Update README.md
Browse files
README.md
CHANGED
@@ -18,6 +18,10 @@ tags:
|
|
18 |
---
|
19 |

|
20 |
|
|
|
|
|
|
|
|
|
21 |
```py
|
22 |
Classification Report:
|
23 |
precision recall f1-score support
|
@@ -34,3 +38,77 @@ Middle Age 45-64 0.9059 0.8317 0.8672 3785
|
|
34 |
```
|
35 |
|
36 |

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
---
|
19 |

|
20 |
|
21 |
+
# **Age-Classification-SigLIP2**
|
22 |
+
|
23 |
+
> **Age-Classification-SigLIP2** is an image classification vision-language encoder model fine-tuned from **google/siglip2-base-patch16-224** for a single-label classification task. It is designed to predict the age group of a person from an image using the **SiglipForImageClassification** architecture.
|
24 |
+
|
25 |
```py
|
26 |
Classification Report:
|
27 |
precision recall f1-score support
|
|
|
38 |
```
|
39 |
|
40 |

|
41 |
+
|
42 |
+
|
43 |
+
|
44 |
+
The model categorizes images into five age groups:
|
45 |
+
- **Class 0:** "Child 0-12"
|
46 |
+
- **Class 1:** "Teenager 13-20"
|
47 |
+
- **Class 2:** "Adult 21-44"
|
48 |
+
- **Class 3:** "Middle Age 45-64"
|
49 |
+
- **Class 4:** "Aged 65+"
|
50 |
+
|
51 |
+
# **Run with Transformers🤗**
|
52 |
+
|
53 |
+
```python
|
54 |
+
!pip install -q transformers torch pillow gradio
|
55 |
+
```
|
56 |
+
|
57 |
+
```python
|
58 |
+
import gradio as gr
|
59 |
+
from transformers import AutoImageProcessor
|
60 |
+
from transformers import SiglipForImageClassification
|
61 |
+
from transformers.image_utils import load_image
|
62 |
+
from PIL import Image
|
63 |
+
import torch
|
64 |
+
|
65 |
+
# Load model and processor
|
66 |
+
model_name = "prithivMLmods/Age-Classification-SigLIP2"
|
67 |
+
model = SiglipForImageClassification.from_pretrained(model_name)
|
68 |
+
processor = AutoImageProcessor.from_pretrained(model_name)
|
69 |
+
|
70 |
+
def age_classification(image):
|
71 |
+
"""Predicts the age group of a person from an image."""
|
72 |
+
image = Image.fromarray(image).convert("RGB")
|
73 |
+
inputs = processor(images=image, return_tensors="pt")
|
74 |
+
|
75 |
+
with torch.no_grad():
|
76 |
+
outputs = model(**inputs)
|
77 |
+
logits = outputs.logits
|
78 |
+
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
|
79 |
+
|
80 |
+
labels = {
|
81 |
+
"0": "Child 0-12",
|
82 |
+
"1": "Teenager 13-20",
|
83 |
+
"2": "Adult 21-44",
|
84 |
+
"3": "Middle Age 45-64",
|
85 |
+
"4": "Aged 65+"
|
86 |
+
}
|
87 |
+
predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))}
|
88 |
+
|
89 |
+
return predictions
|
90 |
+
|
91 |
+
# Create Gradio interface
|
92 |
+
iface = gr.Interface(
|
93 |
+
fn=age_classification,
|
94 |
+
inputs=gr.Image(type="numpy"),
|
95 |
+
outputs=gr.Label(label="Prediction Scores"),
|
96 |
+
title="Age Group Classification",
|
97 |
+
description="Upload an image to predict the person's age group."
|
98 |
+
)
|
99 |
+
|
100 |
+
# Launch the app
|
101 |
+
if __name__ == "__main__":
|
102 |
+
iface.launch()
|
103 |
+
```
|
104 |
+
|
105 |
+
|
106 |
+
# **Intended Use:**
|
107 |
+
|
108 |
+
The **Age-Classification-SigLIP2** model is designed to classify images into five age categories. Potential use cases include:
|
109 |
+
|
110 |
+
- **Demographic Analysis:** Helping businesses and researchers analyze age distribution.
|
111 |
+
- **Health & Fitness Applications:** Assisting in age-based health recommendations.
|
112 |
+
- **Security & Access Control:** Implementing age verification in digital systems.
|
113 |
+
- **Retail & Marketing:** Enhancing personalized customer experiences.
|
114 |
+
- **Forensics & Surveillance:** Aiding in age estimation for security purposes.
|