labubu_dataset
This is a PEFT LoRA derived from black-forest-labs/FLUX.1-Kontext-dev.
The main validation prompt used during training was:
a photo of a daisy
Validation settings
- CFG:
2.5
- CFG Rescale:
0.0
- Steps:
20
- Sampler:
FlowMatchEulerDiscreteScheduler
- Seed:
69
- Resolution:
1024x1024
- Skip-layer guidance:
Note: The validation settings are not necessarily the same as the training settings.
You can find some example images in the following gallery:

- Prompt
- unconditional (blank prompt)
- Negative Prompt
- blurry, cropped, ugly

- Prompt
- turn this person into a labubu
- Negative Prompt
- blurry, cropped, ugly

- Prompt
- turn this person into a labubu
- Negative Prompt
- blurry, cropped, ugly

- Prompt
- turn this person into a labubu
- Negative Prompt
- blurry, cropped, ugly
The text encoder was not trained. You may reuse the base model text encoder for inference.
Training settings
Training epochs: 374
Training steps: 1500
Learning rate: 1e-05
- Learning rate schedule: constant
- Warmup steps: 100
Max grad value: 2.0
Effective batch size: 4
- Micro-batch size: 1
- Gradient accumulation steps: 4
- Number of GPUs: 1
Gradient checkpointing: True
Prediction type: flow_matching (extra parameters=['flow_schedule_auto_shift', 'shift=0.0', 'flux_guidance_mode=constant', 'flux_guidance_value=1.0', 'flux_lora_target=fal'])
Optimizer: optimi-lion
Trainable parameter precision: Pure BF16
Base model precision:
int8-quanto
Caption dropout probability: 0.05%
LoRA Rank: 16
LoRA Alpha: 16.0
LoRA Dropout: 0.1
LoRA initialisation style: default
Datasets
my-edited-images
- Repeats: 0
- Total number of images: 16
- Total number of aspect buckets: 1
- Resolution: 1.048576 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
Inference
import torch
from diffusers import DiffusionPipeline
model_id = 'black-forest-labs/FLUX.1-Kontext-dev'
adapter_id = 'playerzer0x/labubu_dataset'
pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) # loading directly in bf16
pipeline.load_lora_weights(adapter_id)
prompt = "a photo of a daisy"
## Optional: quantise the model to save on vram.
## Note: The model was quantised during training, and so it is recommended to do the same during inference time.
from optimum.quanto import quantize, freeze, qint8
quantize(pipeline.transformer, weights=qint8)
freeze(pipeline.transformer)
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level
model_output = pipeline(
prompt=prompt,
num_inference_steps=20,
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(69),
width=1024,
height=1024,
guidance_scale=2.5,
).images[0]
model_output.save("output.png", format="PNG")
- Downloads last month
- 86
Model tree for playerzer0x/labubu_dataset
Base model
black-forest-labs/FLUX.1-Kontext-dev