File size: 2,098 Bytes
d1e81c8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: bert-mini-sst2-distilled
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue
type: glue
args: sst2
metrics:
- name: Accuracy
type: accuracy
value: 0.856651376146789
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-mini-sst2-distilled
This model is a fine-tuned version of [google/bert_uncased_L-4_H-256_A-4](https://huggingface.co/google/bert_uncased_L-4_H-256_A-4) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1792
- Accuracy: 0.8567
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.00021185586235152412
- train_batch_size: 1024
- eval_batch_size: 1024
- seed: 33
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.1552 | 1.0 | 66 | 1.4847 | 0.8349 |
| 0.8451 | 2.0 | 132 | 1.3495 | 0.8624 |
| 0.5864 | 3.0 | 198 | 1.2257 | 0.8532 |
| 0.4553 | 4.0 | 264 | 1.2571 | 0.8544 |
| 0.3708 | 5.0 | 330 | 1.2132 | 0.8658 |
| 0.3086 | 6.0 | 396 | 1.2370 | 0.8589 |
| 0.2701 | 7.0 | 462 | 1.1900 | 0.8635 |
| 0.246 | 8.0 | 528 | 1.1792 | 0.8567 |
### Framework versions
- Transformers 4.12.3
- Pytorch 1.9.1
- Datasets 1.15.1
- Tokenizers 0.10.3
|