pomp commited on
Commit
ee19e3b
·
1 Parent(s): 2076adb

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 254.50 +/- 13.34
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8f62d4f160>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8f62d4f1f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8f62d4f280>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8f62d4f310>", "_build": "<function ActorCriticPolicy._build at 0x7f8f62d4f3a0>", "forward": "<function ActorCriticPolicy.forward at 0x7f8f62d4f430>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f8f62d4f4c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8f62d4f550>", "_predict": "<function ActorCriticPolicy._predict at 0x7f8f62d4f5e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8f62d4f670>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8f62d4f700>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8f62d4f790>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f8f62d4b300>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676045583190599236, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJB8Vb4BUYC8igxiug24g7hhA+s9ndVTOQAAgD8AAIA/zWxpuoWHkTyV1x4+GXcsvvsdGD4v/5a/AAAAAAAAgD8z49c79kACul54LLpVLQ22U4kzO0rtSDkAAIA/AACAP/Mxy71Ix5u6zr5suZ6AeLThyn46NGWIOAAAgD8AAIA/zVeqvSm8bLoi9yA41nVNthQeMLvm0kK1AACAPwAAgD/gGy2+XJ8nuosBrTwqGsU7GmvMvqI7Nz0AAIA/AACAPy1mTL60mI+8Rvluu3pzrLnzV/c9LsCJOgAAgD8AAIA/TdgIvWDSzD6upUO95flyvhs34TsCYBq9AAAAAAAAAABzfE2+e5rhuju1WzvFxMw3PeBDPFjggboAAIA/AACAPzNJP7x7SJe6DOtKM/Tlla9BtfY6miu/swAAgD8AAIA/ZiavO/b8JLpgJLg7p7wLOLChWLrV8N22AACAPwAAgD8A8888H7XzucKbgbqTB2S1/+fmuoqjmzkAAIA/AACAPwBKzLyuhZG69XVWuuC5TbUXaXE5wqZ4OQAAgD8AAIA/Zsa9ulwLc7ry7mc24pBfMXm8zDpvWom1AACAPwAAgD+afbc7rvP1uuVmiLzLSW08R+24u1LCTj0AAIA/AACAP00G2r1cQ3e6A4eJuqIemrXRlNe5HbadOQAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVeBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI7pbkgN2NYUCUhpRSlIwBbJRN6AOMAXSUR0CYWcQtSQ5ndX2UKGgGaAloD0MIjlw3pbxeYkCUhpRSlGgVTegDaBZHQJhd9RO1v2p1fZQoaAZoCWgPQwjLL4MxIulmQJSGlFKUaBVN6ANoFkdAmF/K8tf5UXV9lChoBmgJaA9DCMKlY84zjmJAlIaUUpRoFU3oA2gWR0CYYoP4mCyydX2UKGgGaAloD0MIe7yQDo+yYUCUhpRSlGgVTegDaBZHQJhkRXFLnLd1fZQoaAZoCWgPQwgYeVkTC6JCQJSGlFKUaBVL8GgWR0CYfn99tuUEdX2UKGgGaAloD0MItFn1udoKPECUhpRSlGgVS/hoFkdAmIirm2b5M3V9lChoBmgJaA9DCIVgVb18PmFAlIaUUpRoFU3oA2gWR0CYiwjSG8EndX2UKGgGaAloD0MI4297gsSBYECUhpRSlGgVTegDaBZHQJiWtQ79ycV1fZQoaAZoCWgPQwimDYelgWthQJSGlFKUaBVN6ANoFkdAmJ3/CQ9zO3V9lChoBmgJaA9DCMOcoE0Oyl1AlIaUUpRoFU3oA2gWR0CYo82NNrTIdX2UKGgGaAloD0MIprVpbC88ZECUhpRSlGgVTegDaBZHQJilBh3JPqN1fZQoaAZoCWgPQwgAx549l9VcQJSGlFKUaBVN6ANoFkdAmKWk+C9RJnV9lChoBmgJaA9DCIGyKVd4GWVAlIaUUpRoFU3oA2gWR0CYpzh11W8zdX2UKGgGaAloD0MIhPHTuDcpZUCUhpRSlGgVTegDaBZHQJioCp1ie/Z1fZQoaAZoCWgPQwiyKsJNxjdmQJSGlFKUaBVN6ANoFkdAmKh4I4VARnV9lChoBmgJaA9DCN9Szhd7KGJAlIaUUpRoFU3oA2gWR0CYqhXiR4hVdX2UKGgGaAloD0MIwsJJmj/DXUCUhpRSlGgVTegDaBZHQJitznuAqd91fZQoaAZoCWgPQwgw8rImFn1kQJSGlFKUaBVN6ANoFkdAmLR3bypaR3V9lChoBmgJaA9DCJ4I4jycgCdAlIaUUpRoFU0bAWgWR0CYteYLLIPtdX2UKGgGaAloD0MIRs8tdCV9YUCUhpRSlGgVTegDaBZHQJi2TXvphWp1fZQoaAZoCWgPQwjM8QpET9dbQJSGlFKUaBVN6ANoFkdAmLmVJL/S6XV9lChoBmgJaA9DCIXpew3BIWFAlIaUUpRoFU3oA2gWR0CYzz9fkWAPdX2UKGgGaAloD0MI9goL7gcbVECUhpRSlGgVTegDaBZHQJjcDRiPQv91fZQoaAZoCWgPQwgTChFwCMlaQJSGlFKUaBVN6ANoFkdAmN/FGCqZMXV9lChoBmgJaA9DCOhNRSqMamBAlIaUUpRoFU3oA2gWR0CY7614xDb8dX2UKGgGaAloD0MILQlQU8t8YUCUhpRSlGgVTegDaBZHQJj2VPKuB+Z1fZQoaAZoCWgPQwjnVDIAVJFlQJSGlFKUaBVN6ANoFkdAmPp/8qFyrHV9lChoBmgJaA9DCLQiaqJPZWZAlIaUUpRoFU3oA2gWR0CY+1mknCwbdX2UKGgGaAloD0MI/yJozKQDZkCUhpRSlGgVTegDaBZHQJj87tBv73x1fZQoaAZoCWgPQwg6V5QSgm9hQJSGlFKUaBVN6ANoFkdAmP2HaFmFrXV9lChoBmgJaA9DCNC4cCAkCWJAlIaUUpRoFU3oA2gWR0CY/dfNRm9QdX2UKGgGaAloD0MI0o2wqAjSYECUhpRSlGgVTegDaBZHQJj/CLHdXT51fZQoaAZoCWgPQwj6CtKMxdthQJSGlFKUaBVN6ANoFkdAmQG/eLvTgHV9lChoBmgJaA9DCE+vlGUIfm5AlIaUUpRoFU0BA2gWR0CZBCgLJCBxdX2UKGgGaAloD0MIPxpOmZtpXUCUhpRSlGgVTegDaBZHQJkIlZvDP4V1fZQoaAZoCWgPQwil2NE4VKdgQJSGlFKUaBVN6ANoFkdAmQohEF4cFXV9lChoBmgJaA9DCG/2B8rtGGJAlIaUUpRoFU3oA2gWR0CZCoalUIcBdX2UKGgGaAloD0MIZTcz+lEaZUCUhpRSlGgVTegDaBZHQJkNnfR/mT11fZQoaAZoCWgPQwiPp+UHLkhgQJSGlFKUaBVN6ANoFkdAmTN5v5xionV9lChoBmgJaA9DCKN2vwrwF2VAlIaUUpRoFU3oA2gWR0CZNclZHNHIdX2UKGgGaAloD0MIdHy0OGM0cUCUhpRSlGgVTfACaBZHQJk9Gw1R+Bp1fZQoaAZoCWgPQwjDg2bXPdFjQJSGlFKUaBVN6ANoFkdAmUDsGLUCrHV9lChoBmgJaA9DCO4m+KbptGVAlIaUUpRoFU3oA2gWR0CZRov60pmVdX2UKGgGaAloD0MIOdbFbTSsYUCUhpRSlGgVTegDaBZHQJlKIYCQtBh1fZQoaAZoCWgPQwh9lXzs7rhwQJSGlFKUaBVNzgNoFkdAmUwZgCwKSnV9lChoBmgJaA9DCDlE3JxKtmFAlIaUUpRoFU3oA2gWR0CZTNwTM7lrdX2UKGgGaAloD0MIGcbdIFrTZECUhpRSlGgVTegDaBZHQJlNsqYqoZR1fZQoaAZoCWgPQwiVDABVXLRmQJSGlFKUaBVN6ANoFkdAmVAKCUX533V9lChoBmgJaA9DCL0ZNV8ln+A/lIaUUpRoFU0ZAWgWR0CZUl2OAAhjdX2UKGgGaAloD0MIKlPMQdBzS0CUhpRSlGgVS7VoFkdAmVJwjIJZ4nV9lChoBmgJaA9DCOQuwhTlH2NAlIaUUpRoFU3oA2gWR0CZU+ebNKRMdX2UKGgGaAloD0MIIO1/gLUKaECUhpRSlGgVTegDaBZHQJlXYtL+PzZ1fZQoaAZoCWgPQwj8jAsHQgpKQJSGlFKUaBVL52gWR0CZXST4tYjjdX2UKGgGaAloD0MIVtXL77SAYUCUhpRSlGgVTegDaBZHQJldXf8/D+B1fZQoaAZoCWgPQwgBGTp2UFtaQJSGlFKUaBVN6ANoFkdAmV8euieum3V9lChoBmgJaA9DCIXMlUE1nWRAlIaUUpRoFU3oA2gWR0CZX3inYQJ5dX2UKGgGaAloD0MItykeF9XRYECUhpRSlGgVTegDaBZHQJliMV6/qPh1fZQoaAZoCWgPQwg/i6VI/hdxQJSGlFKUaBVNigFoFkdAmXqdgKF7D3V9lChoBmgJaA9DCDrpfePrGGVAlIaUUpRoFU3oA2gWR0CZgZ5sj3VTdX2UKGgGaAloD0MIKZMa2oDvZkCUhpRSlGgVTegDaBZHQJmD2XyAhB91fZQoaAZoCWgPQwiLNPEO8H9uQJSGlFKUaBVNFgJoFkdAmYkI6GQCCHV9lChoBmgJaA9DCO91Ul+WXVNAlIaUUpRoFU3oA2gWR0CZjItDUmUodX2UKGgGaAloD0MIgdB6+HIgckCUhpRSlGgVTZYCaBZHQJmbfixVyWB1fZQoaAZoCWgPQwhRoiWP549xQJSGlFKUaBVNoANoFkdAmZxEbPyCnXV9lChoBmgJaA9DCFw4EJKFS2FAlIaUUpRoFU3oA2gWR0CZnVjqv/zbdX2UKGgGaAloD0MI0Jm0qTogZECUhpRSlGgVTegDaBZHQJme8D6nBLx1fZQoaAZoCWgPQwhcH9YbNb1kQJSGlFKUaBVN6ANoFkdAmaMgJw84gnV9lChoBmgJaA9DCC8VG/M6imJAlIaUUpRoFU3oA2gWR0CZoy4smOU/dX2UKGgGaAloD0MI+RG/Yg2haECUhpRSlGgVTegDaBZHQJmkNgZ0jkd1fZQoaAZoCWgPQwhEpKZdzP5kQJSGlFKUaBVN6ANoFkdAmarkupS75HV9lChoBmgJaA9DCGSSkbMwi2BAlIaUUpRoFU3oA2gWR0CZqw1