.0,
175
+ "learning_rate": 5.994836488812393e-06,
176
+ "loss": 0.7188,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.0,
181
+ "learning_rate": 5.994439295644115e-06,
182
+ "loss": 0.7473,
183
+ "step": 25
184
+ },
185
+ {
186
+ "epoch": 0.0,
187
+ "learning_rate": 5.994042102475838e-06,
188
+ "loss": 0.6997,
189
+ "step": 26
190
+ },
191
+ {
192
+ "epoch": 0.0,
193
+ "learning_rate": 5.99364490930756e-06,
194
+ "loss": 0.725,
195
+ "step": 27
196
+ },
197
+ {
198
+ "epoch": 0.0,
199
+ "learning_rate": 5.993247716139283e-06,
200
+ "loss": 0.7272,
201
+ "step": 28
202
+ },
203
+ {
204
+ "epoch": 0.0,
205
+ "learning_rate": 5.992850522971005e-06,
206
+ "loss": 0.7427,
207
+ "step": 29
208
+ },
209
+ {
210
+ "epoch": 0.0,
211
+ "learning_rate": 5.992453329802727e-06,
212
+ "loss": 0.7309,
213
+ "step": 30
214
+ },
215
+ {
216
+ "epoch": 0.0,
217
+ "learning_rate": 5.99205613663445e-06,
218
+ "loss": 0.6764,
219
+ "step": 31
220
+ },
221
+ {
222
+ "epoch": 0.0,
223
+ "learning_rate": 5.991658943466173e-06,
224
+ "loss": 0.7556,
225
+ "step": 32
226
+ },
227
+ {
228
+ "epoch": 0.0,
229
+ "learning_rate": 5.991261750297895e-06,
230
+ "loss": 0.7301,
231
+ "step": 33
232
+ },
233
+ {
234
+ "epoch": 0.0,
235
+ "learning_rate": 5.990864557129617e-06,
236
+ "loss": 0.6776,
237
+ "step": 34
238
+ },
239
+ {
240
+ "epoch": 0.0,
241
+ "learning_rate": 5.99046736396134e-06,
242
+ "loss": 0.6884,
243
+ "step": 35
244
+ },
245
+ {
246
+ "epoch": 0.0,
247
+ "learning_rate": 5.990070170793063e-06,
248
+ "loss": 0.7179,
249
+ "step": 36
250
+ },
251
+ {
252
+ "epoch": 0.0,
253
+ "learning_rate": 5.989672977624785e-06,
254
+ "loss": 0.6915,
255
+ "step": 37
256
+ },
257
+ {
258
+ "epoch": 0.01,
259
+ "learning_rate": 5.989275784456507e-06,
260
+ "loss": 0.7308,
261
+ "step": 38
262
+ },
263
+ {
264
+ "epoch": 0.01,
265
+ "learning_rate": 5.98887859128823e-06,
266
+ "loss": 0.6743,
267
+ "step": 39
268
+ },
269
+ {
270
+ "epoch": 0.01,
271
+ "learning_rate": 5.9884813981199526e-06,
272
+ "loss": 0.6604,
273
+ "step": 40
274
+ },
275
+ {
276
+ "epoch": 0.01,
277
+ "learning_rate": 5.988084204951675e-06,
278
+ "loss": 0.6609,
279
+ "step": 41
280
+ },
281
+ {
282
+ "epoch": 0.01,
283
+ "learning_rate": 5.987687011783397e-06,
284
+ "loss": 0.6524,
285
+ "step": 42
286
+ },
287
+ {
288
+ "epoch": 0.01,
289
+ "learning_rate": 5.98728981861512e-06,
290
+ "loss": 0.6386,
291
+ "step": 43
292
+ },
293
+ {
294
+ "epoch": 0.01,
295
+ "learning_rate": 5.986892625446843e-06,
296
+ "loss": 0.728,
297
+ "step": 44
298
+ },
299
+ {
300
+ "epoch": 0.01,
301
+ "learning_rate": 5.986495432278565e-06,
302
+ "loss": 0.6971,
303
+ "step": 45
304
+ },
305
+ {
306
+ "epoch": 0.01,
307
+ "learning_rate": 5.986098239110287e-06,
308
+ "loss": 0.6772,
309
+ "step": 46
310
+ },
311
+ {
312
+ "epoch": 0.01,
313
+ "learning_rate": 5.98570104594201e-06,
314
+ "loss": 0.6774,
315
+ "step": 47
316
+ },
317
+ {
318
+ "epoch": 0.01,
319
+ "learning_rate": 5.9853038527737325e-06,
320
+ "loss": 0.6868,
321
+ "step": 48
322
+ },
323
+ {
324
+ "epoch": 0.01,
325
+ "learning_rate": 5.984906659605455e-06,
326
+ "loss": 0.7169,
327
+ "step": 49
328
+ },
329
+ {
330
+ "epoch": 0.01,
331
+ "learning_rate": 5.984509466437178e-06,
332
+ "loss": 0.669,
333
+ "step": 50
334
+ },
335
+ {
336
+ "epoch": 0.01,
337
+ "learning_rate": 5.9841122732689e-06,
338
+ "loss": 0.7112,
339
+ "step": 51
340
+ },
341
+ {
342
+ "epoch": 0.01,
343
+ "learning_rate": 5.983715080100622e-06,
344
+ "loss": 0.6667,
345
+ "step": 52
346
+ },
347
+ {
348
+ "epoch": 0.01,
349
+ "learning_rate": 5.983317886932344e-06,
350
+ "loss": 0.6528,
351
+ "step": 53
352
+ },
353
+ {
354
+ "epoch": 0.01,
355
+ "learning_rate": 5.982920693764068e-06,
356
+ "loss": 0.6699,
357
+ "step": 54
358
+ },
359
+ {
360
+ "epoch": 0.01,
361
+ "learning_rate": 5.98252350059579e-06,
362
+ "loss": 0.6584,
363
+ "step": 55
364
+ },
365
+ {
366
+ "epoch": 0.01,
367
+ "learning_rate": 5.9821263074275125e-06,
368
+ "loss": 0.6328,
369
+ "step": 56
370
+ },
371
+ {
372
+ "epoch": 0.01,
373
+ "learning_rate": 5.981729114259235e-06,
374
+ "loss": 0.6472,
375
+ "step": 57
376
+ },
377
+ {
378
+ "epoch": 0.01,
379
+ "learning_rate": 5.981331921090958e-06,
380
+ "loss": 0.6992,
381
+ "step": 58
382
+ },
383
+ {
384
+ "epoch": 0.01,
385
+ "learning_rate": 5.98093472792268e-06,
386
+ "loss": 0.6666,
387
+ "step": 59
388
+ },
389
+ {
390
+ "epoch": 0.01,
391
+ "learning_rate": 5.980537534754402e-06,
392
+ "loss": 0.6819,
393
+ "step": 60
394
+ },
395
+ {
396
+ "epoch": 0.01,
397
+ "learning_rate": 5.980140341586125e-06,
398
+ "loss": 0.705,
399
+ "step": 61
400
+ },
401
+ {
402
+ "epoch": 0.01,
403
+ "learning_rate": 5.979743148417847e-06,
404
+ "loss": 0.6871,
405
+ "step": 62
406
+ },
407
+ {
408
+ "epoch": 0.01,
409
+ "learning_rate": 5.97934595524957e-06,
410
+ "loss": 0.6998,
411
+ "step": 63
412
+ },
413
+ {
414
+ "epoch": 0.01,
415
+ "learning_rate": 5.978948762081292e-06,
416
+ "loss": 0.6081,
417
+ "step": 64
418
+ },
419
+ {
420
+ "epoch": 0.01,
421
+ "learning_rate": 5.9785515689130154e-06,
422
+ "loss": 0.6985,
423
+ "step": 65
424
+ },
425
+ {
426
+ "epoch": 0.01,
427
+ "learning_rate": 5.978154375744738e-06,
428
+ "loss": 0.6631,
429
+ "step": 66
430
+ },
431
+ {
432
+ "epoch": 0.01,
433
+ "learning_rate": 5.97775718257646e-06,
434
+ "loss": 0.6534,
435
+ "step": 67
436
+ },
437
+ {
438
+ "epoch": 0.01,
439
+ "learning_rate": 5.977359989408182e-06,
440
+ "loss": 0.6685,
441
+ "step": 68
442
+ },
443
+ {
444
+ "epoch": 0.01,
445
+ "learning_rate": 5.976962796239905e-06,
446
+ "loss": 0.6821,
447
+ "step": 69
448
+ },
449
+ {
450
+ "epoch": 0.01,
451
+ "learning_rate": 5.976565603071627e-06,
452
+ "loss": 0.6241,
453
