Join the conversation

Join the community of Machine Learners and AI enthusiasts.

Sign Up
KseniaseΒ 
posted an update about 18 hours ago
Post
1621
11 new types of RAG

RAG is evolving fast, keeping pace with cutting-edge AI trends. Today it becomes more agentic and smarter at navigating complex structures like hypergraphs.

Here are 11 latest RAG types:

1. InstructRAG -> InstructRAG: Leveraging Retrieval-Augmented Generation on Instruction Graphs for LLM-Based Task Planning (2504.13032)
Combines RAG with a multi-agent framework, using a graph-based structure, an RL agent to expand task coverage, and a meta-learning agent for better generalization

2. CoRAG (Collaborative RAG) -> CoRAG: Collaborative Retrieval-Augmented Generation (2504.01883)
A collaborative framework that extends RAG to settings where clients train a shared model using a joint passage store

3. ReaRAG -> ReaRAG: Knowledge-guided Reasoning Enhances Factuality of Large Reasoning Models with Iterative Retrieval Augmented Generation (2503.21729)
It uses a Thought-Action-Observation loop to decide at each step whether to retrieve information or finalize an answer, reducing unnecessary reasoning and errors

4. MCTS-RAG -> MCTS-RAG: Enhancing Retrieval-Augmented Generation with Monte Carlo Tree Search (2503.20757)
Combines RAG with Monte Carlo Tree Search (MCTS) to help small LMs handle complex, knowledge-heavy tasks

5. Typed-RAG - > Typed-RAG: Type-aware Multi-Aspect Decomposition for Non-Factoid Question Answering (2503.15879)
Improves answers on open-ended questions by identifying question types (a debate, personal experience, or comparison) and breaking it down into simpler parts

6. MADAM-RAG -> Retrieval-Augmented Generation with Conflicting Evidence (2504.13079)
A multi-agent system where models debate answers over multiple rounds and an aggregator filters noise and misinformation

7. HM-RAG -> HM-RAG: Hierarchical Multi-Agent Multimodal Retrieval Augmented Generation (2504.12330)
A hierarchical multi-agent RAG framework that uses 3 agents: one to split queries, one to retrieve across multiple data types (text, graphs and web), and one to merge and refine answers

8. CDF-RAG -> CDF-RAG: Causal Dynamic Feedback for Adaptive Retrieval-Augmented Generation (2504.12560)
Works with causal graphs and enables multi-hop causal reasoning, refining queries. It validates responses against causal pathways

To explore what is Causal AI, read our article: https://www.turingpost.com/p/causalai

Subscribe to the Turing Post: https://www.turingpost.com/subscribe

Read further πŸ‘‡

These are graph-centric types of RAG:

  1. NodeRAG -> https://huggingface.co/papers/2504.11544
    Uses well-designed heterogeneous graph structures and focuses on graph design to ensure smooth integration of graph algorithms. It outperforms GraphRAG and LightRAG on multi-hop and open-ended QA benchmarks

  2. HeteRAG -> https://huggingface.co/papers/2504.10529
    This heterogeneous RAG framework decouples knowledge chunk representations. It uses multi-granular views for retrieval and concise chunks for generation, along with adaptive prompt tuning

  3. Hyper-RAG -> https://huggingface.co/papers/2504.08758
    A hypergraph-based RAG method. By capturing both pairwise and complex relationships in domain-specific knowledge, it improves factual accuracy and reduces hallucinations, especially in high-stakes fields like medicine, surpassing Graph RAG and Light RAG. Its lightweight version also doubles retrieval speed

In this post