“pharaouk”
commited on
Commit
·
9022f69
1
Parent(s):
f2ee30f
This view is limited to 50 files because it contains too many changes.
See raw diff
- added_tokens.json +7 -0
- checkpoint-150/config.json +25 -0
- checkpoint-150/generation_config.json +6 -0
- checkpoint-150/latest +1 -0
- checkpoint-150/pytorch_model-00001-of-00002.bin +3 -0
- checkpoint-150/pytorch_model-00002-of-00002.bin +3 -0
- checkpoint-150/pytorch_model.bin.index.json +298 -0
- checkpoint-150/rng_state_0.pth +3 -0
- checkpoint-150/rng_state_1.pth +3 -0
- checkpoint-150/rng_state_2.pth +3 -0
- checkpoint-150/rng_state_3.pth +3 -0
- checkpoint-150/trainer_state.json +943 -0
- checkpoint-150/training_args.bin +3 -0
- checkpoint-150/zero_to_fp32.py +587 -0
- checkpoint-200/config.json +25 -0
- checkpoint-200/generation_config.json +6 -0
- checkpoint-200/latest +1 -0
- checkpoint-200/pytorch_model-00001-of-00002.bin +3 -0
- checkpoint-200/pytorch_model-00002-of-00002.bin +3 -0
- checkpoint-200/pytorch_model.bin.index.json +298 -0
- checkpoint-200/rng_state_0.pth +3 -0
- checkpoint-200/rng_state_1.pth +3 -0
- checkpoint-200/rng_state_2.pth +3 -0
- checkpoint-200/rng_state_3.pth +3 -0
- checkpoint-200/trainer_state.json +1243 -0
- checkpoint-200/training_args.bin +3 -0
- checkpoint-200/zero_to_fp32.py +587 -0
- checkpoint-250/config.json +25 -0
- checkpoint-250/generation_config.json +6 -0
- checkpoint-250/latest +1 -0
- checkpoint-250/pytorch_model-00001-of-00002.bin +3 -0
- checkpoint-250/pytorch_model-00002-of-00002.bin +3 -0
- checkpoint-250/pytorch_model.bin.index.json +298 -0
- checkpoint-250/rng_state_0.pth +3 -0
- checkpoint-250/rng_state_1.pth +3 -0
- checkpoint-250/rng_state_2.pth +3 -0
- checkpoint-250/rng_state_3.pth +3 -0
- checkpoint-250/trainer_state.json +1543 -0
- checkpoint-250/training_args.bin +3 -0
- checkpoint-250/zero_to_fp32.py +587 -0
- config.json +25 -0
- generation_config.json +6 -0
- latest +1 -0
- pytorch_model-00001-of-00002.bin +3 -0
- pytorch_model-00002-of-00002.bin +3 -0
- pytorch_model.bin.index.json +298 -0
- rng_state_0.pth +3 -0
- rng_state_1.pth +3 -0
- rng_state_2.pth +3 -0
- rng_state_3.pth +3 -0
added_tokens.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</s>": 2,
|
3 |
+
"<s>": 1,
|
4 |
+
"<unk>": 0,
|
5 |
+
"<|im_end|>": 32000,
|
6 |
+
"<|im_start|>": 32001
|
7 |
+
}
|
checkpoint-150/config.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "mistralai/Mistral-7B-v0.1",
|
3 |
+
"architectures": [
|
4 |
+
"MistralForCausalLM"
|
5 |
+
],
|
6 |
+
"bos_token_id": 1,
|
7 |
+
"eos_token_id": 2,
|
8 |
+
"hidden_act": "silu",
|
9 |
+
"hidden_size": 4096,
|
10 |
+
"initializer_range": 0.02,
|
11 |
+
"intermediate_size": 14336,
|
12 |
+
"max_position_embeddings": 32768,
|
13 |
+
"model_type": "mistral",
|
14 |
+
"num_attention_heads": 32,
|
15 |
+
"num_hidden_layers": 32,
|
16 |
+
"num_key_value_heads": 8,
|
17 |
+
"rms_norm_eps": 1e-05,
|
18 |
+
"rope_theta": 10000.0,
|
19 |
+
"sliding_window": 4096,
|
20 |
+
"tie_word_embeddings": false,
|
21 |
+
"torch_dtype": "bfloat16",
|
22 |
+
"transformers_version": "4.34.0.dev0",
|
23 |
+
"use_cache": false,
|
24 |
+
"vocab_size": 32002
|
25 |
+
}
|
checkpoint-150/generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"transformers_version": "4.34.0.dev0"
|
6 |
+
}
|
checkpoint-150/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step150
|
checkpoint-150/pytorch_model-00001-of-00002.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5dfffab3ff404e1f12ab78eeaa64de020182e23ef1fdf655b67f138f53b57776
|
3 |
+
size 9943044428
|
checkpoint-150/pytorch_model-00002-of-00002.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b5d5ce3c93e1b594fb0c685762baf81fb339d78111f6fe4459084b45d5dbc36d
|
3 |
+
size 4540552031
|
checkpoint-150/pytorch_model.bin.index.json
ADDED
@@ -0,0 +1,298 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 14483496960
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "pytorch_model-00002-of-00002.bin",
|
7 |
+
"model.embed_tokens.weight": "pytorch_model-00001-of-00002.bin",
|
8 |
+
"model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
13 |
+
"model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
14 |
+
"model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
15 |
+
"model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
16 |
+
"model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
17 |
+
"model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
18 |
+
"model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
19 |
+
"model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
20 |
+
"model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
21 |
+
"model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
22 |
+
"model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
23 |
+
"model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
24 |
+
"model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
25 |
+
"model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
26 |
+
"model.layers.10.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
27 |
+
"model.layers.10.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
28 |
+
"model.layers.10.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
29 |
+
"model.layers.10.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
30 |
+
"model.layers.10.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
31 |
+
"model.layers.10.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
32 |
+
"model.layers.10.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
33 |
+
"model.layers.10.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
34 |
+
"model.layers.10.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
35 |
+
"model.layers.11.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
36 |
+
"model.layers.11.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
37 |
+
"model.layers.11.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
38 |
+
"model.layers.11.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
39 |
+
"model.layers.11.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
40 |
+
"model.layers.11.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
41 |
+
"model.layers.11.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
42 |
+
"model.layers.11.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
43 |
+
"model.layers.11.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
44 |
+
"model.layers.12.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
45 |
+
"model.layers.12.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
46 |
+
"model.layers.12.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
47 |
+
"model.layers.12.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
48 |
+
"model.layers.12.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
49 |
+
"model.layers.12.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
50 |
+
"model.layers.12.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
51 |
+
"model.layers.12.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
52 |
+
"model.layers.12.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
53 |
+
"model.layers.13.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
54 |
+
"model.layers.13.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
55 |
+
"model.layers.13.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
56 |
+
"model.layers.13.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
57 |
+
"model.layers.13.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
58 |
+
"model.layers.13.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
59 |
+
"model.layers.13.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
60 |
+
"model.layers.13.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
61 |
+
"model.layers.13.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
62 |
+
"model.layers.14.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
63 |
+
"model.layers.14.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
64 |
+
"model.layers.14.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
65 |
+
"model.layers.14.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
66 |
+
"model.layers.14.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
67 |
+
"model.layers.14.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
68 |
+
"model.layers.14.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
69 |
+
"model.layers.14.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
70 |
+
"model.layers.14.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
71 |
+
"model.layers.15.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
72 |
+
"model.layers.15.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
73 |
+
"model.layers.15.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
74 |
+
"model.layers.15.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
75 |
+
"model.layers.15.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
76 |
+
"model.layers.15.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
77 |
+
"model.layers.15.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
78 |
+
"model.layers.15.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
79 |
+
"model.layers.15.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
80 |
+
"model.layers.16.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
81 |
+
"model.layers.16.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
82 |
+
"model.layers.16.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
83 |
+
"model.layers.16.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
84 |
+
"model.layers.16.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
85 |
+
"model.layers.16.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
86 |
+
"model.layers.16.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
87 |
+
"model.layers.16.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
88 |
+
"model.layers.16.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
89 |
+
"model.layers.17.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
90 |
+
"model.layers.17.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
91 |
+
"model.layers.17.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
92 |
+
"model.layers.17.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
93 |
+
"model.layers.17.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
94 |
+
"model.layers.17.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
95 |
+
"model.layers.17.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
96 |
+
"model.layers.17.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
97 |
+
"model.layers.17.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
98 |
+
"model.layers.18.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
99 |
+
"model.layers.18.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
100 |
+
"model.layers.18.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
101 |
+
"model.layers.18.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
102 |
+
"model.layers.18.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
103 |
+
"model.layers.18.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
104 |
+
"model.layers.18.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
105 |
+
"model.layers.18.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
106 |
+
"model.layers.18.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
107 |
+
"model.layers.19.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
108 |
+
"model.layers.19.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
109 |
+
"model.layers.19.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
110 |
+
"model.layers.19.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
111 |
+
"model.layers.19.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
112 |
+
"model.layers.19.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
113 |
+
"model.layers.19.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
114 |
+
"model.layers.19.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
115 |
+
"model.layers.19.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
116 |
+
"model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
117 |
+
"model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
118 |
+
"model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
119 |
+
"model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
120 |
+
"model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
121 |
+
"model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
122 |
+
"model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
123 |
+
"model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
124 |
+
"model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
125 |
+
"model.layers.20.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
126 |
+
"model.layers.20.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
127 |
+
"model.layers.20.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
128 |
+
"model.layers.20.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
129 |
+
"model.layers.20.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
130 |
+
"model.layers.20.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
131 |
+
"model.layers.20.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
132 |
+
"model.layers.20.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
133 |
+
"model.layers.20.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
134 |
+
"model.layers.21.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
135 |
+
"model.layers.21.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
136 |
+
"model.layers.21.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
137 |
+
"model.layers.21.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
138 |
+
"model.layers.21.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
139 |
+
"model.layers.21.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
140 |
+
"model.layers.21.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
141 |
+
"model.layers.21.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
142 |
+
"model.layers.21.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
143 |
+
"model.layers.22.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
144 |
+
"model.layers.22.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
145 |
+
"model.layers.22.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
146 |
+
"model.layers.22.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
147 |
+
"model.layers.22.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
148 |
+
"model.layers.22.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
149 |
+
"model.layers.22.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
150 |
+
"model.layers.22.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
151 |
+
"model.layers.22.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
152 |
+
"model.layers.23.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
153 |
+
"model.layers.23.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
154 |
+
"model.layers.23.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
155 |
+
"model.layers.23.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
156 |
+
"model.layers.23.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
157 |
+
"model.layers.23.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
158 |
+
"model.layers.23.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
159 |
+
"model.layers.23.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
160 |
+
"model.layers.23.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
161 |
+
"model.layers.24.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
162 |
+
"model.layers.24.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
163 |
+
"model.layers.24.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
164 |
+
"model.layers.24.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
165 |
+
"model.layers.24.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
166 |
+
"model.layers.24.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
167 |
+
"model.layers.24.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
168 |
+
"model.layers.24.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
169 |
+
"model.layers.24.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
170 |
+
"model.layers.25.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
171 |
+
"model.layers.25.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
172 |
+
"model.layers.25.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
173 |
+
"model.layers.25.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
174 |
+
"model.layers.25.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
175 |
+
"model.layers.25.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
176 |
+
"model.layers.25.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
177 |
+
"model.layers.25.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
178 |
+
"model.layers.25.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
179 |
+
"model.layers.26.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
180 |
+
"model.layers.26.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
181 |
+
"model.layers.26.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
182 |
+
"model.layers.26.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
183 |
+
"model.layers.26.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
184 |
+
"model.layers.26.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
185 |
+
"model.layers.26.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
186 |
+
"model.layers.26.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
187 |
+
"model.layers.26.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
188 |
+
"model.layers.27.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
189 |
+
"model.layers.27.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
190 |
+
"model.layers.27.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
191 |
+
"model.layers.27.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
192 |
+
"model.layers.27.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
193 |
+
"model.layers.27.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
194 |
+
"model.layers.27.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
195 |
+
"model.layers.27.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
196 |
+
"model.layers.27.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
197 |
+
"model.layers.28.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
198 |
+
"model.layers.28.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
199 |
+
"model.layers.28.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
200 |
+
"model.layers.28.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
201 |
+
"model.layers.28.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
202 |
+
"model.layers.28.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
203 |
+
"model.layers.28.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
204 |
+
"model.layers.28.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
205 |
+
"model.layers.28.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
206 |
+
"model.layers.29.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
207 |
+
"model.layers.29.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
208 |
+
"model.layers.29.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
209 |
+
"model.layers.29.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
210 |
+
"model.layers.29.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
211 |
+
"model.layers.29.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
212 |
+
"model.layers.29.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
213 |
+
"model.layers.29.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
214 |
+
"model.layers.29.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
215 |
+
"model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
216 |
+
"model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
217 |
+
"model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
218 |
+
"model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
219 |
+
"model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
220 |
+
"model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
221 |
+
"model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
222 |
+
"model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
223 |
+
"model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
224 |
+
"model.layers.30.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
225 |
+
"model.layers.30.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
226 |
+
"model.layers.30.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
227 |
+
"model.layers.30.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
228 |
+
"model.layers.30.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
229 |
+
"model.layers.30.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
230 |
+
"model.layers.30.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
231 |
+
"model.layers.30.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
232 |
+
"model.layers.30.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
233 |
+
"model.layers.31.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
234 |
+
"model.layers.31.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
235 |
+
"model.layers.31.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
236 |
+
"model.layers.31.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
237 |
+
"model.layers.31.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
238 |
+
"model.layers.31.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
239 |
+
"model.layers.31.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
240 |
+
"model.layers.31.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
241 |
+
"model.layers.31.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
242 |
+
"model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
243 |
+
"model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
244 |
+
"model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
245 |
+
"model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
246 |
+
"model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
247 |
+
"model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
248 |
+
"model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
249 |
+
"model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
250 |
+
"model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
251 |
+
"model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
252 |
+
"model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
253 |
+
"model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
254 |
+
"model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
255 |
+
"model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
256 |
+
"model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
257 |
+
"model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
258 |
+
"model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
259 |
+
"model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
260 |
+
"model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
261 |
+
"model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
262 |
+
"model.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
263 |
+
"model.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
264 |
+
"model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
265 |
+
"model.layers.6.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
266 |
+
"model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
267 |
+
"model.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
268 |
+
"model.layers.6.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
269 |
+
"model.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
270 |
+
"model.layers.7.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
271 |
+
"model.layers.7.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
272 |
+
"model.layers.7.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
273 |
+
"model.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
274 |
+
"model.layers.7.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
275 |
+
"model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
276 |
+
"model.layers.7.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
277 |
+
"model.layers.7.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
278 |
+
"model.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
279 |
+
"model.layers.8.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
280 |
+
"model.layers.8.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
281 |
+
"model.layers.8.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
282 |
+
"model.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
283 |
+
"model.layers.8.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
284 |
+
"model.layers.8.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
285 |
+
"model.layers.8.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
286 |
+
"model.layers.8.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
287 |
+
"model.layers.9.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
288 |
+
"model.layers.9.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
289 |
+
"model.layers.9.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
290 |
+
"model.layers.9.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
291 |
+
"model.layers.9.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
292 |
+
"model.layers.9.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
293 |
+
"model.layers.9.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
294 |
+
"model.layers.9.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
295 |
+
"model.layers.9.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
296 |
+
"model.norm.weight": "pytorch_model-00002-of-00002.bin"
|
297 |
+
}
|
298 |
+
}
|
checkpoint-150/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1eafe3d5e0585dde8c5033613de99a5d4f23df4284a488f4007b3944580c0b97
|
3 |
+
size 17655
|
checkpoint-150/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7e34eb456d2d003a2839f2daa9425e99bdd79ed7e24a1de9fc7d5738476bfb4b
|
3 |
+
size 17655
|
checkpoint-150/rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b374af4a2765d8771cee7a72921d3c2e438b9bee34f0b2d098ce6071afeb65e4
|
3 |
+
size 17655
|
checkpoint-150/rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5df75d8477fcc69c7abb03025313915ebfe3ac18c54a7c57aaa455c0099e13e5
|
3 |
+
size 17655
|
checkpoint-150/trainer_state.json
ADDED
@@ -0,0 +1,943 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.019846520243450648,
|
5 |
+
"eval_steps": 756,
|
6 |
+
"global_step": 150,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.0,
|
13 |
+
"learning_rate": 0.0,
|
14 |
+
"loss": 0.9197,
|
15 |
+
"step": 1
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"epoch": 0.0,
|
19 |
+
"eval_loss": 1.4652303457260132,
|
20 |
+
"eval_runtime": 2.1726,
|
21 |
+
"eval_samples_per_second": 79.627,
|
22 |
+
"eval_steps_per_second": 3.682,
|
23 |
+
"step": 1
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.0,
|
27 |
+
"eval_bench_accuracy_agieval": 0.2711864406779661,
|
28 |
+
"eval_bench_accuracy_arc_challenge": 0.8703703703703703,
|
29 |
+
"eval_bench_accuracy_arc_easy": 0.9259259259259259,
|
30 |
+
"eval_bench_accuracy_bigbench": 0.36065573770491804,
|
31 |
+
"eval_bench_accuracy_boolq": 0.5740740740740741,
|
32 |
+
"eval_bench_accuracy_mmlu": 0.5185185185185185,
|
33 |
+
"eval_bench_accuracy_openbookqa": 0.1111111111111111,
|
34 |
+
"eval_bench_accuracy_truthful_qa": 0.3584905660377358,
|
35 |
+
"eval_bench_accuracy_winogrande": 0.4444444444444444,
|
36 |
+
"eval_bench_average_accuracy": 0.4927530209850072,
|
37 |
+
"eval_bench_loss": 2.6978388407144203,
|
38 |
+
"eval_bench_total_accuracy": 0.48893360160965793,
|
39 |
+
"step": 1
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.0,
|
43 |
+
"learning_rate": 6.000000000000001e-07,
|
44 |
+
"loss": 1.3426,
|
45 |
+
"step": 2
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.0,
|
49 |
+
"learning_rate": 1.2000000000000002e-06,
|
50 |
+
"loss": 1.5882,
|
51 |
+
"step": 3
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.0,
|
55 |
+
"learning_rate": 1.8e-06,
|
56 |
+
"loss": 0.8542,
|
57 |
+
"step": 4
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"epoch": 0.0,
|
61 |
+
"learning_rate": 2.4000000000000003e-06,
|
62 |
+
"loss": 0.9629,
|
63 |
+
"step": 5
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"epoch": 0.0,
|
67 |
+
"learning_rate": 3e-06,
|
68 |
+
"loss": 0.903,
|
69 |
+
"step": 6
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.0,
|
73 |
+
"learning_rate": 3.6e-06,
|
74 |
+
"loss": 0.909,
|
75 |
+
"step": 7
|
76 |
+
},
|
77 |
+
{
|
78 |
+
"epoch": 0.0,
|
79 |
+
"learning_rate": 4.2e-06,
|
80 |
+
"loss": 0.8666,
|
81 |
+
"step": 8
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"epoch": 0.0,
|
85 |
+
"learning_rate": 4.800000000000001e-06,
|
86 |
+
"loss": 1.0108,
|
87 |
+
"step": 9
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 0.0,
|
91 |
+
"learning_rate": 5.4e-06,
|
92 |
+
"loss": 0.8958,
|
93 |
+
"step": 10
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.0,
|
97 |
+
"learning_rate": 6e-06,
|
98 |
+
"loss": 0.9348,
|
99 |
+
"step": 11
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.0,
|
103 |
+
"learning_rate": 5.999602806831722e-06,
|
104 |
+
"loss": 0.7832,
|
105 |
+
"step": 12
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"epoch": 0.0,
|
109 |
+
"learning_rate": 5.999205613663445e-06,
|
110 |
+
"loss": 0.8083,
|
111 |
+
"step": 13
|
112 |
+
},
|
113 |
+
{
|
114 |
+
"epoch": 0.0,
|
115 |
+
"learning_rate": 5.9988084204951675e-06,
|
116 |
+
"loss": 0.8164,
|
117 |
+
"step": 14
|
118 |
+
},
|
119 |
+
{
|
120 |
+
"epoch": 0.0,
|
121 |
+
"learning_rate": 5.99841122732689e-06,
|
122 |
+
"loss": 0.7834,
|
123 |
+
"step": 15
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"epoch": 0.0,
|
127 |
+
"learning_rate": 5.998014034158613e-06,
