File size: 7,846 Bytes
629193a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
[2024-03-04 17:34:08,795][hydra][INFO] -
estimator:
accelerator: gpu
precision: bf16-true
deterministic: true
tf32_mode: high
convert_to_bettertransformer: false
callbacks:
timer:
_target_: energizer.active_learning.callbacks.Timer
lr_monitor:
_target_: energizer.callbacks.lr_monitor.LearningRateMonitor
model_checkpoint:
_target_: energizer.callbacks.model_checkpoint.ModelCheckpoint
dirpath: .checkpoints
stage: train
frequency: 1:epoch
loggers:
tensorboard:
_target_: energizer.loggers.TensorBoardLogger
root_dir: ./
name: tb_logs
version: null
data:
batch_size: 32
eval_batch_size: 128
shuffle: true
replacement: false
data_seed: 42
drop_last: false
num_workers: 8
pin_memory: true
persistent_workers: false
multiprocessing_context: null
max_length: 512
fit:
max_epochs: 20
optimizer_kwargs:
name: adamw
lr: 3.0e-05
init_kwargs:
fused: true
scheduler_kwargs:
name: constant_schedule_with_warmup
num_warmup_steps: 2000
log_interval: 100
enable_progress_bar: true
limit_train_batches: null
limit_validation_batches: null
model:
name: bert-tiny
revision: null
seed: 42
log_interval: 100
enable_progress_bar: true
limit_batches: null
seed: 42
experiment_group: training
run_name: bert-tiny_2024-03-04T17-34-08
data_path: /home/pl487/coreset-project/data/processed
dataset: mnli
======================================================================
[2024-03-04 17:34:08,796][hydra][INFO] - Seed enabled: 42
[2024-03-04 17:34:09,910][hydra][INFO] - Label distribution:
{<RunningStage.TRAIN: 'train'>: {'0-(entailment)': 130899, '1-(neutral)': 130900, '2-(contradiction)': 130903}}
[2024-03-04 17:34:21,700][hydra][INFO] - Loggers: [<energizer.loggers.tensorboard.TensorBoardLogger object at 0x7f79509062f0>]
[2024-03-04 17:34:21,700][hydra][INFO] - Callbacks: [<energizer.active_learning.callbacks.Timer object at 0x7f792e9ecfd0>, <energizer.callbacks.lr_monitor.LearningRateMonitor object at 0x7f792e9ed030>, <energizer.callbacks.model_checkpoint.ModelCheckpoint object at 0x7f792e9ed540>]
[2024-03-04 17:34:21,702][hydra][INFO] - Model summary:
Total num params: 4.4M
Of which trainable: 4.4M
With a memory footprint of 0.01GB
Total memory allocated 0.03GB
[2024-03-04 17:34:21,702][hydra][INFO] - Dataloading params:
SequenceClassificationDataloaderArgs(batch_size=32, eval_batch_size=128, num_workers=8, pin_memory=True, drop_last=False, persistent_workers=False, shuffle=True, replacement=False, data_seed=42, multiprocessing_context=None, max_length=512)
[2024-03-04 17:34:21,737][hydra][INFO] - Batch:
{<InputKeys.INPUT_IDS: 'input_ids'>: tensor([[ 101, 2092, 7910, 2008, 1005, 1055, 2785, 1997, 5793, 1045,
2812, 2027, 1005, 2128, 2130, 4755, 2009, 2000, 2000, 2073,