+ "step": 70
454
+ },
455
+ {
456
+ "epoch": 0.01,
457
+ "learning_rate": 5.976168409903349e-06,
458
+ "loss": 0.6357,
459
+ "step": 71
460
+ },
461
+ {
462
+ "epoch": 0.01,
463
+ "learning_rate": 5.975771216735072e-06,
464
+ "loss": 0.6466,
465
+ "step": 72
466
+ },
467
+ {
468
+ "epoch": 0.01,
469
+ "learning_rate": 5.975374023566795e-06,
470
+ "loss": 0.6579,
471
+ "step": 73
472
+ },
473
+ {
474
+ "epoch": 0.01,
475
+ "learning_rate": 5.9749768303985176e-06,
476
+ "loss": 0.6298,
477
+ "step": 74
478
+ },
479
+ {
480
+ "epoch": 0.01,
481
+ "learning_rate": 5.97457963723024e-06,
482
+ "loss": 0.703,
483
+ "step": 75
484
+ },
485
+ {
486
+ "epoch": 0.01,
487
+ "learning_rate": 5.974182444061963e-06,
488
+ "loss": 0.6152,
489
+ "step": 76
490
+ },
491
+ {
492
+ "epoch": 0.01,
493
+ "learning_rate": 5.973785250893685e-06,
494
+ "loss": 0.6682,
495
+ "step": 77
496
+ },
497
+ {
498
+ "epoch": 0.01,
499
+ "learning_rate": 5.973388057725407e-06,
500
+ "loss": 0.6427,
501
+ "step": 78
502
+ },
503
+ {
504
+ "epoch": 0.01,
505
+ "learning_rate": 5.972990864557129e-06,
506
+ "loss": 0.6969,
507
+ "step": 79
508
+ },
509
+ {
510
+ "epoch": 0.01,
511
+ "learning_rate": 5.972593671388852e-06,
512
+ "loss": 0.6619,
513
+ "step": 80
514
+ },
515
+ {
516
+ "epoch": 0.01,
517
+ "learning_rate": 5.9721964782205745e-06,
518
+ "loss": 0.6332,
519
+ "step": 81
520
+ },
521
+ {
522
+ "epoch": 0.01,
523
+ "learning_rate": 5.9717992850522975e-06,
524
+ "loss": 0.6203,
525
+ "step": 82
526
+ },
527
+ {
528
+ "epoch": 0.01,
529
+ "learning_rate": 5.97140209188402e-06,
530
+ "loss": 0.6463,
531
+ "step": 83
532
+ },
533
+ {
534
+ "epoch": 0.01,
535
+ "learning_rate": 5.971004898715743e-06,
536
+ "loss": 0.6718,
537
+ "step": 84
538
+ },
539
+ {
540
+ "epoch": 0.01,
541
+ "learning_rate": 5.970607705547465e-06,
542
+ "loss": 0.6495,
543
+ "step": 85
544
+ },
545
+ {
546
+ "epoch": 0.01,
547
+ "learning_rate": 5.970210512379187e-06,
548
+ "loss": 0.5787,
549
+ "step": 86
550
+ },
551
+ {
552
+ "epoch": 0.01,
553
+ "learning_rate": 5.96981331921091e-06,
554
+ "loss": 0.6897,
555
+ "step": 87
556
+ },
557
+ {
558
+ "epoch": 0.01,
559
+ "learning_rate": 5.969416126042632e-06,
560
+ "loss": 0.6688,
561
+ "step": 88
562
+ },
563
+ {
564
+ "epoch": 0.01,
565
+ "learning_rate": 5.9690189328743544e-06,
566
+ "loss": 0.6697,
567
+ "step": 89
568
+ },
569
+ {
570
+ "epoch": 0.01,
571
+ "learning_rate": 5.968621739706077e-06,
572
+ "loss": 0.6156,
573
+ "step": 90
574
+ },
575
+ {
576
+ "epoch": 0.01,
577
+ "learning_rate": 5.9682245465378e-06,
578
+ "loss": 0.6301,
579
+ "step": 91
580
+ },
581
+ {
582
+ "epoch": 0.01,
583
+ "learning_rate": 5.967827353369523e-06,
584
+ "loss": 0.6121,
585
+ "step": 92
586
+ },
587
+ {
588
+ "epoch": 0.01,
589
+ "learning_rate": 5.967430160201245e-06,
590
+ "loss": 0.6177,
591
+ "step": 93
592
+ },
593
+ {
594
+ "epoch": 0.01,
595
+ "learning_rate": 5.967032967032967e-06,
596
+ "loss": 0.611,
597
+ "step": 94
598
+ },
599
+ {
600
+ "epoch": 0.01,
601
+ "learning_rate": 5.96663577386469e-06,
602
+ "loss": 0.6359,
603
+ "step": 95
604
+ },
605
+ {
606
+ "epoch": 0.01,
607
+ "learning_rate": 5.966238580696412e-06,
608
+ "loss": 0.6417,
609
+ "step": 96
610
+ },
611
+ {
612
+ "epoch": 0.01,
613
+ "learning_rate": 5.965841387528134e-06,
614
+ "loss": 0.6312,
615
+ "step": 97
616
+ },
617
+ {
618
+ "epoch": 0.01,
619
+ "learning_rate": 5.965444194359857e-06,
620
+ "loss": 0.6184,
621
+ "step": 98
622
+ },
623
+ {
624
+ "epoch": 0.01,
625
+ "learning_rate": 5.9650470011915796e-06,
626
+ "loss": 0.6724,
627
+ "step": 99
628
+ },
629
+ {
630
+ "epoch": 0.01,
631
+ "learning_rate": 5.964649808023302e-06,
632
+ "loss": 0.6833,
633
+ "step": 100
634
+ },
635
+ {
636
+ "epoch": 0.01,
637
+ "learning_rate": 5.964252614855025e-06,
638
+ "loss": 0.6433,
639
+ "step": 101
640
+ },
641
+ {
642
+ "epoch": 0.01,
643
+ "learning_rate": 5.963855421686747e-06,
644
+ "loss": 0.6766,
645
+ "step": 102
646
+ },
647
+ {
648
+ "epoch": 0.01,
649
+ "learning_rate": 5.96345822851847e-06,
650
+ "loss": 0.6527,
651
+ "step": 103
652
+ },
653
+ {
654
+ "epoch": 0.01,
655
+ "learning_rate": 5.963061035350192e-06,
656
+ "loss": 0.5982,
657
+ "step": 104
658
+ },
659
+ {
660
+ "epoch": 0.01,
661
+ "learning_rate": 5.962663842181914e-06,
662
+ "loss": 0.6749,
663
+ "step": 105
664
+ },
665
+ {
666
+ "epoch": 0.01,
667
+ "learning_rate": 5.962266649013637e-06,
668
+ "loss": 0.6494,
669
+ "step": 106
670
+ },
671
+ {
672
+ "epoch": 0.01,
673
+ "learning_rate": 5.9618694558453595e-06,
674
+ "loss": 0.6998,
675
+ "step": 107
676
+ },
677
+ {
678
+ "epoch": 0.01,
679
+ "learning_rate": 5.961472262677082e-06,
680
+ "loss": 0.6112,
681
+ "step": 108
682
+ },
683
+ {
684
+ "epoch": 0.01,
685
+ "learning_rate": 5.961075069508805e-06,
686
+ "loss": 0.624,
687
+ "step": 109
688
+ },
689
+ {
690
+ "epoch": 0.01,
691
+ "learning_rate": 5.960677876340528e-06,
692
+ "loss": 0.6329,
693
+ "step": 110
694
+ },
695
+ {
696
+ "epoch": 0.01,
697
+ "learning_rate": 5.96028068317225e-06,
698
+ "loss": 0.6491,
699
+ "step": 111
700
+ },
701
+ {
702
+ "epoch": 0.01,
703
+ "learning_rate": 5.959883490003972e-06,
704
+ "loss": 0.6672,
705
+ "step": 112
706
+ },
707
+ {
708
+ "epoch": 0.01,
709
+ "learning_rate": 5.959486296835694e-06,
710
+ "loss": 0.6279,
711
+ "step": 113
712
+ },
713
+ {
714
+ "epoch": 0.02,
715
+ "learning_rate": 5.959089103667417e-06,
716
+ "loss": 0.6479,
717
+ "step": 114
718
+ },
719
+ {
720
+ "epoch": 0.02,
721
+ "learning_rate": 5.9586919104991395e-06,
722
+ "loss": 0.6214,
723
+ "step": 115
724
+ },
725
+ {
726
+ "epoch": 0.02,
727
+ "learning_rate": 5.958294717330862e-06,
728
+ "loss": 0.6618,
729
+ "step": 116
730
+ },
731
+ {
732
+ "epoch": 0.02,