|
128 |
+
"loss": 0.8718,
|
129 |
+
"step": 16
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.0,
|
133 |
+
"learning_rate": 5.997616840990336e-06,
|
134 |
+
"loss": 0.84,
|
135 |
+
"step": 17
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.0,
|
139 |
+
"learning_rate": 5.997219647822058e-06,
|
140 |
+
"loss": 0.7397,
|
141 |
+
"step": 18
|
142 |
+
},
|
143 |
+
{
|
144 |
+
"epoch": 0.0,
|
145 |
+
"learning_rate": 5.99682245465378e-06,
|
146 |
+
"loss": 0.7445,
|
147 |
+
"step": 19
|
148 |
+
},
|
149 |
+
{
|
150 |
+
"epoch": 0.0,
|
151 |
+
"learning_rate": 5.996425261485502e-06,
|
152 |
+
"loss": 0.7898,
|
153 |
+
"step": 20
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"epoch": 0.0,
|
157 |
+
"learning_rate": 5.996028068317225e-06,
|
158 |
+
"loss": 0.7388,
|
159 |
+
"step": 21
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 0.0,
|
163 |
+
"learning_rate": 5.9956308751489475e-06,
|
164 |
+
"loss": 0.7296,
|
165 |
+
"step": 22
|
166 |
+
},
|
167 |
+
{
|
168 |
+
"epoch": 0.0,
|
169 |
+
"learning_rate": 5.99523368198067e-06,
|
170 |
+
"loss": 0.7993,
|
171 |
+
"step": 23
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"epoch": 0.0,
|
175 |
+
"learning_rate": 5.994836488812393e-06,
|
176 |
+
"loss": 0.7188,
|
177 |
+
"step": 24
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.0,
|
181 |
+
"learning_rate": 5.994439295644115e-06,
|
182 |
+
"loss": 0.7473,
|
183 |
+
"step": 25
|
184 |
+
},
|
185 |
+
{
|
186 |
+
"epoch": 0.0,
|
187 |
+
"learning_rate": 5.994042102475838e-06,
|
188 |
+
"loss": 0.6997,
|
189 |
+
"step": 26
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 0.0,
|
193 |
+
"learning_rate": 5.99364490930756e-06,
|
194 |
+
"loss": 0.725,
|
195 |
+
"step": 27
|
196 |
+
},
|
197 |
+
{
|
198 |
+
"epoch": 0.0,
|
199 |
+
"learning_rate": 5.993247716139283e-06,
|
200 |
+
"loss": 0.7272,
|
201 |
+
"step": 28
|
202 |
+
},
|
203 |
+
{
|
204 |
+
"epoch": 0.0,
|
205 |
+
"learning_rate": 5.992850522971005e-06,
|
206 |
+
"loss": 0.7427,
|
207 |
+
"step": 29
|
208 |
+
},
|
209 |
+
{
|
210 |
+
"epoch": 0.0,
|
211 |
+
"learning_rate": 5.992453329802727e-06,
|
212 |
+
"loss": 0.7309,
|
213 |
+
"step": 30
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"epoch": 0.0,
|
217 |
+
"learning_rate": 5.99205613663445e-06,
|
218 |
+
"loss": 0.6764,
|
219 |
+
"step": 31
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.0,
|
223 |
+
"learning_rate": 5.991658943466173e-06,
|
224 |
+
"loss": 0.7556,
|
225 |
+
"step": 32
|
226 |
+
},
|
227 |
+
{
|
228 |
+
"epoch": 0.0,
|
229 |
+
"learning_rate": 5.991261750297895e-06,
|
230 |
+
"loss": 0.7301,
|
231 |
+
"step": 33
|
232 |
+
},
|
233 |
+
{
|
234 |
+
"epoch": 0.0,
|
235 |
+
"learning_rate": 5.990864557129617e-06,
|
236 |
+
"loss": 0.6776,
|
237 |
+
"step": 34
|
238 |
+
},
|
239 |
+
{
|
240 |
+
"epoch": 0.0,
|
241 |
+
"learning_rate": 5.99046736396134e-06,
|
242 |
+
"loss": 0.6884,
|
243 |
+
"step": 35
|
244 |
+
},
|
245 |
+
{
|
246 |
+
"epoch": 0.0,
|
247 |
+
"learning_rate": 5.990070170793063e-06,
|
248 |
+
"loss": 0.7179,
|
249 |
+
"step": 36
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 0.0,
|
253 |
+
"learning_rate": 5.989672977624785e-06,
|
254 |
+
"loss": 0.6915,
|
255 |
+
"step": 37
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"epoch": 0.01,
|
259 |
+
"learning_rate": 5.989275784456507e-06,
|
260 |
+
"loss": 0.7308,
|
261 |
+
"step": 38
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.01,
|
265 |
+
"learning_rate": 5.98887859128823e-06,
|
266 |
+
"loss": 0.6743,
|
267 |
+
"step": 39
|
268 |
+
},
|
269 |
+
{
|
270 |
+
"epoch": 0.01,
|
271 |
+
"learning_rate": 5.9884813981199526e-06,
|
272 |
+
"loss": 0.6604,
|
273 |
+
"step": 40
|
274 |
+
},
|
275 |
+
{
|
276 |
+
"epoch": 0.01,
|
277 |
+
"learning_rate": 5.988084204951675e-06,
|
278 |
+
"loss": 0.6609,
|
279 |
+
"step": 41
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 0.01,
|
283 |
+
"learning_rate": 5.987687011783397e-06,
|
284 |
+
"loss": 0.6524,
|
285 |
+
"step": 42
|
286 |
+
},
|
287 |
+
{
|
288 |
+
"epoch": 0.01,
|
289 |
+
"learning_rate": 5.98728981861512e-06,
|
290 |
+
"loss": 0.6386,
|
291 |
+
"step": 43
|
292 |
+
},
|
293 |
+
{
|
294 |
+
"epoch": 0.01,
|
295 |
+
"learning_rate": 5.986892625446843e-06,
|
296 |
+
"loss": 0.728,
|
297 |
+
"step": 44
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"epoch": 0.01,
|
301 |
+
"learning_rate": 5.986495432278565e-06,
|
302 |
+
"loss": 0.6971,
|
303 |
+
"step": 45
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.01,
|
307 |
+
"learning_rate": 5.986098239110287e-06,
|
308 |
+
"loss": 0.6772,
|
309 |
+
"step": 46
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 0.01,
|
313 |
+
"learning_rate": 5.98570104594201e-06,
|
314 |
+
"loss": 0.6774,
|
315 |
+
"step": 47
|
316 |
+
},
|
317 |
+
{
|
318 |
+
"epoch": 0.01,
|
319 |
+
"learning_rate": 5.9853038527737325e-06,
|
320 |
+
"loss": 0.6868,
|
321 |
+
"step": 48
|
322 |
+
},
|
323 |
+
{
|
324 |
+
"epoch": 0.01,
|
325 |
+
"learning_rate": 5.984906659605455e-06,
|
326 |
+
"loss": 0.7169,
|
327 |
+
"step": 49
|
328 |
+
},
|
329 |
+
{
|
330 |
+
"epoch": 0.01,
|
331 |
+
"learning_rate": 5.984509466437178e-06,
|
332 |
+
"loss": 0.669,
|
333 |
+
"step": 50
|
334 |
+
},
|
335 |
+
{
|
336 |
+
"epoch": 0.01,
|
337 |
+
"learning_rate": 5.9841122732689e-06,
|
338 |
+
"loss": 0.7112,
|
339 |
+
"step": 51
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 0.01,
|
343 |
+
"learning_rate": 5.983715080100622e-06,
|
344 |
+
"loss": 0.6667,
|
345 |
+
"step": 52
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.01,
|
349 |
+
"learning_rate": 5.983317886932344e-06,
|
350 |
+
"loss": 0.6528,
|
351 |
+
"step": 53
|
352 |
+
},
|
353 |
+
{
|
354 |
+
"epoch": 0.01,
|
355 |
+
"learning_rate": 5.982920693764068e-06,
|
356 |
+
"loss": 0.6699,
|
357 |
+
"step": 54
|
358 |
+
},
|
359 |
+
{
|
360 |
+
"epoch": 0.01,
|
361 |
+
"learning_rate": 5.98252350059579e-06,
|
362 |
+
"loss": 0.6584,
|
363 |
+
"step": 55
|
364 |
+
},
|
365 |
+
{
|
366 |
+
"epoch": 0.01,
|
367 |
+
"learning_rate": 5.9821263074275125e-06,
|
368 |
+
"loss": 0.6328,
|
369 |
+
"step": 56
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 0.01,
|
373 |
+
"learning_rate": 5.981729114259235e-06,
|
374 |
+
"loss": 0.6472,
|
375 |
+
"step": 57
|
376 |
+
},
|
377 |
+
{
|
378 |
+
"epoch": 0.01,
|
379 |
+
"learning_rate": 5.981331921090958e-06,
|
380 |
+
"loss": 0.6992,
|
381 |
+
"step": 58
|
382 |
+
},
|
383 |
+
{
|
384 |
+
"epoch": 0.01,
|
385 |
+
"learning_rate": 5.98093472792268e-06,
|
386 |
+
"loss": 0.6666,
|
387 |
+
"step": 59
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 0.01,
|
391 |
+
"learning_rate": 5.980537534754402e-06,
|
392 |
+
"loss": 0.6819,
|
393 |
+
"step": 60
|
394 |
+
},
|
395 |
+
{
|
396 |
+
"epoch": 0.01,
|
397 |
+
"learning_rate": 5.980140341586125e-06,
|
398 |
+
"loss": 0.705,
|
399 |
+
"step": 61
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 0.01,
|
403 |
+
"learning_rate": 5.979743148417847e-06,
|
404 |
+
"loss": 0.6871,
|
405 |
+
"step": 62
|
406 |
+
},
|
407 |
+
{
|
408 |
+
"epoch": 0.01,
|
409 |
+
"learning_rate": 5.97934595524957e-06,
|
410 |
+
"loss": 0.6998,
|
411 |
+
"step": 63
|
412 |
+
},
|
413 |
+
{
|
414 |
+
"epoch": 0.01,
|
415 |
+
"learning_rate": 5.978948762081292e-06,
|
416 |
+
"loss": 0.6081,
|
417 |
+
"step": 64
|
418 |
+
},
|
419 |
+
{
|
420 |
+
"epoch": 0.01,
|
421 |
+
"learning_rate": 5.9785515689130154e-06,
|
422 |
+
"loss": 0.6985,
|
423 |
+
"step": 65
|
424 |
+
},
|
425 |
+
{
|
426 |
+
"epoch": 0.01,
|
427 |
+
"learning_rate": 5.978154375744738e-06,
|
428 |
+
"loss": 0.6631,
|
429 |
+
"step": 66
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 0.01,
|
433 |
+
"learning_rate": 5.97775718257646e-06,
|
434 |
+
"loss": 0.6534,
|
435 |
+
"step": 67
|
436 |
+
},
|
437 |
+
{
|
438 |
+
"epoch": 0.01,
|
439 |
+
"learning_rate": 5.977359989408182e-06,
|
440 |
+
"loss": 0.6685,
|
441 |
+
"step": 68
|
442 |
+
},
|
443 |
+
{
|
444 |
+
"epoch": 0.01,
|
445 |
+
"learning_rate": 5.976962796239905e-06,
|
446 |
+
"loss": 0.6821,
|
447 |
+
"step": 69
|
448 |
+
},
|
449 |
+
{
|
450 |
+
"epoch": 0.01,
|
451 |
+
"learning_rate": 5.976565603071627e-06,
|
452 |
+
"loss": 0.6241,
|
453 |
+
"step": 70
|
454 |
+
},
|
455 |
+
{
|
456 |
+
"epoch": 0.01,
|
457 |
+
"learning_rate": 5.976168409903349e-06,
|
458 |
+
"loss": 0.6357,
|
459 |
+
"step": 71
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 0.01,
|
463 |
+
"learning_rate": 5.975771216735072e-06,
|
464 |
+
"loss": 0.6466,
|
465 |
+
"step": 72
|
466 |
+
},
|
467 |
+
{
|
468 |
+
"epoch": 0.01,
|
469 |
+
"learning_rate": 5.975374023566795e-06,
|
470 |
+
"loss": 0.6579,
|
471 |
+
"step": 73
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 0.01,
|
475 |
+
"learning_rate": 5.9749768303985176e-06,
|
476 |
+
"loss": 0.6298,
|
477 |
+
"step": 74
|
478 |
+
},
|
479 |
+
{
|
480 |
+
"epoch": 0.01,
|
481 |
+
"learning_rate": 5.97457963723024e-06,
|
482 |
+
"loss": 0.703,
|
483 |
+
"step": 75
|
484 |
+
},
|
485 |
+
{
|
486 |
+
"epoch": 0.01,
|
487 |
+
"learning_rate": 5.974182444061963e-06,
|
488 |
+
"loss": 0.6152,
|
489 |
+
"step": 76
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"epoch": 0.01,
|
493 |
+
"learning_rate": 5.973785250893685e-06,
|
494 |
+
"loss": 0.6682,
|
495 |
+
"step": 77
|
496 |
+
},
|
497 |
+
{
|
498 |
+
"epoch": 0.01,
|
499 |
+
"learning_rate": 5.973388057725407e-06,
|
500 |
+
"loss": 0.6427,
|
501 |
+
"step": 78
|
502 |
+
},
|
503 |
+
{
|
504 |
+
"epoch": 0.01,
|
505 |
+
"learning_rate": 5.972990864557129e-06,
|
506 |
+
"loss": 0.6969,
|
507 |
+
"step": 79
|
508 |
+
},
|
509 |
+
{
|
510 |
+
"epoch": 0.01,
|
511 |
+
"learning_rate": 5.972593671388852e-06,
|
512 |
+
"loss": 0.6619,
|
513 |
+
"step": 80
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 0.01,
|
517 |
+
"learning_rate": 5.9721964782205745e-06,
|
518 |
+
"loss": 0.6332,
|
519 |
+
"step": 81
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"epoch": 0.01,
|
523 |
+
"learning_rate": 5.9717992850522975e-06,
|
524 |
+
"loss": 0.6203,
|
525 |
+
"step": 82
|
526 |
+
},
|
527 |
+
{
|
528 |
+
"epoch": 0.01,
|
529 |
+
"learning_rate": 5.97140209188402e-06,
|
530 |
+
"loss": 0.6463,
|
531 |
+
"step": 83
|
532 |
+
},
|
533 |
+
{
|
534 |
+
"epoch": 0.01,
|
535 |
+
"learning_rate": 5.971004898715743e-06,
|
536 |
+
"loss": 0.6718,
|
537 |
+
"step": 84
|
538 |
+
},
|
539 |
+
{
|
540 |
+
"epoch": 0.01,
|
541 |
+
"learning_rate": 5.970607705547465e-06,
|
542 |
+
"loss": 0.6495,
|
543 |
+
"step": 85
|
544 |
+
},
|
545 |
+
{
|
546 |
+
"epoch": 0.01,
|
547 |
+
"learning_rate": 5.970210512379187e-06,
|
548 |
+
"loss": 0.5787,
|
549 |
+
"step": 86
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 0.01,
|
553 |
+
"learning_rate": 5.96981331921091e-06,
|
554 |
+
"loss": 0.6897,
|
555 |
+
"step": 87
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 0.01,
|
559 |
+
"learning_rate": 5.969416126042632e-06,
|
560 |
+
"loss": 0.6688,
|
561 |
+
"step": 88
|
562 |
+
},
|
563 |
+
{
|
564 |
+
"epoch": 0.01,
|
565 |
+
"learning_rate": 5.9690189328743544e-06,
|
566 |
+
"loss": 0.6697,
|
567 |
+
"step": 89
|
568 |
+
},
|
569 |
+
{
|
570 |
+
"epoch": 0.01,
|
571 |
+
"learning_rate": 5.968621739706077e-06,
|
572 |
+
"loss": 0.6156,
|
573 |
+
"step": 90
|
574 |
+
},
|
575 |
+
{
|
576 |
+
"epoch": 0.01,
|
577 |
+
"learning_rate": 5.9682245465378e-06,
|
578 |
+
"loss": 0.6301,
|
579 |
+
"step": 91
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"epoch": 0.01,
|
583 |
+
"learning_rate": 5.967827353369523e-06,
|
584 |
+
"loss": 0.6121,
|
585 |
+
"step": 92
|
586 |
+
},
|
587 |
+
{
|
588 |
+
"epoch": 0.01,
|
589 |
+
"learning_rate": 5.967430160201245e-06,
|
590 |
+
"loss": 0.6177,
|
591 |
+
"step": 93
|
592 |
+
},
|
593 |
+
{
|
594 |
+
"epoch": 0.01,
|
595 |
+
"learning_rate": 5.967032967032967e-06,
|
596 |
+
"loss": 0.611,
|
597 |
+
"step": 94
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 0.01,
|
601 |
+
"learning_rate": 5.96663577386469e-06,
|
602 |
+
"loss": 0.6359,
|
603 |
+
"step": 95
|
604 |
+
},
|
605 |
+
{
|
606 |
+
"epoch": 0.01,
|
607 |
+
"learning_rate": 5.966238580696412e-06,
|
608 |
+
"loss": 0.6417,
|
609 |
+
"step": 96
|
610 |
+
},
|
611 |
+
{
|
612 |
+
"epoch": 0.01,
|
613 |
+
"learning_rate": 5.965841387528134e-06,
|
614 |
+
"loss": 0.6312,
|
615 |
+
"step": 97
|
616 |
+
},
|
617 |
+
{
|
618 |
+
"epoch": 0.01,
|
619 |
+
"learning_rate": 5.965444194359857e-06,
|
620 |
+
"loss": 0.6184,
|
621 |
+
"step": 98
|
622 |
+
},
|
623 |
+
{
|
624 |
+
"epoch": 0.01,
|
625 |
+
"learning_rate": 5.9650470011915796e-06,
|
626 |
+
"loss": 0.6724,
|
627 |
+
"step": 99
|
628 |
+
},
|
629 |
+
{
|
630 |
+
"epoch": 0.01,
|
631 |
+
"learning_rate": 5.964649808023302e-06,
|
632 |
+
"loss": 0.6833,
|
633 |
+
"step": 100
|
634 |
+
},
|
635 |
+
{
|
636 |
+
"epoch": 0.01,
|
637 |
+
"learning_rate": 5.964252614855025e-06,
|
638 |
+
"loss": 0.6433,
|
639 |
+
"step": 101
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 0.01,
|
643 |
+
"learning_rate": 5.963855421686747e-06,
|
644 |
+
"loss": 0.6766,
|
645 |
+
"step": 102
|
646 |
+
},
|
647 |
+
{
|
648 |
+
"epoch": 0.01,
|
649 |
+
"learning_rate": 5.96345822851847e-06,
|
650 |
+
"loss": 0.6527,
|
651 |
+
"step": 103
|
652 |
+
},
|
653 |
+
{
|
654 |
+
"epoch": 0.01,
|
655 |
+
"learning_rate": 5.963061035350192e-06,
|
656 |
+
"loss": 0.5982,
|
657 |
+
"step": 104
|
658 |
+
},
|
659 |
+
{
|
660 |
+
"epoch": 0.01,
|
661 |
+
"learning_rate": 5.962663842181914e-06,
|
662 |
+
"loss": 0.6749,
|
663 |
+
"step": 105
|
664 |
+
},
|
665 |
+
{
|
666 |
+
"epoch": 0.01,
|
667 |
+
"learning_rate": 5.962266649013637e-06,
|
668 |
+
"loss": 0.6494,
|
669 |
+
"step": 106
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"epoch": 0.01,
|
673 |
+
"learning_rate": 5.9618694558453595e-06,
|
674 |
+
"loss": 0.6998,
|
675 |
+
"step": 107
|
676 |
+
},
|
677 |
+
{
|
678 |
+
"epoch": 0.01,
|
679 |
+
"learning_rate": 5.961472262677082e-06,
|
680 |
+
"loss": 0.6112,
|
681 |
+
"step": 108
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 0.01,
|
685 |
+
"learning_rate": 5.961075069508805e-06,
|
686 |
+
"loss": 0.624,
|
687 |
+
"step": 109
|
688 |
+
},
|
689 |
+
{
|
690 |
+
"epoch": 0.01,
|
691 |
+
"learning_rate": 5.960677876340528e-06,
|
692 |
+
"loss": 0.6329,
|
693 |
+
"step": 110
|
694 |
+
},
|
695 |
+
{
|
696 |
+
"epoch": 0.01,
|
697 |
+
"learning_rate": 5.96028068317225e-06,
|
698 |
+
"loss": 0.6491,
|
699 |
+
"step": 111
|
700 |
+
},
|
701 |
+
{
|
702 |
+
"epoch": 0.01,
|
703 |
+
"learning_rate": 5.959883490003972e-06,
|
704 |
+
"loss": 0.6672,
|
705 |
+
"step": 112
|
706 |
+
},
|
707 |
+
{
|
708 |
+
"epoch": 0.01,
|
709 |
+
"learning_rate": 5.959486296835694e-06,
|
710 |
+
"loss": 0.6279,
|
711 |
+
"step": 113
|
712 |
+
},
|
713 |
+
{
|
714 |
+
"epoch": 0.02,
|
715 |
+
"learning_rate": 5.959089103667417e-06,
|
716 |
+
"loss": 0.6479,
|
717 |
+
"step": 114
|
718 |
+
},
|
719 |
+
{
|
720 |
+
"epoch": 0.02,
|
721 |
+
"learning_rate": 5.9586919104991395e-06,
|
722 |
+
"loss": 0.6214,
|
723 |
+
"step": 115
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"epoch": 0.02,
|
727 |
+
"learning_rate": 5.958294717330862e-06,
|
728 |
+
"loss": 0.6618,
|
729 |
+
"step": 116
|
730 |
+
},
|
731 |
+
{
|
732 |
+
"epoch": 0.02,
|
733 |
+
"learning_rate": 5.957897524162585e-06,
|
734 |
+
"loss": 0.6703,
|
735 |
+
"step": 117
|
736 |
+
},
|
737 |
+
{
|
738 |
+
"epoch": 0.02,
|
739 |
+
"learning_rate": 5.957500330994307e-06,
|
740 |
+
"loss": 0.6417,
|
741 |
+
"step": 118
|
742 |
+
},
|
743 |
+
{
|
744 |
+
"epoch": 0.02,
|
745 |
+
"learning_rate": 5.957103137826029e-06,
|
746 |
+
"loss": 0.631,
|
747 |
+
"step": 119
|
748 |
+
},
|
749 |
+
{
|
750 |
+
"epoch": 0.02,
|
751 |
+
"learning_rate": 5.956705944657752e-06,
|
752 |
+
"loss": 0.6169,
|
753 |
+
"step": 120
|
754 |
+
},
|
755 |
+
{
|
756 |
+
"epoch": 0.02,
|
757 |
+
"learning_rate": 5.956308751489475e-06,
|
758 |
+
"loss": 0.6521,
|
759 |
+
"step": 121
|
760 |
+
},
|
761 |
+
{
|
762 |
+
"epoch": 0.02,
|
763 |
+
"learning_rate": 5.955911558321197e-06,
|
764 |
+
"loss": 0.6635,
|
765 |
+
"step": 122
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"epoch": 0.02,
|
769 |
+
"learning_rate": 5.955514365152919e-06,
|
770 |
+
"loss": 0.6496,
|
771 |
+
"step": 123
|
772 |
+
},
|
773 |
+
{
|
774 |
+
"epoch": 0.02,
|
775 |
+
"learning_rate": 5.955117171984642e-06,
|
776 |
+
"loss": 0.6431,
|
777 |
+
"step": 124
|
778 |
+
},
|
779 |
+
{
|
780 |
+
"epoch": 0.02,
|
781 |
+
"learning_rate": 5.954719978816365e-06,
|
782 |
+
"loss": 0.6246,
|
783 |
+
"step": 125
|
784 |
+
},
|
785 |
+
{
|
786 |
+
"epoch": 0.02,
|
787 |
+
"learning_rate": 5.954322785648087e-06,
|
788 |
+
"loss": 0.6557,
|
789 |
+
"step": 126
|
790 |
+
},
|
791 |
+
{
|
792 |
+
"epoch": 0.02,
|
793 |
+
"learning_rate": 5.953925592479809e-06,
|
794 |
+
"loss": 0.6082,
|
795 |
+
"step": 127
|
796 |
+
},
|
797 |
+
{
|
798 |
+
"epoch": 0.02,
|
799 |
+
"learning_rate": 5.953528399311532e-06,
|
800 |
+
"loss": 0.5941,
|
801 |
+
"step": 128
|
802 |
+
},
|
803 |
+
{
|
804 |
+
"epoch": 0.02,
|
805 |
+
"learning_rate": 5.953131206143255e-06,
|
806 |
+
"loss": 0.6566,
|
807 |
+
"step": 129
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"epoch": 0.02,
|
811 |
+
"learning_rate": 5.952734012974977e-06,
|
812 |
+
"loss": 0.6243,
|
813 |
+
"step": 130
|
814 |
+
},
|
815 |
+
{
|
816 |
+
"epoch": 0.02,
|
817 |
+
"learning_rate": 5.952336819806699e-06,
|
818 |
+
"loss": 0.594,
|
819 |
+
"step": 131
|
820 |
+
},
|
821 |
+
{
|
822 |
+
"epoch": 0.02,
|
823 |
+
"learning_rate": 5.951939626638422e-06,
|
824 |
+
"loss": 0.68,
|
825 |
+
"step": 132
|
826 |
+
},
|
827 |
+
{
|
828 |
+
"epoch": 0.02,
|
829 |
+
"learning_rate": 5.9515424334701446e-06,
|
830 |
+
"loss": 0.6302,
|
831 |
+
"step": 133
|
832 |
+
},
|
833 |
+
{
|
834 |
+
"epoch": 0.02,
|
835 |
+
"learning_rate": 5.951145240301867e-06,
|
836 |
+
"loss": 0.6251,
|
837 |
+
"step": 134
|
838 |
+
},
|
839 |
+
{
|
840 |
+
"epoch": 0.02,
|
841 |
+
"learning_rate": 5.950748047133589e-06,
|
842 |
+
"loss": 0.6326,
|
843 |
+
"step": 135
|
844 |
+
},
|
845 |
+
{
|
846 |
+
"epoch": 0.02,
|
847 |
+
"learning_rate": 5.950350853965312e-06,
|
848 |
+
"loss": 0.6314,
|
849 |
+
"step": 136
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 0.02,
|
853 |
+
"learning_rate": 5.949953660797034e-06,
|
854 |
+
"loss": 0.6598,
|
855 |
+
"step": 137
|
856 |
+
},
|
857 |
+
{
|
858 |
+
"epoch": 0.02,
|
859 |
+
"learning_rate": 5.949556467628757e-06,
|
860 |
+
"loss": 0.6583,
|
861 |
+
"step": 138
|
862 |
+
},
|
863 |
+
{
|
864 |
+
"epoch": 0.02,
|
865 |
+
"learning_rate": 5.949159274460479e-06,
|
866 |
+
"loss": 0.6162,
|
867 |
+
"step": 139
|
868 |
+
},
|
869 |
+
{
|
870 |
+
"epoch": 0.02,
|
871 |
+
"learning_rate": 5.948762081292202e-06,
|
872 |
+
"loss": 0.7042,
|
873 |
+
"step": 140
|
874 |
+
},
|
875 |
+
{
|
876 |
+
"epoch": 0.02,
|
877 |
+
"learning_rate": 5.9483648881239245e-06,
|
878 |
+
"loss": 0.6733,
|
879 |
+
"step": 141
|
880 |
+
},
|
881 |
+
{
|
882 |
+
"epoch": 0.02,
|
883 |
+
"learning_rate": 5.947967694955647e-06,
|
884 |
+
"loss": 0.6103,
|
885 |
+
"step": 142
|
886 |
+
},
|
887 |
+
{
|
888 |
+
"epoch": 0.02,
|
889 |
+
"learning_rate": 5.94757050178737e-06,
|
890 |
+
"loss": 0.6269,
|
891 |
+
"step": 143
|
892 |
+
},
|
893 |
+
{
|
894 |
+
"epoch": 0.02,
|
895 |
+
"learning_rate": 5.947173308619092e-06,
|
896 |
+
"loss": 0.663,
|
897 |
+
"step": 144
|
898 |
+
},
|
899 |
+
{
|
900 |
+
"epoch": 0.02,
|
901 |
+
"learning_rate": 5.946776115450814e-06,
|
902 |
+
"loss": 0.5794,
|
903 |
+
"step": 145
|
904 |
+
},
|
905 |
+
{
|
906 |
+
"epoch": 0.02,
|
907 |
+
"learning_rate": 5.946378922282537e-06,
|
908 |
+
"loss": 0.6868,
|
909 |
+
"step": 146
|
910 |
+
},
|
911 |
+
{
|
912 |
+
"epoch": 0.02,
|
913 |
+
"learning_rate": 5.945981729114259e-06,
|
914 |
+
"loss": 0.6064,
|
915 |
+
"step": 147
|
916 |
+
},
|
917 |
+
{
|
918 |
+
"epoch": 0.02,
|
919 |
+
"learning_rate": 5.945584535945982e-06,
|
920 |
+
"loss": 0.6519,
|
921 |
+
"step": 148
|
922 |
+
},
|
923 |
+
{
|
924 |
+
"epoch": 0.02,
|
925 |
+
"learning_rate": 5.9451873427777045e-06,
|
926 |
+
"loss": 0.655,
|
927 |
+
"step": 149
|
928 |
+
},
|
929 |
+
{
|
930 |
+
"epoch": 0.02,
|
931 |
+
"learning_rate": 5.944790149609427e-06,
|
932 |
+
"loss": 0.6617,
|
933 |
+
"step": 150
|
934 |
+
}
|
935 |
+
],
|
936 |
+
"logging_steps": 1,
|
937 |
+
"max_steps": 15116,
|
938 |
+
"num_train_epochs": 2,
|
939 |
+
"save_steps": 50,
|
940 |
+
"total_flos": 6.291064218451968e+17,
|
941 |
+
"trial_name": null,
|
942 |
+
"trial_params": null
|
943 |
+
}
|
checkpoint-150/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2f05be88d930176935da1678b48a8294634889bf7ae4f8bebdbaca140c2dac08
|
3 |
+
size 5947
|
checkpoint-150/zero_to_fp32.py
ADDED
@@ -0,0 +1,587 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
215 |
+
elif zero_stage == 3:
|
216 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
217 |
+
|
218 |
+
|
219 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
220 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
221 |
+
return
|
222 |
+
|
223 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
224 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
225 |
+
|
226 |
+
if debug:
|
227 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
229 |
+
|
230 |
+
wanted_params = len(frozen_param_shapes)
|
231 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
232 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
233 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
234 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
235 |
+
|
236 |
+
total_params = 0
|
237 |
+
total_numel = 0
|
238 |
+
for name, shape in frozen_param_shapes.items():
|
239 |
+
total_params += 1
|
240 |
+
unpartitioned_numel = shape.numel()
|
241 |
+
total_numel += unpartitioned_numel
|
242 |
+
|
243 |
+
state_dict[name] = frozen_param_fragments[name]
|
244 |
+
|
245 |
+
if debug:
|
246 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
247 |
+
|
248 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
249 |
+
|
250 |
+
|
251 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
252 |
+
param_shapes = zero_model_states[0].param_shapes
|
253 |
+
|
254 |
+
# Reconstruction protocol:
|
255 |
+
#
|
256 |
+
# XXX: document this
|
257 |
+
|
258 |
+
if debug:
|
259 |
+
for i in range(world_size):
|
260 |
+
for j in range(len(fp32_flat_groups[0])):
|
261 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
262 |
+
|
263 |
+
# XXX: memory usage doubles here (zero2)
|
264 |
+
num_param_groups = len(fp32_flat_groups[0])
|
265 |
+
merged_single_partition_of_fp32_groups = []
|
266 |
+
for i in range(num_param_groups):
|
267 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
268 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
269 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
270 |
+
avail_numel = sum(
|
271 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
272 |
+
|
273 |
+
if debug:
|
274 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
275 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
276 |
+
# not asserting if there is a mismatch due to possible padding
|
277 |
+
print(f"Have {avail_numel} numels to process.")
|
278 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
279 |
+
|
280 |
+
# params
|
281 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
282 |
+
# out-of-core computing solution
|
283 |
+
total_numel = 0
|
284 |
+
total_params = 0
|
285 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
286 |
+
offset = 0
|
287 |
+
avail_numel = full_single_fp32_vector.numel()
|
288 |
+
for name, shape in shapes.items():
|
289 |
+
|
290 |
+
unpartitioned_numel = shape.numel()
|
291 |
+
total_numel += unpartitioned_numel
|
292 |
+
total_params += 1
|
293 |
+
|
294 |
+
if debug:
|
295 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
296 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
297 |
+
offset += unpartitioned_numel
|
298 |
+
|
299 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
300 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
301 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
302 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
303 |
+
align_to = 2 * world_size
|
304 |
+
|
305 |
+
def zero2_align(x):
|
306 |
+
return align_to * math.ceil(x / align_to)
|
307 |
+
|
308 |
+
if debug:
|
309 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
310 |
+
|
311 |
+
offset = zero2_align(offset)
|
312 |
+
avail_numel = zero2_align(avail_numel)
|
313 |
+
|
314 |
+
if debug:
|
315 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
316 |
+
|
317 |
+
# Sanity check
|
318 |
+
if offset != avail_numel:
|
319 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
320 |
+
|
321 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
322 |
+
|
323 |
+
|
324 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
325 |
+
state_dict = OrderedDict()
|
326 |
+
|
327 |
+
# buffers
|
328 |
+
buffers = zero_model_states[0].buffers
|
329 |
+
state_dict.update(buffers)
|
330 |
+
if debug:
|
331 |
+
print(f"added {len(buffers)} buffers")
|
332 |
+
|
333 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
334 |
+
|
335 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
336 |
+
|
337 |
+
# recover shared parameters
|
338 |
+
for pair in zero_model_states[0].shared_params:
|
339 |
+
if pair[1] in state_dict:
|
340 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
341 |
+
|
342 |
+
return state_dict
|
343 |
+
|
344 |
+
|
345 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
346 |
+
remainder = unpartitioned_numel % world_size
|
347 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
348 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
349 |
+
return partitioned_numel, padding_numel
|
350 |
+
|
351 |
+
|
352 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
353 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
354 |
+
return
|
355 |
+
|
356 |
+
if debug:
|
357 |
+
for i in range(world_size):
|
358 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
359 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
360 |
+
|
361 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
362 |
+
wanted_params = len(frozen_param_shapes)
|
363 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
364 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
365 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
366 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
367 |
+
|
368 |
+
total_params = 0
|
369 |
+
total_numel = 0
|
370 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
371 |
+
total_params += 1
|
372 |
+
unpartitioned_numel = shape.numel()
|
373 |
+
total_numel += unpartitioned_numel
|
374 |
+
|
375 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
376 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
377 |
+
|
378 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
379 |
+
|
380 |
+
if debug:
|
381 |
+
print(
|
382 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
383 |
+
)
|
384 |
+
|
385 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
386 |
+
|
387 |
+
|
388 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
389 |
+
param_shapes = zero_model_states[0].param_shapes
|
390 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
391 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
392 |
+
# param, re-consolidating each param, while dealing with padding if any
|
393 |
+
|
394 |
+
# merge list of dicts, preserving order
|
395 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
396 |
+
|
397 |
+
if debug:
|
398 |
+
for i in range(world_size):
|
399 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
400 |
+
|
401 |
+
wanted_params = len(param_shapes)
|
402 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
403 |
+
# not asserting if there is a mismatch due to possible padding
|
404 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
405 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
406 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
407 |
+
|
408 |
+
# params
|
409 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
410 |
+
# out-of-core computing solution
|
411 |
+
offset = 0
|
412 |
+
total_numel = 0
|
413 |
+
total_params = 0
|
414 |
+
for name, shape in param_shapes.items():
|
415 |
+
|
416 |
+
unpartitioned_numel = shape.numel()
|
417 |
+
total_numel += unpartitioned_numel
|
418 |
+
total_params += 1
|
419 |
+
|
420 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
421 |
+
|
422 |
+
if debug:
|
423 |
+
print(
|
424 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
425 |
+
)
|
426 |
+
|
427 |
+
# XXX: memory usage doubles here
|
428 |
+
state_dict[name] = torch.cat(
|
429 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
430 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
431 |
+
offset += partitioned_numel
|
432 |
+
|
433 |
+
offset *= world_size
|
434 |
+
|
435 |
+
# Sanity check
|
436 |
+
if offset != avail_numel:
|
437 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
438 |
+
|
439 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
440 |
+
|
441 |
+
|
442 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
443 |
+
state_dict = OrderedDict()
|
444 |
+
|
445 |
+
# buffers
|
446 |
+
buffers = zero_model_states[0].buffers
|
447 |
+
state_dict.update(buffers)
|
448 |
+
if debug:
|
449 |
+
print(f"added {len(buffers)} buffers")
|
450 |
+
|
451 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
452 |
+
|
453 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
454 |
+
|
455 |
+
# recover shared parameters
|
456 |
+
for pair in zero_model_states[0].shared_params:
|
457 |
+
if pair[1] in state_dict:
|
458 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
459 |
+
|
460 |
+
return state_dict
|
461 |
+
|
462 |
+
|
463 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
464 |
+
"""
|
465 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
466 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
467 |
+
via a model hub.
