prithivMLmods commited on
Commit
4f38cbd
·
verified ·
1 Parent(s): 9b3dadb

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +88 -0
README.md CHANGED
@@ -14,6 +14,12 @@ tags:
14
  - CrossEmoji Classifier
15
  ---
16
 
 
 
 
 
 
 
17
  ```py
18
  Classification Report:
19
  precision recall f1-score support
@@ -36,3 +42,85 @@ tags:
36
  ```
37
 
38
  ![download.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/GAcbnAUhe4Tsf4G6LwEt8.png)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
  - CrossEmoji Classifier
15
  ---
16
 
17
+ ![14.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/_mq83JtFZrdirluVNXqX2.png)
18
+
19
+ # **Emoji-Scope**
20
+
21
+ > **Emoji-Scope** is an image classification vision-language encoder model fine-tuned from **google/siglip2-base-patch16-224** for a single-label classification task. It is designed to classify emoji images into different style categories using the **SiglipForImageClassification** architecture.
22
+
23
  ```py
24
  Classification Report:
25
  precision recall f1-score support
 
42
  ```
43
 
44
  ![download.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/GAcbnAUhe4Tsf4G6LwEt8.png)
45
+
46
+ The model categorizes images into eleven emoji styles:
47
+ - **Class 0:** "Apple Style"
48
+ - **Class 1:** "DoCoMo Style"
49
+ - **Class 2:** "Facebook Style"
50
+ - **Class 3:** "Gmail Style"
51
+ - **Class 4:** "Google Style"
52
+ - **Class 5:** "JoyPixels Style"
53
+ - **Class 6:** "KDDI Style"
54
+ - **Class 7:** "Samsung Style"
55
+ - **Class 8:** "SoftBank Style"
56
+ - **Class 9:** "Twitter Style"
57
+ - **Class 10:** "Windows Style"
58
+
59
+ # **Run with Transformers🤗**
60
+
61
+ ```python
62
+ !pip install -q transformers torch pillow gradio
63
+ ```
64
+
65
+ ```python
66
+ import gradio as gr
67
+ from transformers import AutoImageProcessor
68
+ from transformers import SiglipForImageClassification
69
+ from transformers.image_utils import load_image
70
+ from PIL import Image
71
+ import torch
72
+
73
+ # Load model and processor
74
+ model_name = "prithivMLmods/Emoji-Scope"
75
+ model = SiglipForImageClassification.from_pretrained(model_name)
76
+ processor = AutoImageProcessor.from_pretrained(model_name)
77
+
78
+ def emoji_classification(image):
79
+ """Predicts the style category of an emoji image."""
80
+ image = Image.fromarray(image).convert("RGB")
81
+ inputs = processor(images=image, return_tensors="pt")
82
+
83
+ with torch.no_grad():
84
+ outputs = model(**inputs)
85
+ logits = outputs.logits
86
+ probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
87
+
88
+ labels = {
89
+ "0": "Apple Style",
90
+ "1": "DoCoMo Style",
91
+ "2": "Facebook Style",
92
+ "3": "Gmail Style",
93
+ "4": "Google Style",
94
+ "5": "JoyPixels Style",
95
+ "6": "KDDI Style",
96
+ "7": "Samsung Style",
97
+ "8": "SoftBank Style",
98
+ "9": "Twitter Style",
99
+ "10": "Windows Style"
100
+ }
101
+ predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))}
102
+
103
+ return predictions
104
+
105
+ # Create Gradio interface
106
+ iface = gr.Interface(
107
+ fn=emoji_classification,
108
+ inputs=gr.Image(type="numpy"),
109
+ outputs=gr.Label(label="Prediction Scores"),
110
+ title="Emoji Style Classification",
111
+ description="Upload an emoji image to classify its style."
112
+ )
113
+
114
+ # Launch the app
115
+ if __name__ == "__main__":
116
+ iface.launch()
117
+ ```
118
+
119
+ # **Intended Use:**
120
+
121
+ The **Emoji-Scope** model is designed to classify emoji images based on different style categories. Potential use cases include:
122
+
123
+ - **Emoji Standardization:** Identifying different emoji styles across platforms.
124
+ - **User Experience Design:** Helping developers ensure consistency in emoji usage.
125
+ - **Digital Art & Design:** Assisting artists in selecting preferred emoji styles.
126
+ - **Educational Purposes:** Teaching differences in emoji representation.