733
+ "learning_rate": 5.957897524162585e-06,
734
+ "loss": 0.6703,
735
+ "step": 117
736
+ },
737
+ {
738
+ "epoch": 0.02,
739
+ "learning_rate": 5.957500330994307e-06,
740
+ "loss": 0.6417,
741
+ "step": 118
742
+ },
743
+ {
744
+ "epoch": 0.02,
745
+ "learning_rate": 5.957103137826029e-06,
746
+ "loss": 0.631,
747
+ "step": 119
748
+ },
749
+ {
750
+ "epoch": 0.02,
751
+ "learning_rate": 5.956705944657752e-06,
752
+ "loss": 0.6169,
753
+ "step": 120
754
+ },
755
+ {
756
+ "epoch": 0.02,
757
+ "learning_rate": 5.956308751489475e-06,
758
+ "loss": 0.6521,
759
+ "step": 121
760
+ },
761
+ {
762
+ "epoch": 0.02,
763
+ "learning_rate": 5.955911558321197e-06,
764
+ "loss": 0.6635,
765
+ "step": 122
766
+ },
767
+ {
768
+ "epoch": 0.02,
769
+ "learning_rate": 5.955514365152919e-06,
770
+ "loss": 0.6496,
771
+ "step": 123
772
+ },
773
+ {
774
+ "epoch": 0.02,
775
+ "learning_rate": 5.955117171984642e-06,
776
+ "loss": 0.6431,
777
+ "step": 124
778
+ },
779
+ {
780
+ "epoch": 0.02,
781
+ "learning_rate": 5.954719978816365e-06,
782
+ "loss": 0.6246,
783
+ "step": 125
784
+ },
785
+ {
786
+ "epoch": 0.02,
787
+ "learning_rate": 5.954322785648087e-06,
788
+ "loss": 0.6557,
789
+ "step": 126
790
+ },
791
+ {
792
+ "epoch": 0.02,
793
+ "learning_rate": 5.953925592479809e-06,
794
+ "loss": 0.6082,
795
+ "step": 127
796
+ },
797
+ {
798
+ "epoch": 0.02,
799
+ "learning_rate": 5.953528399311532e-06,
800
+ "loss": 0.5941,
801
+ "step": 128
802
+ },
803
+ {
804
+ "epoch": 0.02,
805
+ "learning_rate": 5.953131206143255e-06,
806
+ "loss": 0.6566,
807
+ "step": 129
808
+ },
809
+ {
810
+ "epoch": 0.02,
811
+ "learning_rate": 5.952734012974977e-06,
812
+ "loss": 0.6243,
813
+ "step": 130
814
+ },
815
+ {
816
+ "epoch": 0.02,
817
+ "learning_rate": 5.952336819806699e-06,
818
+ "loss": 0.594,
819
+ "step": 131
820
+ },
821
+ {
822
+ "epoch": 0.02,
823
+ "learning_rate": 5.951939626638422e-06,
824
+ "loss": 0.68,
825
+ "step": 132
826
+ },
827
+ {
828
+ "epoch": 0.02,
829
+ "learning_rate": 5.9515424334701446e-06,
830
+ "loss": 0.6302,
831
+ "step": 133
832
+ },
833
+ {
834
+ "epoch": 0.02,
835
+ "learning_rate": 5.951145240301867e-06,
836
+ "loss": 0.6251,
837
+ "step": 134
838
+ },
839
+ {
840
+ "epoch": 0.02,
841
+ "learning_rate": 5.950748047133589e-06,
842
+ "loss": 0.6326,
843
+ "step": 135
844
+ },
845
+ {
846
+ "epoch": 0.02,
847
+ "learning_rate": 5.950350853965312e-06,
848
+ "loss": 0.6314,
849
+ "step": 136
850
+ },
851
+ {
852
+ "epoch": 0.02,
853
+ "learning_rate": 5.949953660797034e-06,
854
+ "loss": 0.6598,
855
+ "step": 137
856
+ },
857
+ {
858
+ "epoch": 0.02,
859
+ "learning_rate": 5.949556467628757e-06,
860
+ "loss": 0.6583,
861
+ "step": 138
862
+ },
863
+ {
864
+ "epoch": 0.02,
865
+ "learning_rate": 5.949159274460479e-06,
866
+ "loss": 0.6162,
867
+ "step": 139
868
+ },
869
+ {
870
+ "epoch": 0.02,
871
+ "learning_rate": 5.948762081292202e-06,
872
+ "loss": 0.7042,
873
+ "step": 140
874
+ },
875
+ {
876
+ "epoch": 0.02,
877
+ "learning_rate": 5.9483648881239245e-06,
878
+ "loss": 0.6733,
879
+ "step": 141
880
+ },
881
+ {
882
+ "epoch": 0.02,
883
+ "learning_rate": 5.947967694955647e-06,
884
+ "loss": 0.6103,
885
+ "step": 142
886
+ },
887
+ {
888
+ "epoch": 0.02,
889
+ "learning_rate": 5.94757050178737e-06,
890
+ "loss": 0.6269,
891
+ "step": 143
892
+ },
893
+ {
894
+ "epoch": 0.02,
895
+ "learning_rate": 5.947173308619092e-06,
896
+ "loss": 0.663,
897
+ "step": 144
898
+ },
899
+ {
900
+ "epoch": 0.02,
901
+ "learning_rate": 5.946776115450814e-06,
902
+ "loss": 0.5794,
903
+ "step": 145
904
+ },
905
+ {
906
+ "epoch": 0.02,
907
+ "learning_rate": 5.946378922282537e-06,
908
+ "loss": 0.6868,
909
+ "step": 146
910
+ },
911
+ {
912
+ "epoch": 0.02,
913
+ "learning_rate": 5.945981729114259e-06,
914
+ "loss": 0.6064,
915
+ "step": 147
916
+ },
917
+ {
918
+ "epoch": 0.02,
919
+ "learning_rate": 5.945584535945982e-06,
920
+ "loss": 0.6519,
921
+ "step": 148
922
+ },
923
+ {
924
+ "epoch": 0.02,
925
+ "learning_rate": 5.9451873427777045e-06,
926
+ "loss": 0.655,
927
+ "step": 149
928
+ },
929
+ {
930
+ "epoch": 0.02,
931
+ "learning_rate": 5.944790149609427e-06,
932
+ "loss": 0.6617,
933
+ "step": 150
934
+ },
935
+ {
936
+ "epoch": 0.02,
937
+ "learning_rate": 5.94439295644115e-06,
938
+ "loss": 0.627,
939
+ "step": 151
940
+ },
941
+ {
942
+ "epoch": 0.02,
943
+ "learning_rate": 5.943995763272872e-06,
944
+ "loss": 0.5837,
945
+ "step": 152
946
+ },
947
+ {
948
+ "epoch": 0.02,
949
+ "learning_rate": 5.943598570104594e-06,
950
+ "loss": 0.6201,
951
+ "step": 153
952
+ },
953
+ {
954
+ "epoch": 0.02,
955
+ "learning_rate": 5.943201376936317e-06,
956
+ "loss": 0.6291,
957
+ "step": 154
958
+ },
959
+ {
960
+ "epoch": 0.02,
961
+ "learning_rate": 5.942804183768039e-06,
962
+ "loss": 0.6061,
963
+ "step": 155
964
+ },
965
+ {
966
+ "epoch": 0.02,
967
+ "learning_rate": 5.942406990599761e-06,
968
+ "loss": 0.624,
969
+ "step": 156
970
+ },
971
+ {
972
+ "epoch": 0.02,
973
+ "learning_rate": 5.942009797431484e-06,
974
+ "loss": 0.6418,
975
+ "step": 157
976
+ },
977
+ {
978
+ "epoch": 0.02,
979
+ "learning_rate": 5.941612604263207e-06,
980
+ "loss": 0.5858,
981
+ "step": 158
982
+ },
983
+ {
984
+ "epoch": 0.02,
985
+ "learning_rate": 5.94121541109493e-06,
986
+ "loss": 0.6407,
987
+ "step": 159
988
+ },
989
+ {
990
+ "epoch": 0.02,
991
+ "learning_rate": 5.940818217926652e-06,
992
+ "loss": 0.6222,
993
+ "step": 160
994
+ },
995
+ {
996
+ "epoch": 0.02,
997
+ "learning_rate": 5.940421024758374e-06,
998
+ "loss": 0.5938,
999
+ "step": 161
1000
+ },
1001
+ {
1002
+ "epoch": 0.02,
1003
+ "learning_rate": 5.940023831590097e-06,
1004
+ "loss": 0.6157,
1005
+ "step": 162
1006
+ },
1007
+ {
1008
+ "epoch": 0.02,
1009