|
468 |
+
|
469 |
+
Args:
|
470 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
471 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
472 |
+
|
473 |
+
Returns:
|
474 |
+
- pytorch ``state_dict``
|
475 |
+
|
476 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
477 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
478 |
+
the checkpoint.
|
479 |
+
|
480 |
+
A typical usage might be ::
|
481 |
+
|
482 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
483 |
+
# do the training and checkpoint saving
|
484 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
485 |
+
model = model.cpu() # move to cpu
|
486 |
+
model.load_state_dict(state_dict)
|
487 |
+
# submit to model hub or save the model to share with others
|
488 |
+
|
489 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
490 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
491 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
492 |
+
|
493 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
494 |
+
|
495 |
+
"""
|
496 |
+
if tag is None:
|
497 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
498 |
+
if os.path.isfile(latest_path):
|
499 |
+
with open(latest_path, 'r') as fd:
|
500 |
+
tag = fd.read().strip()
|
501 |
+
else:
|
502 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
503 |
+
|
504 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
505 |
+
|
506 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
507 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
508 |
+
|
509 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
510 |
+
|
511 |
+
|
512 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
513 |
+
"""
|
514 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
515 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
516 |
+
|
517 |
+
Args:
|
518 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
519 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
520 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
521 |
+
"""
|
522 |
+
|
523 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
524 |
+
print(f"Saving fp32 state dict to {output_file}")
|
525 |
+
torch.save(state_dict, output_file)
|
526 |
+
|
527 |
+
|
528 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
529 |
+
"""
|
530 |
+
1. Put the provided model to cpu
|
531 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
532 |
+
3. Load it into the provided model
|
533 |
+
|
534 |
+
Args:
|
535 |
+
- ``model``: the model object to update
|
536 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
537 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
538 |
+
|
539 |
+
Returns:
|
540 |
+
- ``model`: modified model
|
541 |
+
|
542 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
543 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
544 |
+
conveniently placed for you in the checkpoint folder.
|
545 |
+
|
546 |
+
A typical usage might be ::
|
547 |
+
|
548 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
549 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
550 |
+
# submit to model hub or save the model to share with others
|
551 |
+
|
552 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
553 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
554 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
555 |
+
|
556 |
+
"""
|
557 |
+
logger.info(f"Extracting fp32 weights")
|
558 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
559 |
+
|
560 |
+
logger.info(f"Overwriting model with fp32 weights")
|
561 |
+
model = model.cpu()
|
562 |
+
model.load_state_dict(state_dict, strict=False)
|
563 |
+
|
564 |
+
return model
|
565 |
+
|
566 |
+
|
567 |
+
if __name__ == "__main__":
|
568 |
+
|
569 |
+
parser = argparse.ArgumentParser()
|
570 |
+
parser.add_argument("checkpoint_dir",
|
571 |
+
type=str,
|
572 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
573 |
+
parser.add_argument(
|
574 |
+
"output_file",
|
575 |
+
type=str,
|
576 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
577 |
+
parser.add_argument("-t",
|
578 |
+
"--tag",
|
579 |
+
type=str,
|
580 |
+
default=None,
|
581 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
582 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
583 |
+
args = parser.parse_args()
|
584 |
+
|
585 |
+
debug = args.debug
|
586 |
+
|
587 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
|
checkpoint-200/config.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "mistralai/Mistral-7B-v0.1",
|
3 |
+
"architectures": [
|
4 |
+
"MistralForCausalLM"
|
5 |
+
],
|
6 |
+
"bos_token_id": 1,
|
7 |
+
"eos_token_id": 2,
|
8 |
+
"hidden_act": "silu",
|
9 |
+
"hidden_size": 4096,
|
10 |
+
"initializer_range": 0.02,
|
11 |
+
"intermediate_size": 14336,
|
12 |
+
"max_position_embeddings": 32768,
|
13 |
+
"model_type": "mistral",
|
14 |
+
"num_attention_heads": 32,
|
15 |
+
"num_hidden_layers": 32,
|
16 |
+
"num_key_value_heads": 8,
|
17 |
+
"rms_norm_eps": 1e-05,
|
18 |
+
"rope_theta": 10000.0,
|
19 |
+
"sliding_window": 4096,
|
20 |
+
"tie_word_embeddings": false,
|
21 |
+
"torch_dtype": "bfloat16",
|
22 |
+
"transformers_version": "4.34.0.dev0",
|
23 |
+
"use_cache": false,
|
24 |
+
"vocab_size": 32002
|
25 |
+
}
|
checkpoint-200/generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"transformers_version": "4.34.0.dev0"
|
6 |
+
}
|
checkpoint-200/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step200
|
checkpoint-200/pytorch_model-00001-of-00002.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:903412ad8d63a3544a84531bed488838561c60f33953ec8821e76bb9806cdf31
|
3 |
+
size 9943044428
|
checkpoint-200/pytorch_model-00002-of-00002.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2ee97a78f24972026adf4f389f4fe546b265d44003a9d0533a43de09bc36f2fd
|
3 |
+
size 4540552031
|
checkpoint-200/pytorch_model.bin.index.json
ADDED
@@ -0,0 +1,298 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 14483496960
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "pytorch_model-00002-of-00002.bin",
|
7 |
+
"model.embed_tokens.weight": "pytorch_model-00001-of-00002.bin",
|
8 |
+
"model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
13 |
+
"model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
14 |
+
"model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
15 |
+
"model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
16 |
+
"model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
17 |
+
"model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
18 |
+
"model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
19 |
+
"model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
20 |
+
"model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
21 |
+
"model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
22 |
+
"model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
23 |
+
"model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
24 |
+
"model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
25 |
+
"model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
26 |
+
"model.layers.10.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
27 |
+
"model.layers.10.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
28 |
+
"model.layers.10.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
29 |
+
"model.layers.10.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
30 |
+
"model.layers.10.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
31 |
+
"model.layers.10.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
32 |
+
"model.layers.10.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
33 |
+
"model.layers.10.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
34 |
+
"model.layers.10.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
35 |
+
"model.layers.11.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
36 |
+
"model.layers.11.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
37 |
+
"model.layers.11.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
38 |
+
"model.layers.11.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
39 |
+
"model.layers.11.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
40 |
+
"model.layers.11.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
41 |
+
"model.layers.11.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
42 |
+
"model.layers.11.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
43 |
+
"model.layers.11.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
44 |
+
"model.layers.12.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
45 |
+
"model.layers.12.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
46 |
+
"model.layers.12.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
47 |
+
"model.layers.12.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
48 |
+
"model.layers.12.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
49 |
+
"model.layers.12.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
50 |
+
"model.layers.12.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
51 |
+
"model.layers.12.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
52 |
+
"model.layers.12.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
53 |
+
"model.layers.13.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
54 |
+
"model.layers.13.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
55 |
+
"model.layers.13.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
56 |
+
"model.layers.13.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
57 |
+
"model.layers.13.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
58 |
+
"model.layers.13.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
59 |
+
"model.layers.13.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
60 |
+
"model.layers.13.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
61 |
+
"model.layers.13.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
62 |
+
"model.layers.14.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
63 |
+
"model.layers.14.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
64 |
+
"model.layers.14.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
65 |
+
"model.layers.14.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
66 |
+
"model.layers.14.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
67 |
+
"model.layers.14.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
68 |
+
"model.layers.14.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
69 |
+
"model.layers.14.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
70 |
+
"model.layers.14.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
71 |
+
"model.layers.15.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
72 |
+
"model.layers.15.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
73 |
+
"model.layers.15.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
74 |
+
"model.layers.15.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
75 |
+
"model.layers.15.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
76 |
+
"model.layers.15.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
77 |
+
"model.layers.15.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
78 |
+
"model.layers.15.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
79 |
+
"model.layers.15.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
80 |
+
"model.layers.16.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
81 |
+
"model.layers.16.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
82 |
+
"model.layers.16.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
83 |
+
"model.layers.16.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
84 |
+
"model.layers.16.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
85 |
+
"model.layers.16.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
86 |
+
"model.layers.16.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
87 |
+
"model.layers.16.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
88 |
+
"model.layers.16.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
89 |
+
"model.layers.17.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
90 |
+
"model.layers.17.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
91 |
+
"model.layers.17.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
92 |
+
"model.layers.17.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
93 |
+
"model.layers.17.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
94 |
+
"model.layers.17.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
95 |
+
"model.layers.17.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
96 |
+
"model.layers.17.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
97 |
+
"model.layers.17.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
98 |
+
"model.layers.18.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
99 |
+
"model.layers.18.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
100 |
+
"model.layers.18.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
101 |
+
"model.layers.18.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
102 |
+
"model.layers.18.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
103 |
+
"model.layers.18.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
104 |
+
"model.layers.18.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
105 |
+
"model.layers.18.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
106 |
+
"model.layers.18.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
107 |
+
"model.layers.19.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
108 |
+
"model.layers.19.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
109 |
+
"model.layers.19.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
110 |
+
"model.layers.19.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
111 |
+
"model.layers.19.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
112 |
+
"model.layers.19.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
113 |
+
"model.layers.19.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
114 |
+
"model.layers.19.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
115 |
+
"model.layers.19.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
116 |
+
"model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
117 |
+
"model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
118 |
+
"model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
119 |
+
"model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
120 |
+
"model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
121 |
+
"model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
122 |
+
"model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
123 |
+
"model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
124 |
+
"model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
125 |
+
"model.layers.20.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
126 |
+
"model.layers.20.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
127 |
+
"model.layers.20.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
128 |
+
"model.layers.20.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
129 |
+
"model.layers.20.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
130 |
+
"model.layers.20.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
131 |
+
"model.layers.20.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
132 |
+
"model.layers.20.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
133 |
+
"model.layers.20.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
134 |
+
"model.layers.21.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
135 |
+
"model.layers.21.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
136 |
+
"model.layers.21.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
137 |
+
"model.layers.21.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
138 |
+
"model.layers.21.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
139 |
+
"model.layers.21.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
140 |
+
"model.layers.21.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
141 |
+
"model.layers.21.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
142 |
+
"model.layers.21.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
143 |
+
"model.layers.22.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
144 |
+
"model.layers.22.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
145 |
+
"model.layers.22.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
146 |
+
"model.layers.22.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
147 |
+
"model.layers.22.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
148 |
+
"model.layers.22.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
149 |
+
"model.layers.22.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
150 |
+
"model.layers.22.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
151 |
+
"model.layers.22.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
152 |
+
"model.layers.23.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
153 |
+
"model.layers.23.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
154 |
+
"model.layers.23.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
155 |
+
"model.layers.23.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
156 |
+
"model.layers.23.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
157 |
+
"model.layers.23.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
158 |
+
"model.layers.23.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
159 |
+
"model.layers.23.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
160 |
+
"model.layers.23.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
161 |
+
"model.layers.24.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
162 |
+
"model.layers.24.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
163 |
+
"model.layers.24.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
164 |
+
"model.layers.24.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
165 |
+
"model.layers.24.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
166 |
+
"model.layers.24.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
167 |
+
"model.layers.24.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
168 |
+
"model.layers.24.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
169 |
+
"model.layers.24.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
170 |
+
"model.layers.25.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
171 |
+
"model.layers.25.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
172 |
+
"model.layers.25.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
173 |
+
"model.layers.25.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
174 |
+
"model.layers.25.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
175 |
+
"model.layers.25.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
176 |
+
"model.layers.25.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
177 |
+
"model.layers.25.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
178 |
+
"model.layers.25.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
179 |
+
"model.layers.26.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
180 |
+
"model.layers.26.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
181 |
+
"model.layers.26.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
182 |
+
"model.layers.26.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
183 |
+
"model.layers.26.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
184 |
+
"model.layers.26.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
185 |
+
"model.layers.26.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
186 |
+
"model.layers.26.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
187 |
+
"model.layers.26.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
188 |
+
"model.layers.27.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
189 |
+
"model.layers.27.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
190 |
+
"model.layers.27.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
191 |
+
"model.layers.27.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
192 |
+
"model.layers.27.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
193 |
+
"model.layers.27.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
194 |
+
"model.layers.27.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
195 |
+
"model.layers.27.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
196 |
+
"model.layers.27.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
197 |
+
"model.layers.28.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
198 |
+
"model.layers.28.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
199 |
+
"model.layers.28.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
200 |
+
"model.layers.28.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
201 |
+
"model.layers.28.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
202 |
+
"model.layers.28.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
203 |
+
"model.layers.28.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
204 |
+
"model.layers.28.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
205 |
+
"model.layers.28.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
206 |
+
"model.layers.29.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
207 |
+
"model.layers.29.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
208 |
+
"model.layers.29.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
209 |
+
"model.layers.29.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
210 |
+
"model.layers.29.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
211 |
+
"model.layers.29.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
212 |
+
"model.layers.29.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
213 |
+
"model.layers.29.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
214 |
+
"model.layers.29.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
215 |
+
"model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
216 |
+
"model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
217 |
+
"model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
218 |
+
"model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
219 |
+
"model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
220 |
+
"model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
221 |
+
"model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
222 |
+
"model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
223 |
+
"model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
224 |
+
"model.layers.30.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
225 |
+
"model.layers.30.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
226 |
+
"model.layers.30.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
227 |
+
"model.layers.30.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
228 |
+
"model.layers.30.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
229 |
+
"model.layers.30.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
230 |
+
"model.layers.30.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
231 |
+
"model.layers.30.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
232 |
+
"model.layers.30.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
233 |
+
"model.layers.31.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
234 |
+
"model.layers.31.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
235 |
+
"model.layers.31.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
236 |
+
"model.layers.31.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
237 |
+
"model.layers.31.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
238 |
+
"model.layers.31.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
239 |
+
"model.layers.31.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
240 |
+
"model.layers.31.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
241 |
+
"model.layers.31.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
242 |
+
"model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
243 |
+
"model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
244 |
+
"model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
245 |
+
"model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
246 |
+
"model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
247 |
+
"model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
248 |
+
"model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
249 |
+
"model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
250 |
+
"model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
251 |
+
"model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
252 |
+
"model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
253 |
+
"model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
254 |
+
"model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
255 |
+
"model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
256 |
+
"model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
257 |
+
"model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
258 |
+
"model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
259 |
+
"model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
260 |
+
"model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
261 |
+
"model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
262 |
+
"model.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
263 |
+
"model.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
264 |
+
"model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
265 |
+
"model.layers.6.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
266 |
+
"model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
267 |
+
"model.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
268 |
+
"model.layers.6.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
269 |
+
"model.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
270 |
+
"model.layers.7.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
271 |
+
"model.layers.7.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
272 |
+
"model.layers.7.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
273 |
+
"model.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
274 |
+
"model.layers.7.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
275 |
+
"model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
276 |
+
"model.layers.7.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
277 |
+
"model.layers.7.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
278 |
+
"model.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
279 |
+
"model.layers.8.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
280 |
+
"model.layers.8.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
281 |
+
"model.layers.8.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
282 |
+
"model.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
283 |
+
"model.layers.8.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
284 |
+
"model.layers.8.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
285 |
+
"model.layers.8.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
286 |
+
"model.layers.8.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
287 |
+
"model.layers.9.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
288 |
+
"model.layers.9.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
289 |
+
"model.layers.9.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
290 |
+
"model.layers.9.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
291 |
+
"model.layers.9.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
292 |
+
"model.layers.9.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
293 |
+
"model.layers.9.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
294 |
+
"model.layers.9.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
295 |
+
"model.layers.9.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
296 |
+
"model.norm.weight": "pytorch_model-00002-of-00002.bin"
|
297 |
+
}
|
298 |
+
}
|
checkpoint-200/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1eafe3d5e0585dde8c5033613de99a5d4f23df4284a488f4007b3944580c0b97
|
3 |
+
size 17655
|