pTMq0dX2UKGgGaAloD0MI3LqbpzqEYkCUhpRSlGgVTegDaBZHQJms9V0cOsl1fZQoaAZoCWgPQwi7Y7FNapRwQJSGlFKUaBVNvgJoFkdAma5V2FFlTXV9lChoBmgJaA9DCE6YMJoVuWFAlIaUUpRoFU3oA2gWR0CZsDnXNC7cdX2UKGgGaAloD0MI2A3bFqVhcECUhpRSlGgVTbYDaBZHQJmy76InBtV1fZQoaAZoCWgPQwhn1lJA2tduQJSGlFKUaBVNCANoFkdAmdCZW3jMmnV9lChoBmgJaA9DCD9ya9JtXW9AlIaUUpRoFU1jAmgWR0CZ029Hc1wYdX2UKGgGaAloD0MIaTaPw2B+P0CUhpRSlGgVS/hoFkdAmdQShFmWdHV9lChoBmgJaA9DCK2kFd/Qr2NAlIaUUpRoFU3oA2gWR0CZ1KCojv/jdX2UKGgGaAloD0MIcHztmSWZRUCUhpRSlGgVS/5oFkdAmdYtQ0oBrHV9lChoBmgJaA9DCA9eu7ThTmRAlIaUUpRoFU3oA2gWR0CZ2tVUdaMadX2UKGgGaAloD0MI78hYbf7fbUCUhpRSlGgVTeYBaBZHQJnc4o5PuXx1fZQoaAZoCWgPQwgTgH9KFRpuQJSGlFKUaBVNPQNoFkdAmd8wNoakynV9lChoBmgJaA9DCPPkmgIZW2xAlIaUUpRoFU24AmgWR0CZ3z7g88s+dX2UKGgGaAloD0MIWAG+27ynSUCUhpRSlGgVS9loFkdAmeDWcWj46HV9lChoBmgJaA9DCLa93ZKcJ3JAlIaUUpRoFU3bAmgWR0CZ4dMotthvdX2UKGgGaAloD0MIKULqdva0b0CUhpRSlGgVTdYBaBZHQJnjGsQumJp1fZQoaAZoCWgPQwgNF7mnq2NGQJSGlFKUaBVLxGgWR0CZ4/gElme2dX2UKGgGaAloD0MI/yPToROycUCUhpRSlGgVTcEDaBZHQJnl6CFsYVJ1fZQoaAZoCWgPQwiXVG03QRlvQJSGlFKUaBVN0QFoFkdAmegQh4dIXnV9lChoBmgJaA9DCET9LmzNejJAlIaUUpRoFUvYaBZHQJno3QF9roJ1fZQoaAZoCWgPQwjohqbs9DZcQJSGlFKUaBVN6ANoFkdAmekdpqREGHV9lChoBmgJaA9DCPpFCfqLr2JAlIaUUpRoFU3oA2gWR0CZ7KUaAFxGdX2UKGgGaAloD0MIIa0x6MQocECUhpRSlGgVTTQCaBZHQJnt4WCVbA11fZQoaAZoCWgPQwidKt8z0uxxQJSGlFKUaBVNYgNoFkdAme+PMB6rvXV9lChoBmgJaA9DCPxwkBDl0XJAlIaUUpRoFU1oAWgWR0CZ8MDlYEGJdX2UKGgGaAloD0MIfjuJCP9bX0CUhpRSlGgVTegDaBZHQJnz1oL5RCR1fZQoaAZoCWgPQwgj2/l+ajtwQJSGlFKUaBVNkAFoFkdAmfXm912aD3V9lChoBmgJaA9DCMiVehaESW1AlIaUUpRoFU0MAmgWR0CZ9rLlV94NdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
hf-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:40e7cea898e01ec918048f0c6a2cc9724c519160a96c547dbd10e7c4957f0f8a
3
+ size 147412
hf-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
