pineiden commited on
Commit
021bd1c
·
1 Parent(s): bb708fe

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +84 -0
README.md ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: openrail
3
+ tags:
4
+ - generated_from_trainer
5
+ model-index:
6
+ - name: nominal-groups-recognition-medical-disease-competencia2-bert-medical-ner
7
+ results: []
8
+ ---
9
+
10
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
11
+ should probably proofread and complete it, then remove this comment. -->
12
+
13
+ # nominal-groups-recognition-medical-disease-competencia2-bert-medical-ner
14
+
15
+ This model is a fine-tuned version of [ukkendane/bert-medical-ner](https://huggingface.co/ukkendane/bert-medical-ner) on the None dataset.
16
+ It achieves the following results on the evaluation set:
17
+ - Loss: 0.3607
18
+ - Body Part Precision: 0.6555
19
+ - Body Part Recall: 0.7094
20
+ - Body Part F1: 0.6814
21
+ - Body Part Number: 413
22
+ - Disease Precision: 0.6835
23
+ - Disease Recall: 0.7067
24
+ - Disease F1: 0.6949
25
+ - Disease Number: 975
26
+ - Family Member Precision: 1.0
27
+ - Family Member Recall: 0.6
28
+ - Family Member F1: 0.7500
29
+ - Family Member Number: 30
30
+ - Medication Precision: 0.7647
31
+ - Medication Recall: 0.6989
32
+ - Medication F1: 0.7303
33
+ - Medication Number: 93
34
+ - Procedure Precision: 0.5385
35
+ - Procedure Recall: 0.5402
36
+ - Procedure F1: 0.5393
37
+ - Procedure Number: 311
38
+ - Overall Precision: 0.6594
39
+ - Overall Recall: 0.6767
40
+ - Overall F1: 0.6679
41
+ - Overall Accuracy: 0.9079
42
+
43
+ ## Model description
44
+
45
+ More information needed
46
+
47
+ ## Intended uses & limitations
48
+
49
+ More information needed
50
+
51
+ ## Training and evaluation data
52
+
53
+ More information needed
54
+
55
+ ## Training procedure
56
+
57
+ ### Training hyperparameters
58
+
59
+ The following hyperparameters were used during training:
60
+ - learning_rate: 2e-05
61
+ - train_batch_size: 8
62
+ - eval_batch_size: 8
63
+ - seed: 13
64
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
65
+ - lr_scheduler_type: linear
66
+ - num_epochs: 5
67
+
68
+ ### Training results
69
+
70
+ | Training Loss | Epoch | Step | Validation Loss | Body Part Precision | Body Part Recall | Body Part F1 | Body Part Number | Disease Precision | Disease Recall | Disease F1 | Disease Number | Family Member Precision | Family Member Recall | Family Member F1 | Family Member Number | Medication Precision | Medication Recall | Medication F1 | Medication Number | Procedure Precision | Procedure Recall | Procedure F1 | Procedure Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
71
+ |:-------------:|:-----:|:-----:|:---------------:|:-------------------:|:----------------:|:------------:|:----------------:|:-----------------:|:--------------:|:----------:|:--------------:|:-----------------------:|:--------------------:|:----------------:|:--------------------:|:--------------------:|:-----------------:|:-------------:|:-----------------:|:-------------------:|:----------------:|:------------:|:----------------:|:-----------------:|:--------------:|:----------:|:----------------:|
72
+ | 0.4541 | 1.0 | 8025 | 0.3607 | 0.6555 | 0.7094 | 0.6814 | 413 | 0.6835 | 0.7067 | 0.6949 | 975 | 1.0 | 0.6 | 0.7500 | 30 | 0.7647 | 0.6989 | 0.7303 | 93 | 0.5385 | 0.5402 | 0.5393 | 311 | 0.6594 | 0.6767 | 0.6679 | 0.9079 |
73
+ | 0.3149 | 2.0 | 16050 | 0.3607 | 0.6555 | 0.7094 | 0.6814 | 413 | 0.6835 | 0.7067 | 0.6949 | 975 | 1.0 | 0.6 | 0.7500 | 30 | 0.7647 | 0.6989 | 0.7303 | 93 | 0.5385 | 0.5402 | 0.5393 | 311 | 0.6594 | 0.6767 | 0.6679 | 0.9079 |
74
+ | 0.3161 | 3.0 | 24075 | 0.3607 | 0.6555 | 0.7094 | 0.6814 | 413 | 0.6835 | 0.7067 | 0.6949 | 975 | 1.0 | 0.6 | 0.7500 | 30 | 0.7647 | 0.6989 | 0.7303 | 93 | 0.5385 | 0.5402 | 0.5393 | 311 | 0.6594 | 0.6767 | 0.6679 | 0.9079 |
75
+ | 0.3181 | 4.0 | 32100 | 0.3607 | 0.6555 | 0.7094 | 0.6814 | 413 | 0.6835 | 0.7067 | 0.6949 | 975 | 1.0 | 0.6 | 0.7500 | 30 | 0.7647 | 0.6989 | 0.7303 | 93 | 0.5385 | 0.5402 | 0.5393 | 311 | 0.6594 | 0.6767 | 0.6679 | 0.9079 |
76
+ | 0.3164 | 5.0 | 40125 | 0.3607 | 0.6555 | 0.7094 | 0.6814 | 413 | 0.6835 | 0.7067 | 0.6949 | 975 | 1.0 | 0.6 | 0.7500 | 30 | 0.7647 | 0.6989 | 0.7303 | 93 | 0.5385 | 0.5402 | 0.5393 | 311 | 0.6594 | 0.6767 | 0.6679 | 0.9079 |
77
+
78
+
79
+ ### Framework versions
80
+
81
+ - Transformers 4.30.2
82
+ - Pytorch 2.0.1+cu117
83
+ - Datasets 2.13.1
84
+ - Tokenizers 0.13.3