Update README.md
Browse files
README.md
CHANGED
@@ -13,4 +13,86 @@ datasets:
|
|
13 |
- prithivMLmods/Caption3o-Opt-v2
|
14 |
- >-
|
15 |
Multimodal-Fatima/Caltech101_not_background_test_facebook_opt_2.7b_Attributes_Caption_ns_5647
|
16 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
- prithivMLmods/Caption3o-Opt-v2
|
14 |
- >-
|
15 |
Multimodal-Fatima/Caltech101_not_background_test_facebook_opt_2.7b_Attributes_Caption_ns_5647
|
16 |
+
---
|
17 |
+
|
18 |
+

|
19 |
+
|
20 |
+
# **DeepAttriCap-VLA-3B**
|
21 |
+
|
22 |
+
> The **DeepAttriCap-VLA-3B** model is a fine-tuned version of **Qwen2.5-VL-3B-Instruct**, tailored for **Vision-Language Attribution** and **Image Captioning**. This variant is designed to generate precise, attribute-rich descriptions that define the visual properties of objects and scenes in detail, ensuring both object-level identification and contextual captioning.
|
23 |
+
|
24 |
+
# Key Highlights
|
25 |
+
|
26 |
+
1. **Vision-Language Attribution**: Produces structured captions with explicit object attributes, properties, and contextual details.
|
27 |
+
2. **High-Precision Descriptions**: Captures fine-grained visual properties (shape, color, texture, material, relations).
|
28 |
+
3. **Balanced Object-Centric and Scene-Level Captions**: Generates both holistic captions and per-object attributions.
|
29 |
+
4. **Adaptable Across Image Types**: Works well on natural, artistic, abstract, and technical imagery.
|
30 |
+
5. **Built on Qwen2.5-VL Architecture**: Leverages the strengths of the 3B multimodal instruction-tuned variant for fine-grained reasoning.
|
31 |
+
6. **Multilingual Capability**: English is default, with multilingual captioning enabled through prompt engineering.
|
32 |
+
|
33 |
+
# Training Details
|
34 |
+
|
35 |
+
This model was fine-tuned on a mixture of curated image–caption datasets with emphasis on **attribute-based captioning** and **precise object-property definition**:
|
36 |
+
|
37 |
+
* **[prithivMLmods/blip3o-caption-mini-arrow](https://huggingface.co/datasets/prithivMLmods/blip3o-caption-mini-arrow)**
|
38 |
+
* **[prithivMLmods/Caption3o-Opt-v3](https://huggingface.co/datasets/prithivMLmods/Caption3o-Opt-v3)**
|
39 |
+
* **[prithivMLmods/Caption3o-Opt-v2](https://huggingface.co/datasets/prithivMLmods/Caption3o-Opt-v2)**
|
40 |
+
* **[Multimodal-Fatima/Caltech101\_not\_background\_test\_facebook\_opt\_2.7b\_Attributes\_Caption\_ns\_5647](https://huggingface.co/datasets/Multimodal-Fatima/Caltech101_not_background_test_facebook_opt_2.7b_Attributes_Caption_ns_5647)**
|
41 |
+
|
42 |
+
The training objective emphasized **attribution-style captioning**—capturing precise object details, relationships, and scene-level semantics.
|
43 |
+
|
44 |
+
# Quick Start with Transformers
|
45 |
+
|
46 |
+
```python
|
47 |
+
from transformers import Qwen2_5_VLForConditionalGeneration, AutoTokenizer, AutoProcessor
|
48 |
+
from qwen_vl_utils import process_vision_info
|
49 |
+
|
50 |
+
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
51 |
+
"prithivMLmods/DeepAttriCap-VLA-3B", torch_dtype="auto", device_map="auto"
|
52 |
+
)
|
53 |
+
|
54 |
+
processor = AutoProcessor.from_pretrained("prithivMLmods/DeepAttriCap-VLA-3B")
|
55 |
+
|
56 |
+
messages = [
|
57 |
+
{
|
58 |
+
"role": "user",
|
59 |
+
"content": [
|
60 |
+
{"type": "image", "image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg"},
|
61 |
+
{"type": "text", "text": "Provide an attribute-rich caption for this image."},
|
62 |
+
],
|
63 |
+
}
|
64 |
+
]
|
65 |
+
|
66 |
+
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
67 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
68 |
+
|
69 |
+
inputs = processor(
|
70 |
+
text=[text],
|
71 |
+
images=image_inputs,
|
72 |
+
videos=video_inputs,
|
73 |
+
padding=True,
|
74 |
+
return_tensors="pt"
|
75 |
+
).to("cuda")
|
76 |
+
|
77 |
+
generated_ids = model.generate(**inputs, max_new_tokens=128)
|
78 |
+
generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)]
|
79 |
+
|
80 |
+
output_text = processor.batch_decode(
|
81 |
+
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
82 |
+
)
|
83 |
+
print(output_text)
|
84 |
+
```
|
85 |
+
|
86 |
+
# Intended Use
|
87 |
+
|
88 |
+
* Attribute-rich object recognition and captioning.
|
89 |
+
* Vision-language research in attribution and property extraction.
|
90 |
+
* Dataset creation for fine-grained visual description tasks.
|
91 |
+
* Enabling descriptive captions for images with complex object relationships.
|
92 |
+
* Supporting creative, technical, and educational use cases requiring precise captions.
|
93 |
+
|
94 |
+
# Limitations
|
95 |
+
|
96 |
+
* May produce variable levels of granularity depending on the image complexity.
|
97 |
+
* Not optimized for highly censored or safety-critical deployments.
|
98 |
+
* Might over-attribute or hallucinate properties in ambiguous or abstract visuals
|