+ "learning_rate": 5.939626638421819e-06,
1010
+ "loss": 0.5989,
1011
+ "step": 163
1012
+ },
1013
+ {
1014
+ "epoch": 0.02,
1015
+ "learning_rate": 5.939229445253541e-06,
1016
+ "loss": 0.7056,
1017
+ "step": 164
1018
+ },
1019
+ {
1020
+ "epoch": 0.02,
1021
+ "learning_rate": 5.938832252085264e-06,
1022
+ "loss": 0.6606,
1023
+ "step": 165
1024
+ },
1025
+ {
1026
+ "epoch": 0.02,
1027
+ "learning_rate": 5.9384350589169865e-06,
1028
+ "loss": 0.6303,
1029
+ "step": 166
1030
+ },
1031
+ {
1032
+ "epoch": 0.02,
1033
+ "learning_rate": 5.9380378657487095e-06,
1034
+ "loss": 0.6332,
1035
+ "step": 167
1036
+ },
1037
+ {
1038
+ "epoch": 0.02,
1039
+ "learning_rate": 5.937640672580432e-06,
1040
+ "loss": 0.6197,
1041
+ "step": 168
1042
+ },
1043
+ {
1044
+ "epoch": 0.02,
1045
+ "learning_rate": 5.937243479412155e-06,
1046
+ "loss": 0.6318,
1047
+ "step": 169
1048
+ },
1049
+ {
1050
+ "epoch": 0.02,
1051
+ "learning_rate": 5.936846286243877e-06,
1052
+ "loss": 0.6598,
1053
+ "step": 170
1054
+ },
1055
+ {
1056
+ "epoch": 0.02,
1057
+ "learning_rate": 5.936449093075599e-06,
1058
+ "loss": 0.662,
1059
+ "step": 171
1060
+ },
1061
+ {
1062
+ "epoch": 0.02,
1063
+ "learning_rate": 5.936051899907321e-06,
1064
+ "loss": 0.6018,
1065
+ "step": 172
1066
+ },
1067
+ {
1068
+ "epoch": 0.02,
1069
+ "learning_rate": 5.935654706739044e-06,
1070
+ "loss": 0.6955,
1071
+ "step": 173
1072
+ },
1073
+ {
1074
+ "epoch": 0.02,
1075
+ "learning_rate": 5.9352575135707665e-06,
1076
+ "loss": 0.6283,
1077
+ "step": 174
1078
+ },
1079
+ {
1080
+ "epoch": 0.02,
1081
+ "learning_rate": 5.934860320402489e-06,
1082
+ "loss": 0.6829,
1083
+ "step": 175
1084
+ },
1085
+ {
1086
+ "epoch": 0.02,
1087
+ "learning_rate": 5.934463127234212e-06,
1088
+ "loss": 0.5985,
1089
+ "step": 176
1090
+ },
1091
+ {
1092
+ "epoch": 0.02,
1093
+ "learning_rate": 5.934065934065935e-06,
1094
+ "loss": 0.6385,
1095
+ "step": 177
1096
+ },
1097
+ {
1098
+ "epoch": 0.02,
1099
+ "learning_rate": 5.933668740897657e-06,
1100
+ "loss": 0.6326,
1101
+ "step": 178
1102
+ },
1103
+ {
1104
+ "epoch": 0.02,
1105
+ "learning_rate": 5.933271547729379e-06,
1106
+ "loss": 0.639,
1107
+ "step": 179
1108
+ },
1109
+ {
1110
+ "epoch": 0.02,
1111
+ "learning_rate": 5.932874354561102e-06,
1112
+ "loss": 0.6084,
1113
+ "step": 180
1114
+ },
1115
+ {
1116
+ "epoch": 0.02,
1117
+ "learning_rate": 5.932477161392824e-06,
1118
+ "loss": 0.6549,
1119
+ "step": 181
1120
+ },
1121
+ {
1122
+ "epoch": 0.02,
1123
+ "learning_rate": 5.932079968224546e-06,
1124
+ "loss": 0.6728,
1125
+ "step": 182
1126
+ },
1127
+ {
1128
+ "epoch": 0.02,
1129
+ "learning_rate": 5.931682775056269e-06,
1130
+ "loss": 0.6351,
1131
+ "step": 183
1132
+ },
1133
+ {
1134
+ "epoch": 0.02,
1135
+ "learning_rate": 5.931285581887992e-06,
1136
+ "loss": 0.6375,
1137
+ "step": 184
1138
+ },
1139
+ {
1140
+ "epoch": 0.02,
1141
+ "learning_rate": 5.930888388719714e-06,
1142
+ "loss": 0.6814,
1143
+ "step": 185
1144
+ },
1145
+ {
1146
+ "epoch": 0.02,
1147
+ "learning_rate": 5.930491195551437e-06,
1148
+ "loss": 0.5968,
1149
+ "step": 186
1150
+ },
1151
+ {
1152
+ "epoch": 0.02,
1153
+ "learning_rate": 5.930094002383159e-06,
1154
+ "loss": 0.6053,
1155
+ "step": 187
1156
+ },
1157
+ {
1158
+ "epoch": 0.02,
1159
+ "learning_rate": 5.929696809214882e-06,
1160
+ "loss": 0.6468,
1161
+ "step": 188
1162
+ },
1163
+ {
1164
+ "epoch": 0.03,
1165
+ "learning_rate": 5.929299616046604e-06,
1166
+ "loss": 0.6407,
1167
+ "step": 189
1168
+ },
1169
+ {
1170
+ "epoch": 0.03,
1171
+ "learning_rate": 5.928902422878326e-06,
1172
+ "loss": 0.6996,
1173
+ "step": 190
1174
+ },
1175
+ {
1176
+ "epoch": 0.03,
1177
+ "learning_rate": 5.928505229710049e-06,
1178
+ "loss": 0.6158,
1179
+ "step": 191
1180
+ },
1181
+ {
1182
+ "epoch": 0.03,
1183
+ "learning_rate": 5.9281080365417716e-06,
1184
+ "loss": 0.6128,
1185
+ "step": 192
1186
+ },
1187
+ {
1188
+ "epoch": 0.03,
1189
+ "learning_rate": 5.927710843373494e-06,
1190
+ "loss": 0.6558,
1191
+ "step": 193
1192
+ },
1193
+ {
1194
+ "epoch": 0.03,
1195
+ "learning_rate": 5.927313650205216e-06,
1196
+ "loss": 0.6726,
1197
+ "step": 194
1198
+ },
1199
+ {
1200
+ "epoch": 0.03,
1201
+ "learning_rate": 5.92691645703694e-06,
1202
+ "loss": 0.6292,
1203
+ "step": 195
1204
+ },
1205
+ {
1206
+ "epoch": 0.03,
1207
+ "learning_rate": 5.926519263868662e-06,
1208
+ "loss": 0.6004,
1209
+ "step": 196
1210
+ },
1211
+ {
1212
+ "epoch": 0.03,
1213
+ "learning_rate": 5.926122070700384e-06,
1214
+ "loss": 0.599,
1215
+ "step": 197
1216
+ },
1217
+ {
1218
+ "epoch": 0.03,
1219
+ "learning_rate": 5.925724877532106e-06,
1220
+ "loss": 0.6374,
1221
+ "step": 198
1222
+ },
1223
+ {
1224
+ "epoch": 0.03,
1225
+ "learning_rate": 5.925327684363829e-06,
1226
+ "loss": 0.6472,
1227
+ "step": 199
1228
+ },
1229
+ {
1230
+ "epoch": 0.03,
1231
+ "learning_rate": 5.9249304911955515e-06,
1232
+ "loss": 0.594,
1233
+ "step": 200
1234
+ },
1235
+ {
1236
+ "epoch": 0.03,
1237
+ "learning_rate": 5.924533298027274e-06,
1238
+ "loss": 0.6382,
1239
+ "step": 201
1240
+ },
1241
+ {
1242
+ "epoch": 0.03,
1243
+ "learning_rate": 5.924136104858997e-06,
1244
+ "loss": 0.5817,
1245
+ "step": 202
1246
+ },
1247
+ {
1248
+ "epoch": 0.03,
1249
+ "learning_rate": 5.923738911690719e-06,
1250
+ "loss": 0.6128,
1251
+ "step": 203
1252
+ },
1253
+ {
1254
+ "epoch": 0.03,
1255
+ "learning_rate": 5.923341718522442e-06,
1256
+ "loss": 0.651,
1257
+ "step": 204
1258
+ },
1259
+ {
1260
+ "epoch": 0.03,
1261
+ "learning_rate": 5.922944525354164e-06,
1262
+ "loss": 0.5681,
1263
+ "step": 205
1264
+ },
1265
+ {
1266
+ "epoch": 0.03,
1267
+ "learning_rate": 5.922547332185887e-06,
1268
+ "loss": 0.6183,
1269
+ "step": 206
1270
+ },
1271
+ {
1272
+ "epoch": 0.03,
1273