checkpoint-200/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7e34eb456d2d003a2839f2daa9425e99bdd79ed7e24a1de9fc7d5738476bfb4b
|
3 |
+
size 17655
|
checkpoint-200/rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b374af4a2765d8771cee7a72921d3c2e438b9bee34f0b2d098ce6071afeb65e4
|
3 |
+
size 17655
|
checkpoint-200/rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5df75d8477fcc69c7abb03025313915ebfe3ac18c54a7c57aaa455c0099e13e5
|
3 |
+
size 17655
|
checkpoint-200/trainer_state.json
ADDED
@@ -0,0 +1,1243 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.02646202699126753,
|
5 |
+
"eval_steps": 756,
|
6 |
+
"global_step": 200,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.0,
|
13 |
+
"learning_rate": 0.0,
|
14 |
+
"loss": 0.9197,
|
15 |
+
"step": 1
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"epoch": 0.0,
|
19 |
+
"eval_loss": 1.4652303457260132,
|
20 |
+
"eval_runtime": 2.1726,
|
21 |
+
"eval_samples_per_second": 79.627,
|
22 |
+
"eval_steps_per_second": 3.682,
|
23 |
+
"step": 1
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.0,
|
27 |
+
"eval_bench_accuracy_agieval": 0.2711864406779661,
|
28 |
+
"eval_bench_accuracy_arc_challenge": 0.8703703703703703,
|
29 |
+
"eval_bench_accuracy_arc_easy": 0.9259259259259259,
|
30 |
+
"eval_bench_accuracy_bigbench": 0.36065573770491804,
|
31 |
+
"eval_bench_accuracy_boolq": 0.5740740740740741,
|
32 |
+
"eval_bench_accuracy_mmlu": 0.5185185185185185,
|
33 |
+
"eval_bench_accuracy_openbookqa": 0.1111111111111111,
|
34 |
+
"eval_bench_accuracy_truthful_qa": 0.3584905660377358,
|
35 |
+
"eval_bench_accuracy_winogrande": 0.4444444444444444,
|
36 |
+
"eval_bench_average_accuracy": 0.4927530209850072,
|
37 |
+
"eval_bench_loss": 2.6978388407144203,
|
38 |
+
"eval_bench_total_accuracy": 0.48893360160965793,
|
39 |
+
"step": 1
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.0,
|
43 |
+
"learning_rate": 6.000000000000001e-07,
|
44 |
+
"loss": 1.3426,
|
45 |
+
"step": 2
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.0,
|
49 |
+
"learning_rate": 1.2000000000000002e-06,
|
50 |
+
"loss": 1.5882,
|
51 |
+
"step": 3
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.0,
|
55 |
+
"learning_rate": 1.8e-06,
|
56 |
+
"loss": 0.8542,
|
57 |
+
"step": 4
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"epoch": 0.0,
|
61 |
+
"learning_rate": 2.4000000000000003e-06,
|
62 |
+
"loss": 0.9629,
|
63 |
+
"step": 5
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"epoch": 0.0,
|
67 |
+
"learning_rate": 3e-06,
|
68 |
+
"loss": 0.903,
|
69 |
+
"step": 6
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.0,
|
73 |
+
"learning_rate": 3.6e-06,
|
74 |
+
"loss": 0.909,
|
75 |
+
"step": 7
|
76 |
+
},
|
77 |
+
{
|
78 |
+
"epoch": 0.0,
|
79 |
+
"learning_rate": 4.2e-06,
|
80 |
+
"loss": 0.8666,
|
81 |
+
"step": 8
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"epoch": 0.0,
|
85 |
+
"learning_rate": 4.800000000000001e-06,
|
86 |
+
"loss": 1.0108,
|
87 |
+
"step": 9
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 0.0,
|
91 |
+
"learning_rate": 5.4e-06,
|
92 |
+
"loss": 0.8958,
|
93 |
+
"step": 10
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.0,
|
97 |
+
"learning_rate": 6e-06,
|
98 |
+
"loss": 0.9348,
|
99 |
+
"step": 11
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.0,
|
103 |
+
"learning_rate": 5.999602806831722e-06,
|
104 |
+
"loss": 0.7832,
|
105 |
+
"step": 12
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"epoch": 0.0,
|
109 |
+
"learning_rate": 5.999205613663445e-06,
|
110 |
+
"loss": 0.8083,
|
111 |
+
"step": 13
|
112 |
+
},
|
113 |
+
{
|
114 |
+
"epoch": 0.0,
|
115 |
+
"learning_rate": 5.9988084204951675e-06,
|
116 |
+
"loss": 0.8164,
|
117 |
+
"step": 14
|
118 |
+
},
|
119 |
+
{
|
120 |
+
"epoch": 0.0,
|
121 |
+
"learning_rate": 5.99841122732689e-06,
|
122 |
+
"loss": 0.7834,
|
123 |
+
"step": 15
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"epoch": 0.0,
|
127 |
+
"learning_rate": 5.998014034158613e-06,
|
128 |
+
"loss": 0.8718,
|
129 |
+
"step": 16
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.0,
|
133 |
+
"learning_rate": 5.997616840990336e-06,
|
134 |
+
"loss": 0.84,
|
135 |
+
"step": 17
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.0,
|
139 |
+
"learning_rate": 5.997219647822058e-06,
|
140 |
+
"loss": 0.7397,
|
141 |
+
"step": 18
|
142 |
+
},
|
143 |
+
{
|
144 |
+
"epoch": 0.0,
|
145 |
+
"learning_rate": 5.99682245465378e-06,
|
146 |
+
"loss": 0.7445,
|
147 |
+
"step": 19
|
148 |
+
},
|
149 |
+
{
|
150 |
+
"epoch": 0.0,
|
151 |
+
"learning_rate": 5.996425261485502e-06,
|
152 |
+
"loss": 0.7898,
|
153 |
+
"step": 20
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"epoch": 0.0,
|
157 |
+
"learning_rate": 5.996028068317225e-06,
|
158 |
+
"loss": 0.7388,
|
159 |
+
"step": 21
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 0.0,
|
163 |
+
"learning_rate": 5.9956308751489475e-06,
|
164 |
+
"loss": 0.7296,
|
165 |
+
"step": 22
|
166 |
+
},
|
167 |
+
{
|
168 |
+
"epoch": 0.0,
|
169 |
+
"learning_rate": 5.99523368198067e-06,
|
170 |
+
"loss": 0.7993,
|
171 |
+
"step": 23
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"epoch": 0.0,
|
175 |
+
"learning_rate": 5.994836488812393e-06,
|
176 |
+
"loss": 0.7188,
|
177 |
+
"step": 24
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.0,
|
181 |
+
"learning_rate": 5.994439295644115e-06,
|
182 |
+
"loss": 0.7473,
|
183 |
+
"step": 25
|
184 |
+
},
|
185 |
+
{
|
186 |
+
"epoch": 0.0,
|
187 |
+
"learning_rate": 5.994042102475838e-06,
|
188 |
+
"loss": 0.6997,
|
189 |
+
"step": 26
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 0.0,
|
193 |
+
"learning_rate": 5.99364490930756e-06,
|
194 |
+
"loss": 0.725,
|
195 |
+
"step": 27
|
196 |
+
},
|
197 |
+
{
|
198 |
+
"epoch": 0.0,
|
199 |
+
"learning_rate": 5.993247716139283e-06,
|
200 |
+
"loss": 0.7272,
|
201 |
+
"step": 28
|
202 |
+
},
|
203 |
+
{
|
204 |
+
"epoch": 0.0,
|
205 |
+
"learning_rate": 5.992850522971005e-06,
|
206 |
+
"loss": 0.7427,
|
207 |
+
"step": 29
|
208 |
+
},
|
209 |
+
{
|
210 |
+
"epoch": 0.0,
|
211 |
+
"learning_rate": 5.992453329802727e-06,
|
212 |
+
"loss": 0.7309,
|
213 |
+
"step": 30
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"epoch": 0.0,
|
217 |
+
"learning_rate": 5.99205613663445e-06,
|
218 |
+
"loss": 0.6764,
|
219 |
+
"step": 31
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.0,
|
223 |
+
"learning_rate": 5.991658943466173e-06,
|
224 |
+
"loss": 0.7556,
|
225 |
+
"step": 32
|
226 |
+
},
|
227 |
+
{
|
228 |
+
"epoch": 0.0,
|
229 |
+
"learning_rate": 5.991261750297895e-06,
|
230 |
+
"loss": 0.7301,
|
231 |
+
"step": 33
|
232 |
+
},
|
233 |
+
{
|
234 |
+
"epoch": 0.0,
|
235 |
+
"learning_rate": 5.990864557129617e-06,
|
236 |
+
"loss": 0.6776,
|
237 |
+
"step": 34
|
238 |
+
},
|
239 |
+
{
|
240 |
+
"epoch": 0.0,
|
241 |
+
"learning_rate": 5.99046736396134e-06,
|
242 |
+
"loss": 0.6884,
|
243 |
+
"step": 35
|
244 |
+
},
|
245 |
+
{
|
246 |
+
"epoch": 0.0,
|
247 |
+
"learning_rate": 5.990070170793063e-06,
|
248 |
+
"loss": 0.7179,
|
249 |
+
"step": 36
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 0.0,
|
253 |
+
"learning_rate": 5.989672977624785e-06,
|
254 |
+
"loss": 0.6915,
|
255 |
+
"step": 37
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"epoch": 0.01,
|
259 |
+
"learning_rate": 5.989275784456507e-06,
|
260 |
+
"loss": 0.7308,
|
261 |
+
"step": 38
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.01,
|
265 |
+
"learning_rate": 5.98887859128823e-06,
|
266 |
+
"loss": 0.6743,
|
267 |
+
"step": 39
|
268 |
+
},
|
269 |
+
{
|
270 |
+
"epoch": 0.01,
|
271 |
+
"learning_rate": 5.9884813981199526e-06,
|
272 |
+
"loss": 0.6604,
|
273 |
+
"step": 40
|
274 |
+
},
|
275 |
+
{
|
276 |
+
"epoch": 0.01,
|
277 |
+
"learning_rate": 5.988084204951675e-06,
|
278 |
+
"loss": 0.6609,
|
279 |
+
"step": 41
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 0.01,
|
283 |
+
"learning_rate": 5.987687011783397e-06,
|
284 |
+
"loss": 0.6524,
|
285 |
+
"step": 42
|
286 |
+
},
|
287 |
+
{
|
288 |
+
"epoch": 0.01,
|
289 |
+
"learning_rate": 5.98728981861512e-06,
|
290 |
+
"loss": 0.6386,
|
291 |
+
"step": 43
|
292 |
+
},
|
293 |
+
{
|
294 |
+
"epoch": 0.01,
|
295 |
+
"learning_rate": 5.986892625446843e-06,
|
296 |
+
"loss": 0.728,
|
297 |
+
"step": 44
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"epoch": 0.01,
|
301 |
+
"learning_rate": 5.986495432278565e-06,
|
302 |
+
"loss": 0.6971,
|
303 |
+
"step": 45
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.01,
|
307 |
+
"learning_rate": 5.986098239110287e-06,
|
308 |
+
"loss": 0.6772,
|
309 |
+
"step": 46
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 0.01,
|
313 |
+
"learning_rate": 5.98570104594201e-06,
|
314 |
+
"loss": 0.6774,
|
315 |
+
"step": 47
|
316 |
+
},
|
317 |
+
{
|
318 |
+
"epoch": 0.01,
|
319 |
+
"learning_rate": 5.9853038527737325e-06,
|
320 |
+
"loss": 0.6868,
|
321 |
+
"step": 48
|
322 |
+
},
|
323 |
+
{
|
324 |
+
"epoch": 0.01,
|
325 |
+
"learning_rate": 5.984906659605455e-06,
|
326 |
+
"loss": 0.7169,
|
327 |
+
"step": 49
|
328 |
+
},
|
329 |
+
{
|
330 |
+
"epoch": 0.01,
|
331 |
+
"learning_rate": 5.984509466437178e-06,
|
332 |
+
"loss": 0.669,
|
333 |
+
"step": 50
|
334 |
+
},
|
335 |
+
{
|
336 |
+
"epoch": 0.01,
|
337 |
+
"learning_rate": 5.9841122732689e-06,
|
338 |
+
"loss": 0.7112,
|
339 |
+
"step": 51
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 0.01,
|
343 |
+
"learning_rate": 5.983715080100622e-06,
|
344 |
+
"loss": 0.6667,
|
345 |
+
"step": 52
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.01,
|
349 |
+
"learning_rate": 5.983317886932344e-06,
|
350 |
+
"loss": 0.6528,
|
351 |
+
"step": 53
|
352 |
+
},
|
353 |
+
{
|
354 |
+
"epoch": 0.01,
|
355 |
+
"learning_rate": 5.982920693764068e-06,
|
356 |
+
"loss": 0.6699,
|
357 |
+
"step": 54
|
358 |
+
},
|
359 |
+
{
|
360 |
+
"epoch": 0.01,
|
361 |
+
"learning_rate": 5.98252350059579e-06,
|
362 |
+
"loss": 0.6584,
|
363 |
+
"step": 55
|
364 |
+
},
|
365 |
+
{
|
366 |
+
"epoch": 0.01,
|
367 |
+
"learning_rate": 5.9821263074275125e-06,
|
368 |
+
"loss": 0.6328,
|
369 |
+
"step": 56
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 0.01,
|
373 |
+
"learning_rate": 5.981729114259235e-06,
|
374 |
+
"loss": 0.6472,
|
375 |
+
"step": 57
|
376 |
+
},
|
377 |
+
{
|
378 |
+
"epoch": 0.01,
|
379 |
+
"learning_rate": 5.981331921090958e-06,
|
380 |
+
"loss": 0.6992,
|
381 |
+
"step": 58
|
382 |
+
},
|
383 |
+
{
|
384 |
+
"epoch": 0.01,
|
385 |
+
"learning_rate": 5.98093472792268e-06,
|
386 |
+
"loss": 0.6666,
|
387 |
+
"step": 59
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 0.01,
|
391 |
+
"learning_rate": 5.980537534754402e-06,
|
392 |
+
"loss": 0.6819,
|
393 |
+
"step": 60
|
394 |
+
},
|
395 |
+
{
|
396 |
+
"epoch": 0.01,
|
397 |
+
"learning_rate": 5.980140341586125e-06,
|
398 |
+
"loss": 0.705,
|
399 |
+
"step": 61
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 0.01,
|
403 |
+
"learning_rate": 5.979743148417847e-06,
|
404 |
+
"loss": 0.6871,
|
405 |
+
"step": 62
|
406 |
+
},
|
407 |
+
{
|
408 |
+
"epoch": 0.01,
|
409 |
+
"learning_rate": 5.97934595524957e-06,
|
410 |
+
"loss": 0.6998,
|
411 |
+
"step": 63
|
412 |
+
},
|
413 |
+
{
|
414 |
+
"epoch": 0.01,
|
415 |
+
"learning_rate": 5.978948762081292e-06,
|
416 |
+
"loss": 0.6081,
|
417 |
+
"step": 64
|
418 |
+
},
|
419 |
+
{
|
420 |
+
"epoch": 0.01,
|
421 |
+
"learning_rate": 5.9785515689130154e-06,
|
422 |
+
"loss": 0.6985,
|
423 |
+
"step": 65
|
424 |
+
},
|
425 |
+
{
|
426 |
+
"epoch": 0.01,
|
427 |
+
"learning_rate": 5.978154375744738e-06,
|
428 |
+
"loss": 0.6631,
|
429 |
+
"step": 66
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 0.01,
|
433 |
+
"learning_rate": 5.97775718257646e-06,
|
434 |
+
"loss": 0.6534,
|
435 |
+
"step": 67
|
436 |
+
},
|
437 |
+
{
|
438 |
+
"epoch": 0.01,
|
439 |
+
"learning_rate": 5.977359989408182e-06,
|
440 |
+
"loss": 0.6685,
|
441 |
+
"step": 68
|
442 |
+
},
|
443 |
+
{
|
444 |
+
"epoch": 0.01,
|
445 |
+
"learning_rate": 5.976962796239905e-06,
|
446 |
+
"loss": 0.6821,
|
447 |
+
"step": 69
|
448 |
+
},
|
449 |
+
{
|
450 |
+
"epoch": 0.01,
|
451 |
+
"learning_rate": 5.976565603071627e-06,
|
452 |
+
"loss": 0.6241,
|
453 |
+
"step": 70
|
454 |
+
},
|
455 |
+
{
|
456 |
+
"epoch": 0.01,
|
457 |
+
"learning_rate": 5.976168409903349e-06,
|
458 |
+
"loss": 0.6357,
|
459 |
+
"step": 71
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 0.01,
|
463 |
+
"learning_rate": 5.975771216735072e-06,
|
464 |
+
"loss": 0.6466,
|
465 |
+
"step": 72
|
466 |
+
},
|
467 |
+
{
|
468 |
+
"epoch": 0.01,
|
469 |
+
"learning_rate": 5.975374023566795e-06,
|
470 |
+
"loss": 0.6579,
|
471 |
+
"step": 73
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 0.01,
|
475 |
+
"learning_rate": 5.9749768303985176e-06,
|
476 |
+
"loss": 0.6298,
|
477 |
+
"step": 74
|
478 |
+
},
|
479 |
+
{
|
480 |
+
"epoch": 0.01,
|
481 |
+
"learning_rate": 5.97457963723024e-06,
|
482 |
+
"loss": 0.703,
|
483 |
+
"step": 75
|
484 |
+
},
|
485 |
+
{
|
486 |
+
"epoch": 0.01,
|
487 |
+
"learning_rate": 5.974182444061963e-06,
|
488 |
+
"loss": 0.6152,
|
489 |
+
"step": 76
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"epoch": 0.01,
|
493 |
+
"learning_rate": 5.973785250893685e-06,
|
494 |
+
"loss": 0.6682,
|
495 |
+
"step": 77
|
496 |
+
},
|
497 |
+
{
|
498 |
+
"epoch": 0.01,
|
499 |
+
"learning_rate": 5.973388057725407e-06,
|
500 |
+
"loss": 0.6427,
|
501 |
+
"step": 78
|
502 |
+
},
|
503 |
+
{
|
504 |
+
"epoch": 0.01,
|
505 |
+
"learning_rate": 5.972990864557129e-06,
|
506 |
+
"loss": 0.6969,
|
507 |
+
"step": 79
|
508 |
+
},
|
509 |
+
{
|
510 |
+
"epoch": 0.01,
|
511 |
+
"learning_rate": 5.972593671388852e-06,
|
512 |
+
"loss": 0.6619,
|
513 |
+
"step": 80
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 0.01,
|
517 |
+
"learning_rate": 5.9721964782205745e-06,
|
518 |
+
"loss": 0.6332,
|
519 |
+
"step": 81
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"epoch": 0.01,
|
523 |
+
"learning_rate": 5.9717992850522975e-06,
|
524 |
+
"loss": 0.6203,
|
525 |
+
"step": 82
|
526 |
+
},
|
527 |
+
{
|
528 |
+
"epoch": 0.01,
|
529 |
+
"learning_rate": 5.97140209188402e-06,
|
530 |
+
"loss": 0.6463,
|
531 |
+
"step": 83
|
532 |
+
},
|
533 |
+
{
|
534 |
+
"epoch": 0.01,
|
535 |
+
"learning_rate": 5.971004898715743e-06,
|
536 |
+
"loss": 0.6718,
|
537 |
+
"step": 84
|
538 |
+
},
|
539 |
+
{
|
540 |
+
"epoch": 0.01,
|
541 |
+
"learning_rate": 5.970607705547465e-06,
|
542 |
+
"loss": 0.6495,
|
543 |
+
"step": 85
|
544 |
+
},
|
545 |
+
{
|
546 |
+
"epoch": 0.01,
|
547 |
+
"learning_rate": 5.970210512379187e-06,
|
548 |
+
"loss": 0.5787,
|
549 |
+
"step": 86
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 0.01,
|
553 |
+
"learning_rate": 5.96981331921091e-06,
|
554 |
+
"loss": 0.6897,
|
555 |
+
"step": 87
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 0.01,
|
559 |
+
"learning_rate": 5.969416126042632e-06,
|
560 |
+
"loss": 0.6688,
|
561 |
+
"step": 88
|
562 |
+
},
|
563 |
+
{
|
564 |
+
"epoch": 0.01,
|
565 |
+
"learning_rate": 5.9690189328743544e-06,
|
566 |
+
"loss": 0.6697,
|
567 |
+
"step": 89
|
568 |
+
},
|
569 |
+
{
|
570 |
+
"epoch": 0.01,
|
571 |
+
"learning_rate": 5.968621739706077e-06,
|
572 |
+
"loss": 0.6156,
|
573 |
+
"step": 90
|
574 |
+
},
|
575 |
+
{
|
576 |
+
"epoch": 0.01,
|
577 |
+
"learning_rate": 5.9682245465378e-06,
|
578 |
+
"loss": 0.6301,
|
579 |
+
"step": 91
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"epoch": 0.01,
|
583 |
+
"learning_rate": 5.967827353369523e-06,
|
584 |
+
"loss": 0.6121,
|
585 |
+
"step": 92
|
586 |
+
},
|
587 |
+
{
|
588 |
+
"epoch": 0.01,
|
589 |
+
"learning_rate": 5.967430160201245e-06,
|
590 |
+
"loss": 0.6177,
|
591 |
+
"step": 93
|
592 |
+
},
|
593 |
+
{
|
594 |
+
"epoch": 0.01,
|
595 |
+
"learning_rate": 5.967032967032967e-06,
|
596 |
+
"loss": 0.611,
|
597 |
+
"step": 94
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 0.01,
|
601 |
+
"learning_rate": 5.96663577386469e-06,
|
602 |
+
"loss": 0.6359,
|
603 |
+
"step": 95
|
604 |
+
},
|
605 |
+
{
|
606 |
+
"epoch": 0.01,
|
607 |
+
"learning_rate": 5.966238580696412e-06,
|
608 |
+
"loss": 0.6417,
|
609 |
+
"step": 96
|
610 |
+
},
|
611 |
+
{
|
612 |
+
"epoch": 0.01,
|
613 |
+
"learning_rate": 5.965841387528134e-06,
|
614 |
+
"loss": 0.6312,
|
615 |
+
"step": 97
|
616 |
+
},
|
617 |
+
{
|
618 |
+
"epoch": 0.01,
|
619 |
+
"learning_rate": 5.965444194359857e-06,
|
620 |
+
"loss": 0.6184,
|
621 |
+
"step": 98
|
622 |
+
},
|
623 |
+
{
|
624 |
+
"epoch": 0.01,
|
625 |
+
"learning_rate": 5.9650470011915796e-06,
|
626 |
+
"loss": 0.6724,
|
627 |
+
"step": 99
|
628 |
+
},
|
629 |
+
{
|
630 |
+
"epoch": 0.01,
|
631 |
+
"learning_rate": 5.964649808023302e-06,
|
632 |
+
"loss": 0.6833,
|
633 |
+
"step": 100
|
634 |
+
},
|
635 |
+
{
|
636 |
+
"epoch": 0.01,
|
637 |
+
"learning_rate": 5.964252614855025e-06,
|
638 |
+
"loss": 0.6433,
|
639 |
+
"step": 101
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 0.01,
|
643 |
+
"learning_rate": 5.963855421686747e-06,
|
644 |
+
"loss": 0.6766,
|
645 |
+
"step": 102
|
646 |
+
},
|
647 |
+
{
|
648 |
+
"epoch": 0.01,
|
649 |
+
"learning_rate": 5.96345822851847e-06,
|
650 |
+
"loss": 0.6527,
|
651 |
+
"step": 103
|
652 |
+
},
|
653 |
+
{
|
654 |
+
"epoch": 0.01,
|
655 |
+
"learning_rate": 5.963061035350192e-06,
|
656 |
+
"loss": 0.5982,
|
657 |
+
"step": 104
|
658 |
+
},
|
659 |
+
{
|
660 |
+
"epoch": 0.01,
|
661 |
+
"learning_rate": 5.962663842181914e-06,
|
662 |
+
"loss": 0.6749,
|
663 |
+
"step": 105
|
664 |
+
},
|
665 |
+
{
|
666 |
+
"epoch": 0.01,
|
667 |
+
"learning_rate": 5.962266649013637e-06,
|
668 |
+
"loss": 0.6494,
|
669 |
+
"step": 106
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"epoch": 0.01,
|
673 |
+
"learning_rate": 5.9618694558453595e-06,
|
674 |
+
"loss": 0.6998,
|
675 |
+
"step": 107
|
676 |
+
},
|
677 |
+
{
|
678 |
+
"epoch": 0.01,
|
679 |
+
"learning_rate": 5.961472262677082e-06,
|
680 |
+
"loss": 0.6112,
|
681 |
+
"step": 108
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 0.01,
|
685 |
+
"learning_rate": 5.961075069508805e-06,
|
686 |
+
"loss": 0.624,
|
687 |
+
"step": 109
|
688 |
+
},
|
689 |
+
{
|
690 |
+
"epoch": 0.01,
|
691 |
+
"learning_rate": 5.960677876340528e-06,
|
692 |
+
"loss": 0.6329,
|
693 |
+
"step": 110
|
694 |
+
},
|
695 |
+
{
|
696 |
+
"epoch": 0.01,
|
697 |
+
"learning_rate": 5.96028068317225e-06,
|
698 |
+
"loss": 0.6491,
|
699 |
+
"step": 111
|
700 |
+
},
|
701 |
+
{
|
702 |
+
"epoch": 0.01,
|
703 |
+
"learning_rate": 5.959883490003972e-06,
|
704 |
+
"loss": 0.6672,
|
705 |
+
"step": 112
|
706 |
+
},
|
707 |
+
{
|
708 |
+
"epoch": 0.01,
|
709 |
+
"learning_rate": 5.959486296835694e-06,
|
710 |
+
"loss": 0.6279,
|
711 |
+
"step": 113
|
712 |
+
},
|
713 |
+
{
|
714 |
+
"epoch": 0.02,
|
715 |
+
"learning_rate": 5.959089103667417e-06,
|
716 |
+
"loss": 0.6479,
|
717 |
+
"step": 114
|
718 |
+
},
|
719 |
+
{
|
720 |
+
"epoch": 0.02,
|
721 |
+
"learning_rate": 5.9586919104991395e-06,
|
722 |
+
"loss": 0.6214,
|
723 |
+
"step": 115
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"epoch": 0.02,
|
727 |
+
"learning_rate": 5.958294717330862e-06,
|
728 |
+
"loss": 0.6618,
|
729 |
+
"step": 116
|
730 |
+
},
|
731 |
+
{
|
732 |
+
"epoch": 0.02,
|
733 |
+
"learning_rate": 5.957897524162585e-06,
|
734 |
+
"loss": 0.6703,
|
735 |
+
"step": 117
|
736 |
+
},
|
737 |
+
{
|
738 |
+
"epoch": 0.02,
|
739 |
+
"learning_rate": 5.957500330994307e-06,
|
740 |
+
"loss": 0.6417,
|
741 |
+
"step": 118
|
742 |
+
},
|
743 |
+
{
|
744 |
+
"epoch": 0.02,
|
745 |
+
"learning_rate": 5.957103137826029e-06,
|
746 |
+
"loss": 0.631,
|
747 |
+
"step": 119
|
748 |
+
},
|
749 |
+
{
|
750 |
+
"epoch": 0.02,
|
751 |
+
"learning_rate": 5.956705944657752e-06,
|
752 |
+
"loss": 0.6169,
|
753 |
+
"step": 120
|
754 |
+
},
|
755 |
+
{
|
756 |
+
"epoch": 0.02,
|
757 |
+
"learning_rate": 5.956308751489475e-06,
|
758 |
+
"loss": 0.6521,
|
759 |
+
"step": 121
|
760 |
+
},
|
761 |
+
{
|
762 |
+
"epoch": 0.02,
|
763 |
+
"learning_rate": 5.955911558321197e-06,
|
764 |
+
"loss": 0.6635,
|
765 |
+
"step": 122
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"epoch": 0.02,
|
769 |
+
"learning_rate": 5.955514365152919e-06,
|
770 |
+
"loss": 0.6496,
|
771 |
+
"step": 123
|
772 |
+
},
|
773 |
+
{
|
774 |
+
"epoch": 0.02,
|
775 |
+
"learning_rate": 5.955117171984642e-06,
|
776 |
+
"loss": 0.6431,
|
777 |
+
"step": 124
|
778 |
+
},
|
779 |
+
{
|
780 |
+
"epoch": 0.02,
|
781 |
+
"learning_rate": 5.954719978816365e-06,
|
782 |
+
"loss": 0.6246,
|
783 |
+
"step": 125
|
784 |
+
},
|
785 |
+
{
|
786 |
+
"epoch": 0.02,
|
787 |
+
"learning_rate": 5.954322785648087e-06,
|
788 |
+
"loss": 0.6557,
|
789 |
+
"step": 126
|
790 |
+
},
|
791 |
+
{
|
792 |
+
"epoch": 0.02,
|
793 |
+
"learning_rate": 5.953925592479809e-06,
|
794 |
+
"loss": 0.6082,
|
795 |
+
"step": 127
|
796 |
+
},
|
797 |
+
{
|
798 |
+
"epoch": 0.02,
|
799 |
+
"learning_rate": 5.953528399311532e-06,
|
800 |
+
"loss": 0.5941,
|
801 |
+
"step": 128
|
802 |
+
},
|
803 |
+
{
|
804 |
+
"epoch": 0.02,
|
805 |
+
"learning_rate": 5.953131206143255e-06,
|
806 |
+
"loss": 0.6566,
|
807 |
+
"step": 129
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"epoch": 0.02,
|
811 |
+
"learning_rate": 5.952734012974977e-06,
|
812 |
+
"loss": 0.6243,
|
813 |
+
"step": 130
|
814 |
+
},
|
815 |
+
{
|
816 |
+
"epoch": 0.02,
|
817 |
+
"learning_rate": 5.952336819806699e-06,
|
818 |
+
"loss": 0.594,
|
819 |
+
"step": 131
|
820 |
+
},
|
821 |
+
{
|
822 |
+
"epoch": 0.02,
|
823 |
+
"learning_rate": 5.951939626638422e-06,
|
824 |
+
"loss": 0.68,
|
825 |
+
"step": 132
|
826 |
+
},
|
827 |
+
{
|
828 |
+
"epoch": 0.02,
|
829 |
+
"learning_rate": 5.9515424334701446e-06,
|
830 |
+
"loss": 0.6302,
|
831 |
+
"step": 133
|
832 |
+
},
|
833 |
+
{
|
834 |
+
"epoch": 0.02,
|
835 |
+
"learning_rate": 5.951145240301867e-06,
|
836 |
+
"loss": 0.6251,
|
837 |
+
"step": 134
|
838 |
+
},
|
839 |
+
{
|
840 |
+
"epoch": 0.02,
|
841 |
+
"learning_rate": 5.950748047133589e-06,
|
842 |
+
"loss": 0.6326,
|
843 |
+
"step": 135
|
844 |
+
},
|
845 |
+
{
|
846 |
+
"epoch": 0.02,
|
847 |
+
"learning_rate": 5.950350853965312e-06,
|
848 |
+
"loss": 0.6314,
|
849 |
+
"step": 136
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 0.02,
|
853 |
+
"learning_rate": 5.949953660797034e-06,
|
854 |
+
"loss": 0.6598,
|
855 |
+
"step": 137
|
856 |
+
},
|
857 |
+
{
|
858 |
+
"epoch": 0.02,
|
859 |
+
"learning_rate": 5.949556467628757e-06,
|
860 |
+
"loss": 0.6583,
|
861 |
+
"step": 138
|
862 |
+
},
|
863 |
+
{
|
864 |
+
"epoch": 0.02,
|
865 |
+
"learning_rate": 5.949159274460479e-06,
|
866 |
+
"loss": 0.6162,
|
867 |
+
"step": 139
|
868 |
+
},
|
869 |
+
{
|
870 |
+
"epoch": 0.02,
|
871 |
+
"learning_rate": 5.948762081292202e-06,
|
872 |
+
"loss": 0.7042,
|
873 |
+
"step": 140
|
874 |
+
},
|
875 |
+
{
|
876 |
+
"epoch": 0.02,
|
877 |
+
"learning_rate": 5.9483648881239245e-06,
|
878 |
+
"loss": 0.6733,
|
879 |
+
"step": 141
|
880 |
+
},
|
881 |
+
{
|
882 |
+
"epoch": 0.02,
|
883 |
+
"learning_rate": 5.947967694955647e-06,
|
884 |
+
"loss": 0.6103,
|
885 |
+
"step": 142
|
886 |
+
},
|
887 |
+
{
|
888 |
+
"epoch": 0.02,
|
889 |
+
"learning_rate": 5.94757050178737e-06,
|
890 |
+
"loss": 0.6269,
|
891 |
+
"step": 143
|
892 |
+
},
|
893 |
+
{
|
894 |
+
"epoch": 0.02,
|
895 |
+
"learning_rate": 5.947173308619092e-06,
|
896 |
+
"loss": 0.663,
|
897 |
+
"step": 144
|
898 |
+
},
|
899 |
+
{
|
900 |
+
"epoch": 0.02,
|
901 |
+
"learning_rate": 5.946776115450814e-06,
|
902 |
+
"loss": 0.5794,
|
903 |
+
"step": 145
|
904 |
+
},
|
905 |
+
{
|
906 |
+
"epoch": 0.02,
|
907 |
+
"learning_rate": 5.946378922282537e-06,
|
908 |
+
"loss": 0.6868,
|
909 |
+
"step": 146
|
910 |
+
},
|
911 |
+
{
|
912 |
+
"epoch": 0.02,
|
913 |
+
"learning_rate": 5.945981729114259e-06,
|
914 |
+
"loss": 0.6064,
|
915 |
+
"step": 147
|
916 |
+
},
|
917 |
+
{
|
918 |
+
"epoch": 0.02,
|
919 |
+
"learning_rate": 5.945584535945982e-06,
|
920 |
+
"loss": 0.6519,
|
921 |
+
"step": 148
|
922 |
+
},
|
923 |
+
{
|
924 |
+
"epoch": 0.02,
|
925 |
+
"learning_rate": 5.9451873427777045e-06,
|
926 |
+
"loss": 0.655,
|
927 |
+
"step": 149
|
928 |
+
},
|
929 |
+
{
|
930 |
+
"epoch": 0.02,
|
931 |
+
"learning_rate": 5.944790149609427e-06,
|
932 |
+
"loss": 0.6617,
|
933 |
+
"step": 150
|
934 |
+
},
|
935 |
+
{
|
936 |
+
"epoch": 0.02,
|
937 |
+
"learning_rate": 5.94439295644115e-06,
|
938 |
+
"loss": 0.627,
|
939 |
+
"step": 151
|
940 |
+
},
|
941 |
+
{
|
942 |
+
"epoch": 0.02,
|
943 |
+
"learning_rate": 5.943995763272872e-06,
|
944 |
+
"loss": 0.5837,
|
945 |
+
"step": 152
|
946 |
+
},
|
947 |
+
{
|
948 |
+
"epoch": 0.02,
|
949 |
+
"learning_rate": 5.943598570104594e-06,
|
950 |
+
"loss": 0.6201,
|
951 |
+
"step": 153
|
952 |
+
},
|
953 |
+
{
|
954 |
+
"epoch": 0.02,
|
955 |
+
"learning_rate": 5.943201376936317e-06,
|
956 |
+
"loss": 0.6291,
|
957 |
+
"step": 154
|
958 |
+
},
|
959 |
+
{
|
960 |
+
"epoch": 0.02,
|
961 |
+
"learning_rate": 5.942804183768039e-06,
|
962 |
+
"loss": 0.6061,
|
963 |
+
"step": 155
|
964 |
+
},
|
965 |
+
{
|
966 |
+
"epoch": 0.02,
|
967 |
+
"learning_rate": 5.942406990599761e-06,
|
968 |
+
"loss": 0.624,
|
969 |
+
"step": 156
|
970 |
+
},
|
971 |
+
{
|
972 |
+
"epoch": 0.02,
|
973 |
+
"learning_rate": 5.942009797431484e-06,
|
974 |
+
"loss": 0.6418,
|
975 |
+
"step": 157
|
976 |
+
},
|
977 |
+
{
|
978 |
+
"epoch": 0.02,
|
979 |
+
"learning_rate": 5.941612604263207e-06,
|
980 |
+
"loss": 0.5858,
|
981 |
+
"step": 158
|
982 |
+
},
|
983 |
+
{
|
984 |
+
"epoch": 0.02,
|
985 |
+
"learning_rate": 5.94121541109493e-06,
|
986 |
+
"loss": 0.6407,
|
987 |
+
"step": 159
|
988 |
+
},
|
989 |
+
{
|
990 |
+
"epoch": 0.02,
|
991 |
+
"learning_rate": 5.940818217926652e-06,
|
992 |
+
"loss": 0.6222,
|
993 |
+
"step": 160
|
994 |
+
},
|
995 |
+
{
|
996 |
+
"epoch": 0.02,
|
997 |
+
"learning_rate": 5.940421024758374e-06,
|
998 |
+
"loss": 0.5938,
|
999 |
+
"step": 161
|
1000 |
+
},
|
1001 |
+
{
|
1002 |
+
"epoch": 0.02,
|
1003 |
+
"learning_rate": 5.940023831590097e-06,
|
1004 |
+
"loss": 0.6157,
|
1005 |
+
"step": 162
|
1006 |
+
},
|
1007 |
+
{
|
1008 |
+
"epoch": 0.02,
|
1009 |
+
"learning_rate": 5.939626638421819e-06,
|
1010 |
+
"loss": 0.5989,
|
1011 |
+
"step": 163
|
1012 |
+
},
|
1013 |
+
{
|
1014 |
+
"epoch": 0.02,
|
1015 |
+
"learning_rate": 5.939229445253541e-06,
|
1016 |
+
"loss": 0.7056,
|
1017 |
+
"step": 164
|
1018 |
+
},
|
1019 |
+
{
|
1020 |
+
"epoch": 0.02,
|
1021 |
+
"learning_rate": 5.938832252085264e-06,
|
1022 |
+
"loss": 0.6606,
|
1023 |
+
"step": 165
|
1024 |
+
},
|
1025 |
+
{
|
1026 |
+
"epoch": 0.02,
|
1027 |
+
"learning_rate": 5.9384350589169865e-06,
|
1028 |
+
"loss": 0.6303,
|
1029 |
+
"step": 166
|
1030 |
+
},
|
1031 |
+
{
|
1032 |
+
"epoch": 0.02,
|
1033 |
+
"learning_rate": 5.9380378657487095e-06,
|
1034 |
+
"loss": 0.6332,
|
1035 |
+
"step": 167
|
1036 |
+
},
|
1037 |
+
{
|
1038 |
+
"epoch": 0.02,
|
1039 |
+
"learning_rate": 5.937640672580432e-06,
|
1040 |
+
"loss": 0.6197,
|
1041 |
+
"step": 168
|
1042 |
+
},
|
1043 |
+
{
|
1044 |
+
"epoch": 0.02,
|
1045 |
+
"learning_rate": 5.937243479412155e-06,
|
1046 |
+
"loss": 0.6318,
|
1047 |
+
"step": 169
|
1048 |
+
},
|
1049 |
+
{
|
1050 |
+
"epoch": 0.02,
|
1051 |
+
"learning_rate": 5.936846286243877e-06,
|
1052 |
+
"loss": 0.6598,
|
1053 |
+
"step": 170
|
1054 |
+
},
|
1055 |
+
{
|
1056 |
+
"epoch": 0.02,
|
1057 |
+
"learning_rate": 5.936449093075599e-06,
|
1058 |
+
"loss": 0.662,
|
1059 |
+
"step": 171
|
1060 |
+
},
|
1061 |
+
{
|
1062 |
+
"epoch": 0.02,
|
1063 |
+
"learning_rate": 5.936051899907321e-06,
|
1064 |
+
"loss": 0.6018,
|
1065 |
+
"step": 172
|
1066 |
+
},
|
1067 |
+
{
|
1068 |
+
"epoch": 0.02,
|
1069 |
+
"learning_rate": 5.935654706739044e-06,
|
1070 |
+
"loss": 0.6955,
|
1071 |
+
"step": 173
|
1072 |
+
},
|
1073 |
+
{
|
1074 |
+
"epoch": 0.02,
|
1075 |
+
"learning_rate": 5.9352575135707665e-06,
|
1076 |
+
"loss": 0.6283,
|
1077 |
+
"step": 174
|
1078 |
+
},
|
1079 |
+
{
|
1080 |
+
"epoch": 0.02,
|
1081 |
+
"learning_rate": 5.934860320402489e-06,
|
1082 |
+
"loss": 0.6829,
|
1083 |
+
"step": 175
|
