--- license: apache-2.0 datasets: - prithivMLmods/Age-Classification-Set language: - en base_model: - google/siglip2-base-patch16-224 pipeline_tag: image-classification library_name: transformers tags: - Age - Detection - Siglip2 - ViT - AutoImageProcessor - 0-60+ --- ![AAAAAAAA.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/hWrRztXlZ0j87BEajVNtA.png) # **Age-Classification-SigLIP2** > **Age-Classification-SigLIP2** is an image classification vision-language encoder model fine-tuned from **google/siglip2-base-patch16-224** for a single-label classification task. It is designed to predict the age group of a person from an image using the **SiglipForImageClassification** architecture. ```py Classification Report: precision recall f1-score support Child 0-12 0.9744 0.9562 0.9652 2193 Teenager 13-20 0.8675 0.7032 0.7768 1779 Adult 21-44 0.9053 0.9769 0.9397 9999 Middle Age 45-64 0.9059 0.8317 0.8672 3785 Aged 65+ 0.9144 0.8397 0.8755 1260 accuracy 0.9109 19016 macro avg 0.9135 0.8615 0.8849 19016 weighted avg 0.9105 0.9109 0.9087 19016 ``` ![download (1).png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/rgfZs4duAb09vRvFmO3Qy.png) The model categorizes images into five age groups: - **Class 0:** "Child 0-12" - **Class 1:** "Teenager 13-20" - **Class 2:** "Adult 21-44" - **Class 3:** "Middle Age 45-64" - **Class 4:** "Aged 65+" # **Run with Transformers🤗** ```python !pip install -q transformers torch pillow gradio ``` ```python import gradio as gr from transformers import AutoImageProcessor from transformers import SiglipForImageClassification from transformers.image_utils import load_image from PIL import Image import torch # Load model and processor model_name = "prithivMLmods/Age-Classification-SigLIP2" model = SiglipForImageClassification.from_pretrained(model_name) processor = AutoImageProcessor.from_pretrained(model_name) def age_classification(image): """Predicts the age group of a person from an image.""" image = Image.fromarray(image).convert("RGB") inputs = processor(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist() labels = { "0": "Child 0-12", "1": "Teenager 13-20", "2": "Adult 21-44", "3": "Middle Age 45-64", "4": "Aged 65+" } predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))} return predictions # Create Gradio interface iface = gr.Interface( fn=age_classification, inputs=gr.Image(type="numpy"), outputs=gr.Label(label="Prediction Scores"), title="Age Group Classification", description="Upload an image to predict the person's age group." ) # Launch the app if __name__ == "__main__": iface.launch() ``` # **Sample Inference:** ![Screenshot 2025-03-28 at 12-25-46 Age Group Classification.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/ARlNhc-ZxqfBntu-SkIVH.png) ![Screenshot 2025-03-28 at 12-36-49 Age Group Classification.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/tvZ2VMoaQqNKdIx39DrTe.png) # **Intended Use:** The **Age-Classification-SigLIP2** model is designed to classify images into five age categories. Potential use cases include: - **Demographic Analysis:** Helping businesses and researchers analyze age distribution. - **Health & Fitness Applications:** Assisting in age-based health recommendations. - **Security & Access Control:** Implementing age verification in digital systems. - **Retail & Marketing:** Enhancing personalized customer experiences. - **Forensics & Surveillance:** Aiding in age estimation for security purposes.