+ "learning_rate": 5.922150139017609e-06,
1274
+ "loss": 0.5867,
1275
+ "step": 207
1276
+ },
1277
+ {
1278
+ "epoch": 0.03,
1279
+ "learning_rate": 5.9217529458493315e-06,
1280
+ "loss": 0.6048,
1281
+ "step": 208
1282
+ },
1283
+ {
1284
+ "epoch": 0.03,
1285
+ "learning_rate": 5.921355752681054e-06,
1286
+ "loss": 0.6968,
1287
+ "step": 209
1288
+ },
1289
+ {
1290
+ "epoch": 0.03,
1291
+ "learning_rate": 5.920958559512777e-06,
1292
+ "loss": 0.6259,
1293
+ "step": 210
1294
+ },
1295
+ {
1296
+ "epoch": 0.03,
1297
+ "learning_rate": 5.920561366344499e-06,
1298
+ "loss": 0.6076,
1299
+ "step": 211
1300
+ },
1301
+ {
1302
+ "epoch": 0.03,
1303
+ "learning_rate": 5.920164173176221e-06,
1304
+ "loss": 0.64,
1305
+ "step": 212
1306
+ },
1307
+ {
1308
+ "epoch": 0.03,
1309
+ "learning_rate": 5.919766980007944e-06,
1310
+ "loss": 0.6249,
1311
+ "step": 213
1312
+ },
1313
+ {
1314
+ "epoch": 0.03,
1315
+ "learning_rate": 5.919369786839667e-06,
1316
+ "loss": 0.6331,
1317
+ "step": 214
1318
+ },
1319
+ {
1320
+ "epoch": 0.03,
1321
+ "learning_rate": 5.918972593671389e-06,
1322
+ "loss": 0.6466,
1323
+ "step": 215
1324
+ },
1325
+ {
1326
+ "epoch": 0.03,
1327
+ "learning_rate": 5.918575400503111e-06,
1328
+ "loss": 0.5982,
1329
+ "step": 216
1330
+ },
1331
+ {
1332
+ "epoch": 0.03,
1333
+ "learning_rate": 5.9181782073348344e-06,
1334
+ "loss": 0.5719,
1335
+ "step": 217
1336
+ },
1337
+ {
1338
+ "epoch": 0.03,
1339
+ "learning_rate": 5.917781014166557e-06,
1340
+ "loss": 0.6032,
1341
+ "step": 218
1342
+ },
1343
+ {
1344
+ "epoch": 0.03,
1345
+ "learning_rate": 5.917383820998279e-06,
1346
+ "loss": 0.5741,
1347
+ "step": 219
1348
+ },
1349
+ {
1350
+ "epoch": 0.03,
1351
+ "learning_rate": 5.916986627830001e-06,
1352
+ "loss": 0.58,
1353
+ "step": 220
1354
+ },
1355
+ {
1356
+ "epoch": 0.03,
1357
+ "learning_rate": 5.916589434661724e-06,
1358
+ "loss": 0.6232,
1359
+ "step": 221
1360
+ },
1361
+ {
1362
+ "epoch": 0.03,
1363
+ "learning_rate": 5.916192241493446e-06,
1364
+ "loss": 0.6287,
1365
+ "step": 222
1366
+ },
1367
+ {
1368
+ "epoch": 0.03,
1369
+ "learning_rate": 5.915795048325169e-06,
1370
+ "loss": 0.6344,
1371
+ "step": 223
1372
+ },
1373
+ {
1374
+ "epoch": 0.03,
1375
+ "learning_rate": 5.915397855156891e-06,
1376
+ "loss": 0.6536,
1377
+ "step": 224
1378
+ },
1379
+ {
1380
+ "epoch": 0.03,
1381
+ "learning_rate": 5.915000661988614e-06,
1382
+ "loss": 0.6297,
1383
+ "step": 225
1384
+ },
1385
+ {
1386
+ "epoch": 0.03,
1387
+ "learning_rate": 5.9146034688203365e-06,
1388
+ "loss": 0.5635,
1389
+ "step": 226
1390
+ },
1391
+ {
1392
+ "epoch": 0.03,
1393
+ "learning_rate": 5.914206275652059e-06,
1394
+ "loss": 0.5931,
1395
+ "step": 227
1396
+ },
1397
+ {
1398
+ "epoch": 0.03,
1399
+ "learning_rate": 5.913809082483782e-06,
1400
+ "loss": 0.5681,
1401
+ "step": 228
1402
+ },
1403
+ {
1404
+ "epoch": 0.03,
1405
+ "learning_rate": 5.913411889315504e-06,
1406
+ "loss": 0.6155,
1407
+ "step": 229
1408
+ },
1409
+ {
1410
+ "epoch": 0.03,
1411
+ "learning_rate": 5.913014696147226e-06,
1412
+ "loss": 0.605,
1413
+ "step": 230
1414
+ },
1415
+ {
1416
+ "epoch": 0.03,
1417
+ "learning_rate": 5.912617502978948e-06,
1418
+ "loss": 0.6364,
1419
+ "step": 231
1420
+ },
1421
+ {
1422
+ "epoch": 0.03,
1423
+ "learning_rate": 5.912220309810671e-06,
1424
+ "loss": 0.6333,
1425
+ "step": 232
1426
+ },
1427
+ {
1428
+ "epoch": 0.03,
1429
+ "learning_rate": 5.911823116642394e-06,
1430
+ "loss": 0.6666,
1431
+ "step": 233
1432
+ },
1433
+ {
1434
+ "epoch": 0.03,
1435
+ "learning_rate": 5.9114259234741165e-06,
1436
+ "loss": 0.6296,
1437
+ "step": 234
1438
+ },
1439
+ {
1440
+ "epoch": 0.03,
1441
+ "learning_rate": 5.911028730305839e-06,
1442
+ "loss": 0.6422,
1443
+ "step": 235
1444
+ },
1445
+ {
1446
+ "epoch": 0.03,
1447
+ "learning_rate": 5.910631537137562e-06,
1448
+ "loss": 0.6426,
1449
+ "step": 236
1450
+ },
1451
+ {
1452
+ "epoch": 0.03,
1453
+ "learning_rate": 5.910234343969284e-06,
1454
+ "loss": 0.6389,
1455
+ "step": 237
1456
+ },
1457
+ {
1458
+ "epoch": 0.03,
1459
+ "learning_rate": 5.909837150801006e-06,
1460
+ "loss": 0.5695,
1461
+ "step": 238
1462
+ },
1463
+ {
1464
+ "epoch": 0.03,
1465
+ "learning_rate": 5.909439957632729e-06,
1466
+ "loss": 0.6271,
1467
+ "step": 239
1468
+ },
1469
+ {
1470
+ "epoch": 0.03,
1471
+ "learning_rate": 5.909042764464451e-06,
1472
+ "loss": 0.5981,
1473
+ "step": 240
1474
+ },
1475
+ {
1476
+ "epoch": 0.03,
1477
+ "learning_rate": 5.908645571296173e-06,
1478
+ "loss": 0.6345,
1479
+ "step": 241
1480
+ },
1481
+ {
1482
+ "epoch": 0.03,
1483
+ "learning_rate": 5.9082483781278964e-06,
1484
+ "loss": 0.6404,
1485
+ "step": 242
1486
+ },
1487
+ {
1488
+ "epoch": 0.03,
1489
+ "learning_rate": 5.9078511849596195e-06,
1490
+ "loss": 0.6046,
1491
+ "step": 243
1492
+ },
1493
+ {
1494
+ "epoch": 0.03,
1495
+ "learning_rate": 5.907453991791342e-06,
1496
+ "loss": 0.5791,
1497
+ "step": 244
1498
+ },
1499
+ {
1500
+ "epoch": 0.03,
1501
+ "learning_rate": 5.907056798623064e-06,
1502
+ "loss": 0.623,
1503
+ "step": 245
1504
+ },
1505
+ {
1506
+ "epoch": 0.03,
1507
+ "learning_rate": 5.906659605454786e-06,
1508
+ "loss": 0.6274,
1509
+ "step": 246
1510
+ },
1511
+ {
1512
+ "epoch": 0.03,
1513
+ "learning_rate": 5.906262412286509e-06,
1514
+ "loss": 0.629,
1515
+ "step": 247
1516
+ },
1517
+ {
1518
+ "epoch": 0.03,
1519
+ "learning_rate": 5.905865219118231e-06,
1520
+ "loss": 0.6967,
1521
+ "step": 248
1522
+ },
1523
+ {
1524
+ "epoch": 0.03,
1525
+ "learning_rate": 5.905468025949953e-06,
1526
+ "loss": 0.6649,
1527
+ "step": 249
1528
+ },
1529
+ {
1530
+ "epoch": 0.03,
1531
+ "learning_rate": 5.905070832781676e-06,
1532
+ "loss": 0.6514,
1533
+ "step": 250
1534
+ }
1535
+ ],
1536
+ "logging_steps": 1,