1084 |
+
},
|
1085 |
+
{
|
1086 |
+
"epoch": 0.02,
|
1087 |
+
"learning_rate": 5.934463127234212e-06,
|
1088 |
+
"loss": 0.5985,
|
1089 |
+
"step": 176
|
1090 |
+
},
|
1091 |
+
{
|
1092 |
+
"epoch": 0.02,
|
1093 |
+
"learning_rate": 5.934065934065935e-06,
|
1094 |
+
"loss": 0.6385,
|
1095 |
+
"step": 177
|
1096 |
+
},
|
1097 |
+
{
|
1098 |
+
"epoch": 0.02,
|
1099 |
+
"learning_rate": 5.933668740897657e-06,
|
1100 |
+
"loss": 0.6326,
|
1101 |
+
"step": 178
|
1102 |
+
},
|
1103 |
+
{
|
1104 |
+
"epoch": 0.02,
|
1105 |
+
"learning_rate": 5.933271547729379e-06,
|
1106 |
+
"loss": 0.639,
|
1107 |
+
"step": 179
|
1108 |
+
},
|
1109 |
+
{
|
1110 |
+
"epoch": 0.02,
|
1111 |
+
"learning_rate": 5.932874354561102e-06,
|
1112 |
+
"loss": 0.6084,
|
1113 |
+
"step": 180
|
1114 |
+
},
|
1115 |
+
{
|
1116 |
+
"epoch": 0.02,
|
1117 |
+
"learning_rate": 5.932477161392824e-06,
|
1118 |
+
"loss": 0.6549,
|
1119 |
+
"step": 181
|
1120 |
+
},
|
1121 |
+
{
|
1122 |
+
"epoch": 0.02,
|
1123 |
+
"learning_rate": 5.932079968224546e-06,
|
1124 |
+
"loss": 0.6728,
|
1125 |
+
"step": 182
|
1126 |
+
},
|
1127 |
+
{
|
1128 |
+
"epoch": 0.02,
|
1129 |
+
"learning_rate": 5.931682775056269e-06,
|
1130 |
+
"loss": 0.6351,
|
1131 |
+
"step": 183
|
1132 |
+
},
|
1133 |
+
{
|
1134 |
+
"epoch": 0.02,
|
1135 |
+
"learning_rate": 5.931285581887992e-06,
|
1136 |
+
"loss": 0.6375,
|
1137 |
+
"step": 184
|
1138 |
+
},
|
1139 |
+
{
|
1140 |
+
"epoch": 0.02,
|
1141 |
+
"learning_rate": 5.930888388719714e-06,
|
1142 |
+
"loss": 0.6814,
|
1143 |
+
"step": 185
|
1144 |
+
},
|
1145 |
+
{
|
1146 |
+
"epoch": 0.02,
|
1147 |
+
"learning_rate": 5.930491195551437e-06,
|
1148 |
+
"loss": 0.5968,
|
1149 |
+
"step": 186
|
1150 |
+
},
|
1151 |
+
{
|
1152 |
+
"epoch": 0.02,
|
1153 |
+
"learning_rate": 5.930094002383159e-06,
|
1154 |
+
"loss": 0.6053,
|
1155 |
+
"step": 187
|
1156 |
+
},
|
1157 |
+
{
|
1158 |
+
"epoch": 0.02,
|
1159 |
+
"learning_rate": 5.929696809214882e-06,
|
1160 |
+
"loss": 0.6468,
|
1161 |
+
"step": 188
|
1162 |
+
},
|
1163 |
+
{
|
1164 |
+
"epoch": 0.03,
|
1165 |
+
"learning_rate": 5.929299616046604e-06,
|
1166 |
+
"loss": 0.6407,
|
1167 |
+
"step": 189
|
1168 |
+
},
|
1169 |
+
{
|
1170 |
+
"epoch": 0.03,
|
1171 |
+
"learning_rate": 5.928902422878326e-06,
|
1172 |
+
"loss": 0.6996,
|
1173 |
+
"step": 190
|
1174 |
+
},
|
1175 |
+
{
|
1176 |
+
"epoch": 0.03,
|
1177 |
+
"learning_rate": 5.928505229710049e-06,
|
1178 |
+
"loss": 0.6158,
|
1179 |
+
"step": 191
|
1180 |
+
},
|
1181 |
+
{
|
1182 |
+
"epoch": 0.03,
|
1183 |
+
"learning_rate": 5.9281080365417716e-06,
|
1184 |
+
"loss": 0.6128,
|
1185 |
+
"step": 192
|
1186 |
+
},
|
1187 |
+
{
|
1188 |
+
"epoch": 0.03,
|
1189 |
+
"learning_rate": 5.927710843373494e-06,
|
1190 |
+
"loss": 0.6558,
|
1191 |
+
"step": 193
|
1192 |
+
},
|
1193 |
+
{
|
1194 |
+
"epoch": 0.03,
|
1195 |
+
"learning_rate": 5.927313650205216e-06,
|
1196 |
+
"loss": 0.6726,
|
1197 |
+
"step": 194
|
1198 |
+
},
|
1199 |
+
{
|
1200 |
+
"epoch": 0.03,
|
1201 |
+
"learning_rate": 5.92691645703694e-06,
|
1202 |
+
"loss": 0.6292,
|
1203 |
+
"step": 195
|
1204 |
+
},
|
1205 |
+
{
|
1206 |
+
"epoch": 0.03,
|
1207 |
+
"learning_rate": 5.926519263868662e-06,
|
1208 |
+
"loss": 0.6004,
|
1209 |
+
"step": 196
|
1210 |
+
},
|
1211 |
+
{
|
1212 |
+
"epoch": 0.03,
|
1213 |
+
"learning_rate": 5.926122070700384e-06,
|
1214 |
+
"loss": 0.599,
|
1215 |
+
"step": 197
|
1216 |
+
},
|
1217 |
+
{
|
1218 |
+
"epoch": 0.03,
|
1219 |
+
"learning_rate": 5.925724877532106e-06,
|
1220 |
+
"loss": 0.6374,
|
1221 |
+
"step": 198
|
1222 |
+
},
|
1223 |
+
{
|
1224 |
+
"epoch": 0.03,
|
1225 |
+
"learning_rate": 5.925327684363829e-06,
|
1226 |
+
"loss": 0.6472,
|
1227 |
+
"step": 199
|
1228 |
+
},
|
1229 |
+
{
|
1230 |
+
"epoch": 0.03,
|
1231 |
+
"learning_rate": 5.9249304911955515e-06,
|
1232 |
+
"loss": 0.594,
|
1233 |
+
"step": 200
|
1234 |
+
}
|
1235 |
+
],
|
1236 |
+
"logging_steps": 1,
|
1237 |
+
"max_steps": 15116,
|
1238 |
+
"num_train_epochs": 2,
|
1239 |
+
"save_steps": 50,
|
1240 |
+
"total_flos": 8.388085624602624e+17,
|
1241 |
+
"trial_name": null,
|
1242 |
+
"trial_params": null
|
1243 |
+
}
|
checkpoint-200/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2f05be88d930176935da1678b48a8294634889bf7ae4f8bebdbaca140c2dac08
|
3 |
+
size 5947
|
checkpoint-200/zero_to_fp32.py
ADDED
@@ -0,0 +1,587 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
215 |
+
elif zero_stage == 3:
|
216 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
217 |
+
|
218 |
+
|
219 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
220 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
221 |
+
return
|
222 |
+
|
223 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
224 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
225 |
+
|
226 |
+
if debug:
|
227 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
229 |
+
|
230 |
+
wanted_params = len(frozen_param_shapes)
|
231 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
232 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
233 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
234 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
235 |
+
|
236 |
+
total_params = 0
|
237 |
+
total_numel = 0
|
238 |
+
for name, shape in frozen_param_shapes.items():
|
239 |
+
total_params += 1
|
240 |
+
unpartitioned_numel = shape.numel()
|
241 |
+
total_numel += unpartitioned_numel
|
242 |
+
|
243 |
+
state_dict[name] = frozen_param_fragments[name]
|
244 |
+
|
245 |
+
if debug:
|
246 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
247 |
+
|
248 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
249 |
+
|
250 |
+
|
251 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
252 |
+
param_shapes = zero_model_states[0].param_shapes
|
253 |
+
|
254 |
+
# Reconstruction protocol:
|
255 |
+
#
|
256 |
+
# XXX: document this
|
257 |
+
|
258 |
+
if debug:
|
259 |
+
for i in range(world_size):
|
260 |
+
for j in range(len(fp32_flat_groups[0])):
|
261 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
262 |
+
|
263 |
+
# XXX: memory usage doubles here (zero2)
|
264 |
+
num_param_groups = len(fp32_flat_groups[0])
|
265 |
+
merged_single_partition_of_fp32_groups = []
|
266 |
+
for i in range(num_param_groups):
|
267 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
268 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
269 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
270 |
+
avail_numel = sum(
|
271 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
272 |
+
|
273 |
+
if debug:
|
274 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
275 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
276 |
+
# not asserting if there is a mismatch due to possible padding
|
277 |
+
print(f"Have {avail_numel} numels to process.")
|
278 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
279 |
+
|
280 |
+
# params
|
281 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
282 |
+
# out-of-core computing solution
|
283 |
+
total_numel = 0
|
284 |
+
total_params = 0
|
285 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
286 |
+
offset = 0
|
287 |
+
avail_numel = full_single_fp32_vector.numel()
|
288 |
+
for name, shape in shapes.items():
|
289 |
+
|
290 |
+
unpartitioned_numel = shape.numel()
|
291 |
+
total_numel += unpartitioned_numel
|
292 |
+
total_params += 1
|
293 |
+
|
294 |
+
if debug:
|
295 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
296 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
297 |
+
offset += unpartitioned_numel
|
298 |
+
|
299 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
300 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
301 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
302 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
303 |
+
align_to = 2 * world_size
|
304 |
+
|
305 |
+
def zero2_align(x):
|
306 |
+
return align_to * math.ceil(x / align_to)
|
307 |
+
|
308 |
+
if debug:
|
309 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
310 |
+
|
311 |
+
offset = zero2_align(offset)
|
312 |
+
avail_numel = zero2_align(avail_numel)
|
313 |
+
|
314 |
+
if debug:
|
315 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
316 |
+
|
317 |
+
# Sanity check
|
318 |
+
if offset != avail_numel:
|
319 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
320 |
+
|
321 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
322 |
+
|
323 |
+
|
324 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
325 |
+
state_dict = OrderedDict()
|
326 |
+
|
327 |
+
# buffers
|
328 |
+
buffers = zero_model_states[0].buffers
|
329 |
+
state_dict.update(buffers)
|
330 |
+
if debug:
|
331 |
+
print(f"added {len(buffers)} buffers")
|
332 |
+
|
333 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
334 |
+
|
335 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
336 |
+
|
337 |
+
# recover shared parameters
|
338 |
+
for pair in zero_model_states[0].shared_params:
|
339 |
+
if pair[1] in state_dict:
|
340 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
341 |
+
|
342 |
+
return state_dict
|
343 |
+
|
344 |
+
|
345 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
346 |
+
remainder = unpartitioned_numel % world_size
|
347 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
348 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
349 |
+
return partitioned_numel, padding_numel
|
350 |
+
|
351 |
+
|
352 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
353 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
354 |
+
return
|
355 |
+
|
356 |
+
if debug:
|
357 |
+
for i in range(world_size):
|
358 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
359 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
360 |
+
|
361 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
362 |
+
wanted_params = len(frozen_param_shapes)
|
363 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
364 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
365 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
366 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
367 |
+
|
368 |
+
total_params = 0
|
369 |
+
total_numel = 0
|
370 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
371 |
+
total_params += 1
|
372 |
+
unpartitioned_numel = shape.numel()
|
373 |
+
total_numel += unpartitioned_numel
|
374 |
+
|
375 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
376 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
377 |
+
|
378 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
379 |
+
|
380 |
+
if debug:
|
381 |
+
print(
|
382 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
383 |
+
)
|
384 |
+
|
385 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
386 |
+
|
387 |
+
|
388 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
389 |
+
param_shapes = zero_model_states[0].param_shapes
|
390 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
391 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
392 |
+
# param, re-consolidating each param, while dealing with padding if any
|
393 |
+
|
394 |
+
# merge list of dicts, preserving order
|
395 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
396 |
+
|
397 |
+
if debug:
|
398 |
+
for i in range(world_size):
|
399 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
400 |
+
|
401 |
+
wanted_params = len(param_shapes)
|
402 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
403 |
+
# not asserting if there is a mismatch due to possible padding
|
404 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
405 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
406 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
407 |
+
|
408 |
+
# params
|
409 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
410 |
+
# out-of-core computing solution
|
411 |
+
offset = 0
|
412 |
+
total_numel = 0
|
413 |
+
total_params = 0
|
414 |
+
for name, shape in param_shapes.items():
|
415 |
+
|
416 |
+
unpartitioned_numel = shape.numel()
|
417 |
+
total_numel += unpartitioned_numel
|
418 |
+
total_params += 1
|
419 |
+
|
420 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
421 |
+
|
422 |
+
if debug:
|
423 |
+
print(
|
424 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
425 |
+
)
|
426 |
+
|
427 |
+
# XXX: memory usage doubles here
|
428 |
+
state_dict[name] = torch.cat(
|
429 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
430 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
431 |
+
offset += partitioned_numel
|
432 |
+
|
433 |
+
offset *= world_size
|
434 |
+
|
435 |
+
# Sanity check
|
436 |
+
if offset != avail_numel:
|
437 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
438 |
+
|
439 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
440 |
+
|
441 |
+
|
442 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
443 |
+
state_dict = OrderedDict()
|
444 |
+
|
445 |
+
# buffers
|
446 |
+
buffers = zero_model_states[0].buffers
|
447 |
+
state_dict.update(buffers)
|
448 |
+
if debug:
|
449 |
+
print(f"added {len(buffers)} buffers")
|
450 |
+
|
451 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
452 |
+
|
453 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
454 |
+
|
455 |
+
# recover shared parameters
|
456 |
+
for pair in zero_model_states[0].shared_params:
|
457 |
+
if pair[1] in state_dict:
|
458 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
459 |
+
|
460 |
+
return state_dict
|
461 |
+
|
462 |
+
|
463 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
464 |
+
"""
|
465 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
466 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
467 |
+
via a model hub.
|
468 |
+
|
469 |
+
Args:
|
470 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
471 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
472 |
+
|
473 |
+
Returns:
|
474 |
+
- pytorch ``state_dict``
|
475 |
+
|
476 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
477 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
478 |
+
the checkpoint.
|
479 |
+
|
480 |
+
A typical usage might be ::
|
481 |
+
|
482 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
483 |
+
# do the training and checkpoint saving
|
484 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
485 |
+
model = model.cpu() # move to cpu
|
486 |
+
model.load_state_dict(state_dict)
|
487 |
+
# submit to model hub or save the model to share with others
|
488 |
+
|
489 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
490 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
491 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
492 |
+
|
493 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
494 |
+
|
495 |
+
"""
|
496 |
+
if tag is None:
|
497 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
498 |
+
if os.path.isfile(latest_path):
|
499 |
+
with open(latest_path, 'r') as fd:
|
500 |
+
tag = fd.read().strip()
|
501 |
+
else:
|
502 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
503 |
+
|
504 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
505 |
+
|
506 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
507 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
508 |
+
|
509 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
510 |
+
|
511 |
+
|
512 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
513 |
+
"""
|
514 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
515 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
516 |
+
|
517 |
+
Args:
|
518 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
519 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
520 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
521 |
+
"""
|
522 |
+
|
523 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
524 |
+
print(f"Saving fp32 state dict to {output_file}")
|
525 |
+
torch.save(state_dict, output_file)
|
526 |
+
|
527 |
+
|
528 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
529 |
+
"""
|
530 |
+
1. Put the provided model to cpu
|
531 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
532 |
+
3. Load it into the provided model
|
533 |
+
|
534 |
+
Args:
|
535 |
+
- ``model``: the model object to update
|
536 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
537 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
538 |
+
|
539 |
+
Returns:
|
540 |
+
- ``model`: modified model
|
541 |
+
|
542 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
543 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
544 |
+
conveniently placed for you in the checkpoint folder.
|
545 |
+
|
546 |
+
A typical usage might be ::
|
547 |
+
|
548 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
549 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
550 |
+
# submit to model hub or save the model to share with others
|
551 |
+
|
552 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
553 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
554 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
555 |
+
|
556 |
+
"""
|
557 |
+
logger.info(f"Extracting fp32 weights")
|
558 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
559 |
+
|
560 |
+
logger.info(f"Overwriting model with fp32 weights")
|
561 |
+
model = model.cpu()
|
562 |
+
model.load_state_dict(state_dict, strict=False)
|
563 |
+
|
564 |
+
return model
|
565 |
+
|
566 |
+
|
567 |
+
if __name__ == "__main__":
|
568 |
+
|
569 |
+
parser = argparse.ArgumentParser()
|
570 |
+
parser.add_argument("checkpoint_dir",
|
571 |
+
type=str,
|
572 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
573 |
+
parser.add_argument(
|
574 |
+
"output_file",
|
575 |
+
type=str,
|
576 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
577 |
+
parser.add_argument("-t",
|
578 |
+
"--tag",
|
579 |
+
type=str,
|
580 |
+
default=None,
|
581 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
582 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
583 |
+
args = parser.parse_args()
|
584 |
+
|
585 |
+
debug = args.debug
|
586 |
+
|
587 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
|
checkpoint-250/config.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "mistralai/Mistral-7B-v0.1",
|
3 |
+
"architectures": [
|
4 |
+
"MistralForCausalLM"
|
5 |
+
],
|
6 |
+
"bos_token_id": 1,
|
7 |
+
"eos_token_id": 2,
|
8 |
+
"hidden_act": "silu",
|
9 |
+
"hidden_size": 4096,
|
10 |
+
"initializer_range": 0.02,
|
11 |
+
"intermediate_size": 14336,
|
12 |
+
"max_position_embeddings": 32768,
|
13 |
+
"model_type": "mistral",
|
14 |
+
"num_attention_heads": 32,
|
15 |
+
"num_hidden_layers": 32,
|
16 |
+
"num_key_value_heads": 8,
|
17 |
+
"rms_norm_eps": 1e-05,
|
18 |
+
"rope_theta": 10000.0,
|
19 |
+
"sliding_window": 4096,
|
20 |
+
"tie_word_embeddings": false,
|
21 |
+
"torch_dtype": "bfloat16",
|
22 |
+
"transformers_version": "4.34.0.dev0",
|
23 |
+
"use_cache": false,
|
24 |
+
"vocab_size": 32002
|
25 |
+
}
|
checkpoint-250/generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"transformers_version": "4.34.0.dev0"
|
6 |
+
}
|
checkpoint-250/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step250
|
checkpoint-250/pytorch_model-00001-of-00002.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0b50d9439b999b9fd5b6c2e695a1483624a4c6c6bcee46f35f79806dde564275
|
3 |
+
size 9943044428
|
checkpoint-250/pytorch_model-00002-of-00002.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2a838f1a551e9ca10152f3cdb899a08d47a341ddb20b01839dc38a3eb6dac268
|
3 |
+
size 4540552031
|
checkpoint-250/pytorch_model.bin.index.json
ADDED
@@ -0,0 +1,298 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 14483496960
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "pytorch_model-00002-of-00002.bin",
|
7 |
+
"model.embed_tokens.weight": "pytorch_model-00001-of-00002.bin",
|
8 |
+
"model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
13 |
+
"model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
14 |
+
"model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
15 |
+
"model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
16 |
+
"model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
17 |
+
"model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
18 |
+
"model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
19 |
+
"model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
20 |
+
"model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
21 |
+
"model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
22 |
+
"model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
23 |
+
"model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
24 |
+
"model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
25 |
+
"model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
26 |
+
"model.layers.10.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
27 |
+
"model.layers.10.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
28 |
+
"model.layers.10.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
29 |
+
"model.layers.10.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
30 |
+
"model.layers.10.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
31 |
+
"model.layers.10.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
32 |
+
"model.layers.10.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
33 |
+
"model.layers.10.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
34 |
+
"model.layers.10.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
35 |
+
"model.layers.11.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
36 |
+
"model.layers.11.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
37 |
+
"model.layers.11.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
38 |
+
"model.layers.11.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
39 |
+
"model.layers.11.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
40 |
+
"model.layers.11.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
41 |
+
"model.layers.11.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
42 |
+
"model.layers.11.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
43 |
+
"model.layers.11.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
44 |
+
"model.layers.12.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
45 |
+
"model.layers.12.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
46 |
+
"model.layers.12.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
47 |
+
"model.layers.12.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
48 |
+
"model.layers.12.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
49 |
+
"model.layers.12.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
50 |
+
"model.layers.12.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
51 |
+
"model.layers.12.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
52 |
+
"model.layers.12.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
53 |
+
"model.layers.13.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
54 |
+
"model.layers.13.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
55 |
+
"model.layers.13.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
56 |
+
"model.layers.13.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
57 |
+
"model.layers.13.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
58 |
+
"model.layers.13.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
59 |
+
"model.layers.13.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
60 |
+
"model.layers.13.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
61 |
+
"model.layers.13.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
62 |
+
"model.layers.14.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
63 |
+
"model.layers.14.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
64 |
+
"model.layers.14.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
65 |
+
"model.layers.14.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
66 |
+
"model.layers.14.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
67 |
+
"model.layers.14.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
68 |
+
"model.layers.14.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
69 |
+
"model.layers.14.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
70 |
+
"model.layers.14.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
71 |
+
"model.layers.15.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
72 |
+
"model.layers.15.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
73 |
+
"model.layers.15.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
74 |
+
"model.layers.15.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
75 |
+
"model.layers.15.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
76 |
+
"model.layers.15.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
77 |
+
"model.layers.15.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
78 |
+
"model.layers.15.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
79 |
+
"model.layers.15.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
80 |
+
"model.layers.16.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
81 |
+
"model.layers.16.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
82 |
+
"model.layers.16.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
83 |
+
"model.layers.16.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
84 |
+
"model.layers.16.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
85 |
+
"model.layers.16.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
86 |
+
"model.layers.16.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
87 |
+
"model.layers.16.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
88 |
+
"model.layers.16.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
89 |
+
"model.layers.17.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
90 |
+
"model.layers.17.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
91 |
+
"model.layers.17.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
92 |
+
"model.layers.17.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
93 |
+
"model.layers.17.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
94 |
+
"model.layers.17.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
95 |
+
"model.layers.17.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
96 |
+
"model.layers.17.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
97 |
+
"model.layers.17.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
98 |
+
"model.layers.18.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
99 |
+
"model.layers.18.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
100 |
+
"model.layers.18.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
101 |
+
"model.layers.18.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
102 |
+
"model.layers.18.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
103 |
+
"model.layers.18.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
104 |
+
"model.layers.18.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
105 |
+
"model.layers.18.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
106 |
+
"model.layers.18.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
107 |
+
"model.layers.19.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
108 |
+
"model.layers.19.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
109 |
+
"model.layers.19.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
110 |
+
"model.layers.19.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
111 |
+
"model.layers.19.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
112 |
+
"model.layers.19.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
113 |
+
"model.layers.19.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
114 |
+
"model.layers.19.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
115 |
+
"model.layers.19.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
116 |
+
"model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
117 |
+
"model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
118 |
+
"model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
119 |
+
"model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
120 |
+
"model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
121 |
+
"model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
122 |
+
