Trained model with classification head weights
Browse files
README.md
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: llama3.2
|
4 |
+
base_model: meta-llama/Llama-3.2-1B
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: defect-classification-llama-baseline-25-epochs-MAIL-15
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# defect-classification-llama-baseline-25-epochs-MAIL-15
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [meta-llama/Llama-3.2-1B](https://huggingface.co/meta-llama/Llama-3.2-1B) on an unknown dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.2285
|
22 |
+
- Accuracy: 0.9239
|
23 |
+
|
24 |
+
## Model description
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Intended uses & limitations
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training and evaluation data
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training procedure
|
37 |
+
|
38 |
+
### Training hyperparameters
|
39 |
+
|
40 |
+
The following hyperparameters were used during training:
|
41 |
+
- learning_rate: 2e-05
|
42 |
+
- train_batch_size: 1536
|
43 |
+
- eval_batch_size: 1536
|
44 |
+
- seed: 42
|
45 |
+
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
46 |
+
- lr_scheduler_type: linear
|
47 |
+
- num_epochs: 25
|
48 |
+
|
49 |
+
### Training results
|
50 |
+
|
51 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
52 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
53 |
+
| 1.4712 | 1.0 | 354 | 1.3872 | 0.7466 |
|
54 |
+
| 0.944 | 2.0 | 708 | 0.9087 | 0.7794 |
|
55 |
+
| 0.7409 | 3.0 | 1062 | 0.7188 | 0.8174 |
|
56 |
+
| 0.6044 | 4.0 | 1416 | 0.5781 | 0.8373 |
|
57 |
+
| 0.5294 | 5.0 | 1770 | 0.5239 | 0.8371 |
|
58 |
+
| 0.4728 | 6.0 | 2124 | 0.4699 | 0.8534 |
|
59 |
+
| 0.4288 | 7.0 | 2478 | 0.4105 | 0.8686 |
|
60 |
+
| 0.4065 | 8.0 | 2832 | 0.3832 | 0.8753 |
|
61 |
+
| 0.3705 | 9.0 | 3186 | 0.3526 | 0.8822 |
|
62 |
+
| 0.3441 | 10.0 | 3540 | 0.3338 | 0.8938 |
|
63 |
+
| 0.332 | 11.0 | 3894 | 0.3195 | 0.8949 |
|
64 |
+
| 0.3188 | 12.0 | 4248 | 0.2982 | 0.9029 |
|
65 |
+
| 0.3093 | 13.0 | 4602 | 0.2908 | 0.9041 |
|
66 |
+
| 0.2831 | 14.0 | 4956 | 0.2835 | 0.9056 |
|
67 |
+
| 0.2764 | 15.0 | 5310 | 0.2697 | 0.9114 |
|
68 |
+
| 0.2689 | 16.0 | 5664 | 0.2679 | 0.9114 |
|
69 |
+
| 0.2618 | 17.0 | 6018 | 0.2623 | 0.9159 |
|
70 |
+
| 0.2568 | 18.0 | 6372 | 0.2589 | 0.9108 |
|
71 |
+
| 0.2533 | 19.0 | 6726 | 0.2474 | 0.9156 |
|
72 |
+
| 0.2497 | 20.0 | 7080 | 0.2438 | 0.9164 |
|
73 |
+
| 0.2428 | 21.0 | 7434 | 0.2393 | 0.9203 |
|
74 |
+
| 0.2402 | 22.0 | 7788 | 0.2330 | 0.9223 |
|
75 |
+
| 0.236 | 23.0 | 8142 | 0.2323 | 0.9230 |
|
76 |
+
| 0.2359 | 24.0 | 8496 | 0.2297 | 0.9235 |
|
77 |
+
| 0.2342 | 25.0 | 8850 | 0.2285 | 0.9239 |
|
78 |
+
|
79 |
+
|
80 |
+
### Framework versions
|
81 |
+
|
82 |
+
- Transformers 4.47.0
|
83 |
+
- Pytorch 2.5.1+cu124
|
84 |
+
- Datasets 3.2.0
|
85 |
+
- Tokenizers 0.21.0
|