--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: bert-mini-sst2-distilled results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: sst2 metrics: - name: Accuracy type: accuracy value: 0.856651376146789 --- # bert-mini-sst2-distilled This model is a fine-tuned version of [google/bert_uncased_L-4_H-256_A-4](https://huggingface.co/google/bert_uncased_L-4_H-256_A-4) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 1.1792 - Accuracy: 0.8567 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00021185586235152412 - train_batch_size: 1024 - eval_batch_size: 1024 - seed: 33 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.1552 | 1.0 | 66 | 1.4847 | 0.8349 | | 0.8451 | 2.0 | 132 | 1.3495 | 0.8624 | | 0.5864 | 3.0 | 198 | 1.2257 | 0.8532 | | 0.4553 | 4.0 | 264 | 1.2571 | 0.8544 | | 0.3708 | 5.0 | 330 | 1.2132 | 0.8658 | | 0.3086 | 6.0 | 396 | 1.2370 | 0.8589 | | 0.2701 | 7.0 | 462 | 1.1900 | 0.8635 | | 0.246 | 8.0 | 528 | 1.1792 | 0.8567 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.1 - Datasets 1.15.1 - Tokenizers 0.10.3