"model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
123 |
+
"model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
124 |
+
"model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
125 |
+
"model.layers.20.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
126 |
+
"model.layers.20.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
127 |
+
"model.layers.20.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
128 |
+
"model.layers.20.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
129 |
+
"model.layers.20.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
130 |
+
"model.layers.20.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
131 |
+
"model.layers.20.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
132 |
+
"model.layers.20.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
133 |
+
"model.layers.20.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
134 |
+
"model.layers.21.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
135 |
+
"model.layers.21.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
136 |
+
"model.layers.21.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
137 |
+
"model.layers.21.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
138 |
+
"model.layers.21.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
139 |
+
"model.layers.21.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
140 |
+
"model.layers.21.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
141 |
+
"model.layers.21.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
142 |
+
"model.layers.21.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
143 |
+
"model.layers.22.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
144 |
+
"model.layers.22.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
145 |
+
"model.layers.22.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
146 |
+
"model.layers.22.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
147 |
+
"model.layers.22.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
148 |
+
"model.layers.22.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
149 |
+
"model.layers.22.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
150 |
+
"model.layers.22.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
151 |
+
"model.layers.22.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
152 |
+
"model.layers.23.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
153 |
+
"model.layers.23.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
154 |
+
"model.layers.23.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
155 |
+
"model.layers.23.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
156 |
+
"model.layers.23.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
157 |
+
"model.layers.23.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
158 |
+
"model.layers.23.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
159 |
+
"model.layers.23.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
160 |
+
"model.layers.23.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
161 |
+
"model.layers.24.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
162 |
+
"model.layers.24.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
163 |
+
"model.layers.24.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
164 |
+
"model.layers.24.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
165 |
+
"model.layers.24.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
166 |
+
"model.layers.24.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
167 |
+
"model.layers.24.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
168 |
+
"model.layers.24.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
169 |
+
"model.layers.24.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
170 |
+
"model.layers.25.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
171 |
+
"model.layers.25.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
172 |
+
"model.layers.25.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
173 |
+
"model.layers.25.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
174 |
+
"model.layers.25.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
175 |
+
"model.layers.25.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
176 |
+
"model.layers.25.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
177 |
+
"model.layers.25.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
178 |
+
"model.layers.25.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
179 |
+
"model.layers.26.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
180 |
+
"model.layers.26.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
181 |
+
"model.layers.26.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
182 |
+
"model.layers.26.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
183 |
+
"model.layers.26.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
184 |
+
"model.layers.26.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
185 |
+
"model.layers.26.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
186 |
+
"model.layers.26.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
187 |
+
"model.layers.26.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
188 |
+
"model.layers.27.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
189 |
+
"model.layers.27.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
190 |
+
"model.layers.27.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
191 |
+
"model.layers.27.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
192 |
+
"model.layers.27.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
193 |
+
"model.layers.27.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
194 |
+
"model.layers.27.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
195 |
+
"model.layers.27.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
196 |
+
"model.layers.27.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
197 |
+
"model.layers.28.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
198 |
+
"model.layers.28.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
199 |
+
"model.layers.28.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
200 |
+
"model.layers.28.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
201 |
+
"model.layers.28.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
202 |
+
"model.layers.28.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
203 |
+
"model.layers.28.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
204 |
+
"model.layers.28.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
205 |
+
"model.layers.28.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
206 |
+
"model.layers.29.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
207 |
+
"model.layers.29.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
208 |
+
"model.layers.29.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
209 |
+
"model.layers.29.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
210 |
+
"model.layers.29.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
211 |
+
"model.layers.29.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
212 |
+
"model.layers.29.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
213 |
+
"model.layers.29.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
214 |
+
"model.layers.29.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
215 |
+
"model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
216 |
+
"model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
217 |
+
"model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
218 |
+
"model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
219 |
+
"model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
220 |
+
"model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
221 |
+
"model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
222 |
+
"model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
223 |
+
"model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
224 |
+
"model.layers.30.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
225 |
+
"model.layers.30.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
226 |
+
"model.layers.30.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
227 |
+
"model.layers.30.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
228 |
+
"model.layers.30.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
229 |
+
"model.layers.30.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
230 |
+
"model.layers.30.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
231 |
+
"model.layers.30.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
232 |
+
"model.layers.30.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
233 |
+
"model.layers.31.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
234 |
+
"model.layers.31.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
235 |
+
"model.layers.31.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
236 |
+
"model.layers.31.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
237 |
+
"model.layers.31.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
238 |
+
"model.layers.31.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
239 |
+
"model.layers.31.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
240 |
+
"model.layers.31.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
241 |
+
"model.layers.31.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
242 |
+
"model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
243 |
+
"model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
244 |
+
"model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
245 |
+
"model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
246 |
+
"model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
247 |
+
"model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
248 |
+
"model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
249 |
+
"model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
250 |
+
"model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
251 |
+
"model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
252 |
+
"model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
253 |
+
"model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
254 |
+
"model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
255 |
+
"model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
256 |
+
"model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
257 |
+
"model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
258 |
+
"model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
259 |
+
"model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
260 |
+
"model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
261 |
+
"model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
262 |
+
"model.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
263 |
+
"model.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
264 |
+
"model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
265 |
+
"model.layers.6.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
266 |
+
"model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
267 |
+
"model.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
268 |
+
"model.layers.6.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
269 |
+
"model.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
270 |
+
"model.layers.7.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
271 |
+
"model.layers.7.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
272 |
+
"model.layers.7.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
273 |
+
"model.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
274 |
+
"model.layers.7.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
275 |
+
"model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
276 |
+
"model.layers.7.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
277 |
+
"model.layers.7.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
278 |
+
"model.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
279 |
+
"model.layers.8.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
280 |
+
"model.layers.8.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
281 |
+
"model.layers.8.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
282 |
+
"model.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
283 |
+
"model.layers.8.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
284 |
+
"model.layers.8.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
285 |
+
"model.layers.8.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
286 |
+
"model.layers.8.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
287 |
+
"model.layers.9.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
288 |
+
"model.layers.9.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
289 |
+
"model.layers.9.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
290 |
+
"model.layers.9.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
291 |
+
"model.layers.9.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
292 |
+
"model.layers.9.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
293 |
+
"model.layers.9.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
294 |
+
"model.layers.9.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
295 |
+
"model.layers.9.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
296 |
+
"model.norm.weight": "pytorch_model-00002-of-00002.bin"
|
297 |
+
}
|
298 |
+
}
|
checkpoint-250/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1eafe3d5e0585dde8c5033613de99a5d4f23df4284a488f4007b3944580c0b97
|
3 |
+
size 17655
|
checkpoint-250/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7e34eb456d2d003a2839f2daa9425e99bdd79ed7e24a1de9fc7d5738476bfb4b
|
3 |
+
size 17655
|
checkpoint-250/rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b374af4a2765d8771cee7a72921d3c2e438b9bee34f0b2d098ce6071afeb65e4
|
3 |
+
size 17655
|
checkpoint-250/rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5df75d8477fcc69c7abb03025313915ebfe3ac18c54a7c57aaa455c0099e13e5
|
3 |
+
size 17655
|
checkpoint-250/trainer_state.json
ADDED
@@ -0,0 +1,1543 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.03307753373908441,
|
5 |
+
"eval_steps": 756,
|
6 |
+
"global_step": 250,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.0,
|
13 |
+
"learning_rate": 0.0,
|
14 |
+
"loss": 0.9197,
|
15 |
+
"step": 1
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"epoch": 0.0,
|
19 |
+
"eval_loss": 1.4652303457260132,
|
20 |
+
"eval_runtime": 2.1726,
|
21 |
+
"eval_samples_per_second": 79.627,
|
22 |
+
"eval_steps_per_second": 3.682,
|
23 |
+
"step": 1
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.0,
|
27 |
+
"eval_bench_accuracy_agieval": 0.2711864406779661,
|
28 |
+
"eval_bench_accuracy_arc_challenge": 0.8703703703703703,
|
29 |
+
"eval_bench_accuracy_arc_easy": 0.9259259259259259,
|
30 |
+
"eval_bench_accuracy_bigbench": 0.36065573770491804,
|
31 |
+
"eval_bench_accuracy_boolq": 0.5740740740740741,
|
32 |
+
"eval_bench_accuracy_mmlu": 0.5185185185185185,
|
33 |
+
"eval_bench_accuracy_openbookqa": 0.1111111111111111,
|
34 |
+
"eval_bench_accuracy_truthful_qa": 0.3584905660377358,
|
35 |
+
"eval_bench_accuracy_winogrande": 0.4444444444444444,
|
36 |
+
"eval_bench_average_accuracy": 0.4927530209850072,
|
37 |
+
"eval_bench_loss": 2.6978388407144203,
|
38 |
+
"eval_bench_total_accuracy": 0.48893360160965793,
|
39 |
+
"step": 1
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.0,
|
43 |
+
"learning_rate": 6.000000000000001e-07,
|
44 |
+
"loss": 1.3426,
|
45 |
+
"step": 2
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.0,
|
49 |
+
"learning_rate": 1.2000000000000002e-06,
|
50 |
+
"loss": 1.5882,
|
51 |
+
"step": 3
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.0,
|
55 |
+
"learning_rate": 1.8e-06,
|
56 |
+
"loss": 0.8542,
|
57 |
+
"step": 4
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"epoch": 0.0,
|
61 |
+
"learning_rate": 2.4000000000000003e-06,
|
62 |
+
"loss": 0.9629,
|
63 |
+
"step": 5
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"epoch": 0.0,
|
67 |
+
"learning_rate": 3e-06,
|
68 |
+
"loss": 0.903,
|
69 |
+
"step": 6
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.0,
|
73 |
+
"learning_rate": 3.6e-06,
|
74 |
+
"loss": 0.909,
|
75 |
+
"step": 7
|
76 |
+
},
|
77 |
+
{
|
78 |
+
"epoch": 0.0,
|
79 |
+
"learning_rate": 4.2e-06,
|
80 |
+
"loss": 0.8666,
|
81 |
+
"step": 8
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"epoch": 0.0,
|
85 |
+
"learning_rate": 4.800000000000001e-06,
|
86 |
+
"loss": 1.0108,
|
87 |
+
"step": 9
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 0.0,
|
91 |
+
"learning_rate": 5.4e-06,
|
92 |
+
"loss": 0.8958,
|
93 |
+
"step": 10
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.0,
|
97 |
+
"learning_rate": 6e-06,
|
98 |
+
"loss": 0.9348,
|
99 |
+
"step": 11
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.0,
|
103 |
+
"learning_rate": 5.999602806831722e-06,
|
104 |
+
"loss": 0.7832,
|
105 |
+
"step": 12
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"epoch": 0.0,
|
109 |
+
"learning_rate": 5.999205613663445e-06,
|
110 |
+
"loss": 0.8083,
|
111 |
+
"step": 13
|
112 |
+
},
|
113 |
+
{
|
114 |
+
"epoch": 0.0,
|
115 |
+
"learning_rate": 5.9988084204951675e-06,
|
116 |
+
"loss": 0.8164,
|
117 |
+
"step": 14
|
118 |
+
},
|
119 |
+
{
|
120 |
+
"epoch": 0.0,
|
121 |
+
"learning_rate": 5.99841122732689e-06,
|
122 |
+
"loss": 0.7834,
|
123 |
+
"step": 15
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"epoch": 0.0,
|
127 |
+
"learning_rate": 5.998014034158613e-06,
|
128 |
+
"loss": 0.8718,
|
129 |
+
"step": 16
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.0,
|
133 |
+
"learning_rate": 5.997616840990336e-06,
|
134 |
+
"loss": 0.84,
|
135 |
+
"step": 17
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.0,
|
139 |
+
"learning_rate": 5.997219647822058e-06,
|
140 |
+
"loss": 0.7397,
|
141 |
+
"step": 18
|
142 |
+
},
|
143 |
+
{
|
144 |
+
"epoch": 0.0,
|
145 |
+
"learning_rate": 5.99682245465378e-06,
|
146 |
+
"loss": 0.7445,
|
147 |
+
"step": 19
|
148 |
+
},
|
149 |
+
{
|
150 |
+
"epoch": 0.0,
|
151 |
+
"learning_rate": 5.996425261485502e-06,
|
152 |
+
"loss": 0.7898,
|
153 |
+
"step": 20
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"epoch": 0.0,
|
157 |
+
"learning_rate": 5.996028068317225e-06,
|
158 |
+
"loss": 0.7388,
|
159 |
+
"step": 21
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 0.0,
|
163 |
+
"learning_rate": 5.9956308751489475e-06,
|
164 |
+
"loss": 0.7296,
|
165 |
+
"step": 22
|
166 |
+
},
|
167 |
+
{
|
168 |
+
"epoch": 0.0,
|
169 |
+
"learning_rate": 5.99523368198067e-06,
|
170 |
+
"loss": 0.7993,
|
171 |
+
"step": 23
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"epoch": 0.0,
|
175 |
+
"learning_rate": 5.994836488812393e-06,
|
176 |
+
"loss": 0.7188,
|
177 |
+
"step": 24
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.0,
|
181 |
+
"learning_rate": 5.994439295644115e-06,
|
182 |
+
"loss": 0.7473,
|
183 |
+
"step": 25
|
184 |
+
},
|
185 |
+
{
|
186 |
+
"epoch": 0.0,
|
187 |
+
"learning_rate": 5.994042102475838e-06,
|
188 |
+
"loss": 0.6997,
|
189 |
+
"step": 26
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 0.0,
|
193 |
+
"learning_rate": 5.99364490930756e-06,
|
194 |
+
"loss": 0.725,
|
195 |
+
"step": 27
|
196 |
+
},
|
197 |
+
{
|
198 |
+
"epoch": 0.0,
|
199 |
+
"learning_rate": 5.993247716139283e-06,
|
200 |
+
"loss": 0.7272,
|
201 |
+
"step": 28
|
202 |
+
},
|
203 |
+
{
|
204 |
+
"epoch": 0.0,
|
205 |
+
"learning_rate": 5.992850522971005e-06,
|
206 |
+
"loss": 0.7427,
|
207 |
+
"step": 29
|
208 |
+
},
|
209 |
+
{
|
210 |
+
"epoch": 0.0,
|
211 |
+
"learning_rate": 5.992453329802727e-06,
|
212 |
+
"loss": 0.7309,
|
213 |
+
"step": 30
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"epoch": 0.0,
|
217 |
+
"learning_rate": 5.99205613663445e-06,
|
218 |
+
"loss": 0.6764,
|
219 |
+
"step": 31
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.0,
|
223 |
+
"learning_rate": 5.991658943466173e-06,
|
224 |
+
"loss": 0.7556,
|
225 |
+
"step": 32
|
226 |
+
},
|
227 |
+
{
|
228 |
+
"epoch": 0.0,
|
229 |
+
"learning_rate": 5.991261750297895e-06,
|
230 |
+
"loss": 0.7301,
|
231 |
+
"step": 33
|
232 |
+
},
|
233 |
+
{
|
234 |
+
"epoch": 0.0,
|
235 |
+
"learning_rate": 5.990864557129617e-06,
|
236 |
+
"loss": 0.6776,
|
237 |
+
"step": 34
|
238 |
+
},
|
239 |
+
{
|
240 |
+
"epoch": 0.0,
|
241 |
+
"learning_rate": 5.99046736396134e-06,
|
242 |
+
"loss": 0.6884,
|
243 |
+
"step": 35
|
244 |
+
},
|
245 |
+
{
|
246 |
+
"epoch": 0.0,
|
247 |
+
"learning_rate": 5.990070170793063e-06,
|
248 |
+
"loss": 0.7179,
|
249 |
+
"step": 36
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 0.0,
|
253 |
+
"learning_rate": 5.989672977624785e-06,
|
254 |
+
"loss": 0.6915,
|
255 |
+
"step": 37
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"epoch": 0.01,
|
259 |
+
"learning_rate": 5.989275784456507e-06,
|
260 |
+
"loss": 0.7308,
|
261 |
+
"step": 38
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.01,
|
265 |
+
"learning_rate": 5.98887859128823e-06,
|
266 |
+
"loss": 0.6743,
|
267 |
+
"step": 39
|
268 |
+
},
|
269 |
+
{
|
270 |
+
"epoch": 0.01,
|
271 |
+
"learning_rate": 5.9884813981199526e-06,
|
272 |
+
"loss": 0.6604,
|
273 |
+
"step": 40
|
274 |
+
},
|
275 |
+
{
|
276 |
+
"epoch": 0.01,
|
277 |
+
"learning_rate": 5.988084204951675e-06,
|
278 |
+
"loss": 0.6609,
|
279 |
+
"step": 41
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 0.01,
|
283 |
+
"learning_rate": 5.987687011783397e-06,
|
284 |
+
"loss": 0.6524,
|
285 |
+
"step": 42
|
286 |
+
},
|
287 |
+
{
|
288 |
+
"epoch": 0.01,
|
289 |
+
"learning_rate": 5.98728981861512e-06,
|
290 |
+
"loss": 0.6386,
|
291 |
+
"step": 43
|
292 |
+
},
|
293 |
+
{
|
294 |
+
"epoch": 0.01,
|
295 |
+
"learning_rate": 5.986892625446843e-06,
|
296 |
+
"loss": 0.728,
|
297 |
+
"step": 44
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"epoch": 0.01,
|
301 |
+
"learning_rate": 5.986495432278565e-06,
|
302 |
+
"loss": 0.6971,
|
303 |
+
"step": 45
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.01,
|
307 |
+
"learning_rate": 5.986098239110287e-06,
|
308 |
+
"loss": 0.6772,
|
309 |
+
"step": 46
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 0.01,
|
313 |
+
"learning_rate": 5.98570104594201e-06,
|
314 |
+
"loss": 0.6774,
|
315 |
+
"step": 47
|
316 |
+
},
|
317 |
+
{
|
318 |
+
"epoch": 0.01,
|
319 |
+
"learning_rate": 5.9853038527737325e-06,
|
320 |
+
"loss": 0.6868,
|
321 |
+
"step": 48
|
322 |
+
},
|
323 |
+
{
|
324 |
+
"epoch": 0.01,
|
325 |
+
"learning_rate": 5.984906659605455e-06,
|
326 |
+
"loss": 0.7169,
|
327 |
+
"step": 49
|
328 |
+
},
|
329 |
+
{
|
330 |
+
"epoch": 0.01,
|
331 |
+
"learning_rate": 5.984509466437178e-06,
|
332 |
+
"loss": 0.669,
|
333 |
+
"step": 50
|
334 |
+
},
|
335 |
+
{
|
336 |
+
"epoch": 0.01,
|
337 |
+
"learning_rate": 5.9841122732689e-06,
|
338 |
+
"loss": 0.7112,
|
339 |
+
"step": 51
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 0.01,
|
343 |
+
"learning_rate": 5.983715080100622e-06,
|
344 |
+
"loss": 0.6667,
|
345 |
+
"step": 52
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.01,
|
349 |
+
"learning_rate": 5.983317886932344e-06,
|
350 |
+
"loss": 0.6528,
|
351 |
+
"step": 53
|
352 |
+
},
|
353 |
+
{
|
354 |
+
"epoch": 0.01,
|
355 |
+
"learning_rate": 5.982920693764068e-06,
|
356 |
+
"loss": 0.6699,
|
357 |
+
"step": 54
|
358 |
+
},
|
359 |
+
{
|
360 |
+
"epoch": 0.01,
|
361 |
+
"learning_rate": 5.98252350059579e-06,
|
362 |
+
"loss": 0.6584,
|
363 |
+
"step": 55
|
364 |
+
},
|
365 |
+
{
|
366 |
+
"epoch": 0.01,
|
367 |
+
"learning_rate": 5.9821263074275125e-06,
|
368 |
+
"loss": 0.6328,
|
369 |
+
"step": 56
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 0.01,
|
373 |
+
"learning_rate": 5.981729114259235e-06,
|
374 |
+
"loss": 0.6472,
|
375 |
+
"step": 57
|
376 |
+
},
|
377 |
+
{
|
378 |
+
"epoch": 0.01,
|
379 |
+
"learning_rate": 5.981331921090958e-06,
|
380 |
+
"loss": 0.6992,
|
381 |
+
"step": 58
|
382 |
+
},
|
383 |
+
{
|
384 |
+
"epoch": 0.01,
|
385 |
+
"learning_rate": 5.98093472792268e-06,
|
386 |
+
"loss": 0.6666,
|
387 |
+
"step": 59
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 0.01,
|
391 |
+
"learning_rate": 5.980537534754402e-06,
|
392 |
+
"loss": 0.6819,
|
393 |
+
"step": 60
|
394 |
+
},
|
395 |
+
{
|
396 |
+
"epoch": 0.01,
|
397 |
+
"learning_rate": 5.980140341586125e-06,
|
398 |
+
"loss": 0.705,
|
399 |
+
"step": 61
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 0.01,
|
403 |
+
"learning_rate": 5.979743148417847e-06,
|
404 |
+
"loss": 0.6871,
|
405 |
+
"step": 62
|
406 |
+
},
|
407 |
+
{
|
408 |
+
"epoch": 0.01,
|
409 |
+
"learning_rate": 5.97934595524957e-06,
|
410 |
+
"loss": 0.6998,
|
411 |
+
"step": 63
|
412 |
+
},
|
413 |
+
{
|
414 |
+
"epoch": 0.01,
|
415 |
+
"learning_rate": 5.978948762081292e-06,
|
416 |
+
"loss": 0.6081,
|
417 |
+
"step": 64
|
418 |
+
},
|
419 |
+
{
|
420 |
+
"epoch": 0.01,
|
421 |
+
"learning_rate": 5.9785515689130154e-06,
|
422 |
+
"loss": 0.6985,
|
423 |
+
"step": 65
|
424 |
+
},
|
425 |
+
{
|
426 |
+
"epoch": 0.01,
|
427 |
+
"learning_rate": 5.978154375744738e-06,
|
428 |
+
"loss": 0.6631,
|
429 |
+
"step": 66
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 0.01,
|
433 |
+
"learning_rate": 5.97775718257646e-06,
|
434 |
+
"loss": 0.6534,
|
435 |
+
"step": 67
|
436 |
+
},
|
437 |
+
{
|
438 |
+
"epoch": 0.01,
|
439 |
+
"learning_rate": 5.977359989408182e-06,
|
440 |
+
"loss": 0.6685,
|
441 |
+
"step": 68
|
442 |
+
},
|
443 |
+
{
|
444 |
+
"epoch": 0.01,
|
445 |
+
"learning_rate": 5.976962796239905e-06,
|
446 |
+
"loss": 0.6821,
|
447 |
+
"step": 69
|
448 |
+
},
|
449 |
+
{
|
450 |
+
"epoch": 0.01,
|
451 |
+
"learning_rate": 5.976565603071627e-06,
|
452 |
+
"loss": 0.6241,
|
453 |
+
"step": 70
|
454 |
+
},
|
455 |
+
{
|
456 |
+
"epoch": 0.01,
|
457 |
+
"learning_rate": 5.976168409903349e-06,
|
458 |
+
"loss": 0.6357,
|
459 |
+
"step": 71
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 0.01,
|
463 |
+
"learning_rate": 5.975771216735072e-06,
|
464 |
+
"loss": 0.6466,
|
465 |
+
"step": 72
|
466 |
+
},
|
467 |
+
{
|
468 |
+
"epoch": 0.01,
|
469 |
+
"learning_rate": 5.975374023566795e-06,
|
470 |
+
"loss": 0.6579,
|
471 |
+
"step": 73
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 0.01,
|
475 |
+
"learning_rate": 5.9749768303985176e-06,
|
476 |
+
"loss": 0.6298,
|
477 |
+
"step": 74
|
478 |
+
},
|
479 |
+
{
|
480 |
+
"epoch": 0.01,
|
481 |
+
"learning_rate": 5.97457963723024e-06,
|
482 |
+
"loss": 0.703,
|
483 |
+
"step": 75
|
484 |
+
},
|
485 |
+
{
|
486 |
+
"epoch": 0.01,
|
487 |
+
"learning_rate": 5.974182444061963e-06,
|
488 |
+
"loss": 0.6152,
|
489 |
+
"step": 76
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"epoch": 0.01,
|
493 |
+
"learning_rate": 5.973785250893685e-06,
|
494 |
+
"loss": 0.6682,
|
495 |
+
"step": 77
|
496 |
+
},
|
497 |
+
{
|
498 |
+
"epoch": 0.01,
|
499 |
+
"learning_rate": 5.973388057725407e-06,
|
500 |
+
"loss": 0.6427,
|
501 |
+
"step": 78
|
502 |
+
},
|
503 |
+
{
|
504 |
+
"epoch": 0.01,
|
505 |
+
"learning_rate": 5.972990864557129e-06,
|
506 |
+
"loss": 0.6969,
|
507 |
+
"step": 79
|
508 |
+
},
|
509 |
+
{
|
510 |
+
"epoch": 0.01,
|
511 |
+
"learning_rate": 5.972593671388852e-06,
|
512 |
+
"loss": 0.6619,
|
513 |
+
"step": 80
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 0.01,
|
517 |
+
"learning_rate": 5.9721964782205745e-06,
|
518 |
+
"loss": 0.6332,
|
519 |
+
"step": 81
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"epoch": 0.01,
|
523 |
+
"learning_rate": 5.9717992850522975e-06,
|
524 |
+
"loss": 0.6203,
|
525 |
+
"step": 82
|
526 |
+
},
|
527 |
+
{
|
528 |
+
"epoch": 0.01,
|
529 |
+
"learning_rate": 5.97140209188402e-06,
|
530 |
+
"loss": 0.6463,
|
531 |
+
"step": 83
|
532 |
+
},
|
533 |
+
{
|
534 |
+
"epoch": 0.01,
|
535 |
+
"learning_rate": 5.971004898715743e-06,
|
536 |
+
"loss": 0.6718,
|
537 |
+
"step": 84
|
538 |
+
},
|
539 |
+
{
|
540 |
+
"epoch": 0.01,
|
541 |
+
"learning_rate": 5.970607705547465e-06,
|
542 |
+
"loss": 0.6495,
|
543 |
+
"step": 85
|
544 |
+
},
|
545 |
+
{
|