2085, 7910, 2008, 2027, 4748, 16874, 5562, 2006, 2694, 2017,
2113, 2065, 2115, 2065, 2017, 7910, 2017, 2113, 2031, 2589,
2023, 2030, 2065, 2017, 2342, 2023, 7910, 7910, 2057, 1005,
2222, 9790, 2005, 2017, 1998, 2017, 2123, 1005, 1056, 2031,
2000, 3477, 2149, 4983, 2017, 2021, 2059, 2054, 2027, 2123,
1005, 1056, 2425, 2017, 2003, 2008, 2065, 2017, 2065, 2027,
2663, 2017, 2507, 2068, 2012, 2560, 1037, 2353, 1997, 1996,
1997, 1996, 2518, 2008, 2027, 2663, 2061, 1045, 2123, 1005,
1056, 2113, 2009, 2003, 7910, 2009, 1005, 1055, 2893, 2000,
2022, 2062, 2449, 2085, 2738, 2084, 7910, 2941, 7910, 7149,
2007, 1996, 4126, 2084, 2007, 7910, 8529, 1996, 7910, 7750,
2027, 1996, 1996, 9559, 2024, 2074, 1999, 2009, 2005, 1996,
2769, 1045, 1005, 1049, 1045, 1005, 1049, 6427, 1045, 2113,
1045, 1045, 5993, 2007, 2017, 1045, 2228, 2017, 1005, 2128,
2613, 2017, 1005, 2128, 2200, 2157, 2008, 1996, 8801, 2323,
1045, 2228, 2027, 2323, 2031, 2019, 5020, 3815, 1997, 2017,
2113, 2672, 2027, 2064, 2031, 1037, 2261, 2021, 1045, 2228,
2087, 1997, 2068, 2323, 2022, 2025, 7910, 9559, 1999, 1996,
2755, 1998, 2008, 1005, 1055, 2126, 2126, 2027, 1005, 2310,
5407, 2046, 4331, 2009, 1005, 1055, 2138, 1997, 1996, 1996,
2375, 2477, 2017, 2113, 1996, 15932, 1998, 2673, 2021, 7910,
2021, 2053, 1045, 2113, 2057, 2009, 8529, 2057, 1005, 2128,
1999, 5374, 1998, 7910, 2057, 2031, 1996, 2168, 2518, 2058,
24375, 4667, 1998, 1998, 7910, 2027, 2024, 5599, 2068, 2041,
1045, 2812, 2074, 1996, 3180, 7173, 6251, 2518, 2027, 2292,
2068, 2041, 2138, 1997, 2027, 2123, 1005, 1056, 2031, 2151,
2173, 2000, 2562, 2000, 2404, 2068, 2061, 8307, 2008, 2071,
2017, 2113, 7910, 4983, 7910, 2042, 1037, 2350, 10048, 2021,
7910, 7910, 2130, 1996, 14255, 14141, 2135, 2210, 4933, 1045,
2812, 1996, 1996, 4364, 2008, 12386, 2651, 1999, 2637, 2003,
1996, 6778, 1998, 9444, 2008, 2089, 2022, 3251, 2009, 1005,
1055, 1037, 13742, 2030, 5850, 2030, 3649, 2842, 8529, 2027,
2024, 1996, 3924, 2008, 2024, 2183, 2000, 3477, 1998, 2027,
2024, 1996, 2028, 2008, 2024, 2183, 2000, 9015, 1998, 1996,
2060, 2711, 2017, 2113, 2065, 2027, 3477, 2065, 2027, 2065,
2027, 7910, 6545, 2068, 7910, 1998, 7910, 2059, 1996, 2017,
2113, 2051, 1996, 2375, 3138, 2058, 7910, 2431, 1996, 2051,
7910, 2027, 2593, 2292, 2068, 2175, 2030, 2027, 2131, 2125,
2007, 1037, 1037, 6251, 2138, 2027, 1005, 2310, 2018, 1037,
5160, 2008, 2017, 2113, 5683, 2008, 2008, 2027, 4694, 1005,
1056, 2035, 2362, 2043, 2027, 2106, 2009, 102, 1045, 2228,
2008, 2045, 2323, 2022, 2019, 5020, 6630, 1997, 15406, 1999,
2256, 8801, 1012, 102]]), <InputKeys.ATT_MASK: 'attention_mask'>: tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]), <InputKeys.LABELS: 'labels'>: tensor([0]), <InputKeys.ON_CPU: 'on_cpu'>: {<SpecialKeys.ID: 'uid'>: [221950]}}
|