Join the conversation

Join the community of Machine Learners and AI enthusiasts.

Sign Up
prithivMLmods 
posted an update 1 day ago
Post
1409
Dropping downstream tasks using newly initialized parameters and weights supports domain-specific image classification post-training, based on the SigLIP-2 models: Patch-16/224, Patch-16/256, and Patch-32/256. For more details, please refer to the respective model cards : 🤗

+ watermark detection : prithivMLmods/Watermark-Detection-SigLIP2
+ resisc45 : prithivMLmods/RESISC45-SigLIP2
+ pacs dg : prithivMLmods/PACS-DG-SigLIP2
+ 3d printed or not : prithivMLmods/3D-Printed-Or-Not-SigLIP2
+ formula or text : prithivMLmods/Formula-Text-Detection

Categorizing Un-Safe Content :
- explicit content patch16 256 : prithivMLmods/siglip2-x256-explicit-content
- explicit content patch32 256 : prithivMLmods/siglip2-x256p32-explicit-content

Collection :
> SigLIP2 Content Filters 042025 Final : https://huggingface.co/collections/prithivMLmods/siglip2-content-filters-04202-final-680fe4aa1a9d589bf2c915ff
> SigLIP2 : google/siglip2-67b5dcef38c175486e240107
> SigLIP2 Multilingual Vision-Language Encoders : https://arxiv.org/pdf/2502.14786
In this post