1537
+ "max_steps": 15116,
1538
+ "num_train_epochs": 2,
1539
+ "save_steps": 50,
1540
+ "total_flos": 1.048510703075328e+18,
1541
+ "trial_name": null,
1542
+ "trial_params": null
1543
+ }
checkpoint-250/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2f05be88d930176935da1678b48a8294634889bf7ae4f8bebdbaca140c2dac08
3
+ size 5947
checkpoint-250/zero_to_fp32.py ADDED
@@ -0,0 +1,587 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
215
+ elif zero_stage == 3:
216
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
217
+
218
+
219
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
220
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
221
+ return
222
+
223
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
224
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
225
+
226
+ if debug:
227
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
228
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
229
+
230
+ wanted_params = len(frozen_param_shapes)
231
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
232
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
233
+ print(f'Frozen params: Have {avail_numel} numels to process.')
234
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
235
+
236
+ total_params = 0
237
+ total_numel = 0
238
+ for name, shape in frozen_param_shapes.items():
239
+ total_params += 1
240
+ unpartitioned_numel = shape.numel()
241
+ total_numel += unpartitioned_numel
242
+
243
+ state_dict[name] = frozen_param_fragments[name]
244
+
245
+ if debug:
246
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
247
+
248
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
249
+
250
+
251
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
252
+ param_shapes = zero_model_states[0].param_shapes
253
+
254
+ # Reconstruction protocol:
255
+ #
256
+ # XXX: document this
257
+
258
+ if debug:
259
+ for i in range(world_size):
260
+ for j in range(len(fp32_flat_groups[0])):
261
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
262
+
263
+ # XXX: memory usage doubles here (zero2)
264
+ num_param_groups = len(fp32_flat_groups[0])
265
+ merged_single_partition_of_fp32_groups = []
266
+ for i in range(num_param_groups):
267
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
268
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
269
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
270
+ avail_numel = sum(
271
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
272
+
273
+ if debug:
274
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
275
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
276
+ # not asserting if there is a mismatch due to possible padding
277
+ print(f"Have {avail_numel} numels to process.")
278
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
279
+
280
+ # params
281
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
282
+ # out-of-core computing solution
283
+ total_numel = 0
284
+ total_params = 0
285
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
286
+ offset = 0
287
+ avail_numel = full_single_fp32_vector.numel()
288
+ for name, shape in shapes.items():
289
+
290
+ unpartitioned_numel = shape.numel()
291
+ total_numel += unpartitioned_numel
292
+ total_params += 1
293
+
294
+ if debug:
295
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
296
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
297
+ offset += unpartitioned_numel
298
+
299
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
300
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
301
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
302
+ # live optimizer object, so we are checking that the numbers are within the right range
303
+ align_to = 2 * world_size
304
+
305
+ def zero2_align(x):
306
+ return align_to * math.ceil(x / align_to)
307
+
308
+ if debug:
309
+ print(f"original offset={offset}, avail_numel={avail_numel}")
310
+
311
+ offset = zero2_align(offset)
312
+ avail_numel = zero2_align(avail_numel)
313
+
314
+ if debug:
315
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
316
+
317
+ # Sanity check
318
+ if offset != avail_numel:
319
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
320
+
321
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
322
+
323
+
324
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
325
+ state_dict = OrderedDict()
326
+
327
+ # buffers
328
+ buffers = zero_model_states[0].buffers
329
+ state_dict.update(buffers)
330
+ if debug:
331
+ print(f"added {len(buffers)} buffers")
332
+
333
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
334
+
335
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
336
+
337
+ # recover shared parameters
338
+ for pair in zero_model_states[0].shared_params:
339
+ if pair[1] in state_dict:
340
+ state_dict[pair[0]] = state_dict[pair[1]]
341
+
342
+ return state_dict
343
+
344
+
345
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
346
+ remainder = unpartitioned_numel % world_size
347
+ padding_numel = (world_size - remainder) if remainder else 0
348
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
349
+ return partitioned_numel, padding_numel
350
+
351
+
352
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
353
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
354
+ return
355
+
356
+ if debug:
357
+ for i in range(world_size):
358
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
359
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
360
+
361
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
362
+ wanted_params = len(frozen_param_shapes)
363
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
364
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
365
+ print(f'Frozen params: Have {avail_numel} numels to process.')