546 |
+
"epoch": 0.01,
|
547 |
+
"learning_rate": 5.970210512379187e-06,
|
548 |
+
"loss": 0.5787,
|
549 |
+
"step": 86
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 0.01,
|
553 |
+
"learning_rate": 5.96981331921091e-06,
|
554 |
+
"loss": 0.6897,
|
555 |
+
"step": 87
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 0.01,
|
559 |
+
"learning_rate": 5.969416126042632e-06,
|
560 |
+
"loss": 0.6688,
|
561 |
+
"step": 88
|
562 |
+
},
|
563 |
+
{
|
564 |
+
"epoch": 0.01,
|
565 |
+
"learning_rate": 5.9690189328743544e-06,
|
566 |
+
"loss": 0.6697,
|
567 |
+
"step": 89
|
568 |
+
},
|
569 |
+
{
|
570 |
+
"epoch": 0.01,
|
571 |
+
"learning_rate": 5.968621739706077e-06,
|
572 |
+
"loss": 0.6156,
|
573 |
+
"step": 90
|
574 |
+
},
|
575 |
+
{
|
576 |
+
"epoch": 0.01,
|
577 |
+
"learning_rate": 5.9682245465378e-06,
|
578 |
+
"loss": 0.6301,
|
579 |
+
"step": 91
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"epoch": 0.01,
|
583 |
+
"learning_rate": 5.967827353369523e-06,
|
584 |
+
"loss": 0.6121,
|
585 |
+
"step": 92
|
586 |
+
},
|
587 |
+
{
|
588 |
+
"epoch": 0.01,
|
589 |
+
"learning_rate": 5.967430160201245e-06,
|
590 |
+
"loss": 0.6177,
|
591 |
+
"step": 93
|
592 |
+
},
|
593 |
+
{
|
594 |
+
"epoch": 0.01,
|
595 |
+
"learning_rate": 5.967032967032967e-06,
|
596 |
+
"loss": 0.611,
|
597 |
+
"step": 94
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 0.01,
|
601 |
+
"learning_rate": 5.96663577386469e-06,
|
602 |
+
"loss": 0.6359,
|
603 |
+
"step": 95
|
604 |
+
},
|
605 |
+
{
|
606 |
+
"epoch": 0.01,
|
607 |
+
"learning_rate": 5.966238580696412e-06,
|
608 |
+
"loss": 0.6417,
|
609 |
+
"step": 96
|
610 |
+
},
|
611 |
+
{
|
612 |
+
"epoch": 0.01,
|
613 |
+
"learning_rate": 5.965841387528134e-06,
|
614 |
+
"loss": 0.6312,
|
615 |
+
"step": 97
|
616 |
+
},
|
617 |
+
{
|
618 |
+
"epoch": 0.01,
|
619 |
+
"learning_rate": 5.965444194359857e-06,
|
620 |
+
"loss": 0.6184,
|
621 |
+
"step": 98
|
622 |
+
},
|
623 |
+
{
|
624 |
+
"epoch": 0.01,
|
625 |
+
"learning_rate": 5.9650470011915796e-06,
|
626 |
+
"loss": 0.6724,
|
627 |
+
"step": 99
|
628 |
+
},
|
629 |
+
{
|
630 |
+
"epoch": 0.01,
|
631 |
+
"learning_rate": 5.964649808023302e-06,
|
632 |
+
"loss": 0.6833,
|
633 |
+
"step": 100
|
634 |
+
},
|
635 |
+
{
|
636 |
+
"epoch": 0.01,
|
637 |
+
"learning_rate": 5.964252614855025e-06,
|
638 |
+
"loss": 0.6433,
|
639 |
+
"step": 101
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 0.01,
|
643 |
+
"learning_rate": 5.963855421686747e-06,
|
644 |
+
"loss": 0.6766,
|
645 |
+
"step": 102
|
646 |
+
},
|
647 |
+
{
|
648 |
+
"epoch": 0.01,
|
649 |
+
"learning_rate": 5.96345822851847e-06,
|
650 |
+
"loss": 0.6527,
|
651 |
+
"step": 103
|
652 |
+
},
|
653 |
+
{
|
654 |
+
"epoch": 0.01,
|
655 |
+
"learning_rate": 5.963061035350192e-06,
|
656 |
+
"loss": 0.5982,
|
657 |
+
"step": 104
|
658 |
+
},
|
659 |
+
{
|
660 |
+
"epoch": 0.01,
|
661 |
+
"learning_rate": 5.962663842181914e-06,
|
662 |
+
"loss": 0.6749,
|
663 |
+
"step": 105
|
664 |
+
},
|
665 |
+
{
|
666 |
+
"epoch": 0.01,
|
667 |
+
"learning_rate": 5.962266649013637e-06,
|
668 |
+
"loss": 0.6494,
|
669 |
+
"step": 106
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"epoch": 0.01,
|
673 |
+
"learning_rate": 5.9618694558453595e-06,
|
674 |
+
"loss": 0.6998,
|
675 |
+
"step": 107
|
676 |
+
},
|
677 |
+
{
|
678 |
+
"epoch": 0.01,
|
679 |
+
"learning_rate": 5.961472262677082e-06,
|
680 |
+
"loss": 0.6112,
|
681 |
+
"step": 108
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 0.01,
|
685 |
+
"learning_rate": 5.961075069508805e-06,
|
686 |
+
"loss": 0.624,
|
687 |
+
"step": 109
|
688 |
+
},
|
689 |
+
{
|
690 |
+
"epoch": 0.01,
|
691 |
+
"learning_rate": 5.960677876340528e-06,
|
692 |
+
"loss": 0.6329,
|
693 |
+
"step": 110
|
694 |
+
},
|
695 |
+
{
|
696 |
+
"epoch": 0.01,
|
697 |
+
"learning_rate": 5.96028068317225e-06,
|
698 |
+
"loss": 0.6491,
|
699 |
+
"step": 111
|
700 |
+
},
|
701 |
+
{
|
702 |
+
"epoch": 0.01,
|
703 |
+
"learning_rate": 5.959883490003972e-06,
|
704 |
+
"loss": 0.6672,
|
705 |
+
"step": 112
|
706 |
+
},
|
707 |
+
{
|
708 |
+
"epoch": 0.01,
|
709 |
+
"learning_rate": 5.959486296835694e-06,
|
710 |
+
"loss": 0.6279,
|
711 |
+
"step": 113
|
712 |
+
},
|
713 |
+
{
|
714 |
+
"epoch": 0.02,
|
715 |
+
"learning_rate": 5.959089103667417e-06,
|
716 |
+
"loss": 0.6479,
|
717 |
+
"step": 114
|
718 |
+
},
|
719 |
+
{
|
720 |
+
"epoch": 0.02,
|
721 |
+
"learning_rate": 5.9586919104991395e-06,
|
722 |
+
"loss": 0.6214,
|
723 |
+
"step": 115
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"epoch": 0.02,
|
727 |
+
"learning_rate": 5.958294717330862e-06,
|
728 |
+
"loss": 0.6618,
|
729 |
+
"step": 116
|
730 |
+
},
|
731 |
+
{
|
732 |
+
"epoch": 0.02,
|
733 |
+
"learning_rate": 5.957897524162585e-06,
|
734 |
+
"loss": 0.6703,
|
735 |
+
"step": 117
|
736 |
+
},
|
737 |
+
{
|
738 |
+
"epoch": 0.02,
|
739 |
+
"learning_rate": 5.957500330994307e-06,
|
740 |
+
"loss": 0.6417,
|
741 |
+
"step": 118
|
742 |
+
},
|
743 |
+
{
|
744 |
+
"epoch": 0.02,
|
745 |
+
"learning_rate": 5.957103137826029e-06,
|
746 |
+
"loss": 0.631,
|
747 |
+
"step": 119
|
748 |
+
},
|
749 |
+
{
|
750 |
+
"epoch": 0.02,
|
751 |
+
"learning_rate": 5.956705944657752e-06,
|
752 |
+
"loss": 0.6169,
|
753 |
+
"step": 120
|
754 |
+
},
|
755 |
+
{
|
756 |
+
"epoch": 0.02,
|
757 |
+
"learning_rate": 5.956308751489475e-06,
|
758 |
+
"loss": 0.6521,
|
759 |
+
"step": 121
|
760 |
+
},
|
761 |
+
{
|
762 |
+
"epoch": 0.02,
|
763 |
+
"learning_rate": 5.955911558321197e-06,
|
764 |
+
"loss": 0.6635,
|
765 |
+
"step": 122
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"epoch": 0.02,
|
769 |
+
"learning_rate": 5.955514365152919e-06,
|
770 |
+
"loss": 0.6496,
|
771 |
+
"step": 123
|
772 |
+
},
|
773 |
+
{
|
774 |
+
"epoch": 0.02,
|
775 |
+
"learning_rate": 5.955117171984642e-06,
|
776 |
+
"loss": 0.6431,
|
777 |
+
"step": 124
|
778 |
+
},
|
779 |
+
{
|
780 |
+
"epoch": 0.02,
|
781 |
+
"learning_rate": 5.954719978816365e-06,
|
782 |
+
"loss": 0.6246,
|
783 |
+
"step": 125
|
784 |
+
},
|
785 |
+
{
|
786 |
+
"epoch": 0.02,
|
787 |
+
"learning_rate": 5.954322785648087e-06,
|
788 |
+
"loss": 0.6557,
|
789 |
+
"step": 126
|
790 |
+
},
|
791 |
+
{
|
792 |
+
"epoch": 0.02,
|
793 |
+
"learning_rate": 5.953925592479809e-06,
|
794 |
+
"loss": 0.6082,
|
795 |
+
"step": 127
|
796 |
+
},
|
797 |
+
{
|
798 |
+
"epoch": 0.02,
|
799 |
+
"learning_rate": 5.953528399311532e-06,
|
800 |
+
"loss": 0.5941,
|
801 |
+
"step": 128
|
802 |
+
},
|
803 |
+
{
|
804 |
+
"epoch": 0.02,
|
805 |
+
"learning_rate": 5.953131206143255e-06,
|
806 |
+
"loss": 0.6566,
|
807 |
+
"step": 129
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"epoch": 0.02,
|
811 |
+
"learning_rate": 5.952734012974977e-06,
|
812 |
+
"loss": 0.6243,
|
813 |
+
"step": 130
|
814 |
+
},
|
815 |
+
{
|
816 |
+
"epoch": 0.02,
|
817 |
+
"learning_rate": 5.952336819806699e-06,
|
818 |
+
"loss": 0.594,
|
819 |
+
"step": 131
|
820 |
+
},
|
821 |
+
{
|
822 |
+
"epoch": 0.02,
|
823 |
+
"learning_rate": 5.951939626638422e-06,
|
824 |
+
"loss": 0.68,
|
825 |
+
"step": 132
|
826 |
+
},
|
827 |
+
{
|
828 |
+
"epoch": 0.02,
|
829 |
+
"learning_rate": 5.9515424334701446e-06,
|
830 |
+
"loss": 0.6302,
|
831 |
+
"step": 133
|
832 |
+
},
|
833 |
+
{
|
834 |
+
"epoch": 0.02,
|
835 |
+
"learning_rate": 5.951145240301867e-06,
|
836 |
+
"loss": 0.6251,
|
837 |
+
"step": 134
|
838 |
+
},
|
839 |
+
{
|
840 |
+
"epoch": 0.02,
|
841 |
+
"learning_rate": 5.950748047133589e-06,
|
842 |
+
"loss": 0.6326,
|
843 |
+
"step": 135
|
844 |
+
},
|
845 |
+
{
|
846 |
+
"epoch": 0.02,
|
847 |
+
"learning_rate": 5.950350853965312e-06,
|
848 |
+
"loss": 0.6314,
|
849 |
+
"step": 136
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 0.02,
|
853 |
+
"learning_rate": 5.949953660797034e-06,
|
854 |
+
"loss": 0.6598,
|
855 |
+
"step": 137
|
856 |
+
},
|
857 |
+
{
|
858 |
+
"epoch": 0.02,
|
859 |
+
"learning_rate": 5.949556467628757e-06,
|
860 |
+
"loss": 0.6583,
|
861 |
+
"step": 138
|
862 |
+
},
|
863 |
+
{
|
864 |
+
"epoch": 0.02,
|
865 |
+
"learning_rate": 5.949159274460479e-06,
|
866 |
+
"loss": 0.6162,
|
867 |
+
"step": 139
|
868 |
+
},
|
869 |
+
{
|
870 |
+
"epoch": 0.02,
|
871 |
+
"learning_rate": 5.948762081292202e-06,
|
872 |
+
"loss": 0.7042,
|
873 |
+
"step": 140
|
874 |
+
},
|
875 |
+
{
|
876 |
+
"epoch": 0.02,
|
877 |
+
"learning_rate": 5.9483648881239245e-06,
|
878 |
+
"loss": 0.6733,
|
879 |
+
"step": 141
|
880 |
+
},
|
881 |
+
{
|
882 |
+
"epoch": 0.02,
|
883 |
+
"learning_rate": 5.947967694955647e-06,
|
884 |
+
"loss": 0.6103,
|
885 |
+
"step": 142
|
886 |
+
},
|
887 |
+
{
|
888 |
+
"epoch": 0.02,
|
889 |
+
"learning_rate": 5.94757050178737e-06,
|
890 |
+
"loss": 0.6269,
|
891 |
+
"step": 143
|
892 |
+
},
|
893 |
+
{
|
894 |
+
"epoch": 0.02,
|
895 |
+
"learning_rate": 5.947173308619092e-06,
|
896 |
+
"loss": 0.663,
|
897 |
+
"step": 144
|
898 |
+
},
|
899 |
+
{
|
900 |
+
"epoch": 0.02,
|
901 |
+
"learning_rate": 5.946776115450814e-06,
|
902 |
+
"loss": 0.5794,
|
903 |
+
"step": 145
|
904 |
+
},
|
905 |
+
{
|
906 |
+
"epoch": 0.02,
|
907 |
+
"learning_rate": 5.946378922282537e-06,
|
908 |
+
"loss": 0.6868,
|
909 |
+
"step": 146
|
910 |
+
},
|
911 |
+
{
|
912 |
+
"epoch": 0.02,
|
913 |
+
"learning_rate": 5.945981729114259e-06,
|
914 |
+
"loss": 0.6064,
|
915 |
+
"step": 147
|
916 |
+
},
|
917 |
+
{
|
918 |
+
"epoch": 0.02,
|
919 |
+
"learning_rate": 5.945584535945982e-06,
|
920 |
+
"loss": 0.6519,
|
921 |
+
"step": 148
|
922 |
+
},
|
923 |
+
{
|
924 |
+
"epoch": 0.02,
|
925 |
+
"learning_rate": 5.9451873427777045e-06,
|
926 |
+
"loss": 0.655,
|
927 |
+
"step": 149
|
928 |
+
},
|
929 |
+
{
|
930 |
+
"epoch": 0.02,
|
931 |
+
"learning_rate": 5.944790149609427e-06,
|
932 |
+
"loss": 0.6617,
|
933 |
+
"step": 150
|
934 |
+
},
|
935 |
+
{
|
936 |
+
"epoch": 0.02,
|
937 |
+
"learning_rate": 5.94439295644115e-06,
|
938 |
+
"loss": 0.627,
|
939 |
+
"step": 151
|
940 |
+
},
|
941 |
+
{
|
942 |
+
"epoch": 0.02,
|
943 |
+
"learning_rate": 5.943995763272872e-06,
|
944 |
+
"loss": 0.5837,
|
945 |
+
"step": 152
|
946 |
+
},
|
947 |
+
{
|
948 |
+
"epoch": 0.02,
|
949 |
+
"learning_rate": 5.943598570104594e-06,
|
950 |
+
"loss": 0.6201,
|
951 |
+
"step": 153
|
952 |
+
},
|
953 |
+
{
|
954 |
+
"epoch": 0.02,
|
955 |
+
"learning_rate": 5.943201376936317e-06,
|
956 |
+
"loss": 0.6291,
|
957 |
+
"step": 154
|
958 |
+
},
|
959 |
+
{
|
960 |
+
"epoch": 0.02,
|
961 |
+
"learning_rate": 5.942804183768039e-06,
|
962 |
+
"loss": 0.6061,
|
963 |
+
"step": 155
|
964 |
+
},
|
965 |
+
{
|
966 |
+
"epoch": 0.02,
|
967 |
+
"learning_rate": 5.942406990599761e-06,
|
968 |
+
"loss": 0.624,
|
969 |
+
"step": 156
|
970 |
+
},
|
971 |
+
{
|
972 |
+
"epoch": 0.02,
|
973 |
+
"learning_rate": 5.942009797431484e-06,
|
974 |
+
"loss": 0.6418,
|
975 |
+
"step": 157
|
976 |
+
},
|
977 |
+
{
|
978 |
+
"epoch": 0.02,
|
979 |
+
"learning_rate": 5.941612604263207e-06,
|
980 |
+
"loss": 0.5858,
|
981 |
+
"step": 158
|
982 |
+
},
|
983 |
+
{
|
984 |
+
"epoch": 0.02,
|
985 |
+
"learning_rate": 5.94121541109493e-06,
|
986 |
+
"loss": 0.6407,
|
987 |
+
"step": 159
|
988 |
+
},
|
989 |
+
{
|
990 |
+
"epoch": 0.02,
|
991 |
+
"learning_rate": 5.940818217926652e-06,
|
992 |
+
"loss": 0.6222,
|
993 |
+
"step": 160
|
994 |
+
},
|
995 |
+
{
|
996 |
+
"epoch": 0.02,
|
997 |
+
"learning_rate": 5.940421024758374e-06,
|
998 |
+
"loss": 0.5938,
|
999 |
+
"step": 161
|
1000 |
+
},
|
1001 |
+
{
|
1002 |
+
"epoch": 0.02,
|
1003 |
+
"learning_rate": 5.940023831590097e-06,
|
1004 |
+
"loss": 0.6157,
|
1005 |
+
"step": 162
|
1006 |
+
},
|
1007 |
+
{
|
1008 |
+
"epoch": 0.02,
|
1009 |
+
"learning_rate": 5.939626638421819e-06,
|
1010 |
+
"loss": 0.5989,
|
1011 |
+
"step": 163
|
1012 |
+
},
|
1013 |
+
{
|
1014 |
+
"epoch": 0.02,
|
1015 |
+
"learning_rate": 5.939229445253541e-06,
|
1016 |
+
"loss": 0.7056,
|
1017 |
+
"step": 164
|
1018 |
+
},
|
1019 |
+
{
|
1020 |
+
"epoch": 0.02,
|
1021 |
+
"learning_rate": 5.938832252085264e-06,
|
1022 |
+
"loss": 0.6606,
|
1023 |
+
"step": 165
|
1024 |
+
},
|
1025 |
+
{
|
1026 |
+
"epoch": 0.02,
|
1027 |
+
"learning_rate": 5.9384350589169865e-06,
|
1028 |
+
"loss": 0.6303,
|
1029 |
+
"step": 166
|
1030 |
+
},
|
1031 |
+
{
|
1032 |
+
"epoch": 0.02,
|
1033 |
+
"learning_rate": 5.9380378657487095e-06,
|
1034 |
+
"loss": 0.6332,
|
1035 |
+
"step": 167
|
1036 |
+
},
|
1037 |
+
{
|
1038 |
+
"epoch": 0.02,
|
1039 |
+
"learning_rate": 5.937640672580432e-06,
|
1040 |
+
"loss": 0.6197,
|
1041 |
+
"step": 168
|
1042 |
+
},
|
1043 |
+
{
|
1044 |
+
"epoch": 0.02,
|
1045 |
+
"learning_rate": 5.937243479412155e-06,
|
1046 |
+
"loss": 0.6318,
|
1047 |
+
"step": 169
|
1048 |
+
},
|
1049 |
+
{
|
1050 |
+
"epoch": 0.02,
|
1051 |
+
"learning_rate": 5.936846286243877e-06,
|
1052 |
+
"loss": 0.6598,
|
1053 |
+
"step": 170
|
1054 |
+
},
|
1055 |
+
{
|
1056 |
+
"epoch": 0.02,
|
1057 |
+
"learning_rate": 5.936449093075599e-06,
|
1058 |
+
"loss": 0.662,
|
1059 |
+
"step": 171
|
1060 |
+
},
|
1061 |
+
{
|
1062 |
+
"epoch": 0.02,
|
1063 |
+
"learning_rate": 5.936051899907321e-06,
|
1064 |
+
"loss": 0.6018,
|
1065 |
+
"step": 172
|
1066 |
+
},
|
1067 |
+
{
|
1068 |
+
"epoch": 0.02,
|
1069 |
+
"learning_rate": 5.935654706739044e-06,
|
1070 |
+
"loss": 0.6955,
|
1071 |
+
"step": 173
|
1072 |
+
},
|
1073 |
+
{
|
1074 |
+
"epoch": 0.02,
|
1075 |
+
"learning_rate": 5.9352575135707665e-06,
|
1076 |
+
"loss": 0.6283,
|
1077 |
+
"step": 174
|
1078 |
+
},
|
1079 |
+
{
|
1080 |
+
"epoch": 0.02,
|
1081 |
+
"learning_rate": 5.934860320402489e-06,
|
1082 |
+
"loss": 0.6829,
|
1083 |
+
"step": 175
|
1084 |
+
},
|
1085 |
+
{
|
1086 |
+
"epoch": 0.02,
|
1087 |
+
"learning_rate": 5.934463127234212e-06,
|
1088 |
+
"loss": 0.5985,
|
1089 |
+
"step": 176
|
1090 |
+
},
|
1091 |
+
{
|
1092 |
+
"epoch": 0.02,
|
1093 |
+
"learning_rate": 5.934065934065935e-06,
|
1094 |
+
"loss": 0.6385,
|
1095 |
+
"step": 177
|
1096 |
+
},
|
1097 |
+
{
|
1098 |
+
"epoch": 0.02,
|
1099 |
+
"learning_rate": 5.933668740897657e-06,
|
1100 |
+
"loss": 0.6326,
|
1101 |
+
"step": 178
|
1102 |
+
},
|
1103 |
+
{
|
1104 |
+
"epoch": 0.02,
|
1105 |
+
"learning_rate": 5.933271547729379e-06,
|
1106 |
+
"loss": 0.639,
|
1107 |
+
"step": 179
|
1108 |
+
},
|
1109 |
+
{
|
1110 |
+
"epoch": 0.02,
|
1111 |
+
"learning_rate": 5.932874354561102e-06,
|
1112 |
+
"loss": 0.6084,
|
1113 |
+
"step": 180
|
1114 |
+
},
|
1115 |
+
{
|
1116 |
+
"epoch": 0.02,
|
1117 |
+
"learning_rate": 5.932477161392824e-06,
|
1118 |
+
"loss": 0.6549,
|
1119 |
+
"step": 181
|
1120 |
+
},
|
1121 |
+
{
|
1122 |
+
"epoch": 0.02,
|
1123 |
+
"learning_rate": 5.932079968224546e-06,
|
1124 |
+
"loss": 0.6728,
|
1125 |
+
"step": 182
|
1126 |
+
},
|
1127 |
+
{
|
1128 |
+
"epoch": 0.02,
|
1129 |
+
"learning_rate": 5.931682775056269e-06,
|
1130 |
+
"loss": 0.6351,
|
1131 |
+
"step": 183
|
1132 |
+
},
|
1133 |
+
{
|
1134 |
+
"epoch": 0.02,
|
1135 |
+
"learning_rate": 5.931285581887992e-06,
|
1136 |
+
"loss": 0.6375,
|
1137 |
+
"step": 184
|
1138 |
+
},
|
1139 |
+
{
|
1140 |
+
"epoch": 0.02,
|
1141 |
+
"learning_rate": 5.930888388719714e-06,
|
1142 |
+
"loss": 0.6814,
|
1143 |
+
"step": 185
|
1144 |
+
},
|
1145 |
+
{
|
1146 |
+
"epoch": 0.02,
|
1147 |
+
"learning_rate": 5.930491195551437e-06,
|
1148 |
+
"loss": 0.5968,
|
1149 |
+
"step": 186
|
1150 |
+
},
|
1151 |
+
{
|
1152 |
+
"epoch": 0.02,
|
1153 |
+
"learning_rate": 5.930094002383159e-06,
|
1154 |
+
"loss": 0.6053,
|
1155 |
+
"step": 187
|
1156 |
+
},
|
1157 |
+
{
|
1158 |
+
"epoch": 0.02,
|
1159 |
+
"learning_rate": 5.929696809214882e-06,
|
1160 |
+
"loss": 0.6468,
|
1161 |
+
"step": 188
|
1162 |
+
},
|
1163 |
+
{
|
1164 |
+
"epoch": 0.03,
|
1165 |
+
"learning_rate": 5.929299616046604e-06,
|
1166 |
+
"loss": 0.6407,
|
1167 |
+
"step": 189
|
1168 |
+
},
|
1169 |
+
{
|
1170 |
+
"epoch": 0.03,
|
1171 |
+
"learning_rate": 5.928902422878326e-06,
|
1172 |
+
"loss": 0.6996,
|
1173 |
+
"step": 190
|
1174 |
+
},
|
1175 |
+
{
|
1176 |
+
"epoch": 0.03,
|
1177 |
+
"learning_rate": 5.928505229710049e-06,
|
1178 |
+
"loss": 0.6158,
|
1179 |
+
"step": 191
|
1180 |
+
},
|
1181 |
+
{
|
1182 |
+
"epoch": 0.03,
|
1183 |
+
"learning_rate": 5.9281080365417716e-06,
|
1184 |
+
"loss": 0.6128,
|
1185 |
+
"step": 192
|
1186 |
+
},
|
1187 |
+
{
|
1188 |
+
"epoch": 0.03,
|
1189 |
+
"learning_rate": 5.927710843373494e-06,
|
1190 |
+
"loss": 0.6558,
|
1191 |
+
"step": 193
|
1192 |
+
},
|
1193 |
+
{
|
1194 |
+
"epoch": 0.03,
|
1195 |
+
"learning_rate": 5.927313650205216e-06,
|
1196 |
+
"loss": 0.6726,
|
1197 |
+
"step": 194
|
1198 |
+
},
|
1199 |
+
{
|
1200 |
+
"epoch": 0.03,
|
1201 |
+
"learning_rate": 5.92691645703694e-06,
|
1202 |
+
"loss": 0.6292,
|
1203 |
+
"step": 195
|
1204 |
+
},
|
1205 |
+
{
|
1206 |
+
"epoch": 0.03,
|
1207 |
+
"learning_rate": 5.926519263868662e-06,
|
1208 |
+
"loss": 0.6004,
|
1209 |
+
"step": 196
|
1210 |
+
},
|
1211 |
+
{
|
1212 |
+
"epoch": 0.03,
|
1213 |
+
"learning_rate": 5.926122070700384e-06,
|
1214 |
+
"loss": 0.599,
|
1215 |
+
"step": 197
|
1216 |
+
},
|
1217 |
+
{
|
1218 |
+
"epoch": 0.03,
|
1219 |
+
"learning_rate": 5.925724877532106e-06,
|
1220 |
+
"loss": 0.6374,
|
1221 |
+
"step": 198
|
1222 |
+
},
|
1223 |
+
{
|
1224 |
+
"epoch": 0.03,
|
1225 |
+
"learning_rate": 5.925327684363829e-06,
|
1226 |
+
"loss": 0.6472,
|
1227 |
+
"step": 199
|
1228 |
+
},
|
1229 |
+
{
|
1230 |
+
"epoch": 0.03,
|
1231 |
+
"learning_rate": 5.9249304911955515e-06,
|
1232 |
+
"loss": 0.594,
|
1233 |
+
"step": 200
|
1234 |
+
},
|
1235 |
+
{
|
1236 |
+
"epoch": 0.03,
|
1237 |
+
"learning_rate": 5.924533298027274e-06,
|
1238 |
+
"loss": 0.6382,
|
1239 |
+
"step": 201
|
1240 |
+
},
|
1241 |
+
{
|
1242 |
+
"epoch": 0.03,
|
1243 |
+
"learning_rate": 5.924136104858997e-06,
|
1244 |
+
"loss": 0.5817,
|
1245 |
+
"step": 202
|
1246 |
+
},
|
1247 |
+
{
|
1248 |
+
"epoch": 0.03,
|
1249 |
+
"learning_rate": 5.923738911690719e-06,
|
1250 |
+
"loss": 0.6128,
|
1251 |
+
"step": 203
|
1252 |
+
},
|
1253 |
+
{
|
1254 |
+
"epoch": 0.03,
|
1255 |
+
"learning_rate": 5.923341718522442e-06,
|
1256 |
+
"loss": 0.651,
|
1257 |
+
"step": 204
|
1258 |
+
},
|
1259 |
+
{
|
1260 |
+
"epoch": 0.03,
|
1261 |
+
"learning_rate": 5.922944525354164e-06,
|
1262 |
+
"loss": 0.5681,
|
1263 |
+
"step": 205
|
1264 |
+
},
|
1265 |
+
{
|
1266 |
+
"epoch": 0.03,
|
1267 |
+
"learning_rate": 5.922547332185887e-06,
|
1268 |
+
"loss": 0.6183,
|
1269 |
+
"step": 206
|
1270 |
+
},
|
1271 |
+
{
|
1272 |
+
"epoch": 0.03,
|
1273 |
+
"learning_rate": 5.922150139017609e-06,
|
1274 |
+
"loss": 0.5867,
|
1275 |
+
"step": 207
|
1276 |
+
},
|
1277 |
+
{
|
1278 |
+
"epoch": 0.03,
|
1279 |
+
"learning_rate": 5.9217529458493315e-06,
|
1280 |
+
"loss": 0.6048,
|
1281 |
+
"step": 208
|
1282 |
+
},
|
1283 |
+
{
|
1284 |
+
"epoch": 0.03,
|
1285 |
+
"learning_rate": 5.921355752681054e-06,
|
1286 |
+
"loss": 0.6968,
|
1287 |
+
"step": 209
|
1288 |
+
},
|
1289 |
+
{
|
1290 |
+
"epoch": 0.03,
|
1291 |
+
"learning_rate": 5.920958559512777e-06,
|
1292 |
+
"loss": 0.6259,
|
1293 |
+
"step": 210
|
1294 |
+
},
|
1295 |
+
{
|
1296 |
+
"epoch": 0.03,
|
1297 |
+
"learning_rate": 5.920561366344499e-06,
|
1298 |
+
"loss": 0.6076,
|
1299 |
+
"step": 211
|
1300 |
+
},
|
1301 |
+
{
|
1302 |
+
"epoch": 0.03,
|
1303 |
+
"learning_rate": 5.920164173176221e-06,
|
1304 |
+
"loss": 0.64,
|
1305 |
+
"step": 212
|
1306 |
+
},
|
1307 |
+
{
|
1308 |
+
"epoch": 0.03,
|
1309 |
+
"learning_rate": 5.919766980007944e-06,
|
1310 |
+
"loss": 0.6249,
|
1311 |
+
"step": 213
|
1312 |
+
},
|
1313 |
+
{
|
1314 |
+
"epoch": 0.03,
|
1315 |
+
"learning_rate": 5.919369786839667e-06,
|
1316 |
+
"loss": 0.6331,
|
1317 |
+
"step": 214
|
1318 |
+
},
|
1319 |
+
{
|
1320 |
+
"epoch": 0.03,
|
1321 |
+
"learning_rate": 5.918972593671389e-06,
|
1322 |
+
"loss": 0.6466,
|
1323 |
+
"step": 215
|
1324 |
+
},
|
1325 |
+
{
|
1326 |
+
"epoch": 0.03,
|
1327 |
+
"learning_rate": 5.918575400503111e-06,
|
1328 |
+
"loss": 0.5982,
|
1329 |
+
"step": 216
|
1330 |
+
},
|
1331 |
+
{
|
1332 |
+
"epoch": 0.03,
|
1333 |
+
"learning_rate": 5.9181782073348344e-06,
|
1334 |
+
"loss": 0.5719,
|
1335 |
+
"step": 217
|
1336 |
+
},
|
1337 |
+
{
|
1338 |
+
"epoch": 0.03,
|
1339 |
+
"learning_rate": 5.917781014166557e-06,
|
1340 |
+
"loss": 0.6032,
|
1341 |
+
"step": 218
|
1342 |
+
},
|
1343 |
+
{
|
1344 |
+
"epoch": 0.03,
|
1345 |
+
"learning_rate": 5.917383820998279e-06,
|
1346 |
+
"loss": 0.5741,
|
1347 |
+
"step": 219
|
1348 |
+
},
|
1349 |
+
{
|
1350 |
+
"epoch": 0.03,
|
1351 |
+
"learning_rate": 5.916986627830001e-06,
|
1352 |
+
"loss": 0.58,
|
1353 |
+
"step": 220
|
1354 |
+
},
|
1355 |
+
{
|
1356 |
+
"epoch": 0.03,
|
1357 |
+
"learning_rate": 5.916589434661724e-06,
|
1358 |
+
"loss": 0.6232,
|
1359 |
+
"step": 221
|
1360 |
+
},
|
1361 |
+
{
|
1362 |
+
"epoch": 0.03,
|
1363 |
+
"learning_rate": 5.916192241493446e-06,
|
1364 |
+
"loss": 0.6287,
|
1365 |
+
"step": 222
|
1366 |
+
},
|
1367 |
+
{
|
1368 |
+
"epoch": 0.03,
|
1369 |
+
"learning_rate": 5.915795048325169e-06,
|
1370 |
+
"loss": 0.6344,
|
1371 |
+
"step": 223
|
1372 |
+
},
|
1373 |
+
{
|
1374 |
+
"epoch": 0.03,
|
1375 |
+
"learning_rate": 5.915397855156891e-06,
|
1376 |
+
"loss": 0.6536,
|
1377 |
+
"step": 224
|
1378 |
+
},
|
1379 |
+
{
|
1380 |
+
"epoch": 0.03,
|
1381 |
+
"learning_rate": 5.915000661988614e-06,
|
1382 |
+
"loss": 0.6297,
|
1383 |
+
"step": 225
|
1384 |
+
},
|
1385 |
+
{
|
1386 |
+
"epoch": 0.03,
|
1387 |
+
"learning_rate": 5.9146034688203365e-06,
|
1388 |
+
"loss": 0.5635,
|
1389 |
+
"step": 226
|
1390 |
+
},
|
1391 |
+
{
|
1392 |
+
"epoch": 0.03,
|
1393 |
+
"learning_rate": 5.914206275652059e-06,
|
1394 |
+
"loss": 0.5931,
|
1395 |
+
"step": 227
|
1396 |
+
},
|
1397 |
+
{
|
1398 |
+
"epoch": 0.03,
|
1399 |
+
"learning_rate": 5.913809082483782e-06,
|
1400 |
+
"loss": 0.5681,
|
1401 |
+
"step": 228
|
1402 |
+
},
|
1403 |
+
{
|
1404 |
+
"epoch": 0.03,
|
1405 |
+
"learning_rate": 5.913411889315504e-06,
|
1406 |
+
"loss": 0.6155,
|
1407 |
+
"step": 229
|
1408 |
+
},
|
1409 |
+
{
|
1410 |
+
"epoch": 0.03,
|
1411 |
+
"learning_rate": 5.913014696147226e-06,
|
1412 |
+
"loss": 0.605,
|
1413 |
+
"step": 230
|
1414 |
+
},
|
1415 |
+
{
|
1416 |
+
"epoch": 0.03,
|
1417 |
+
"learning_rate": 5.912617502978948e-06,
|
1418 |
+
"loss": 0.6364,
|
1419 |
+
"step": 231
|
1420 |
+
},
|
1421 |
+
{
|
1422 |
+
"epoch": 0.03,
|
1423 |
+
"learning_rate": 5.912220309810671e-06,
|
1424 |
+
"loss": 0.6333,
|
1425 |
+
"step": 232
|
1426 |
+
},
|
1427 |
+
{
|
1428 |
+
"epoch": 0.03,
|
1429 |
+
"learning_rate": 5.911823116642394e-06,
|
1430 |
+
"loss": 0.6666,
|
1431 |
+
"step": 233
|
1432 |
+
},
|
1433 |
+
{
|
1434 |
+
"epoch": 0.03,
|
1435 |
+
"learning_rate": 5.9114259234741165e-06,
|
1436 |
+
"loss": 0.6296,
|
1437 |
+
"step": 234
|
1438 |
+
},
|
1439 |
+
{
|
1440 |
+
"epoch": 0.03,
|
1441 |
+
"learning_rate": 5.911028730305839e-06,
|
1442 |
+
"loss": 0.6422,
|
1443 |
+
"step": 235
|
1444 |
+
},
|
1445 |
+
{
|
1446 |
+
"epoch": 0.03,
|
1447 |
+
"learning_rate": 5.910631537137562e-06,
|
1448 |
+
"loss": 0.6426,
|
1449 |
+
"step": 236
|
1450 |
+
},
|
1451 |
+
{
|
1452 |
+
"epoch": 0.03,
|
1453 |
+
"learning_rate": 5.910234343969284e-06,
|
1454 |
+
"loss": 0.6389,
|
1455 |
+
"step": 237
|
1456 |
+
},
|
1457 |
+
{
|
1458 |
+
"epoch": 0.03,
|
1459 |
+
"learning_rate": 5.909837150801006e-06,
|
1460 |
+
"loss": 0.5695,
|
1461 |
+
"step": 238
|
1462 |
+
},
|
1463 |
+
{
|
1464 |
+
"epoch": 0.03,
|
1465 |
+
"learning_rate": 5.909439957632729e-06,
|
1466 |
+
"loss": 0.6271,
|
1467 |
+
"step": 239
|
1468 |
+
},
|
1469 |
+
{
|
1470 |
+
"epoch": 0.03,
|
1471 |
+
"learning_rate": 5.909042764464451e-06,
|
1472 |
+
"loss": 0.5981,
|
1473 |
+
"step": 240
|
1474 |
+
},
|
1475 |
+
{
|
1476 |
+
"epoch": 0.03,
|
1477 |
+
"learning_rate": 5.908645571296173e-06,
|
1478 |
+
"loss": 0.6345,
|
1479 |
+
"step": 241
|
1480 |
+
},
|
1481 |
+
{
|
1482 |
+
"epoch": 0.03,
|
1483 |
+
"learning_rate": 5.9082483781278964e-06,
|
1484 |
+
"loss": 0.6404,
|
1485 |
+
"step": 242
|
1486 |
+
},
|
1487 |
+
{
|
1488 |
+
"epoch": 0.03,
|
1489 |
+
"learning_rate": 5.9078511849596195e-06,
|
1490 |
+
"loss": 0.6046,
|
1491 |
+
"step": 243
|
1492 |
+
},
|
1493 |
+
{
|
1494 |
+
"epoch": 0.03,
|
1495 |
+
"learning_rate": 5.907453991791342e-06,
|
1496 |
+
"loss": 0.5791,
|
1497 |
+
"step": 244
|
1498 |
+
},
|
1499 |
+
{
|
1500 |
+
"epoch": 0.03,
|
1501 |
+
"learning_rate": 5.907056798623064e-06,
|
1502 |
+
"loss": 0.623,
|
1503 |
+
"step": 245
|
1504 |
+
},
|
1505 |
+
{
|
1506 |
+
"epoch": 0.03,
|
1507 |
+
"learning_rate": 5.906659605454786e-06,
|
1508 |
+
"loss": 0.6274,
|
1509 |
+
"step": 246
|
1510 |
+
},
|
1511 |
+
{
|
1512 |
+
"epoch": 0.03,
|
1513 |
+
"learning_rate": 5.906262412286509e-06,
|
1514 |
+
"loss": 0.629,
|
1515 |
+
"step": 247
|
1516 |
+
},
|
1517 |
+
{
|
1518 |
+
"epoch": 0.03,
|
1519 |
+
"learning_rate": 5.905865219118231e-06,
|
1520 |
+
"loss": 0.6967,
|
1521 |
+
"step": 248
|
1522 |
+
},
|
1523 |
+
{
|
1524 |
+
"epoch": 0.03,
|
1525 |
+
"learning_rate": 5.905468025949953e-06,
|
1526 |
+
"loss": 0.6649,
|
1527 |
+
"step": 249
|
1528 |
+
},
|
1529 |
+
{
|
1530 |
+
"epoch": 0.03,
|
1531 |
+
"learning_rate": 5.905070832781676e-06,
|
1532 |
+
"loss": 0.6514,
|
1533 |
+
"step": 250
|
1534 |
+
}
|
1535 |
+
],
|
1536 |
+
"logging_steps": 1,
|
1537 |
+
"max_steps": 15116,
|
1538 |
+
"num_train_epochs": 2,
|
1539 |
+
"save_steps": 50,
|
1540 |
+
"total_flos": 1.048510703075328e+18,
|
1541 |
+
"trial_name": null,
|
1542 |
+
"trial_params": null
|
1543 |
+
}
|
checkpoint-250/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2f05be88d930176935da1678b48a8294634889bf7ae4f8bebdbaca140c2dac08
|
3 |
+
size 5947
|
checkpoint-250/zero_to_fp32.py
ADDED
@@ -0,0 +1,587 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
215 |
+
elif zero_stage == 3:
|
216 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
217 |
+
|
218 |
+
|
219 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
220 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
221 |
+
return
|
222 |
+
|
223 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
224 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
225 |
+
|
226 |
+
if debug:
|
227 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
229 |
+
|
230 |
+
wanted_params = len(frozen_param_shapes)
|
231 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
232 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
233 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
234 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
235 |
+
|
236 |
+
total_params = 0
|
237 |
+
total_numel = 0
|
238 |
+
for name, shape in frozen_param_shapes.items():
|
239 |
+
total_params += 1
|
240 |
+
unpartitioned_numel = shape.numel()
|
241 |
+
total_numel += unpartitioned_numel
|
242 |
+
|
243 |
+
state_dict[name] = frozen_param_fragments[name]
|
244 |
+
|
245 |
+
if debug:
|
246 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
247 |
+
|
248 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
249 |
+
|
250 |
+
|
251 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
252 |
+
param_shapes = zero_model_states[0].param_shapes
|
253 |
+
|
254 |
+
# Reconstruction protocol:
|
255 |
+
#
|
256 |
+
# XXX: document this
|
257 |
+
|
258 |
+
if debug:
|
259 |
+
for i in range(world_size):
|
260 |
+
for j in range(len(fp32_flat_groups[0])):
|
261 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
262 |
+
|
263 |
+
# XXX: memory usage doubles here (zero2)
|
264 |
+
num_param_groups = len(fp32_flat_groups[0])
|
265 |
+
merged_single_partition_of_fp32_groups = []
|
266 |
+
for i in range(num_param_groups):
|
267 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
268 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
269 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
270 |
+
avail_numel = sum(
|
271 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
272 |
+
|
273 |
+
if debug:
|
274 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
275 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
276 |
+
# not asserting if there is a mismatch due to possible padding
|
277 |
+
print(f"Have {avail_numel} numels to process.")