hf-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8f62d4f160>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8f62d4f1f0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8f62d4f280>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8f62d4f310>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f8f62d4f3a0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f8f62d4f430>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f8f62d4f4c0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8f62d4f550>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f8f62d4f5e0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8f62d4f670>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8f62d4f700>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8f62d4f790>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f8f62d4b300>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1676045583190599236,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJB8Vb4BUYC8igxiug24g7hhA+s9ndVTOQAAgD8AAIA/zWxpuoWHkTyV1x4+GXcsvvsdGD4v/5a/AAAAAAAAgD8z49c79kACul54LLpVLQ22U4kzO0rtSDkAAIA/AACAP/Mxy71Ix5u6zr5suZ6AeLThyn46NGWIOAAAgD8AAIA/zVeqvSm8bLoi9yA41nVNthQeMLvm0kK1AACAPwAAgD/gGy2+XJ8nuosBrTwqGsU7GmvMvqI7Nz0AAIA/AACAPy1mTL60mI+8Rvluu3pzrLnzV/c9LsCJOgAAgD8AAIA/TdgIvWDSzD6upUO95flyvhs34TsCYBq9AAAAAAAAAABzfE2+e5rhuju1WzvFxMw3PeBDPFjggboAAIA/AACAPzNJP7x7SJe6DOtKM/Tlla9BtfY6miu/swAAgD8AAIA/ZiavO/b8JLpgJLg7p7wLOLChWLrV8N22AACAPwAAgD8A8888H7XzucKbgbqTB2S1/+fmuoqjmzkAAIA/AACAPwBKzLyuhZG69XVWuuC5TbUXaXE5wqZ4OQAAgD8AAIA/Zsa9ulwLc7ry7mc24pBfMXm8zDpvWom1AACAPwAAgD+afbc7rvP1uuVmiLzLSW08R+24u1LCTj0AAIA/AACAP00G2r1cQ3e6A4eJuqIemrXRlNe5HbadOQAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVeBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI7pbkgN2NYUCUhpRSlIwBbJRN6AOMAXSUR0CYWcQtSQ5ndX2UKGgGaAloD0MIjlw3pbxeYkCUhpRSlGgVTegDaBZHQJhd9RO1v2p1fZQoaAZoCWgPQwjLL4MxIulmQJSGlFKUaBVN6ANoFkdAmF/K8tf5UXV9lChoBmgJaA9DCMKlY84zjmJAlIaUUpRoFU3oA2gWR0CYYoP4mCyydX2UKGgGaAloD0MIe7yQDo+yYUCUhpRSlGgVTegDaBZHQJhkRXFLnLd1fZQoaAZoCWgPQwgYeVkTC6JCQJSGlFKUaBVL8GgWR0CYfn99tuUEdX2UKGgGaAloD0MItFn1udoKPECUhpRSlGgVS/hoFkdAmIirm2b5M3V9lChoBmgJaA9DCIVgVb18PmFAlIaUUpRoFU3oA2gWR0CYiwjSG8EndX2UKGgGaAloD0MI4297gsSBYECUhpRSlGgVTegDaBZHQJiWtQ79ycV1fZQoaAZoCWgPQwimDYelgWthQJSGlFKUaBVN6ANoFkdAmJ3/CQ9zO3V9lChoBmgJaA9DCMOcoE0Oyl1AlIaUUpRoFU3oA2gWR0CYo82NNrTIdX2UKGgGaAloD0MIprVpbC88ZECUhpRSlGgVTegDaBZHQJilBh3JPqN1fZQoaAZoCWgPQwgAx549l9VcQJSGlFKUaBVN6ANoFkdAmKWk+C9RJnV9lChoBmgJaA9DCIGyKVd4GWVAlIaUUpRoFU3oA2gWR0CYpzh11W8zdX2UKGgGaAloD0MIhPHTuDcpZUCUhpRSlGgVTegDaBZHQJioCp1ie/Z1fZQoaAZoCWgPQwiyKsJNxjdmQJSGlFKUaBVN6ANoFkdAmKh4I4VARnV9lChoBmgJaA9DCN9Szhd7KGJAlIaUUpRoFU3oA2gWR0CYqhXiR4hVdX2UKGgGaAloD0MIwsJJmj/DXUCUhpRSlGgVTegDaBZHQJitznuAqd91fZQoaAZoCWgPQwgw8rImFn1kQJSGlFKUaBVN6ANoFkdAmLR3bypaR3V9lChoBmgJaA9DCJ4I4jycgCdAlIaUUpRoFU0bAWgWR0CYteYLLIPtdX2UKGgGaAloD0MIRs8tdCV9YUCUhpRSlGgVTegDaBZHQJi2TXvphWp1fZQoaAZoCWgPQwjM8QpET9dbQJSGlFKUaBVN6ANoFkdAmLmVJL/S6XV9lChoBmgJaA9DCIXpew3BIWFAlIaUUpRoFU3oA2gWR0CYzz9fkWAPdX2UKGgGaAloD0MI9goL7gcbVECUhpRSlGgVTegDaBZHQJjcDRiPQv91fZQoaAZoCWgPQwgTChFwCMlaQJSGlFKUaBVN6ANoFkdAmN/FGCqZMXV9lChoBmgJaA9DCOhNRSqMamBAlIaUUpRoFU3oA2gWR0CY7614xDb8dX2UKGgGaAloD0MILQlQU8t8YUCUhpRSlGgVTegDaBZHQJj2VPKuB+Z1fZQoaAZoCWgPQwjnVDIAVJFlQJSGlFKUaBVN6ANoFkdAmPp/8qFyrHV9lChoBmgJaA9DCLQiaqJPZWZAlIaUUpRoFU3oA2gWR0CY+1mknCwbdX2UKGgGaAloD0MI/yJozKQDZkCUhpRSlGgVTegDaBZHQJj87tBv73x1fZQoaAZoCWgPQwg6V5QSgm9hQJSGlFKUaBVN6ANoFkdAmP2HaFmFrXV9lChoBmgJaA9DCNC4cCAkCWJAlIaUUpRoFU3oA2gWR0CY/dfNRm9QdX2UKGgGaAloD0MI0o2wqAjSYECUhpRSlGgVTegDaBZHQJj/CLHdXT51fZQoaAZoCWgPQwj6CtKMxdthQJSGlFKUaBVN6ANoFkdAmQG/eLvTgHV9lChoBmgJaA9DCE+vlGUIfm5AlIaUUpRoFU0BA2gWR0CZBCgLJCBxdX2UKGgGaAloD0MIPxpOmZtpXUCUhpRSlGgVTegDaBZHQJkIlZvDP4V1fZQoaAZoCWgPQwil2NE4VKdgQJSGlFKUaBVN6ANoFkdAmQohEF4cFXV9lChoBmgJaA9DCG/2B8rtGGJAlIaUUpRoFU3oA2gWR0CZCoalUIcBdX2UKGgGaAloD0MIZTcz+lEaZUCUhpRSlGgVTegDaBZHQJkNnfR/mT11fZQoaAZoCWgPQwiPp+UHLkhgQJSGlFKUaBVN6ANoFkdAmTN5v5xionV9lChoBmgJaA9DCKN2vwrwF2VAlIaUUpRoFU3oA2gWR0CZNclZHNHIdX2UKGgGaAloD0MIdHy0OGM0cUCUhpRSlGgVTfACaBZHQJk9Gw1R+Bp1fZQoaAZoCWgPQwjDg2bXPdFjQJSGlFKUaBVN6ANoFkdAmUDsGLUCrHV9lChoBmgJaA9DCO4m+KbptGVAlIaUUpRoFU3oA2gWR0CZRov60pmVdX2UKGgGaAloD0MIOdbFbTSsYUCUhpRSlGgVTegDaBZHQJlKIYCQtBh1fZQoaAZoCWgPQwh9lXzs7rhwQJSGlFKUaBVNzgNoFkdAmUwZgCwKSnV9lChoBmgJaA9DCDlE3JxKtmFAlIaUUpRoFU3oA2gWR0CZTNwTM7lrdX2UKGgGaAloD0MIGcbdIFrTZECUhpRSlGgVTegDaBZHQJlNsqYqoZR1fZQoaAZoCWgPQwiVDABVXLRmQJSGlFKUaBVN6ANoFkdAmVAKCUX533V9lChoBmgJaA9DCL0ZNV8ln+A/lIaUUpRoFU0ZAWgWR0CZUl2OAAhjdX2UKGgGaAloD0MIKlPMQdBzS0CUhpRSlGgVS7VoFkdAmVJwjIJZ4nV9lChoBmgJaA9DCOQuwhTlH2NAlIaUUpRoFU3oA2gWR0CZU+ebNKRMdX2UKGgGaAloD0MIIO1/gLUKaECUhpRSlGgVTegDaBZHQJlXYtL+PzZ1fZQoaAZoCWgPQwj8jAsHQgpKQJSGlFKUaBVL52gWR0CZXST4tYjjdX2UKGgGaAloD0MIVtXL77SAYUCUhpRSlGgVTegDaBZHQJldXf8/D+B1fZQoaAZoCWgPQwgBGTp2UFtaQJSGlFKUaBVN6ANoFkdAmV8euieum3V9lChoBmgJaA9DCIXMlUE1nWRAlIaUUpRoFU3oA2gWR0CZX3inYQJ5dX2UKGgGaAloD0MItykeF9XRYECUhpRSlGgVTegDaBZHQJliMV6/qPh1fZQoaAZoCWgPQwg/i6VI/hdxQJSGlFKUaBVNigFoFkdAmXqdgKF7D3V9lChoBmgJaA9DCDrpfePrGGVAlIaUUpRoFU3oA2gWR0CZgZ5sj3VTdX2UKGgGaAloD0MIKZMa2oDvZkCUhpRSlGgVTegDaBZHQJmD2XyAhB91fZQoaAZoCWgPQwiLNPEO8H9uQJSGlFKUaBVNFgJoFkdAmYkI6GQCCHV9lChoBmgJaA9DCO91Ul+WXVNAlIaUUpRoFU3oA2gWR0CZjItDUmUodX2UKGgGaAloD0MIgdB6+HIgckCUhpRSlGgVTZYCaBZHQJmbfixVyWB1fZQoaAZoCWgPQwhRoiWP549xQJSGlFKUaBVNoANoFkdAmZxEbPyCnXV9lChoBmgJaA9DCFw4EJKFS2FAlIaUUpRoFU3oA2gWR0CZnVjqv/zbdX2UKGgGaAloD0MI0Jm0qTogZECUhpRSlGgVTegDaBZHQJme8D6nBLx1fZQoaAZoCWgPQwhcH9YbNb1kQJSGlFKUaBVN6ANoFkdAmaMgJw84gnV9lChoBmgJaA9DCC8VG/M6imJAlIaUUpRoFU3oA2gWR0CZoy4smOU/dX2UKGgGaAloD0MI+RG/Yg2haECUhpRSlGgVTegDaBZHQJmkNgZ0jkd1fZQoaAZoCWgPQwhEpKZdzP5kQJSGlFKUaBVN6ANoFkdAmarkupS75HV9lChoBmgJaA9DCGSSkbMwi2BAlIaUUpRoFU3oA2gWR0CZqw1pTMq0dX2UKGgGaAloD0MI3LqbpzqEYkCUhpRSlGgVTegDaBZHQJms9V0cOsl1fZQoaAZoCWgPQwi7Y7FNapRwQJSGlFKUaBVNvgJoFkdAma5V2FFlTXV9lChoBmgJaA9DCE6YMJoVuWFAlIaUUpRoFU3oA2gWR0CZsDnXNC7cdX2UKGgGaAloD0MI2A3bFqVhcECUhpRSlGgVTbYDaBZHQJmy76InBtV1fZQoaAZoCWgPQwhn1lJA2tduQJSGlFKUaBVNCANoFkdAmdCZW3jMmnV9lChoBmgJaA9DCD9ya9JtXW9AlIaUUpRoFU1jAmgWR0CZ029Hc1wYdX2UKGgGaAloD0MIaTaPw2B+P0CUhpRSlGgVS/hoFkdAmdQShFmWdHV9lChoBmgJaA9DCK2kFd/Qr2NAlIaUUpRoFU3oA2gWR0CZ1KCojv/jdX2UKGgGaAloD0MIcHztmSWZRUCUhpRSlGgVS/5oFkdAmdYtQ0oBrHV9lChoBmgJaA9DCA9eu7ThTmRAlIaUUpRoFU3oA2gWR0CZ2tVUdaMadX2UKGgGaAloD0MI78hYbf7fbUCUhpRSlGgVTeYBaBZHQJnc4o5PuXx1fZQoaAZoCWgPQwgTgH9KFRpuQJSGlFKUaBVNPQNoFkdAmd8wNoakynV9lChoBmgJaA9DCPPkmgIZW2xAlIaUUpRoFU24AmgWR0CZ3z7g88s+dX2UKGgGaAloD0MIWAG+27ynSUCUhpRSlGgVS9loFkdAmeDWcWj46HV9lChoBmgJaA9DCLa93ZKcJ3JAlIaUUpRoFU3bAmgWR0CZ4dMotthvdX2UKGgGaAloD0MIKULqdva0b0CUhpRSlGgVTdYBaBZHQJnjGsQumJp1fZQoaAZoCWgPQwgNF7mnq2NGQJSGlFKUaBVLxGgWR0CZ4/gElme2dX2UKGgGaAloD0MI/yPToROycUCUhpRSlGgVTcEDaBZHQJnl6CFsYVJ1fZQoaAZoCWgPQwiXVG03QRlvQJSGlFKUaBVN0QFoFkdAmegQh4dIXnV9lChoBmgJaA9DCET9LmzNejJAlIaUUpRoFUvYaBZHQJno3QF9roJ1fZQoaAZoCWgPQwjohqbs9DZcQJSGlFKUaBVN6ANoFkdAmekdpqREGHV9lChoBmgJaA9DCPpFCfqLr2JAlIaUUpRoFU3oA2gWR0CZ7KUaAFxGdX2UKGgGaAloD0MIIa0x6MQocECUhpRSlGgVTTQCaBZHQJnt4WCVbA11fZQoaAZoCWgPQwidKt8z0uxxQJSGlFKUaBVNYgNoFkdAme+PMB6rvXV9lChoBmgJaA9DCPxwkBDl0XJAlIaUUpRoFU1oAWgWR0CZ8MDlYEGJdX2UKGgGaAloD0MIfjuJCP9bX0CUhpRSlGgVTegDaBZHQJnz1oL5RCR1fZQoaAZoCWgPQwgj2/l+ajtwQJSGlFKUaBVNkAFoFkdAmfXm912aD3V9lChoBmgJaA9DCMiVehaESW1AlIaUUpRoFU0MAmgWR0CZ9rLlV94NdWUu"
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 248,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
hf-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5aa8c100264df15b6a411ed2ae7893f82aec44b654093d4c86665e27b3d60e35
3
+ size 87929
hf-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3dd056c87fd136ef0b539f910f10c4e451105079d06a53c84eba7039993d0618
3
+ size 43393
hf-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
hf-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (202 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 254.49713999264173, "std_reward": 13.33582363088227, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-10T16:48:00.052277"}