366
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
367
+
368
+ total_params = 0
369
+ total_numel = 0
370
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
371
+ total_params += 1
372
+ unpartitioned_numel = shape.numel()
373
+ total_numel += unpartitioned_numel
374
+
375
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
376
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
377
+
378
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
379
+
380
+ if debug:
381
+ print(
382
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
383
+ )
384
+
385
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
386
+
387
+
388
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
389
+ param_shapes = zero_model_states[0].param_shapes
390
+ avail_numel = fp32_flat_groups[0].numel() * world_size
391
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
392
+ # param, re-consolidating each param, while dealing with padding if any
393
+
394
+ # merge list of dicts, preserving order
395
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
396
+
397
+ if debug:
398
+ for i in range(world_size):
399
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
400
+
401
+ wanted_params = len(param_shapes)
402
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
403
+ # not asserting if there is a mismatch due to possible padding
404
+ avail_numel = fp32_flat_groups[0].numel() * world_size
405
+ print(f"Trainable params: Have {avail_numel} numels to process.")
406
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
407
+
408
+ # params
409
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
410
+ # out-of-core computing solution
411
+ offset = 0
412
+ total_numel = 0
413
+ total_params = 0
414
+ for name, shape in param_shapes.items():
415
+
416
+ unpartitioned_numel = shape.numel()
417
+ total_numel += unpartitioned_numel
418
+ total_params += 1
419
+
420
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
421
+
422
+ if debug:
423
+ print(
424
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
425
+ )
426
+
427
+ # XXX: memory usage doubles here
428
+ state_dict[name] = torch.cat(
429
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
430
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
431
+ offset += partitioned_numel
432
+
433
+ offset *= world_size
434
+
435
+ # Sanity check
436
+ if offset != avail_numel:
437
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
438
+
439
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
440
+
441
+
442
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
443
+ state_dict = OrderedDict()
444
+
445
+ # buffers
446
+ buffers = zero_model_states[0].buffers
447
+ state_dict.update(buffers)
448
+ if debug:
449
+ print(f"added {len(buffers)} buffers")
450
+
451
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
452
+
453
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
454
+
455
+ # recover shared parameters
456
+ for pair in zero_model_states[0].shared_params:
457
+ if pair[1] in state_dict:
458
+ state_dict[pair[0]] = state_dict[pair[1]]
459
+
460
+ return state_dict
461
+
462
+
463
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
464
+ """
465
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
466
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
467
+ via a model hub.
468
+
469
+ Args:
470
+ - ``checkpoint_dir``: path to the desired checkpoint folder
471
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
472
+
473
+ Returns:
474
+ - pytorch ``state_dict``
475
+
476
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
477
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
478
+ the checkpoint.
479
+
480
+ A typical usage might be ::
481
+
482
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
483
+ # do the training and checkpoint saving
484
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
485
+ model = model.cpu() # move to cpu
486
+ model.load_state_dict(state_dict)
487
+ # submit to model hub or save the model to share with others
488
+
489
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
490
+ application. i.e. you will need to re-initialize the deepspeed engine, since
491
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
492
+
493
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
494
+
495
+ """
496
+ if tag is None:
497
+ latest_path = os.path.join(checkpoint_dir, 'latest')
498
+ if os.path.isfile(latest_path):
499
+ with open(latest_path, 'r') as fd:
500
+ tag = fd.read().strip()
501
+ else:
502
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
503
+
504
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
505
+
506
+ if not os.path.isdir(ds_checkpoint_dir):
507
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
508
+
509
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
510
+
511
+
512
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
513
+ """
514
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
515
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
516
+
517
+ Args:
518
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
519
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
520
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
521
+ """
522
+
523
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
524
+ print(f"Saving fp32 state dict to {output_file}")
525
+ torch.save(state_dict, output_file)
526
+
527
+
528
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
529
+ """
530
+ 1. Put the provided model to cpu
531
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
532
+ 3. Load it into the provided model
533
+
534
+ Args:
535
+ - ``model``: the model object to update
536
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
537
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
538
+
539
+ Returns:
540
+ - ``model`: modified model
541
+
542
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
543
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
544
+ conveniently placed for you in the checkpoint folder.
545
+
546
+ A typical usage might be ::
547
+
548
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
549
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
550
+ # submit to model hub or save the model to share with others
551
+
552
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
553
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
554
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
555
+
556
+ """
557
+ logger.info(f"Extracting fp32 weights")
558
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
559
+
560
+ logger.info(f"Overwriting model with fp32 weights")
561
+ model = model.cpu()
562
+ model.load_state_dict(state_dict, strict=False)
563
+
564
+ return model
565
+
566
+
567
+ if __name__ == "__main__":
568
+
569
+ parser = argparse.ArgumentParser()
570
+ parser.add_argument("checkpoint_dir",
571
+ type=str,
572
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
573
+ parser.add_argument(
574
+ "output_file",
575
+ type=str,
576
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
577
+ parser.add_argument("-t",
578
+ "--tag",
579
+ type=str,
580
+ default=None,
581
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
582
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
583
+ args = parser.parse_args()
584
+
585
+ debug = args.debug
586
+
587
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mistralai/Mistral-7B-v0.1",
3
+ "architectures": [
4
+ "MistralForCausalLM"
5
+ ],
6
+ "bos_token_id": 1,
7
+ "eos_token_id": 2,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 4096,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 14336,
12
+ "max_position_embeddings": 32768,
13
+ "model_type": "mistral",
14
+ "num_attention_heads": 32,
15
+ "num_hidden_layers": 32,
16
+ "num_key_value_heads": 8,
17
+ "rms_norm_eps": 1e-05,
18
+ "rope_theta": 10000.0,
19
+ "sliding_window": 4096,
20
+ "tie_word_embeddings": false,
21
+ "torch_dtype": "bfloat16",
22
+ "transformers_version": "4.34.0.dev0",
23
+ "use_cache": false,
24
+ "vocab_size": 32002
25
+ }
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "transformers_version": "4.34.0.dev0"
6
+ }
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step250
pytorch_model-00001-of-00002.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0b50d9439b999b9fd5b6c2e695a1483624a4c6c6bcee46f35f79806dde564275
3
+ size 9943044428
pytorch_model-00002-of-00002.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2a838f1a551e9ca10152f3cdb899a08d47a341ddb20b01839dc38a3eb6dac268
3
+ size 4540552031
pytorch_model.bin.index.json ADDED
@@ -0,0 +1,298 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 14483496960
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "pytorch_model-00002-of-00002.bin",
7
+ "model.embed_tokens.weight": "pytorch_model-00001-of-00002.bin",
8
+ "model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
9
+ "model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
10
+ "model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
11
+ "model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
12
+ "model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
13
+ "model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
14
+ "model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
15
+ "model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
16
+ "model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
17
+ "model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
18
+ "model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
19
+ "model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
20
+ "model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
21
+ "model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
22
+ "model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
23
+ "model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
24
+ "model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
25
+ "model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
26
+ "model.layers.10.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
27
+ "model.layers.10.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
28
+ "model.layers.10.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
29
+ "model.layers.10.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
30
+ "model.layers.10.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
31
+ "model.layers.10.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
32
+ "model.layers.10.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
33
+ "model.layers.10.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
34
+ "model.layers.10.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
35
+ "model.layers.11.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
36
+ "model.layers.11.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
37
+ "model.layers.11.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
38
+ "model.layers.11.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
39
+ "model.layers.11.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
40
+ "model.layers.11.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
41
+ "model.layers.11.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
42
+ "model.layers.11.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
43
+ "model.layers.11.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
44
+ "model.layers.12.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
45
+ "model.layers.12.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
46
+ "model.layers.12.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
47
+ "model.layers.12.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
48
+ "model.layers.12.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
49
+ "model.layers.12.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
50
+ "model.layers.12.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
51
+ "model.layers.12.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
52
+ "model.layers.12.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
53
+ "model.layers.13.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
54
+ "model.layers.13.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
55
+ "model.layers.13.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
56
+ "model.layers.13.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
57
+ "model.layers.13.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
58
+ "model.layers.13.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
59
+ "model.layers.13.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
60
+ "model.layers.13.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
61
+ "model.layers.13.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
62
+ "model.layers.14.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
63
+ "model.layers.14.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
64
+ "model.layers.14.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
65
+ "model.layers.14.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
66
+ "model.layers.14.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
67
+ "model.layers.14.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
68
+ "model.layers.14.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
69
+ "model.layers.14.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
70
+ "model.layers.14.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
71
+ "model.layers.15.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
72
+ "model.layers.15.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
73
+ "model.layers.15.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
74
+ "model.layers.15.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
75
+ "model.layers.15.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
76
+ "model.layers.15.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
77
+ "model.layers.15.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
78
+ "model.layers.15.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
79
+ "model.layers.15.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
80
+ "model.layers.16.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
81
+ "model.layers.16.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
82
+ "model.layers.16.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
83
+ "model.layers.16.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
84
+ "model.layers.16.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
85
+ "model.layers.16.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
86
+ "model.layers.16.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
87
+ "model.layers.16.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
88
+ "model.layers.16.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
89
+ "model.layers.17.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
90
+ "model.layers.17.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
91
+ "model.layers.17.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
92
+ "model.layers.17.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
93
+ "model.layers.17.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
94
+ "model.layers.17.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
95
+ "model.layers.17.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
96
+ "model.layers.17.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
97
