Update README.md
Browse files
README.md
CHANGED
|
@@ -5,8 +5,25 @@ datasets:
|
|
| 5 |
language:
|
| 6 |
- en
|
| 7 |
library_name: transformers
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
---
|
| 9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
```py
|
| 11 |
Classification Report:
|
| 12 |
precision recall f1-score support
|
|
@@ -21,3 +38,81 @@ weighted avg 0.9151 0.9149 0.9147 18618
|
|
| 21 |
|
| 22 |

|
| 23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
language:
|
| 6 |
- en
|
| 7 |
library_name: transformers
|
| 8 |
+
base_model:
|
| 9 |
+
- google/siglip2-base-patch16-224
|
| 10 |
+
pipeline_tag: image-classification
|
| 11 |
+
tags:
|
| 12 |
+
- SigLIP2
|
| 13 |
+
- AI-vs-Real
|
| 14 |
+
- art
|
| 15 |
---
|
| 16 |
|
| 17 |
+

|
| 18 |
+
|
| 19 |
+
# AIorNot-SigLIP2
|
| 20 |
+
|
| 21 |
+
> AIorNot-SigLIP2 is a vision-language encoder model fine-tuned from google/siglip2-base-patch16-224 for binary image classification. It is trained to detect whether an image is generated by AI or is a real photograph using the SiglipForImageClassification architecture.
|
| 22 |
+
|
| 23 |
+
> [!note]
|
| 24 |
+
*SigLIP 2: Multilingual Vision-Language Encoders with Improved Semantic Understanding, Localization, and Dense Features* https://arxiv.org/pdf/2502.14786
|
| 25 |
+
|
| 26 |
+
|
| 27 |
```py
|
| 28 |
Classification Report:
|
| 29 |
precision recall f1-score support
|
|
|
|
| 38 |
|
| 39 |

|
| 40 |
|
| 41 |
+
---
|
| 42 |
+
|
| 43 |
+
## Label Space: 2 Classes
|
| 44 |
+
|
| 45 |
+
The model classifies an image as either:
|
| 46 |
+
|
| 47 |
+
```
|
| 48 |
+
Class 0: Real
|
| 49 |
+
Class 1: AI
|
| 50 |
+
```
|
| 51 |
+
|
| 52 |
+
---
|
| 53 |
+
|
| 54 |
+
## Install Dependencies
|
| 55 |
+
|
| 56 |
+
```bash
|
| 57 |
+
pip install -q transformers torch pillow gradio hf_xet
|
| 58 |
+
```
|
| 59 |
+
|
| 60 |
+
---
|
| 61 |
+
|
| 62 |
+
## Inference Code
|
| 63 |
+
|
| 64 |
+
```python
|
| 65 |
+
import gradio as gr
|
| 66 |
+
from transformers import AutoImageProcessor, SiglipForImageClassification
|
| 67 |
+
from PIL import Image
|
| 68 |
+
import torch
|
| 69 |
+
|
| 70 |
+
# Load model and processor
|
| 71 |
+
model_name = "prithivMLmods/AIorNot-SigLIP2" # Replace with your model path
|
| 72 |
+
model = SiglipForImageClassification.from_pretrained(model_name)
|
| 73 |
+
processor = AutoImageProcessor.from_pretrained(model_name)
|
| 74 |
+
|
| 75 |
+
# Label mapping
|
| 76 |
+
id2label = {
|
| 77 |
+
"0": "Real",
|
| 78 |
+
"1": "AI"
|
| 79 |
+
}
|
| 80 |
+
|
| 81 |
+
def classify_image(image):
|
| 82 |
+
image = Image.fromarray(image).convert("RGB")
|
| 83 |
+
inputs = processor(images=image, return_tensors="pt")
|
| 84 |
+
|
| 85 |
+
with torch.no_grad():
|
| 86 |
+
outputs = model(**inputs)
|
| 87 |
+
logits = outputs.logits
|
| 88 |
+
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
|
| 89 |
+
|
| 90 |
+
prediction = {
|
| 91 |
+
id2label[str(i)]: round(probs[i], 3) for i in range(len(probs))
|
| 92 |
+
}
|
| 93 |
+
|
| 94 |
+
return prediction
|
| 95 |
+
|
| 96 |
+
# Gradio Interface
|
| 97 |
+
iface = gr.Interface(
|
| 98 |
+
fn=classify_image,
|
| 99 |
+
inputs=gr.Image(type="numpy"),
|
| 100 |
+
outputs=gr.Label(num_top_classes=2, label="AI or Real Detection"),
|
| 101 |
+
title="AIorNot-SigLIP2",
|
| 102 |
+
description="Upload an image to classify whether it is AI-generated or Real."
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
if __name__ == "__main__":
|
| 106 |
+
iface.launch()
|
| 107 |
+
```
|
| 108 |
+
|
| 109 |
+
---
|
| 110 |
+
|
| 111 |
+
## Intended Use
|
| 112 |
+
|
| 113 |
+
AIorNot-SigLIP2 is useful in scenarios such as:
|
| 114 |
+
|
| 115 |
+
* AI Content Detection – Identify AI-generated images for social platforms or media verification.
|
| 116 |
+
* Digital Media Forensics – Assist in distinguishing synthetic from real-world imagery.
|
| 117 |
+
* Dataset Filtering – Clean datasets by separating real photographs from AI-synthesized ones.
|
| 118 |
+
* Research & Development – Benchmark performance of image authenticity detectors.
|