File size: 6,195 Bytes
aecd093 9a6c63e 775c469 172647d 0de9fd5 a2fad04 45919db 3e45947 172647d aecd093 9a6c63e 54d1907 d28bf1d 45919db a78e93c 172647d 138986c d28bf1d 19b55c2 a78e93c c27dd09 d28bf1d 54d1907 9a6c63e 19b55c2 44f3b19 9a6c63e 54d1907 9a6c63e d28bf1d 5ea7461 9a6c63e 172647d 3bf1ffc 172647d 3bf1ffc 172647d 61307ce 3bf1ffc a78e93c 9a6c63e 672fe2d a78e93c 672fe2d a78e93c 672fe2d 9a6c63e a78e93c 80fba6b 9a6c63e a78e93c 9a6c63e a78e93c 9a6c63e a78e93c 9a6c63e d28bf1d 172647d d28bf1d 61307ce 172647d 61307ce d28bf1d ab65f57 172647d 80fba6b 172647d d28bf1d 172647d d28bf1d cbfee4d 172647d cbfee4d 172647d 80fba6b 172647d cbfee4d d28bf1d 61307ce 172647d 61307ce 80fba6b 61307ce cbfee4d 172647d 19b55c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
---
license: mit
library_name: sklearn
tags:
- text-classification
- sklearn
- phishing
- url
- onnx
model_format: pickle
model_file: model.pkl
inference: false
pipeline_tag: text-classification
datasets:
- pirocheto/phishing-url
---
# Model Description
The model predicts the probability that a URL is a phishing site.
To understand what phishing is, refer to the Wikipedia page:
[https://en.wikipedia.org/wiki/Phishing](https://en.wikipedia.org/wiki/Phishing)
-- this is not a phishing link π
- **Model type:** LinearSVM
- **Task:** Binary classification
- **License:** MIT
- **Repository:** https://github.com/pirocheto/phishing-url-detection
## Evaluation
| Metric | Value |
|-----------|----------|
| roc_auc | 0.986844 |
| accuracy | 0.948568 |
| f1 | 0.948623 |
| precision | 0.947619 |
| recall | 0.949629 |
# How to Get Started with the Model
Using pickle in Python is discouraged due to security risks during data deserialization, potentially allowing code injection.
It lacks portability across Python versions and interoperability with other languages.
Read more about this subject in the [Hugging Face Documentation](https://huggingface.co/docs/hub/security-pickle).
Instead, we recommend using the ONNX model, which is more secure.
In addition to being lighter and faster, it can be utilized by languages supported by the [ONNX runtime](https://onnxruntime.ai/docs/get-started/).
Below are some examples to get you start. For others languages please refer to the ONNX documentation
<details>
<summary><b>Python</b> - ONNX - [recommended π]</summary>
```python
import numpy as np
import onnxruntime
from huggingface_hub import hf_hub_download
REPO_ID = "pirocheto/phishing-url-detection"
FILENAME = "model.onnx"
model_path = hf_hub_download(repo_id=REPO_ID, filename=FILENAME)
# Initializing the ONNX Runtime session with the pre-trained model
sess = onnxruntime.InferenceSession(
model_path,
providers=["CPUExecutionProvider"],
)
urls = [
"https://clubedemilhagem.com/home.php",
"http://www.medicalnewstoday.com/articles/188939.php",
]
inputs = np.array(urls, dtype="str")
# Using the ONNX model to make predictions on the input data
results = sess.run(None, {"inputs": inputs})[1]
for url, proba in zip(urls, results):
print(f"URL: {url}")
print(f"Likelihood of being a phishing site: {proba[1] * 100:.2f} %")
print("----")
```
</details>
<details>
<summary><b>NodeJS</b>- ONNX - [recommended π]</summary>
```javascript
const ort = require('onnxruntime-node');
async function main() {
try {
// Make sure you have downloaded the model.onnx
// Creating an ONNX inference session with the specified model
const model_path = "./model.onnx";
const session = await ort.InferenceSession.create(model_path);
const urls = [
"https://clubedemilhagem.com/home.php",
"http://www.medicalnewstoday.com/articles/188939.php",
]
// Creating an ONNX tensor from the input data
const tensor = new ort.Tensor('string', urls, [urls.length,]);
// Executing the inference session with the input tensor
const results = await session.run({"inputs": tensor});
const probas = results['probabilities'].data;
// Displaying results for each URL
urls.forEach((url, index) => {
const proba = probas[index * 2 + 1];
const percent = (proba * 100).toFixed(2);
console.log(`URL: ${url}`);
console.log(`Likelihood of being a phishing site: ${percent}%`);
console.log("----");
});
} catch (e) {
console.log(`failed to inference ONNX model: ${e}.`);
}
};
main();
```
</details>
<details>
<summary><b>JavaScript</b> - ONNX - [recommended π]</summary>
```html
<!DOCTYPE html>
<html>
<header>
<title>Get Started with JavaScript</title>
</header>
<body>
<!-- import ONNXRuntime Web from CDN -->
<script src="https://cdn.jsdelivr.net/npm/onnxruntime-web/dist/ort.min.js"></script>
<script>
// use an async context to call onnxruntime functions.
async function main() {
try {
const model_path = "./model.onnx";
const session = await ort.InferenceSession.create(model_path);
const urls = [
"https://clubedemilhagem.com/home.php",
"http://www.medicalnewstoday.com/articles/188939.php",
];
// Creating an ONNX tensor from the input data
const tensor = new ort.Tensor("string", urls, [urls.length]);
// Executing the inference session with the input tensor
const results = await session.run({ inputs: tensor });
const probas = results["probabilities"].data;
// Displaying results for each URL
urls.forEach((url, index) => {
const proba = probas[index * 2 + 1];
const percent = (proba * 100).toFixed(2);
document.write(`URL: ${url} <br>`);
document.write(
`Likelihood of being a phishing site: ${percent} % <br>`
);
document.write("---- <br>");
});
} catch (e) {
document.write(`failed to inference ONNX model: ${e}.`);
}
}
main();
</script>
</body>
</html>
```
</details>
<details>
<summary><b>Python</b> - Pickle - [not recommended β οΈ]</summary>
```python
import joblib
from huggingface_hub import hf_hub_download
REPO_ID = "pirocheto/phishing-url-detection"
FILENAME = "model.pkl"
# Download the model from the Hugging Face Model Hub
model_path = hf_hub_download(repo_id=REPO_ID, filename=FILENAME)
urls = [
"https://clubedemilhagem.com/home.php",
"http://www.medicalnewstoday.com/articles/188939.php",
]
# Load the downloaded model using joblib
model = joblib.load(model_path)
# Predict probabilities for each URL
probas = model.predict_proba(urls)
for url, proba in zip(urls, probas):
print(f"URL: {url}")
print(f"Likelihood of being a phishing site: {proba[1] * 100:.2f} %")
print("----")
```
</details>
|