Join the conversation

Join the community of Machine Learners and AI enthusiasts.

Sign Up
MikeDoes 
posted an update 14 days ago
Post
1125
In data privacy, 92% accuracy is not an A-grade. Privacy AI needs to be better.

That's the stark takeaway from a recent benchmark by Diego Mouriño

(Making Science), who put today's top PII detection methods to the test on call center transcripts using the Ai4Privacy dataset.

They pitted cutting-edge LLMs (like GPT-4 & Gemini) against traditional systems (like Cloud DLPs). The results show that our trust in these tools might be misplaced.



📊 The Hard Numbers:



Even top-tier LLMs peaked at a reported 92% accuracy, leaving a potential dangerous 8% gap where your customer's data can leak. They particularly struggled with basics like 'last names' and 'street addresses'.



The old guard? Traditional rule-based systems reportedly achieved a shocking 50% accuracy. A coin toss with your customers' privacy.


This tells us that for privacy tasks, off-the-shelf accuracy is a vanity metric. The real metric is the cost of a single failure—one leaked name, one exposed address.



While no tool is perfect, some are better than others. Diego’s full analysis breaks down which models offer the best cost-to-accuracy balance in this flawed landscape. It's a must-read for anyone serious about building trustworthy AI.

#DataPrivacy #AI #LLM #RiskManagement #MetricsThatMatter #InfoSec

Find the full post here:
https://www.makingscience.com/blog/protecting-customer-privacy-how-to-remove-pii-from-call-center-transcripts/

Dataset:
ai4privacy/pii-masking-400k
In this post