prithivMLmods commited on
Commit
9fc4c47
·
verified ·
1 Parent(s): 211127a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +144 -2
README.md CHANGED
@@ -1,6 +1,148 @@
1
  ---
 
 
2
  base_model:
3
  - Qwen/Qwen2.5-VL-7B-Instruct
4
- library_name: transformers
5
  pipeline_tag: image-text-to-text
6
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language:
3
+ - en
4
  base_model:
5
  - Qwen/Qwen2.5-VL-7B-Instruct
 
6
  pipeline_tag: image-text-to-text
7
+ library_name: transformers
8
+ tags:
9
+ - Document
10
+ - KIE
11
+ - OCR
12
+ - VL
13
+ - Camel
14
+ - Openpdf
15
+ - text-generation-inference
16
+ - Extraction
17
+ - Linking
18
+ - Markdown
19
+ - .Md
20
+ datasets:
21
+ - prithivMLmods/OpenDoc-Pdf-Preview
22
+ - prithivMLmods/Opendoc1-Analysis-Recognition
23
+ - allenai/olmOCR-mix-0225
24
+ - prithivMLmods/Openpdf-Analysis-Recognition
25
+ license: apache-2.0
26
+ ---
27
+
28
+ # **Camel-Doc-OCR-080125**
29
+
30
+ > The **Camel-Doc-OCR-080125** model is a fine-tuned version of **Qwen2.5-VL-7B-Instruct**, optimized for **Document Retrieval**, **Content Extraction**, and **Analysis Recognition**. Built on top of the Qwen2.5-VL architecture, this model enhances document comprehension capabilities with focused training on the Opendoc2-Analysis-Recognition dataset for superior document analysis and information extraction tasks.
31
+
32
+ ## Key Enhancements
33
+
34
+ * **Context-Aware Multimodal Extraction and Linking for Documents**: Advanced capability for understanding document context and establishing connections between multimodal elements within documents.
35
+
36
+ * **Enhanced Document Retrieval**: Designed to efficiently locate and extract relevant information from complex document structures and layouts.
37
+
38
+ * **Superior Content Extraction**: Optimized for precise extraction of structured and unstructured content from diverse document formats.
39
+
40
+ * **Analysis Recognition**: Specialized in recognizing and interpreting analytical content, charts, tables, and visual data representations.
41
+
42
+ * **State-of-the-Art Performance Across Resolutions**: Achieves competitive results on OCR and visual QA benchmarks such as DocVQA, MathVista, RealWorldQA, and MTVQA.
43
+
44
+ * **Video Understanding up to 20+ minutes**: Supports detailed comprehension of long-duration videos for content summarization, question answering, and multi-modal reasoning.
45
+
46
+ * **Visually-Grounded Device Interaction**: Enables mobile or robotic device operation via visual inputs and text-based instructions using contextual understanding and decision-making logic.
47
+
48
+ ## Quick Start with Transformers
49
+
50
+ ```python
51
+ from transformers import Qwen2_5_VLForConditionalGeneration, AutoTokenizer, AutoProcessor
52
+ from qwen_vl_utils import process_vision_info
53
+
54
+ model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
55
+ "prithivMLmods/Camel-Doc-OCR-080125", torch_dtype="auto", device_map="auto"
56
+ )
57
+
58
+ processor = AutoProcessor.from_pretrained("prithivMLmods/Camel-Doc-OCR-080125")
59
+
60
+ messages = [
61
+ {
62
+ "role": "user",
63
+ "content": [
64
+ {
65
+ "type": "image",
66
+ "image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg",
67
+ },
68
+ {"type": "text", "text": "Describe this image."},
69
+ ],
70
+ }
71
+ ]
72
+
73
+ text = processor.apply_chat_template(
74
+ messages, tokenize=False, add_generation_prompt=True
75
+ )
76
+ image_inputs, video_inputs = process_vision_info(messages)
77
+ inputs = processor(
78
+ text=[text],
79
+ images=image_inputs,
80
+ videos=video_inputs,
81
+ padding=True,
82
+ return_tensors="pt",
83
+ )
84
+ inputs = inputs.to("cuda")
85
+
86
+ generated_ids = model.generate(**inputs, max_new_tokens=128)
87
+ generated_ids_trimmed = [
88
+ out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
89
+ ]
90
+ output_text = processor.batch_decode(
91
+ generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
92
+ )
93
+ print(output_text)
94
+ ```
95
+
96
+ ## Intended Use
97
+
98
+ This model is intended for:
99
+
100
+ * Context-aware multimodal extraction and linking for complex document structures.
101
+ * High-fidelity document retrieval and content extraction from various document formats.
102
+ * Analysis recognition of charts, graphs, tables, and visual data representations.
103
+ * Document-based question answering for educational and enterprise applications.
104
+ * Extraction and LaTeX formatting of mathematical expressions from printed or handwritten content.
105
+ * Retrieval and summarization from long documents, slides, and multi-modal inputs.
106
+ * Multilingual document analysis and structured content extraction for global use cases.
107
+ * Robotic or mobile automation with vision-guided contextual interaction.
108
+
109
+ ## Limitations
110
+
111
+ * May show degraded performance on extremely low-quality or occluded images.
112
+ * Not optimized for real-time applications on low-resource or edge devices due to computational demands.
113
+ * Variable accuracy on uncommon or low-resource languages or scripts.
114
+ * Long video processing may require substantial memory and is not optimized for streaming applications.
115
+ * Visual token settings affect performance; suboptimal configurations can impact results.
116
+ * In rare cases, outputs may contain hallucinated or contextually misaligned information.
117
+
118
+ ---
119
+
120
+ ## Training Details
121
+
122
+ | Parameter | Value |
123
+ | ---------------------- | --------------------------------------------- |
124
+ | **Dataset Size** | 230K samples (Modular Combustion of Datasets) |
125
+ | **Model Architecture** | `Qwen2_5_VLForConditionalGeneration` |
126
+ | **Total Disk Volume** | 400,000 MB |
127
+ | **Training Time** | approx. 9,360 seconds (\~2.60 hours) |
128
+ | **Warmup Steps** | 750 |
129
+ | **Precision** | bfloat16 |
130
+
131
+ ---
132
+
133
+ ## References
134
+
135
+ * **DocVLM: Make Your VLM an Efficient Reader**
136
+ [https://arxiv.org/pdf/2412.08746v1](https://arxiv.org/pdf/2412.08746v1)
137
+
138
+ * **YaRN: Efficient Context Window Extension of Large Language Models**
139
+ [https://arxiv.org/pdf/2309.00071](https://arxiv.org/pdf/2309.00071)
140
+
141
+ * **Qwen2-VL: Enhancing Vision-Language Model's Perception of the World at Any Resolution**
142
+ [https://arxiv.org/pdf/2409.12191](https://arxiv.org/pdf/2409.12191)
143
+
144
+ * **Qwen-VL: A Versatile Vision-Language Model for Understanding, Localization, Text Reading, and Beyond**
145
+ [https://arxiv.org/pdf/2308.12966](https://arxiv.org/pdf/2308.12966)
146
+
147
+ * **A Comprehensive and Challenging OCR Benchmark for Evaluating Large Multimodal Models in Literacy**
148
+ [https://arxiv.org/pdf/2412.02210](https://arxiv.org/pdf/2412.02210)