|
278 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
279 |
+
|
280 |
+
# params
|
281 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
282 |
+
# out-of-core computing solution
|
283 |
+
total_numel = 0
|
284 |
+
total_params = 0
|
285 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
286 |
+
offset = 0
|
287 |
+
avail_numel = full_single_fp32_vector.numel()
|
288 |
+
for name, shape in shapes.items():
|
289 |
+
|
290 |
+
unpartitioned_numel = shape.numel()
|
291 |
+
total_numel += unpartitioned_numel
|
292 |
+
total_params += 1
|
293 |
+
|
294 |
+
if debug:
|
295 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
296 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
297 |
+
offset += unpartitioned_numel
|
298 |
+
|
299 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
300 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
301 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
302 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
303 |
+
align_to = 2 * world_size
|
304 |
+
|
305 |
+
def zero2_align(x):
|
306 |
+
return align_to * math.ceil(x / align_to)
|
307 |
+
|
308 |
+
if debug:
|
309 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
310 |
+
|
311 |
+
offset = zero2_align(offset)
|
312 |
+
avail_numel = zero2_align(avail_numel)
|
313 |
+
|
314 |
+
if debug:
|
315 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
316 |
+
|
317 |
+
# Sanity check
|
318 |
+
if offset != avail_numel:
|
319 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
320 |
+
|
321 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
322 |
+
|
323 |
+
|
324 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
325 |
+
state_dict = OrderedDict()
|
326 |
+
|
327 |
+
# buffers
|
328 |
+
buffers = zero_model_states[0].buffers
|
329 |
+
state_dict.update(buffers)
|
330 |
+
if debug:
|
331 |
+
print(f"added {len(buffers)} buffers")
|
332 |
+
|
333 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
334 |
+
|
335 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
336 |
+
|
337 |
+
# recover shared parameters
|
338 |
+
for pair in zero_model_states[0].shared_params:
|
339 |
+
if pair[1] in state_dict:
|
340 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
341 |
+
|
342 |
+
return state_dict
|
343 |
+
|
344 |
+
|
345 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
346 |
+
remainder = unpartitioned_numel % world_size
|
347 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
348 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
349 |
+
return partitioned_numel, padding_numel
|
350 |
+
|
351 |
+
|
352 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
353 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
354 |
+
return
|
355 |
+
|
356 |
+
if debug:
|
357 |
+
for i in range(world_size):
|
358 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
359 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
360 |
+
|
361 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
362 |
+
wanted_params = len(frozen_param_shapes)
|
363 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
364 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
365 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
366 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
367 |
+
|
368 |
+
total_params = 0
|
369 |
+
total_numel = 0
|
370 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
371 |
+
total_params += 1
|
372 |
+
unpartitioned_numel = shape.numel()
|
373 |
+
total_numel += unpartitioned_numel
|
374 |
+
|
375 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
376 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
377 |
+
|
378 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
379 |
+
|
380 |
+
if debug:
|
381 |
+
print(
|
382 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
383 |
+
)
|
384 |
+
|
385 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
386 |
+
|
387 |
+
|
388 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
389 |
+
param_shapes = zero_model_states[0].param_shapes
|
390 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
391 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
392 |
+
# param, re-consolidating each param, while dealing with padding if any
|
393 |
+
|
394 |
+
# merge list of dicts, preserving order
|
395 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
396 |
+
|
397 |
+
if debug:
|
398 |
+
for i in range(world_size):
|
399 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
400 |
+
|
401 |
+
wanted_params = len(param_shapes)
|
402 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
403 |
+
# not asserting if there is a mismatch due to possible padding
|
404 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
405 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
406 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
407 |
+
|
408 |
+
# params
|
409 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
410 |
+
# out-of-core computing solution
|
411 |
+
offset = 0
|
412 |
+
total_numel = 0
|
413 |
+
total_params = 0
|
414 |
+
for name, shape in param_shapes.items():
|
415 |
+
|
416 |
+
unpartitioned_numel = shape.numel()
|
417 |
+
total_numel += unpartitioned_numel
|
418 |
+
total_params += 1
|
419 |
+
|
420 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
421 |
+
|
422 |
+
if debug:
|
423 |
+
print(
|
424 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
425 |
+
)
|
426 |
+
|
427 |
+
# XXX: memory usage doubles here
|
428 |
+
state_dict[name] = torch.cat(
|
429 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
430 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
431 |
+
offset += partitioned_numel
|
432 |
+
|
433 |
+
offset *= world_size
|
434 |
+
|
435 |
+
# Sanity check
|
436 |
+
if offset != avail_numel:
|
437 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
438 |
+
|
439 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
440 |
+
|
441 |
+
|
442 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
443 |
+
state_dict = OrderedDict()
|
444 |
+
|
445 |
+
# buffers
|
446 |
+
buffers = zero_model_states[0].buffers
|
447 |
+
state_dict.update(buffers)
|
448 |
+
if debug:
|
449 |
+
print(f"added {len(buffers)} buffers")
|
450 |
+
|
451 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
452 |
+
|
453 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
454 |
+
|
455 |
+
# recover shared parameters
|
456 |
+
for pair in zero_model_states[0].shared_params:
|
457 |
+
if pair[1] in state_dict:
|
458 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
459 |
+
|
460 |
+
return state_dict
|
461 |
+
|
462 |
+
|
463 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
464 |
+
"""
|
465 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
466 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
467 |
+
via a model hub.
|
468 |
+
|
469 |
+
Args:
|
470 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
471 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
472 |
+
|
473 |
+
Returns:
|
474 |
+
- pytorch ``state_dict``
|
475 |
+
|
476 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
477 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
478 |
+
the checkpoint.
|
479 |
+
|
480 |
+
A typical usage might be ::
|
481 |
+
|
482 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
483 |
+
# do the training and checkpoint saving
|
484 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
485 |
+
model = model.cpu() # move to cpu
|
486 |
+
model.load_state_dict(state_dict)
|
487 |
+
# submit to model hub or save the model to share with others
|
488 |
+
|
489 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
490 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
491 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
492 |
+
|
493 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
494 |
+
|
495 |
+
"""
|
496 |
+
if tag is None:
|
497 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
498 |
+
if os.path.isfile(latest_path):
|
499 |
+
with open(latest_path, 'r') as fd:
|
500 |
+
tag = fd.read().strip()
|
501 |
+
else:
|
502 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
503 |
+
|
504 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
505 |
+
|
506 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
507 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
508 |
+
|
509 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
510 |
+
|
511 |
+
|
512 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
513 |
+
"""
|
514 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
515 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
516 |
+
|
517 |
+
Args:
|
518 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
519 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
520 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
521 |
+
"""
|
522 |
+
|
523 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
524 |
+
print(f"Saving fp32 state dict to {output_file}")
|
525 |
+
torch.save(state_dict, output_file)
|
526 |
+
|
527 |
+
|
528 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
529 |
+
"""
|
530 |
+
1. Put the provided model to cpu
|
531 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
532 |
+
3. Load it into the provided model
|
533 |
+
|
534 |
+
Args:
|
535 |
+
- ``model``: the model object to update
|
536 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
537 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
538 |
+
|
539 |
+
Returns:
|
540 |
+
- ``model`: modified model
|
541 |
+
|
542 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
543 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
544 |
+
conveniently placed for you in the checkpoint folder.
|
545 |
+
|
546 |
+
A typical usage might be ::
|
547 |
+
|
548 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
549 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
550 |
+
# submit to model hub or save the model to share with others
|
551 |
+
|
552 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
553 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
554 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
555 |
+
|
556 |
+
"""
|
557 |
+
logger.info(f"Extracting fp32 weights")
|
558 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
559 |
+
|
560 |
+
logger.info(f"Overwriting model with fp32 weights")
|
561 |
+
model = model.cpu()
|
562 |
+
model.load_state_dict(state_dict, strict=False)
|
563 |
+
|
564 |
+
return model
|
565 |
+
|
566 |
+
|
567 |
+
if __name__ == "__main__":
|
568 |
+
|
569 |
+
parser = argparse.ArgumentParser()
|
570 |
+
parser.add_argument("checkpoint_dir",
|
571 |
+
type=str,
|
572 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
573 |
+
parser.add_argument(
|
574 |
+
"output_file",
|
575 |
+
type=str,
|
576 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
577 |
+
parser.add_argument("-t",
|
578 |
+
"--tag",
|
579 |
+
type=str,
|
580 |
+
default=None,
|
581 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
582 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
583 |
+
args = parser.parse_args()
|
584 |
+
|
585 |
+
debug = args.debug
|
586 |
+
|
587 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
|
config.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "mistralai/Mistral-7B-v0.1",
|
3 |
+
"architectures": [
|
4 |
+
"MistralForCausalLM"
|
5 |
+
],
|
6 |
+
"bos_token_id": 1,
|
7 |
+
"eos_token_id": 2,
|
8 |
+
"hidden_act": "silu",
|
9 |
+
"hidden_size": 4096,
|
10 |
+
"initializer_range": 0.02,
|
11 |
+
"intermediate_size": 14336,
|
12 |
+
"max_position_embeddings": 32768,
|
13 |
+
"model_type": "mistral",
|
14 |
+
"num_attention_heads": 32,
|
15 |
+
"num_hidden_layers": 32,
|
16 |
+
"num_key_value_heads": 8,
|
17 |
+
"rms_norm_eps": 1e-05,
|
18 |
+
"rope_theta": 10000.0,
|
19 |
+
"sliding_window": 4096,
|
20 |
+
"tie_word_embeddings": false,
|
21 |
+
"torch_dtype": "bfloat16",
|
22 |
+
"transformers_version": "4.34.0.dev0",
|
23 |
+
"use_cache": false,
|
24 |
+
"vocab_size": 32002
|
25 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"transformers_version": "4.34.0.dev0"
|
6 |
+
}
|
latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step250
|
pytorch_model-00001-of-00002.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0b50d9439b999b9fd5b6c2e695a1483624a4c6c6bcee46f35f79806dde564275
|
3 |
+
size 9943044428
|
pytorch_model-00002-of-00002.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2a838f1a551e9ca10152f3cdb899a08d47a341ddb20b01839dc38a3eb6dac268
|
3 |
+
size 4540552031
|
pytorch_model.bin.index.json
ADDED
@@ -0,0 +1,298 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 14483496960
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "pytorch_model-00002-of-00002.bin",
|
7 |
+
"model.embed_tokens.weight": "pytorch_model-00001-of-00002.bin",
|
8 |
+
"model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
13 |
+
"model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
14 |
+
"model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
15 |
+
"model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
16 |
+
"model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
17 |
+
"model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
18 |
+
"model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
19 |
+
"model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
20 |
+
"model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
21 |
+
"model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
22 |
+
"model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
23 |
+
"model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
24 |
+
"model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
25 |
+
"model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
26 |
+
"model.layers.10.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
27 |
+
"model.layers.10.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
28 |
+
"model.layers.10.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
29 |
+
"model.layers.10.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
30 |
+
"model.layers.10.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
31 |
+
"model.layers.10.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
32 |
+
"model.layers.10.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
33 |
+
"model.layers.10.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
34 |
+
"model.layers.10.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
35 |
+
"model.layers.11.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
36 |
+
"model.layers.11.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
37 |
+
"model.layers.11.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
38 |
+
"model.layers.11.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
39 |
+
"model.layers.11.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
40 |
+
"model.layers.11.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
41 |
+
"model.layers.11.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
42 |
+
"model.layers.11.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
43 |
+
"model.layers.11.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
44 |
+
"model.layers.12.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
45 |
+
"model.layers.12.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
46 |
+
"model.layers.12.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
47 |
+
"model.layers.12.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
48 |
+
"model.layers.12.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
49 |
+
"model.layers.12.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
50 |
+
"model.layers.12.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
51 |
+
"model.layers.12.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
52 |
+
"model.layers.12.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
53 |
+
"model.layers.13.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
54 |
+
"model.layers.13.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
55 |
+
"model.layers.13.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
56 |
+
"model.layers.13.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
57 |
+
"model.layers.13.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
58 |
+
"model.layers.13.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
59 |
+
"model.layers.13.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
60 |
+
"model.layers.13.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
61 |
+
"model.layers.13.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
62 |
+
"model.layers.14.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
63 |
+
"model.layers.14.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
64 |
+
"model.layers.14.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
65 |
+
"model.layers.14.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
66 |
+
"model.layers.14.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
67 |
+
"model.layers.14.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
68 |
+
"model.layers.14.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
69 |
+
"model.layers.14.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
70 |
+
"model.layers.14.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
71 |
+
"model.layers.15.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
72 |
+
"model.layers.15.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
73 |
+
"model.layers.15.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
74 |
+
"model.layers.15.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
75 |
+
"model.layers.15.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
76 |
+
"model.layers.15.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
77 |
+
"model.layers.15.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
78 |
+
"model.layers.15.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
79 |
+
"model.layers.15.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
80 |
+
"model.layers.16.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
81 |
+
"model.layers.16.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
82 |
+
"model.layers.16.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
83 |
+
"model.layers.16.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
84 |
+
"model.layers.16.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
85 |
+
"model.layers.16.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
86 |
+
"model.layers.16.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
87 |
+
"model.layers.16.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
88 |
+
"model.layers.16.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
89 |
+
"model.layers.17.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
90 |
+
"model.layers.17.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
91 |
+
"model.layers.17.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
92 |
+
"model.layers.17.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
93 |
+
"model.layers.17.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
94 |
+
"model.layers.17.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
95 |
+
"model.layers.17.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
96 |
+
"model.layers.17.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
97 |
+
"model.layers.17.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
98 |
+
"model.layers.18.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
99 |
+
"model.layers.18.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
100 |
+
"model.layers.18.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
101 |
+
"model.layers.18.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
102 |
+
"model.layers.18.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
103 |
+
"model.layers.18.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
104 |
+
"model.layers.18.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
105 |
+
"model.layers.18.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
106 |
+
"model.layers.18.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
107 |
+
"model.layers.19.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
108 |
+
"model.layers.19.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
109 |
+
"model.layers.19.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
110 |
+
"model.layers.19.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
111 |
+
"model.layers.19.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
112 |
+
"model.layers.19.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
113 |
+
"model.layers.19.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
114 |
+
"model.layers.19.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
115 |
+
"model.layers.19.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
116 |
+
"model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
117 |
+
"model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
118 |
+
"model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
119 |
+
"model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
120 |
+
"model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
121 |
+
"model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
122 |
+
"model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
123 |
+
"model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
124 |
+
"model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
125 |
+
"model.layers.20.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
126 |
+
"model.layers.20.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
127 |
+
"model.layers.20.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
128 |
+
"model.layers.20.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
129 |
+
"model.layers.20.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
130 |
+
"model.layers.20.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
131 |
+
"model.layers.20.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
132 |
+
"model.layers.20.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
133 |
+
"model.layers.20.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
134 |
+
"model.layers.21.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
135 |
+
"model.layers.21.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
136 |
+
"model.layers.21.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
137 |
+
"model.layers.21.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
138 |
+
"model.layers.21.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
139 |
+
"model.layers.21.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
140 |
+
"model.layers.21.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
141 |
+
"model.layers.21.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
142 |
+
"model.layers.21.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
143 |
+
"model.layers.22.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
144 |
+
"model.layers.22.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
145 |
+
"model.layers.22.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
146 |
+
"model.layers.22.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
147 |
+
"model.layers.22.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
148 |
+
"model.layers.22.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
149 |
+
"model.layers.22.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
150 |
+
"model.layers.22.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
151 |
+
"model.layers.22.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
152 |
+
"model.layers.23.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
153 |
+
"model.layers.23.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
154 |
+
"model.layers.23.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
155 |
+
"model.layers.23.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
156 |
+
"model.layers.23.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
157 |
+
"model.layers.23.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
158 |
+
"model.layers.23.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
159 |
+
"model.layers.23.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
160 |
+
"model.layers.23.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
161 |
+
"model.layers.24.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
162 |
+
"model.layers.24.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
163 |
+
"model.layers.24.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
164 |
+
"model.layers.24.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
165 |
+
"model.layers.24.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
166 |
+
"model.layers.24.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
167 |
+
"model.layers.24.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
168 |
+
"model.layers.24.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
169 |
+
"model.layers.24.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
170 |
+
"model.layers.25.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
171 |
+
"model.layers.25.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
172 |
+
"model.layers.25.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
173 |
+
"model.layers.25.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
174 |
+
"model.layers.25.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
175 |
+
"model.layers.25.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
176 |
+
"model.layers.25.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
177 |
+
"model.layers.25.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
178 |
+
"model.layers.25.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
179 |
+
"model.layers.26.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
180 |
+
"model.layers.26.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
181 |
+
"model.layers.26.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
182 |
+
"model.layers.26.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
183 |
+
"model.layers.26.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
184 |
+
"model.layers.26.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
185 |
+
"model.layers.26.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
186 |
+
"model.layers.26.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
187 |
+
"model.layers.26.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
188 |
+
"model.layers.27.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
189 |
+
"model.layers.27.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
190 |
+
"model.layers.27.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
191 |
+
"model.layers.27.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
192 |
+
"model.layers.27.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
193 |
+
"model.layers.27.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
194 |
+
"model.layers.27.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
195 |
+
"model.layers.27.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
196 |
+
"model.layers.27.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
197 |
+
"model.layers.28.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
198 |
+
"model.layers.28.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
199 |
+
"model.layers.28.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
200 |
+
"model.layers.28.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
201 |
+
"model.layers.28.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
202 |
+
"model.layers.28.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
203 |
+
"model.layers.28.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
204 |
+
"model.layers.28.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
205 |
+
"model.layers.28.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
206 |
+
"model.layers.29.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
207 |
+
"model.layers.29.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
208 |
+
"model.layers.29.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
209 |
+
"model.layers.29.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
210 |
+
"model.layers.29.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
211 |
+
"model.layers.29.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
212 |
+
"model.layers.29.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
213 |
+
"model.layers.29.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
214 |
+
"model.layers.29.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
215 |
+
"model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
216 |
+
"model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
217 |
+
"model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
218 |
+
"model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
219 |
+
"model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
220 |
+
"model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
221 |
+
"model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
222 |
+
"model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
223 |
+
"model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
224 |
+
"model.layers.30.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
225 |
+
"model.layers.30.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
226 |
+
"model.layers.30.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
227 |
+
"model.layers.30.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
228 |
+
"model.layers.30.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
229 |
+
"model.layers.30.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
230 |
+
"model.layers.30.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
231 |
+
"model.layers.30.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
232 |
+
"model.layers.30.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
233 |
+
"model.layers.31.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
234 |
+
"model.layers.31.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
235 |
+
"model.layers.31.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
236 |
+
"model.layers.31.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
237 |
+
"model.layers.31.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
238 |
+
"model.layers.31.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
239 |
+
"model.layers.31.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
240 |
+
"model.layers.31.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
241 |
+
"model.layers.31.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
242 |
+
"model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
243 |
+
"model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
244 |
+
"model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
245 |
+
"model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
246 |
+
"model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
247 |
+
"model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
248 |
+
"model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
249 |
+
"model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
250 |
+
"model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
251 |
+
"model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
252 |
+
"model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
253 |
+
"model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
254 |
+
"model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
255 |
+
"model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
256 |
+
"model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
257 |
+
"model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
258 |
+
"model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
259 |
+
"model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
260 |
+
"model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
261 |
+
"model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
262 |
+
"model.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
263 |
+
"model.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
264 |
+
"model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
265 |
+
"model.layers.6.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
266 |
+
"model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
267 |
+
"model.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
268 |
+
"model.layers.6.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
269 |
+
"model.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
270 |
+
"model.layers.7.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
271 |
+
"model.layers.7.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
272 |
+
"model.layers.7.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
273 |
+
"model.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
274 |
+
"model.layers.7.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
275 |
+
"model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
276 |
+
"model.layers.7.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
277 |
+
"model.layers.7.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
278 |
+
"model.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
279 |
+
"model.layers.8.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
280 |
+
"model.layers.8.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
281 |
+
"model.layers.8.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
282 |
+
"model.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
283 |
+
"model.layers.8.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
284 |
+
"model.layers.8.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
285 |
+
"model.layers.8.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
286 |
+
"model.layers.8.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
287 |
+
"model.layers.9.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
288 |
+
"model.layers.9.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
289 |
+
"model.layers.9.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
290 |
+
"model.layers.9.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
291 |
+
"model.layers.9.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
292 |
+
"model.layers.9.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
293 |
+
"model.layers.9.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
294 |
+
"model.layers.9.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
295 |
+
"model.layers.9.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
296 |
+
"model.norm.weight": "pytorch_model-00002-of-00002.bin"
|
297 |
+
}
|
298 |
+
}
|
rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1eafe3d5e0585dde8c5033613de99a5d4f23df4284a488f4007b3944580c0b97
|
3 |
+
size 17655
|
rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7e34eb456d2d003a2839f2daa9425e99bdd79ed7e24a1de9fc7d5738476bfb4b
|
3 |
+
size 17655
|
rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b374af4a2765d8771cee7a72921d3c2e438b9bee34f0b2d098ce6071afeb65e4
|
3 |
+
size 17655
|
rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5df75d8477fcc69c7abb03025313915ebfe3ac18c54a7c57aaa455c0099e13e5
|
3 |
+
size 17655
|