--- license: apache-2.0 datasets: - prithivMLmods/Deepfake-vs-Real language: - en base_model: - google/siglip2-base-patch16-224 pipeline_tag: image-classification library_name: transformers tags: - deepfake - SigLIP2 - 8K --- ![6.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/vA2N-JPgpmrjDNw5-8Wmx.png) # **Deepfake-vs-Real-8000** > **Deepfake-vs-Real-8000** is an image classification vision-language encoder model fine-tuned from **google/siglip2-base-patch16-224** for a single-label classification task. It is designed to detect whether an image is a deepfake or a real one using the **SiglipForImageClassification** architecture. ```py Classification Report: precision recall f1-score support Deepfake 0.9990 0.9972 0.9981 4000 Real one 0.9973 0.9990 0.9981 4000 accuracy 0.9981 8000 macro avg 0.9981 0.9981 0.9981 8000 weighted avg 0.9981 0.9981 0.9981 8000 ``` ![download.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/MqyYUuGb-gZDsCtusIQOr.png) The model categorizes images into two classes: - **Class 0:** "Deepfake" - **Class 1:** "Real one" --- # **Run with Transformers🤗** ```python !pip install -q transformers torch pillow gradio ``` ```python import gradio as gr from transformers import AutoImageProcessor from transformers import SiglipForImageClassification from transformers.image_utils import load_image from PIL import Image import torch # Load model and processor model_name = "prithivMLmods/Deepfake-vs-Real-8000" model = SiglipForImageClassification.from_pretrained(model_name) processor = AutoImageProcessor.from_pretrained(model_name) def deepfake_classification(image): """Predicts whether an image is a Deepfake or Real.""" image = Image.fromarray(image).convert("RGB") inputs = processor(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist() labels = { "0": "Deepfake", "1": "Real one" } predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))} return predictions # Create Gradio interface iface = gr.Interface( fn=deepfake_classification, inputs=gr.Image(type="numpy"), outputs=gr.Label(label="Prediction Scores"), title="Deepfake vs. Real Image Classification", description="Upload an image to determine if it's a Deepfake or a Real one." ) # Launch the app if __name__ == "__main__": iface.launch() ``` --- # **Intended Use:** The **Deepfake-vs-Real-8000** model is designed to detect deepfake images from real ones. Potential use cases include: - **Deepfake Detection:** Assisting cybersecurity experts and forensic teams in detecting synthetic media. - **Media Verification:** Helping journalists and fact-checkers verify the authenticity of images. - **AI Ethics & Research:** Contributing to studies on AI-generated content detection. - **Social Media Moderation:** Enhancing tools to prevent misinformation and digital deception.