+ "model.layers.17.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
98
+ "model.layers.18.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
99
+ "model.layers.18.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
100
+ "model.layers.18.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
101
+ "model.layers.18.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
102
+ "model.layers.18.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
103
+ "model.layers.18.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
104
+ "model.layers.18.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
105
+ "model.layers.18.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
106
+ "model.layers.18.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
107
+ "model.layers.19.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
108
+ "model.layers.19.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
109
+ "model.layers.19.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
110
+ "model.layers.19.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
111
+ "model.layers.19.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
112
+ "model.layers.19.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
113
+ "model.layers.19.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
114
+ "model.layers.19.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
115
+ "model.layers.19.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
116
+ "model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
117
+ "model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
118
+ "model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
119
+ "model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
120
+ "model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
121
+ "model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
122
+ "model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
123
+ "model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
124
+ "model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
125
+ "model.layers.20.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
126
+ "model.layers.20.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
127
+ "model.layers.20.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
128
+ "model.layers.20.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
129
+ "model.layers.20.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
130
+ "model.layers.20.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
131
+ "model.layers.20.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
132
+ "model.layers.20.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
133
+ "model.layers.20.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
134
+ "model.layers.21.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
135
+ "model.layers.21.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
136
+ "model.layers.21.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
137
+ "model.layers.21.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
138
+ "model.layers.21.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
139
+ "model.layers.21.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
140
+ "model.layers.21.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
141
+ "model.layers.21.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
142
+ "model.layers.21.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
143
+ "model.layers.22.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
144
+ "model.layers.22.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
145
+ "model.layers.22.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
146
+ "model.layers.22.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
147
+ "model.layers.22.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
148
+ "model.layers.22.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
149
+ "model.layers.22.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
150
+ "model.layers.22.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
151
+ "model.layers.22.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
152
+ "model.layers.23.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
153
+ "model.layers.23.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
154
+ "model.layers.23.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
155
+ "model.layers.23.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
156
+ "model.layers.23.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
157
+ "model.layers.23.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
158
+ "model.layers.23.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
159
+ "model.layers.23.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
160
+ "model.layers.23.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
161
+ "model.layers.24.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
162
+ "model.layers.24.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
163
+ "model.layers.24.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
164
+ "model.layers.24.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
165
+ "model.layers.24.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
166
+ "model.layers.24.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
167
+ "model.layers.24.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
168
+ "model.layers.24.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
169
+ "model.layers.24.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
170
+ "model.layers.25.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
171
+ "model.layers.25.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
172
+ "model.layers.25.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
173
+ "model.layers.25.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
174
+ "model.layers.25.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
175
+ "model.layers.25.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
176
+ "model.layers.25.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
177
+ "model.layers.25.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
178
+ "model.layers.25.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
179
+ "model.layers.26.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
180
+ "model.layers.26.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
181
+ "model.layers.26.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
182
+ "model.layers.26.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
183
+ "model.layers.26.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
184
+ "model.layers.26.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
185
+ "model.layers.26.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
186
+ "model.layers.26.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
187
+ "model.layers.26.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
188
+ "model.layers.27.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
189
+ "model.layers.27.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
190
+ "model.layers.27.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
191
+ "model.layers.27.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
192
+ "model.layers.27.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
193
+ "model.layers.27.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
194
+ "model.layers.27.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
195
+ "model.layers.27.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
196
+ "model.layers.27.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
197
+ "model.layers.28.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
198
+ "model.layers.28.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
199
+ "model.layers.28.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
200
+ "model.layers.28.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
201
+ "model.layers.28.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
202
+ "model.layers.28.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
203
+ "model.layers.28.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
204
+ "model.layers.28.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
205
+ "model.layers.28.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
206
+ "model.layers.29.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
207
+ "model.layers.29.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
208
+ "model.layers.29.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
209
+ "model.layers.29.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
210
+ "model.layers.29.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
211
+ "model.layers.29.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
212
+ "model.layers.29.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
213
+ "model.layers.29.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
214
+ "model.layers.29.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
215
+ "model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
216
+ "model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
217
+ "model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
218
+ "model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
219
+ "model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
220
+ "model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
221
+ "model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
222
+ "model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
223
+ "model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
224
+ "model.layers.30.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
225
+ "model.layers.30.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
226
+ "model.layers.30.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
227
+ "model.layers.30.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
228
+ "model.layers.30.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
229
+ "model.layers.30.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
230
+ "model.layers.30.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
231
+ "model.layers.30.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
232
+ "model.layers.30.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
233
+ "model.layers.31.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
234
+ "model.layers.31.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
235
+ "model.layers.31.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
236
+ "model.layers.31.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
237
+ "model.layers.31.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
238
+ "model.layers.31.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
239
+ "model.layers.31.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
240
+ "model.layers.31.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
241
+ "model.layers.31.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
242
+ "model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
243
+ "model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
244
+ "model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
245
+ "model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
246
+ "model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
247
+ "model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
248
+ "model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
249
+ "model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
250
+ "model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
251
+ "model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
252
+ "model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
253
+ "model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
254
+ "model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
255
+ "model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
256
+ "model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
257
+ "model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
258
+ "model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
259
+ "model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
260
+ "model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
261
+ "model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
262
+ "model.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
263
+ "model.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
264
+ "model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
265
+ "model.layers.6.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
266
+ "model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
267
+ "model.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
268
+ "model.layers.6.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
269
+ "model.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
270
+ "model.layers.7.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
271
+ "model.layers.7.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
272
+ "model.layers.7.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
273
+ "model.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
274
+ "model.layers.7.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
275
+ "model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
276
+ "model.layers.7.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
277
+ "model.layers.7.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
278
+ "model.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
279
+ "model.layers.8.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
280
+ "model.layers.8.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
281
+ "model.layers.8.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
282
+ "model.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
283
+ "model.layers.8.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
284
+ "model.layers.8.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
285
+ "model.layers.8.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
286
+ "model.layers.8.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
287
+ "model.layers.9.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
288
+ "model.layers.9.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
289
+ "model.layers.9.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
290
+ "model.layers.9.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
291
+ "model.layers.9.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
292
+ "model.layers.9.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
293
+ "model.layers.9.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
294
+ "model.layers.9.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
295
+ "model.layers.9.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
296
+ "model.norm.weight": "pytorch_model-00002-of-00002.bin"
297
+ }
298
+ }
rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1eafe3d5e0585dde8c5033613de99a5d4f23df4284a488f4007b3944580c0b97
3
+ size 17655
rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7e34eb456d2d003a2839f2daa9425e99bdd79ed7e24a1de9fc7d5738476bfb4b
3
+ size 17655
rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b374af4a2765d8771cee7a72921d3c2e438b9bee34f0b2d098ce6071afeb65e4
3
+ size 17655
rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5df75d8477fcc69c7abb03025313915ebfe3ac18c54a7c57aaa455c0099e13e5
3
+ size 17655