Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,81 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- image-to-text
|
4 |
+
- image-captioning
|
5 |
+
license: apache-2.0
|
6 |
+
widget:
|
7 |
+
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/savanna.jpg
|
8 |
+
example_title: Savanna
|
9 |
+
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/football-match.jpg
|
10 |
+
example_title: Football Match
|
11 |
+
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/airport.jpg
|
12 |
+
example_title: Airport
|
13 |
+
---
|
14 |
+
|
15 |
+
|
16 |
+
# The Illustrated Image Captioning using transformers
|
17 |
+
|
18 |
+

|
19 |
+
|
20 |
+
|
21 |
+
|
22 |
+
|
23 |
+
# Sample running code
|
24 |
+
|
25 |
+
```python
|
26 |
+
|
27 |
+
from transformers import VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer
|
28 |
+
import torch
|
29 |
+
from PIL import Image
|
30 |
+
|
31 |
+
model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
32 |
+
feature_extractor = ViTImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
33 |
+
tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
34 |
+
|
35 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
36 |
+
model.to(device)
|
37 |
+
|
38 |
+
|
39 |
+
|
40 |
+
max_length = 16
|
41 |
+
num_beams = 4
|
42 |
+
gen_kwargs = {"max_length": max_length, "num_beams": num_beams}
|
43 |
+
def predict_step(image_paths):
|
44 |
+
images = []
|
45 |
+
for image_path in image_paths:
|
46 |
+
i_image = Image.open(image_path)
|
47 |
+
if i_image.mode != "RGB":
|
48 |
+
i_image = i_image.convert(mode="RGB")
|
49 |
+
|
50 |
+
images.append(i_image)
|
51 |
+
|
52 |
+
pixel_values = feature_extractor(images=images, return_tensors="pt").pixel_values
|
53 |
+
pixel_values = pixel_values.to(device)
|
54 |
+
|
55 |
+
output_ids = model.generate(pixel_values, **gen_kwargs)
|
56 |
+
|
57 |
+
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
|
58 |
+
preds = [pred.strip() for pred in preds]
|
59 |
+
return preds
|
60 |
+
|
61 |
+
|
62 |
+
predict_step(['doctor.e16ba4e4.jpg']) # ['a woman in a hospital bed with a woman in a hospital bed']
|
63 |
+
|
64 |
+
```
|
65 |
+
|
66 |
+
# Sample running code using transformers pipeline
|
67 |
+
|
68 |
+
```python
|
69 |
+
|
70 |
+
from transformers import pipeline
|
71 |
+
|
72 |
+
image_to_text = pipeline("image-to-text", model="nlpconnect/vit-gpt2-image-captioning")
|
73 |
+
|
74 |
+
image_to_text("https://ankur3107.github.io/assets/images/image-captioning-example.png")
|
75 |
+
|
76 |
+
# [{'generated_text': 'a soccer game with a player jumping to catch the ball '}]
|
77 |
+
|
78 |
+
|
79 |
+
```
|
80 |
+
|
81 |
+
|